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Abstract

This paper adds a quasi-network to a search model of the labor market.

Fitting the model to an average unemployment rate and to other moments

in the data implies the presence of the network is not noticeable in the

basic properties of the unemployment and job finding rates. However, the

network creates downward sloping reemployment hazards which the basic

model does not, and under increasing network returns these hazards are

significantly convex as we see in the data. Going into more detail we find

that the network gets partially destroyed in periods of high unemployment

and generates less job creation per link, while at the same time the jobs

it does create, it does so with fewer links.
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1 Introduction

This paper adds a quasi-network to the Mortensen-Pissarides (1994) search

model of the labor market. If personal and professional relationships are impor-

tant for labor market outcomes it is useful to have an equilibrium framework to

examine their contribution.

In this paper employed agents accumulate professional contacts during work-

ing activity. These contacts then help agents find jobs in the event of unem-

ployment. The longer agents work, the more contacts they are likely to have,

and the more contacts they have the higher their job finding probability is when

unemployed, and the shorter their expected unemployment duration is. Only

the number of contacts matters in the model and unemployed agents cannot

add to their portfolios.1 The number of contacts an agent has falls because

one’s contacts can themselves become unemployed, and unemployed contacts

are assumed to be useless (for the purpose of finding a job). Assuming that un-

employed workers are not useful contacts contrasts with some of the literature

on networks in labour markets. However, if what matters is how many people

you know there is a presumption that it is best if these people are working.

The approach of this paper is to emphasize the dynamics and the general

equilibrium nature of the problem, and in this way complements other papers in

the literature that either use a partial equilibrium model (Galeotti and Merlino

(2008) have exogenous vacancies) or limit the analysis to steady state properties

(Chuhai (2010)).

It is the nature of these models that if we keep all else constant and increase

a measure of network density, the unemployment rate will fall, and along with

it other statistics in the equilibrium will be different. In this paper we take a

different approach. We impose that all variations of the model deliver the same

average unemployment rate of 6%. Fitting the unemployment rate and other

moments in the data implies the presence of the network is not noticeable in

the basic properties of the unemployment and job finding rates. However, the

network generates downward sloping reemployment hazards which the standard

model does not. This occurs because not all newly unemployed agents enter

unemployment with the same number of contacts, and also because the longer

unemployment lasts the more the number of contacts of an unemployed agent

is eroded, reducing his job finding probability. The exact shape of this hazard

is linked to the existence of increasing or diminishing returns to the number of

contacts for an individual agent. This characteristic is inserted in a matching

function which, as standard in the literature, is adapted to account for the

network. The model suggests the evidence of convex hazards points to increasing

returns.

A key implication of the model is that the network depreciates during pe-

riods of high unemployment. This embodies the idea that high unemployment

destroys productive links. On the other hand, the calibrated model also gener-

ates an increase in the importance of contacts when unemployment is high, for

1Weatherall (2008) finds that displaced workers that exit establishments with a small num-

ber of workers have a higher probability of becoming long term unemployed.
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those that do find jobs. On average fewer jobs are created per network contact

in the entire market, but more jobs are created per network contact of those

that find jobs.

Networks have been a part of labor economics for a while. In Montgomery

(1991) the network alleviates adverse selection, and Addison and Portugal (2002)

show that personal contacts are a key way in which firms recruit.2 One implica-

tion of a model where networks take time to build and also take time to dissipate

is that duration patterns emerge, in particular relating employment and unem-

ployment. The mechanism is similar to that of models of learning by doing and

of loss of skill during unemployment.3 The present paper suggests a different

view of skills which carries a potential identification problem.

Finally, the mechanics of this model have much in common with (and lend

support to) the "Rest Unemployment" ideas of Jovanovich (1987) and Alvarez

and Shimer (2008). In our context, an unemployed agent would move to a

different labour market only if two conditions occurred simultaneously: the

unemployment rate in his market is high while in the other market it is low,

and, his current market-specific portfolio of contacts has all but disappeared

(which is a process that takes time).

2Filges (2008) also finds that around 1/3 of hires occurr via personal contacts. See Calvó-

Armengol and Jackson (2007), Galeotti and Merlino (2008), for a network-centered approach,

and Chuhai (2010) for a paper related to this one.
3 See Pissarides (1992) and Larsen (2001) for loss of skill. Addison and Portugal (1989)

show that longer tenure prior to unemployment increases post-displacement wages.
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2 Model

2.1 Workers

There is a unit mass of workers. Workers build professional relationships (con-

tacts) while on the job. They can make at most one extra contact each period

and the model is such that there will be a voluntary upper bound ̄ on the

number of contacts any worker is willing to have.4 Workers lose contacts be-

cause their contacts can become unemployed and the exogenous job destruction

probability, 1− , is identical for every firm-worker match.

These assumptions induce a Pascal Triangle relationship. Given  employed

contacts - and if there is no investment in an additional contact today - a worker

has the following probability distribution over the set [0 1 2  ] contacts to-

morrow:5

(− ) =

µ




¶
()

−
(1− )


=

!

!(− )!
()

−
(1− )


(1)

with () = , and (0) = (1− )

. In case an additional contact is made

today, the same type of distribution applies but over the set [0  + 1]. The

Pascal Triangle delivers two matrices in this problem. The matrix  which

governs contact transitions of unemployed agents, and the matrix ̂ which

governs the transitions of employed agents. For the support [0 1] corresponding

to the upper bound ̄ = 1 these matrices are:

 =

⎡⎣ 0 1

0 1 0

1 (1− ) 

⎤⎦  ̂ =

⎡⎣ 0 1

0 (1− ) 

1 (1− ) 

⎤⎦
where element ( ) is the probability of having  − 1 contacts tomorrow given
− 1 contacts today.
On the worker’s side of the model we make several strong assuptions. First,

in a general version of this model workers make a decision every period on

whether to accumulate an additional contact. We eliminate this decision by

assuming a cost function of managing contacts which is flat at zero up to an

exogenous positive integer ̄, and infinite above that. Imposing an upper bound

for everyone eliminates network stars and makes it easier to focus on the number

of contacts rather than on who these contacts are. Second, we assume that

unemployed contacts are useless for the purpose of finding a job. If worker A

has a link to worker B and worker B loses his job, worker B will disappear from

A’s portfolio, but not vice versa. Third, we assume that when the unemployed

4Thus it takes time to reach the upper bound on contacts. This is essential for the model to

be able to generate the correct correlation between employment and unemployment durations.
5 In Chuhai (2010) the entire network is resampled every period and has no time dependence.

Workers at any given point in time have only the unconditional expectation of where they

will be in the network for next period. Each link is formed with probability q, and for

n workers the number of contacts (k) of workers is distributed with binomial probability

() =





(1− )(−).
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worker gets a job he loses all contacts. He then starts reconstructing his network

from zero contacts. This assumption is similar to the loss of specific human

capital when a workers switches markets in Alvarez and Shimer (2009). By

itself, this assumption is innocuous in this paper. But it links well with the

previous assumption since if a worker in a new job loses all contacts, then there

is no point in keeping an unemployed worker in a contact portfolio as "dormant"

to exploit the fact that he may find a job again (and be useful again). Fourth,

we abstract from wage determination and model the firm’s net profit directly

instead of deriving it via exogenous output and endogenous wages. We follow

the spirit of Cooper, Haltiwanger, and Willis (2007) where wages depend only

on the aggregate state of the economy.6 7 Because we work with an exogenous ̄,

this wage setting assumption is consistent with modelling the stochastic process

for net profits directly. Deviating from these four assumptions considerably

complicates the analysis.

2.2 Firms

Firms post vacancies and there is no distinction between a filled vacancy and a

firm. The probability a vacancy meets an unemployed worker is denoted by  .

Workers are identical from the perspective of the firm. In Montgomery

(1991) firms rely on in-house workers for references. Here, because one firm

equals one worker, this mechanism is summarized inside the matching function.8

In a reduced form way the model contains the ideas of information flow from the

network literature. But firms do not explicitly use the network to hire because

they do not care who they hire. The network just provides a faster match

between a vacancy and any worker available.

The value of posting a vacancy is

 = − +  + (1−  ) (2)

where  is the flow cost of keeping a vacancy open and  is the (weekly) discount

factor. Free entry will drive  to zero so that  =  , where  is the value of

a filled vacancy. A filled job produces an output  from which wages are paid.

All matches have an exogenous break up rate of 1 − . The value of a filled

vacancy is

 =  −  +  + (1− ) =
 − 

1− 
(3)

so that  = () (1− ) ( − ), which is a constant. The reason this is

constant is that the expected duration of a job depends only on  and all workers

start a new job with zero contacts. In addition, vacancies adjust freely every

period. In this model if  rises then, all else equal, equilibrium  will rise, and

this happens by decreasing vacancies relative to the number of unemployed.

6Nash bargaining implies wages are affected by the outside option of unemployment which

depends on the number of contacts a worker has.
7 See also references in their paper.
8Exceptions to this modelling framework include Cooper, Haltiwanger, and Willis (2007),

and Ortigueira and Faccini (2010).
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2.3 Mechanics of employment and unemployment

We detail the transitions into and out of unemployment using the example where

the maximum number of contacts is ̄ = 1.

The transitions into unemployment have two components. Those between

unemployment and unemployment:

̄
£

0 1
¤× ∙ 1− 0 () 0

0 1− 1 ()

¸
× (4.1)

where ̄ is the unemployment rate at the start of period t, and  () is

the probability an unemployed worker with j contacts finds a job this period

given the current state of the world (). The vector
£

0 1
¤
contains

the beginning of period densities of unemployed workers over contacts and its

elements are all non negative and sum to 1 so that here 1 = 1 − 0. The

transition from employment to unemployment is given by:

(1− ) (1− ̄)
£

0 1− 0
¤× ̂ (4.2)

where the vector
£

0 1− 0
¤
contains the beginning of period densities of

employed workers over contacts. Summing these two objects yields a vector

of ̄+ 1 elements (in this case 2) detailing the number of unemployed workers

- which in this case is also the unemployment rate - and their distribution

over contacts,
£

̄+1
+1
0 ̄+1(1− +10 )

¤
. Next period’s unemployment rate,

̄+1, is given by summing the elements of this vector.

The transitions into employment include first those from unemployment into

employment:

̄
£

0 1− 0
¤∙ 0 ()

1 ()

¸ £
1 0

¤
(5.1)

where the vector
£
1 0

¤
allocates all job finders into the zero contact bin next

period, and also those from employment to employment:

(1− ̄)
£

0 1− 0
¤
̂ (5.2)

and summing these two objects we obtain next period’s employment levels and

distribution of employed workers by contacts, (1− ̄+1)
£

+10 1− +10

¤
.

2.4 Equilibrium

These previous equations characterize the equilibrium given the current state of

the world. They are, however, overidentified in terms of computing the long run

equilibrium. Each transition determines two of the three steady state values we

need to find, and which in the example are  = (̄ 0 0). For example, the

dynamics into unemployment imply:

̄
£

0 1− 0
¤
= ̄

£
0 1− 0

¤× ∙ 1− 0 0

0 1− 1

¸
× (6)

+(1− ̄) (1− )
£

0 1− 0
¤× ̂
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and to find the steady state we add the condition that jobs created equal jobs

destroyed:

̄
£

0 1− 0
¤ ∙ 0

1

¸ £
1 0

¤ ∙ 1
1

¸
(7)

= (1− ̄) (1− )
£

0 1− 0
¤× ̂

∙
1

1

¸
Equations 6 and 7 form a non linear system as  depends on vacancies, and

vacancies depend on the distribution of unemployed workers over contacts in a

nonlinear way. Numerically, however, there is no problem solving the model.

2.5 The matching function

We need to determine  and so we need to define the matching function. We

want this function to have several standard properties. The total number of

matches must be increasing in both the number of vacancies and the number

of unemployed workers. And the probability that an unemployed worker finds

a vacancy must be increasing in the number of vacancies and decreasing in the

number of unemployed workers. Additionally, this probability must be increas-

ing in the number of contacts a worker has. This extra feature of our problem

provides us with the possibility of matching time patterns of job finding rates

in the data which the standard model does not.

Equilibrium consistency of the matching probabilities implies for the total

number of matches:

 =

̄X
=0

 ̄ (8)

and for some function g such that  =  ( ̄ ) we must have at least that

  0, ̄  0, and   0. Note that we are not imposing that these proba-

bilities depend explicitly on the distribution of workers over contacts. We now

check whether a close relative of the Cobb-Douglas will satisfy our requirements.

Consider the function

 =  ( ̄ ) = 
³
̄

´
 () (9)

with 0    1, and   0. This function satisfies all our derivatives above.

Furthermore it also satisfies the condition that the total number of matches is

increasing in both vacancies and unemployment:

 = 
³
̄

´
̄

̄X
=0

 () =  ()

(̄)

1−
̄X
=0

 () (10)

Note that the number of matches is affected by the network. In particular,

the more destroyed the network is (the less average contacts unemployed workers

have keeping all else constant) the lower the number of matches, so that the idea
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that networks reduces frictions is embodied in the model. What is not affected

by the network is the ratio , which is exogenous due to - among other things

- the complete flexibility of vacancies. More importantly, we see that output

and wages enter the model only here and do so only together. This is why using

Nash Bargaining to determine wages can be replaced by a characterization of

the stochastic properties of net profits.

The final steps of this construction come from the side of the firm. Given

that  is a constant and because for the firm it does not matter which type

of worker they meet, this probability can be written simply as  = . We

then have




= 

³ ̄


´1− ̄X
=0

 () =
 (1− )

( − )
(11)

which then implies that vacancies depend on the distribution of types:

 = ̄

Ã

( − )

 (1− )

̄X
=0

 ()

! 1
1−

(12)

but of course vacancies adjust completely such that  , the value of a filled

vacancy, does not depend on any distribution.

Now, given that vacancies depend on the distribution of contacts, job finding

probabilities also do,  =  ( ̄  (∗)), and so do average job finding proba-
bilities,



̄
=

µ
 − 

1− 

¶ 
1−

Ã


̄X
=0

 ()

! 1
1− µ





¶ 
1−

(13)

This construction allows us to now specify the function  () independently

of other considerations.9 Its main property is that it should be increasing in

the number of contacts. But its shape is also important. A convex function

embodies an idea of increasing returns to network density. However, convexity

may be problematic because  is a reduced form for (part of) a probability

function. With convexity we are forced to rely on the ad-hoc cost function of

managing contacts in order to ensure boundedness in the problem. Nevertheless,

one empirical fact suggests convexity: Lynch (1989) reports a value of 0.30 for

the finding rate in the first week of unemployment, and then this number falls

fast in the following weeks.10 On the other hand, if we think of an environment

where not everyone is equally valuable as a contact, diminishing returns may

result.

With this in mind we use the following function:  () = 0 + 1 ()
2 . This

function has one free parameter 2 which is used to get concavity or convexity.

We set 2 = 2 in the convex case and 2 = 05 in the concave case. We then

choose two numbers for  (̄) and  (0) to pin down the other two parameters.

9The function  could depend also on characteristics such as age, gender and education.
10This quick drop could reflect hidden job to job transitions which would show up as very

short unemployment durations. However, the reemployment hazards in Addison and Portugal

(2003) are also consistent with a convex  function at short durations.
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Our function  () is a reduced form of introducing the mechanics of how

job offers arrive, something which other papers in the literature develop in more

detail (see Galeotti and Merlino (2008), Chuhai (2010) and references therein).

For our purposes a reduced form is enough, but more importantly, our notion of

network is that of an effective network. Being linked to an unemployed worker

here is assumed to be useless, and unemployed workers cannot develop more

links to employed people (which here are the links that matter). This is an

extreme view, and sidesteps the idea that information about a vacancy flows

through the network until it finds an adequate recipient, and so more links,

employed or unemployed, have value.

3 Numerical Simulations

3.1 Parameters

We follow Shimer (2005), Mortensen and Nagypal (2007), Cooper, Haltiwanger

and Willis (2007), and Zhang (2008), adapting where appropriate for a weekly

frequency. CHW use an annual interest rate of 4%, while Shimer uses a value

around 5%. We use 5%. CHW report a value of , the weight of firms in the

matching function, of 0.64. Shimer uses a value of 0.28 for this parameter. We

use the mid point of these two values, 0.46, which is within the plausible range

proposed by Petrongolo and Pissarides (2001).

Shimer uses a quarterly separation rate of 10% which delivers an expected

employment duration equal to 30 months or 130 weeks, and so we set  =

1− 1130.11 12
We normalize net profits, (−), to 1, and use the vacancy cost  to target

the vacancy filling rate directly to Shimer’s value,  = 014. Given  and 

this implies  ≈ 16. The tightness ratio is then implied by the rest.13
CHW estimate  = 10072. Shimer (2005), sets  ≥ 1, and also normalizes

the tightness ratio to be one. This implies the ratio of matches over vacancies

or over unemployment is greater than one. In the present paper, this is not the

case since the quantity
̄X
=0

 ()

adds up to a small number, bringing down the number of matches formed.

Rather than set a value we use  to ensure we obtain an unemployment rate of

6%. We note that if our model is the truth the empirical exercise of CHW is

not well specified and therefore we cannot say that having  6= 1 is incompatible
with the data.

11Zhang finds that Canadian jobs have an expected duration of 146 weeks. Given a monthly

separation rate of 0.03 the weekly  is given by (1− ) = 003435 = 1145.
12This underestimates destruction. In the data a firm and a worker may separate 2 weeks

into the quarter and 4 weeks later both the firm and the worker may have found new matches.
13CHW report that the average value of labor market tightness, the ratio  is around

0.46. Shimer calibrates it to equal 1 (which implies in equilibrium  =  ).
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CHW report a monthly job finding rate equal to 0.61, while Shimer reports

a value of 0.45. Disregarding contacts this implies in a weekly frequency:

 + (1− ) + (1− )
2
 + (1− )

3
 = 045 (14)

which in turn yields  = 014.14 In this section we use an example with ̄ = 9.

Throughout  = 014,  = 1− 1130,  = (095)152,  = 046, and − = 1.

Table 1 shows some other parameters and resulting averages for ,  and :

Table 1: Deterministic Model Parameters

 Function  (0) (̄) 2 u v/u 

Convex 0.5925 0.04 0.28 2.0 0.06 0.86 0.12

Concave 0.5925 0.01 0.22 0.5 0.06 0.86 0.12

Figure 1 shows both the () function (upper lines) and the resulting equi-

librium () function (lower lines) for the case where ̄ = 9. They are closely

related, which suggests the empirical job finding hazard - which derives from

 - may help identify the  function.

Figure 1:  and  functions

0 2 4 6 8
0.0

0.1

0.2

n

Figure 2 shows the expected duration of unemployment (in weeks) generated

by our parameter values. The concave model with our low value of (0) = 001

generates a very large expected duration (166 weeks) for those unfortunate

enough to lose all their friends. The convex model is not as agressive since

(0) = 004 generates "only" an expected duration of 45 weeks.

3.2 Simulation Results

In this section we look at some key correlations. Our simulations average ten

panels of 4350 individuals which, at a 6% steady state unemployment rate, yields

on average 261 unemployed workers. We pick these unemployed workers in the

14Zhang reports a monthly value of 0.309 for Canadian data, implying  = 008825.
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Figure 2: Expected Duration of Unemployment

0 2 4 6 8

50

100

150

n

last artificial cross section generated.15 For each unemployed individual we

measure the length to date of their current unemployment spell, (), the length

of the employment spell that preceded it, (), and the number of contacts they

have today. From the number of contacts they have we can compute analytically

their expected duration of unemployment from this period onwards, (()). We

can do this because we pick the cohort at a time series point where contact

distributions have converged to their ergodic state. Average correlations among

these three objects are shown in the first three columns of Table 2.

Table 2: Correlations

1 2 3 4

 Function (u,e) (u,E(u)) (e,E(u)) (u,e) RD

Convex -0.18 0.64 -0.37 -0.124

Concave -0.14 0.72 -0.21 -0.055

The correlation between employment and unemployment durations for the

unemployed in the last cross section is negative. The correlation between cur-

rent unemployment (employment) duration and expected onward duration is

positive (negative). In addition to these three numbers, column four shows the

correlation between complete realized unemployment durations and complete

realized employment durations. This measure follows a large number of workers

from the moment they first become unemployed until they find a new job, and

has less composition bias. All the correlations in Table 2 are zero in the absence

of the network.

3.2.1 Hazards

With our artificial data we can also compute reemployment hazards. We pick

workers as they become unemployed and for each worker we measure his du-

15The model is first run until the unemployment rate and the contact distributions converge.

After that all individuals begin life with maximum contacts ̄. After a few hundred periods

the simulation stops and we pick the cross section of the panel at this point.
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ration of the unemployment spell, without using any information on individual

contact portfolios. This hazard is computed up to 104 weeks, and uses about 42

thousand unemployment spells. Figure 3 shows only the first 52 weeks of this

hazard. The smooth line is a projection of the realized hazard onto a 7th order

polinomial in time.

Figure 3: Reemployment Hazards
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The strongest distinguishing feature between the two cases is the slope, where

the concave  case is the more flat of the two. A downward sloping hazard arises

naturally here both because of composition effects (the 42 thousand workers have

different numbers of contacts when they enter unemployment) and because of

the decay in contact portfolios as workers remain unemployed for long periods.

If the  function was a constant the network would disappear and the hazard

would be horizontal. We also do not have endogenous incentive effects which can

make the hazard eventually upward sloping (as when previously accumulated

savings run out and workers lower their demand levels for a job).

Apart from the difference in slopes, given these parameter values neither

function is able to induce the steep drop in the hazard at the start of the

unemployment spell noted by Lynch (1989). At this point we cannot say much

about the properties of the network without adding aggregate shocks. We do

this in the next section and will return to the hazards then.
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4 Aggregate Shocks

The aggregate state affects productivity, , and the destruction rate, . For

simplicity of exposition we work here with two aggregate states, indexed 1 and

2. A realization of the aggregate state yields a value for the pair ( ). The

transition between 1 and 2 is governed by the Markov matrix:

Π =

∙
 1− 

1−  

¸
(15)

4.1 Firms

The value of posting a vacancy is indexed by the aggregate state:

 () = − +  () () + (1−  ()) ( ) (16)

where the probability a vacancy meets an unemployed worker is denoted by

 (). Free entry implies  = 0 whatever the state so that  =  () ().

A filled job produces an output  ≡  (), which is divided between the firm

and the worker, with  ≡  (). Matches have an exogenous break up rate of

1−  ≡ 1−  (). The value of a filled vacancy is

 () =  −  +  () + (1− )( ) (17)

and in matrix form

 =

∙
 (1)

 (2)

¸
=

∙
1 − 1
2 − 2

¸
+ 

∙
1 0

0 2

¸
Π

∙
 (1)

 (2)

¸
(18.1)

 = [ − ΛΠ]
−1
∙
1 − 1
2 − 2

¸
(18.2)

which implies  is a vector of constants implied by:

1 =

∙
1 (1)

1 (2)

¸
=




Π (19)

4.2 Probability matrices.

We still have the transition matrices  and ̂ as before, and one difference is

that they are indexed by the aggregate state since the destruction rate varies

with the aggregate shock,  (). This is, however not the only difference. In

the general problem it is possible for the maximum number of contacts to vary

with the aggregate state. The transition matrix  for unemployed workers is

the same as before but uses the maximum ̄ (). The transition matrix ̂ has

dimension given by the maximum ̄ (), but its composition changes with the

aggregate state. However, since we kill this choice, we keep ̄ constant across

the aggregate states rather than go for an ad-hoc guess of what this choice

would imply.16 Finally, the appendix extends the mechanics of employment

and unemployment and the matching function to this environment.

16 It is unclear how ̄ should vary with , let alone with a multidimensional state.
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5 Numerical Simulations

5.1 Parameters and Stochastic Processes

We must extend our calibration. Table 3 summarizes means (), standard

deviations (), and serial correlations (), of the unemployment rate, vacancies,

market tightness ratio, job finding rate, separation rate ( ≡ 1 − ), and of

productivity, for the US economy, taken from Zhang (2008).17CHW estimate the

Table 3: USA Quarterly and Monthly Data Moments

     

 0.190 0.202 0.382 0.118 0.075 0.020

1 0.936 0.940 0.941 0.908 0.733 0.878

 0.057 0.452

first order serial correlation of market tightness to be 0.93 using monthly data,

which is nearly the same as we see here. All these moments have substantial first

order serial correlation, which implies we need highly serially correlated shocks

at the weekly frequency. The quarterly data has also the following correlations:

 ( ) = −0894,  ( ) = 0948, and  ( ) = −0524.
We note that it is not possible to have  ( )  0 if  is an exogenous

constant. Therefore we have job destruction shocks. We also want a job finding

rate that is more volatile than the job destruction rate (01180075 = 157).18

To generate these properties what matters in the model is the net surplus −,
and not output or productivity itself. Procyclical but rigid wages imply  − 

moves proportionally more than  alone (they amplify the shocks to ). Our

wage setting assumption is consistent with these properties of  − .

At the weekly frequency we form the two shocks as different linear combi-

nations of two identical and independent Markov processes 1 and 2:

 −  =  (1 + 2) (20.1)

 = 1 − 2 (20.2)

where the support of  is constructed around the value 1/130 and the support

of  −  is detailed below. The parameter  is set at 3 inducing a weekly

negative correlation between the two variables of around -0.40, and  is chosen

to generate enough relative volatility.

The two variables 1 and 2 are generated from a discretization of a normal

AR1 process  on a 13-point support using Tauchen (1986). The serial correla-

17The  and 1 are computed with quarterly data, while the mean uses monthly data. The

data are measured as ()− (̄), where ̄ is the Hodrick-Prescot trend.
18Torres (2009) finds for both the U.S. and Portugal that the job finding probability is

procyclical and the job separation probability has no clear pattern. Both probabilities are in

Portugal half of those in the U.S. economy. See also Shimer (2007). However, Yashiv (2007)

Fujita and Ramey (2009), and Petrongolo and Pissarides (2008) find that the job destruction

rate is also quite volatile.
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tion parameter is 0.983.19 Indepently of the standard deviation value this yields

the Markov transition matrix for . The overall matrix is a Kronecker product

of two identical matrices, and it is the same for both − and . However, the

support vectors of  and  −  are different and thus are generated differently.

To ensure a positive value of − we generate the support vector z of an AR1

Normal random variable using Tauchen as above for a given standard deviation,

and then compute the vector  =  + 1+ (min()). The support of  − is

then the Kronecker of this z by itself.

The support of  is not generated the same way. It cannot be normal or log

normal because of the unit interval bound. It is a linear spaced vector centered

around 1/130, and then the overall support for  is the appropriate Kronecker

product of this vector.

One aside on the impact of shocks is important here. We need high persis-

tence in order to get a large negative correlation between vacancies and unem-

ployment. Equation 12 suggests a positive relationship between vacancies and

unemployment. However, vacancies adjust to productivity shocks which enter

with a power of 1(1−) ≈ 2, while the unemployment rate enters with a power
of 1. If productivity shocks are persistent, high productivity will increase va-

cancies and lower unemployment, overriding the positive direct effect that the

unemployment rate has on vacancy creation. If productivity shocks are iid, the

correlation between vacancies and unemployment is positive.20

Finally, the stochastic environment keeps the parameter values used before,

only this time we set ̄ = 104, for two years of network formation horizon. The

value  = 014 still defines  using the median of the shocks, but then, once

the constant  is set, we generate a vector for  as in section 4.1. The job

destruction mean and median is 1130,  and  are the same. The parameter

 again adjusts with the environment to get a 6% unemployment rate.

5.2 Time Aggregation

5.2.1 Job finding rate

When we pick the unemployment rate at a given point in time that is a well

defined measure at any frequency. But the job finding rate is not as well defined.

Unless we are at the exact weekly frequency we need to match an interval

measure with a point measure. The job finding rate at lower frequencies - ̂

for monthly - is defined as a moving average and thus has weekly realizations.

For a monthly measure we can use either a four week interval before or after

the time point with equal legitimacy, but they yield different results.

A different issue is the population used. A consistent way to measure the

job finding rate over an interval is to pick the workers who become unemployed

19 0.99^13 = 0.878, the quarterly serial correlation of productivity, and 0.9765^13=0.734,

the value for the destruction rate. As our two shocks are not independent we set the weekly

serial correlation at 0.983 to get the intermediate value of 0.800.
20Endogenous wage determination effectively plays the role of picking the right relationship

between ( ) by changing how the ratio  (1− ) (−) moves. On this see Hall (2005),

Hagedorn and Manovski (2007), Mortensen and Nagypal (2007).
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at a given point in time and follow only them, as they are reabsorbed into

employment.21 These workers will all share an identical aggregate state history,

and the population will be well defined from the start. A monthly finding rate

is then computed each week for a 4-week-ahead interval as:

̂ =  + +1 (1−  ) + +2
¡
1− +1

¢
(1−  ) (21)

++3
¡
1− +2

¢ ¡
1− +1

¢
(1−  )

and we use this forward looking measure because we want a greater "causality"

going from unemployment at t to the job finding rate ̂ . For 

+ we use the

empirical measure:

+ =
number of job finders in week t+j

number of unemployed at the start of week t+j

and where the number of job finders in week t+j is measured as the number of

workers that are unemployed at the start of week t+j, but are employed at the

start of week t+j+1, and the number of unemployed at the start of week t+j is

the remaining subset of the set of job losers from week t.

The monthly rate is then relative to the number of workers who lose their

job in week t (so that at t+3 the population of unemployed is the remainder

after some of the initial workers find jobs in the previous 3 weeks).

Note also that our empirical measure obeys the limit condition

lim
#workers→∞

 =

X
=0

 () (22)

as the number of workers gets large.

The serial correlation of  is measured by first sampling it every fourth

week and then running an AR1 regression on this sampled time series. The

mean and standard deviation are also taken on the sampled time series.

5.2.2 Job separation rate

The job destruction rate at lower frequencies, ̂

, is constructed in a similar

way, but because  is exogenous and does not depend on type this is an exact

measure. For the monthly frequency we have the forward looking measure:

̂


 =  + +1(1− ) + +2 (1− +1) (1− ) (23)

++3 (1− +2) (1− +1) (1− )

where  is simply the realized destruction rate in week t. In the model this is

just  = 1− , but again an empirical measure uses

+ =
number of job losses in week t+j

number of employed workers at the start of week t+j

21 If we pick all unemployed workers at a given point in time, rather than just those that

lose their jobs that period, this biases the job finding rate since long durations and lower

individual job finding rates are over represented in the stock of unemployed.
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and where the number of job losses in week t+j is measured as the number of

workers that are employed at the start of week t+j but unemployed at the start

of week t+j+1.

Finally, this measure does not suffer from composition biases, so we can use

the current number of employed workers at every point, and do not need to keep

track of the time t cohort of employed workers.

5.3 Simulated Moments

We first run the model until convergence with a constant realization of the

aggregate state (at its median value). After convergence we use the stochastic

path of aggregate shocks (to productivity and job destruction) for the following

728 periods, but we eliminate the first 208 periods (4 years) and use the last

520. The same realization of random variables is used in every experiment.22

Table A1 in the appendix shows moments for the weekly frequency, for both

the concave and convex specifications for the function . For each specification

four scenarios are used, a baseline case with both shocks, a variation with a

constant  function (no network), a variation with only productivity shocks

(lambda constant), and a variation with iid shocks. The top section of Table A1

shows moments for aggregate variables. These are constructed exactly according

to the model. The bottom section of Table A1 shows results for a panel with

6900 workers which results in an average of 414 unemployed, and 51 workers

losing their job (and finding one) each week. The top section can be viewed as

the exact limit of a large panel.

Table A1 shows us that iid shocks result in a strongly positive correlation

betweeen unemployment and vacancies, and that a constant  naturally results

in a zero correlation between productivity and the job destruction rate, both of

which rule out specifications close to these.

Comparing the top section with the bottom section of Table A1, the moments

of the unemployment rate are quite close (indicating the panel is not too small)

but there is some difference in standard deviations and serial correlations in

the job finding and job destruction rates. The reason the panel unemployment

rate is very accurate is that it is measured on average from the ratio 414/6900,

and both numbers are large enough to ensure statistical accuracy. The job

finding rate is measured on average from the ratio 51/414, which is reasonable

but nevertheless an order of magnitude smaller than the numbers used for the

unemployment rate. From the third and seventh columns (constant lambda),

bottom section, we see that the small panel induces a significant variability in

the job destruction rate which should be zero.

One other interesting fact coming out of this table is that there is little

difference among columns 1, 2, 5, and 6: both baselines and both constant 

cases. Once we fix the unemployment rate concavity is similar to convexity, and

the absence of the network has no significant impact on the aggregate properties

22The initial realization of the aggregate shock is the median, and the cross sections of

contacts are initialized at the ergodic distributions generated by the median shock.
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of the model. Finally, the last two rows of Table A1 show that unemployment

duration is negatively correlated with previous employment duration, and that

unemployment duration rises in periods of high unemployment.

5.3.1 Lower Frequencies

Table A2 contains moments for monthly and quarterly frequencies and gives us

a few facts by comparison with the weekly frequency and with the data. First,

all means are accurate. Second, as we lower the frequency (from weekly, to

monthly, to quarterly) the standard deviation of the job finding and job de-

struction rates falls, and in particular the panel job finding rate is very flat with

a standard deviation of 0.050 instead of the data value of 0.118. Third, the

three correlations we care about,  ( ),  ( ), and  ( ), are not sig-

nificantly affected by the frequency, and have acceptable values for the quarterly

frequency if we compare to the data. Finally, the model is a little less volatile

than the data with the current parameterization as the standard deviation of

the unemployment rate is 0.152 which in the data is 0.190.

5.3.2 Duration

The correlation between the unemployment rate and the realized duration of

unemployment is positive. This correlation is measured by taking each period

only the cohort of workers that lose their job. Losing a job in period j is defined

by having a job in period j but not having it in period j+1. We compute the

cohort’s average realized duration of that single unemployment spell. Then we

compute the unemployment rate verified at the time they start unemployment

(j+1).23 This is done for 428 weeks and we correlate the time series of average

cohort duration with the time series of the unemployment rate. Table 4 shows

this correlation along with the time series average of average cohort durations (8

weeks), the time series standard deviation of average durations (1.8 weeks), av-

erage cohort size (51 workers), and the time series standard deviation of average

cohort size (8 workers).24

The correlation is positive for all cases except for iid shocks where it is

approximately zero. Having a stochastic  has a significant impact on this

correlation. Also, unemployment duration increases when unemployment rises

even in the absence of the network (columns 2 and 6). Shutting down the

network has negligible effects except for the standard deviation of unemployment

duration which falls significantly. This antecipates a point we will make below,

namely that one of the interesting issues of the cyclical behaviour of the network

is what happens to the distribution of durations when unemployment rates

increase. There will be winners and losers.

23The serial correlation of shocks at the weekly level is so high that this is almost identical

to what we get using the unemployment rate at j.
24 Smaller average cohort sizes bias the correlation downwards, but from an average cohort

size of 40 up to 50 the value of this correlation does not change much.
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Table 4: Duration in the Stochastic Model

Concave  Convex 

1 2 3 4 5 6 7 8

BL CF CL IID BL CF CL IID

 ( ) 0.51 0.49 0.37 0.03 0.55 0.49 0.38 0.05

U-rate 6.02 6.02 6.00 6.01 6.02 6.00 5.99 6.00

Duration in Weeks

Mean 8.01 8.11 8.10 8.10 8.28 8.06 8.29 8.32

St. Dev. 1.70 1.32 1.60 1.40 1.95 1.31 1.87 1.65

Cohort Size

Mean 51.1 51.1 50.2 50.2 51.1 51.1 50.3 50.3

St. Dev. 7.97 7.94 7.44 8.26 7.94 7.94 7.43 8.25

 1.020 0.665 1.010 0.994 1.444 0.674 1.429 1.405

Given the average unemployment duration of 8 weeks, the expected loss

of contacts over this period is of 6%. Someone entering unemployment with

100 contacts on his portfolio will expect to have 94 contacts after 8 weeks,

100×()8 = 94. The issue then is how this average loss of contacts affects the

hiring probability, and here is where concavity or convexity of the  function

matters. With the current parameterization these functions are perhaps not

concave or convex enough for this to matter much over a short horizon such as

8 weeks.

To check the impact of extra curvature we ran the model with 2 = 025,

and 2 = 4, for the concave and convex cases. The results are contained in

Table A4. The differences are small. But some patterns emerge in the cyclical

behaviour of the network and we discuss them below.

5.4 Network productivity

5.4.1 Measures

In this paper, by construction close to 100% of jobs are found with use of

contacts (inside the  function) - the only exception being the finding rate for

workers with zero contacts. This is not the case in the data. In an interesting

paper, Galeotti and Merlino (2008) use the measure: "the proportion of newly

employed workers that found a job through a friend or acquaintance that worked

in the same place as the new employee". This measure is positively correlated

(0.44) with the unemployment rate.25 Given our model we cannot reproduce

the statistic they use so we must look at other measures to understand the

contribution of our network.

Here, although exogenous, the network changes cyclically. In particular two

things happen in periods of high unemployment.

25The authors believe this positive correlation is only possible with an endogenous increase

in the activity of networking during periods of unemployment. They also state that "between

30% and 50% of jobs are filled through social exchange of information.", which is consistent

with Filges (2008) and with Addison and Portugal (2002).
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On one hand, lower output occurs at the same time as higher job destruction

rates.26 In the baseline cases more workers lose their jobs (the number of job

losses is positively correlated with the unemployment) just when vacancies drop

(vacancies are negatively correlated with unemployment).

But more inflow into unemployment acts to raise the average number of

contacts of the unemployment pool. This is a composition effect. On the other

hand, lower vacancies and more unemployed workers reduce the job finding

rate, and a duration effect is triggered. Longer durations imply more of the

portfolio of each unemployed worker vanishes before finding a job. So, the fall in

vacancies and the increase in unemployment duration induces a "depreciation"

of the network. The task now is to see the contribution of these different effects.

Table A3 contains the correlation with the unemployment rate for a number

of variables in the model. We first focus our attention on the behaviour of three

objects: the average contacts of all unemployed (row C), the average number of

contacts of the cohort of job finders (the subset of the unemployed that finds a

job in the period) (row R2), and the average number of contacts of the cohort of

non finders (the subset of the unemployed that does not find a job in the period)

(row T). All numbers are negative except if shocks are iid. But the difference

between job finders and non finders falls:

1 =
Total Contacts of Job Finders

Number of Job Finders
− Total Contacts of Non Finders

Number of Non Finders

This gap (row N) falls when unemployment rises. Workers become more

alike (this does not mean that having more contacts is no longer an advantage).

This fall in the gap is also more pronounced if  is convex (-0.455 in column 5

versus -0.204 in column 1) since the recently unemployed (which are now more)

experience a faster drop in the job finding rate from their loss of contacts than

they do with a concave function.

We can try to view this mechanism as "network productivity". Consider the

following two ratios:

2 =
Number of Job Finders

Total Contacts of Job Finders

3 =
Number of Job Finders

Total Contacts of the Unemployed

The first is the inverse of average contacts of job finders. This is positively cor-

related with the unemployment rate (row R1). One may say that Job Finders

"get more" out of their contacts in bad times. The second ratio (row S1) may

be viewed as a measure of the average productivity of the network. This is

negatively correlated with the unemployment rate. We have then two appar-

ently conflicting ideas: during periods of high unemployment the network is less

productive on average, but more important if you want to find a job.

26Note that lower job survival rates (), magnify the effect of lower productivity inside the

matching function. Both effects make the ratio (−)(1− ) move in the same direction.
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All of this happens with an exogenous network. We conjecture that with

an endogenous network where agents create more links during unemployment,

our measures of network productivity should be lower since such a model would

have to fit the same facts with a higher number of contacts during high un-

employment periods. However, whether the network is more or less productive

during periods of high unemployment is perhaps not the most interesting fea-

ture to focus on. More interestingly, an endogenous network might reduce the

cyclical volatility of job finding rates by creating more contacts during periods

of recession (and therefore increasing the job finding rate and reducing the un-

employment rate) and fewer contacts during periods of low unemployment.27

Here concavity or convexity matter again since with a convex  an unemployed

worker with few contacts will have little incentive to spend effort networking,

while if  is concave it is the well connected worker that has no incentive to

spend effort developing his network. Again, this shape has implications for

heterogeneity and conditional duration of unemployment.28

We can see a little of this despite the exogenous nature of our network. From

equation 9, the marginal value of a contact in terms of the job finding rate for an

individual agent is given by  (̄)

[ ()−  (− 1)] and does not depend on

the distribution of contacts other than via the ̄ ratio. In turn, the ̄ ratio is

low when unemployment is high because the correlation between vacancies and

unemployment is negative. Since   0, the marginal increase in the job finding

rate from an additional contact is lower in periods of high unemployment. Note

that the job finding rate is lower in periods of high unemployment even though,

with a higher job destruction rate, more (and well connected) agents now enter

the unemployment pool. But fundamentally, for any difference in contacts 1 −
0  0, the difference  (1) −  (0)  0 is independent of the business cycle.

However, the difference in job finding rates,  (̄)

[ (1)−  (0)], is smaller

during periods of high unemployment.

How do we reconcile this with our finding above? Everyone has fewer con-

tacts so the comparison is not between 1 and 0 at time t,  (̄)

[ (1)−  (0)],

but between them at time t,  (̄)

[ (1)−  (0)], and also at time t+j

with  (̄)

[ (1+)−  (0+)]. Since everyone is losing contacts this dif-

ference is affected by a different ̄ ratio, and by being in a different region

of the function . Our experiments show that during periods of high unem-

ployment the standard deviation of the distribution of contacts of unemployed

workers is lower when  is concave and higher when it is convex.

5.4.2 Other properties

The correlation of the unemployment rate with the fraction of job finders with

less than ̄ contacts, where 0    1, (we use  = 075, and  = 05) hammers

home the fact that everyone sees its portfolio depreciate during periods of high

27This suggests an identification issue arising from the volatility of shocks, the wage deter-

mination process, and the network component.
28 In this respect a complete network is as neutral as a non existent network since in both

cases all agents are identical.
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unemployment. This correlation is positive (rows J and K) so that this tail

grows fat, but it barely moves if shocks are iid and, at the lower end (row K) it

requires job destruction shocks to do so.

The comparison of rows A and D and columns 1 and 3 reveals one interesting

part of the mechanism. The number of job finders rises during periods of high

unemployment because the number of job losers also rises. Column 3 shows

that if the job destruction rate is a constant then the number of job finders is

essentially uncorrelated with the unemployment rate. On the other hand, Row

D shows that the fraction of job finders (job finding rate) falls in periods of

high unemployment and that shutting down the network or having a constant

 do not significantly affect this correlation. The behaviour of the aggregate

job finding rate is driven by ouput shocks and the vacancy behaviour they

induce. Unemployment rates are driven by productivity. The network has

mainly cyclical distributional effects (some find jobs while others do not).

5.4.3 More curvature

We ran the model with 2 = 025, and 2 = 4, for the concave and convex cases.

Changing the curvature implies adjusting the parameter  to keep unemploy-

ment at 6%. Table 4 shows that in the concave case the average contact gap

between job finders and non finders falls less in the concave case and more in

the convex case (row N). High levels of convexity imply very connected people

lose their contacts faster and become quickly like everyone else. High levels of

concavity do the opposite. Also, the tail of contacts of job finders increases less

in the concave case and more in the convex case (rows J and K).

5.4.4 Hazards

Figure 4 shows the convexity of the hazard generated by the convex baseline

case. By comparison the concave case generates a much less convex downward

sloping hazard. If we shut down the network function and replace it with a

constant  we have the horizontal hazard shown which has a mean value of

0.1231. These three hazards are computed using approximately 115 thousand

individual duration spells (all the spells in the 5 panels), and do not control for

the cycle in the artificial data.

The fourth (and lowest) line in figure 4 is an empirical hazard and is also

convex towards the origin. This line uses data on a cohort of 18473 Danish

workers that start their unemployment spell in the first quarter of 2002. The

unconditional density of unemployment duration is shown here only for the first

24 weeks and 4975 observations.29

29This is mereley an illustration of convexity. In the data there are many observations of

short-short durations: short employment spells followed by short unemployment spells which

this model does not replicate. At this stage we do not have access to information on individual

characteristics in this data so we cannot control for heterogeneity or get a bigger panel.
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Figure 4: Reemployment Hazards
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6 Conclusion

In this paper we add a quasi network to the Mortensen-Pissarides search model.

In the course of their working activity, employed workers invest in social contacts

with other employed workers. These professional contacts will help them find

jobs in the event of unemployment. These social contacts are a type of capital,

similar to experience or skill. In the same spirit they also"depreciate" during

unemployment spells. Here this happens because the contacts a worker has

acquired can also become unemployed and unemployed contacts are assumed

to be useless - an extreme version of less useful. In this model the longer you

have been working, the more contacts you are likely to have, and the more con-

tacts you have the shorter your expected unemployment duration will be. The

duration of unemployment is not independent of the duration of employment.

In the model average network productivity is lower during periods of high

unemployment. As workers lose their jobs and spend more time unemployed,

their useful contacts are also eroded by unemployment. However, the aggregate

job finding rate falls driven by the fall in vacancies which itself is driven by the

profitability shock. Importantly, it falls faster than the portfolios of contacts

depreciate, which means fewer jobs are created per contact. One could interpret

this as a fall in network productivity during periods of high unemployment. On

the other hand, those workers finding jobs also see an average deterioration

of their contact portfolios. But for them the portfolio falls faster than their

numbers. The reason the number of job finders does not fall as fast as their

contacts is that there are more unemployed workers looking for jobs which acts

to increase the number of job finders. So, the number of job finders per contact

of job finder actually rises during periods of high unemployment. One could

interpret this as an increase in the productivity of the network.

Our approach is to impose that all variations of the model deliver the same

average unemployment rate of 6%. Fitting the unemployment rate and other

moments in the data implies the presence of the network is not noticeable either

in the basic properties of the unemployment and job finding rates, or in a host

of other moments.

A visible exception to his is of course the downward sloping reemployment
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hazard we obtain when we have a network, and which we do not in its absence.

Other theories such as learning and loss of skill can also generate downward

sloping hazards. Nevertheless, the convexity of the hazard towards the origin

contains information about the characteristics of the network in our context.

The model suggests implications of network mechanisms in the labour mar-

ket. For example, we see in the data that workers displaced (due to firm closure)

from smaller firms have a higher chance of becoming long term unemployed, over

and above individual and sector characteristics. This suggests market structures

where average firm size is bigger may be more efficient in terms of unemployment

dynamics.

Finally, the current model has much in common with the "Rest Unemploy-

ment" ideas of Jovanovic (1987), and Alvarez and Shimer (2008). It is easy to

think of a version of the current model with two markets where unemployed

agents “trapped in one market” wait around unemployed even if there is work

available in the other market because their market-specific portfolio of contacts

induces them to not pay the switching costs too early. These may be well con-

nected people who have been "successful" in that they have had long previous

employment spells.30 Moving will only happen in such a model when two con-

ditions occur simultaneously: the unemployment rate in my market is very high

while in the other market it is very low, and, my portfolio of contacts has all

but disappeared into unemployment. Importantly, given the similarity of pre-

dictions, it seems difficult to disentangle effects of connectivity from those of

human capital specificity.

30 In both models the decision to move may depend on the cross sectional distribution of

contacts (here) or skills (there), so that the state space is big.
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7 A1. Unemployment duration algebra

7.1 Duration in the Deterministic Model

Consider a worker who enters unemployment with zero contacts. His probability

of reemployment is constant every period at 0 . Therefore he finds a job after

one period with probability 0 . Finds a job after two periods with probability

0 (1 − 0 ). After three periods with probability 0 (1 − 0 )
2, etc. We have

expected duration of unemployment given by

0 = 10 + 2

0 (1− 0 ) + 3


0 (1− 0 )

2 + 

= 0
£
1 + 2(1− 0 ) + 3(1− 0 )

2 + 
¤

= 10

This algebra, however, depends on the state vector:

0 () = 10 () + 2

0 (+1) (1− 0 ())

+30 (+2) (1− 0 (+1))(1− 0 ()) + 

so that the value of this sum is not trivial to compute (even though the law of

large numbers ensures the transition of the state vector is deterministic).

We can write the expected duration algebra for all contacts in matrix form

as:

 () =  () + 2
 (+1) () + 3

 (+2) (+1) () + 

where the matrix T is given by  =  (1− ) , and in steady state

equilibrium we can write the expected duration algebra in matrix form as:

 =
©
 + 2 + 3 2 + 

ª
 = [ −  ]

−1
[ −  ]

−1


where  is a column vector.

7.2 Duration in the stochastic model

Consider a worker who enters unemployment with zero contacts. His prob-

ability of reemployment 0 now can change every period depending on the

aggregate state. The analytic computation of expected unemployment duration

is intractable because as aggregate shocks hit, the distribution of workers over

contacts changes. The  () functions are changing over time because  chang-

ing. Therefore here we measure actual durations. Once we pick a cross section

of workers at a given period, we measure its characteristics both backward and

forward looking. Rather than measuring expected duration of unemployment

we measure observed subsequent duration from any point we start following a

worker.
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8 A2: Stochastic Process

We have two independent random variables, (1 2) so that

 −  =  (1 + 2)

 = 1 − 2

Then the weekly variances are

2−
2

=
2(21 + 22)

21 + 222

and the weekly correlation coefficient is given by

( −  ) =

¡
21 − 22

¢q
2 (21 + 22)

q
21 + 222

and assuming they both have the same variance, 21 = 22 = 2, and setting

 = 3 , this reduces to

( −  ) =
(1− )√
2
p
1 + 2

=
−1√
5
= −04472

2−
2

=
22

1 + 2
=

2

5s
2−
2

=

s
2

5
=

√
5
= ⇒  = 22361

and the parameter  is set such that the ratio of weekly standard deviations is

around M.

8.1 Probability matrices.

With aggregate shocks the transition matrices  and ̂ are indexed by the

aggregate state since the destruction rate varies with the aggregate shock,  ().

This is, however not the only difference. In an example with two states we could

have that the maximum number of contacts differs in state zero and state one.

In this case the ̂ matrix changes in a subtle way. We give here an example

where ̄ (2) = 2, and ̄ (1) = 1. We have then for unemployed agents in state

i:

 () =

⎡⎣ 1 0 0

(1− )  0

(1− )
2

2 (1− ) 2

⎤⎦
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with  = 1 2, while for employed agents we have:

̂ (2) =

⎡⎣ (1− 2) 2 0

(1− 2)
2

22 (1− 2) 22
(1− 2)

2
22 (1− 2) 22

⎤⎦
̂ (1) =

⎡⎣ (1− 1) 1 0

(1− 1) 1 0

(1− 1)
2

21 (1− 1) 21

⎤⎦
which marks a qualitative difference from the deterministic model.31

8.2 Mechanics

The transition from unemployment to unemployment when the current aggre-

gate state is  is now:

[̃+1] = ̄ []×  ( )

 ( ) =  (1−  ( ))× ()

The incoming cohort (employment into unemployment) is:

(1− ) (1− ̄) [] ̂ ()

The transition of employment into employment is:¡

+1

¢0
= (1− ̄) [] ̂ ()

and the transition of unemployment into employment yields the scalar:

 ( ) ̄ []

8.3 The matching function

With a constant ̄ the algebra here is trivial. From the firm side we know that

 is a constant which depends on the aggregate state and where  () =

 () . All we now need is




≡ 

µ
̄



¶1− ̄X
=0

 () =  ()

which then implies

 () = ̄

Ã


 ()

̄X
=0

 ()

! 1
1−

31Note also that the aggregate states are ordered by their total match productivity values.

It is a priori unclear what the variation of ̄ should be for different values of . Furthermore

if the aggregate state is multidimensional this is even harder to predict.
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We see that it is only through the expectation of J inside  () that the

parameters of the matrix Π enter vacancies and affect dynamics, in the world

where ̄ is fixed. Other than that the matrix Π manifests itself through the

realized path of the aggregate shock.
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9 A3: The Contact distribution in the deter-

ministic model.

Given an upper bound ̄ on the number of connections we can derive the ex-

pected distribution of connections at the point of job destruction for a given

agent, when he starts working. Starting from zero in a new job the worker

makes a connection in the first period and continues making a new connection

each period until he reaches ̄ connections. But the worker can also lose its job

along the way, as can his connections.

If the worker is unemployed after one period of work, an event which occurs

with probability (1− ), the worker can have either zero or one contacts with

respective probabilities ((1− )  ). If he becomes unemployed after two peri-

ods, which happens with probability  (1− ), he can have entered the second

period with one contact (probability ), and then he can have [0 1 2] contacts

at the end of period two with probability vector
³
(1− )

2
 2(1− ) 2

´
. But

he can also have entered the second period with only zero contacts - an event

with probability (1− ) - and then he can have at most one contact as above.

If we assume that the upper bound on the number of contacts is 2, we have

the graphic representation of the probability paths shown in figure 1, where the

probability associated with each final node is, among all paths, the fraction that

ends in that node.

Figure 5: The distribution of contacts at job destruction
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We can write this algorithm in matrix form. Here we use an example where

̄ = 2. All the algebra is from the perspective of time zero, when the worker

starts his new job. The first period transition is between zero contacts and the
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set of (0 1) possible contacts, which defines a (1× 3) transition vector over the
set [0 1 2], given by ̂0 =

£
(1− )  0

¤
.

The second period transition is between the set of (0 1) possible contacts

and the set of (0 1 2) possible contacts, which defines a transition matrix (with

one extra rows of zeros):

̂1 =

⎡⎣ (1− )  0

(1− )
2
2 (1− ) 2

0 0 0

⎤⎦
Since we are assuming that ̄ = 2, the third period transition is between the

set of (0 1 2) possible contacts and the set of (0 1 2) possible contacts, which

defines a (3× 3) transition matrix:

̂2 =

⎡⎣ (1− )  0

(1− )
2
2 (1− ) 2

(1− )
2
2 (1− ) 2

⎤⎦
This generates the following sequence:

(1− ) ̂0  (1− ) ̂0̂1 2 (1− ) ̂0̂1̂2

3 (1− ) ̂0̂1(̂2)
2 4 (1− ) ̂0̂1(̂2)

3 

and we can show that the distribution of connections contains a matrix geometric

series which converges to
³
 − ̂2

´−1
, if all the eigenvalues of ̂ = ̂2 are

less than 1 in absolute value. The probability of losing the job after k periods

of employment is −1 (1− ). Taking this into account, after some algebra the

density over contacts becomes

 = (1− ) ̂0

∙
 + ̂1

³
 − ̂2

´−1¸
and this is a vector with three elements which sum to one.

 =
£
0 1 1− 0 − 1

¤
where 0 is the fraction of the employed population with zero contacts.

We repeat the algebra quickly for the example where ̄ = 1. All the algebra

is from the perspective of time zero, when the worker starts his new job.

The first period transition is between zero contacts and the set of (0 1)

possible contacts, which defines the transition vector over the set [0 1], ̂0 =£
(1− ) 

¤
. The second period transition (and the last step) is between the

set of (0,1) possible contacts and the set of (0,1) possible contacts, which defines

a a (2× 2) transition matrix:

̂1 =

∙
(1− ) 

(1− ) 

¸
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After some algebra the density over contacts becomes

0 = (1− ) ̂0

³
 − ̂1

´−1
=

£
0 1− 0

¤
=
£
1−  

¤
and in steady state equilibrium this is the density over contacts of the employed

population, , as well as the equilibrium distribution over contacts of the cohort

entering unemployment (since the probability of losing a job does not depend on

the number of contacts). The last equality is specific to the ̄ = 1 example and

is easy to prove. The correspondence of 0 to the Pascal Triangle expression is

not generalizable.
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10 Tables

Table 5: Table A1. Stochastic Model Statistics, Weekly Frequency

Concave  Convex 
1 2 3 4 5 6 7 8

BL CF CL IID BL CF CL IID

Aggregate Variables
U Rate, Mean 6.020 6.020 6.000 6.010 6.020 6.000 5.990 6.000
Std-log 0.151 0.135 0.076 0.019 0.172 0.136 0.085 0.021
Ar1 0.999 0.999 0.999 0.891 0.999 0.999 0.999 0.904
JF Rate, Mean 0.123 0.122 0.121 0.121 0.123 0.123 0.122 0.121
Std-log 0.115 0.097 0.086 0.009 0.138 0.097 0.095 0.016
Ar1 0.989 0.984 0.984 0.909 0.992 0.984 0.986 0.806
JDRate, Mean .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077
Std-log 0.065 0.065 0 0.072 0.065 0.065 0 0.072
Ar1 0.970 0.970 0 0.010 0.970 0.970 0 0.010
V/U, Mean 0.857 0.852 0.845 0.858 0.864 0.856 0.848 0.859
Corr(v,u) -0.542 -0.541 -0.792 0.900 -0.537 -0.541 -0.775 0.743
Corr(v/u,JFR) 0.979 0.999 0.993 1.000 0.973 0.999 0.989 1.000
Corr(JDR,y-w) -0.727 -0.727 0 -0.430 -0.727 -0.727 0 -0.430

Panel Variables
U Rate, Mean 6.020 6.010 6.010 6.010 6.030 5.980 6.000 6.000
Std-log 0.150 0.138 0.076 0.025 0.171 0.138 0.084 0.025
Ar1 0.996 0.996 0.988 0.837 0.997 0.996 0.991 0.835
JF Rate, Mean 0.122 0.123 0.121 0.120 0.123 0.123 0.122 0.121
Std-log 0.118 0.109 0.098 0.062 0.134 0.109 0.103 0.061
Ar1 0.738 0.698 0.611 0.065 0.817 0.701 0.673 0.112
JD Rate, Mean .0078 .0078 .0077 .0077 .0078 .0078 .0077 .0077
Std-log 0.092 0.092 0.063 0.099 0.092 0.092 0.063 0.099
Ar1 0.502 0.503 -0.058 -0.005 0.502 0.503 -0.062 -0.013
Corr(Udur,Edur) -0.315 0 -0.316 -0.318 -0.441 0 -0.444 -0.446
Corr(URate,Udur) 0.511 0.494 0.372 0.032 0.546 0.494 0.375 0.047

 1.020 0.665 1.010 0.994 1.444 0.674 1.429 1.405

BL = Baseline, CF = Constant , CL = Constant , IID = iid Shocks
5 Panels, each 6900 Workers. Time Series: 208+468 weeks. First 208 weeks cut.
Corr(Udur,Edur) uses 5 panels with 23000 job loser durations each
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Table 6: Table A2. Stochastic Model, Monthly and Quarterly Frequencies

Concave  Convex 

1 2 3 4 5 6 7 8

BL CF CL IID BL CF CL IID

Monthly Frequency

Aggregate Variables

U Rate, mean 6.020 6.020 6.000 6.000 6.020 5.990 5.990 6.000

Std-log 0.152 0.136 0.076 0.019 0.173 0.136 0.085 0.021

Ar1 0.989 0.984 0.986 0.653 0.992 0.984 0.990 0.740

Corr(v,u) -0.542 -0.533 -0.795 0.900 -0.539 -0.533 -0.778 0.747

Panel Variables

U Rate, mean 6.020 6.010 6.010 6.000 6.020 5.980 6.000 5.990

Std-log 0.151 0.137 0.076 0.025 0.171 0.137 0.085 0.024

Ar1 0.980 0.973 0.955 0.507 0.986 0.973 0.966 0.593

JF Rate, Mean 0.483 0.418 0.480 0.478 0.533 0.419 0.532 0.530

Std-log 0.096 0.106 0.085 0.061 0.098 0.106 0.081 0.060

Ar1 0.686 0.602 0.561 0.156 0.694 0.603 0.521 0.078

JD Rate, Mean 0.031 0.031 0.030 0.031 0.031 0.031 0.030 0.030

Std-log 0.069 0.069 0.033 0.051 0.069 0.069 0.033 0.051

Ar1 0.666 0.680 -0.113 -0.037 0.670 0.680 -0.102 -0.037

Corr(v/u,JFR) 0.769 0.750 0.660 0.270 0.820 0.745 0.695 0.289

Corr(JDR,y-w) -0.611 -0.620 0.631 -0.244 -0.613 -0.620 0.070 -0.255

Quarterly Frequency

Aggregate Variables

U Rate, mean 6.020 6.010 5.990 6.010 6.020 5.980 5.980 6.010

Std-log 0.152 0.135 0.076 0.021 0.174 0.135 0.085 0.022

Ar1 0.936 0.891 0.917 0.490 0.951 0.890 0.936 0.617

Corr(v,u) -0.601 -0.578 -0.834 0.910 -0.602 -0.578 -0.818 0.758

Panel Variables

U Rate, mean 6.000 5.980 5.990 6.000 6.010 5.960 5.980 6.000

Std-log 0.148 0.137 0.073 0.027 0.172 0.136 0.084 0.025

Ar1 0.925 0.879 0.888 0.368 0.940 0.879 0.898 0.353

JF Rate, mean 0.841 0.813 0.841 0.843 0.827 0.814 0.827 0.830

Std-log 0.050 0.059 0.041 0.026 0.053 0.059 0.043 0.032

Ar1 0.638 0.584 0.575 0.198 0.575 0.595 0.410 0.044

JDRate, mean 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096

Std 0.058 0.058 0.016 0.027 0.058 0.058 0.016 0.027

Ar1 0.700 0.697 0.021 0.106 0.697 0.698 0.007 0.097

Corr(v/u,JFR) 0.835 0.838 0.780 -0.162 0.777 0.840 0.694 -0.170

Corr(JDR,y-w) -0.683 -0.688 0.135 -0.068 -0.681 -0.688 0.157 -0.052

 1.020 0.665 1.010 0.994 1.444 0.674 1.429 1.405

BL = Baseline, CF = Constant , CL = Constant , IID = iid Shocks

Panel Size: 6900 Workers. Time Series: 624 weeks

Corr(Udur,Edur) uses two panels with 23000 job loser durations each
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Table 7: Table A3. Correlations with the Unemployment Rate

Panel Data Correlations

Concave  Convex 

1 2 3 4 5 6 7 8

Variables BL CF CL IID BL CF CL IID

A: Number of Job Finders (JF) 0.479 0.533 -0.020 0.415 0.474 0.534 -0.050 0.412

B: Number of Non Finders 0.998 0.998 0.993 0.945 0.999 0.997 0.995 0.944

C: G/(Number of Unemployed) -0.577 -0.631 -0.297 0.176 -0.630 -0.629 -0.238 0.022

D: Fraction of Job Finders -0.825 -0.776 -0.734 0.054 -0.885 -0.777 -0.792 0.055

E: Total Contacts of Job Finders 0.170 0.263 -0.128 0.341 0.115 0.264 -0.171 0.352

F: Total Contacts of Non Finders 0.944 0.966 0.937 0.807 0.976 0.966 0.962 0.781

G: Total Contacts of All Unemployed 0.937 0.966 0.938 0.845 0.970 0.966 0.962 0.807

H: Number of JF with n<0.75 ̄ 0.624 0.616 0.153 0.387 0.616 0.617 0.116 0.379

I: Number of JF with n<0.50 ̄ 0.597 0.597 0.035 0.301 0.603 0.597 0.046 0.279

J: Fraction of JF with n<0.75 ̄ 0.491 0.445 0.285 0.062 0.491 0.444 0.261 0.050

K: Fraction of JF with n<0.50 ̄ 0.424 0.406 0.060 0.010 0.463 0.407 0.103 -0.025

L: Number of Job Losers 0.420 0.494 -0.132 -0.055 0.381 0.494 -0.147 -0.055

M: Fraction of Job Losers 0.501 0.563 -0.060 -0.039 0.477 0.563 -0.067 -0.039

N: NP1 = E/A - F/B -0.204 0.015 -0.192 -0.095 -0.455 0.012 -0.321 0.002

O: NP1 = (E/A) / (F/B) -0.013 0.013 -0.163 -0.118 -0.298 0.010 -0.338 0

P: NP2 = H/A 0.491 0.445 0.285 0.062 0.491 0.444 0.261 0.050

Q: NP2 = I/A 0.424 0.406 0.060 0.010 0.463 0.407 0.103 -0.025

R1: NP3 = A/E 0.513 0.496 0.241 0.026 0.540 0.496 0.257 -0.003

R2: NP3 = E/A -0.521 -0.501 -0.245 -0.027 -0.547 -0.501 -0.257 0.005

S1: NP4 = A/G -0.699 -0.625 -0.681 0.003 -0.828 -0.628 -0.723 0.052

S2: NP4 = G/A 0.687 0.615 0.667 -0.003 0.818 0.617 0.749 -0.054

T: F/B -0.466 -0.622 -0.089 0.193 -0.378 -0.620 0.180 0.008

 1.020 0.665 1.010 0.994 1.444 0.674 1.429 1.405

BL = Baseline, CF = Constant , CL = Constant , IID = iid Shocks

Panel: 6900 workers. Average number of unemployed: 414. Average number of job losses per week: 51.
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Table 8: Table A4. Changing Curvature

Panel Data Correlations

Concave  Convex 

1 2 3 4

Curvature of  function (2) 0.5 0.25 2 4

A: Number of Job Finders (JF) 0.479 0.510 0.474 0.473

B: Number of Non Finders 0.998 0.998 0.999 0.999

C: G/(Number of Unemployed) -0.577 -0.624 -0.630 -0.649

D: Fraction of Job Finders -0.825 -0.812 -0.885 -0.890

E: Total Contacts of Job Finders 0.170 0.223 0.115 0.103

F: Total Contacts of Non Finders 0.944 0.958 0.976 0.987

G: Total Contacts of All Unemployed 0.937 0.955 0.970 0.983

H: Number of JF with n<0.75 ̄ 0.624 0.611 0.616 0.609

I: Number of JF with n<0.50 ̄ 0.597 0.588 0.603 0.626

J: Fraction of JF with n<0.75 ̄ 0.491 0.449 0.491 0.496

K: Fraction of JF with n<0.50 ̄ 0.424 0.404 0.463 0.501

L: Number of Job Losers 0.420 0.457 0.381 0.383

M: Fraction of Job Losers 0.501 0.533 0.477 0.480

N: NP1 = E/A - F/B -0.204 -0.036 -0.455 -0.516

O: NP1 = (E/A) / (F/B) -0.013 0.064 -0.298 -0.444

P: NP2 = H/A 0.491 0.449 0.491 0.496

Q: NP2 = I/A 0.424 0.404 0.463 0.501

R1: NP3 = A/E 0.513 0.500 0.540 0.563

R2: NP3 = E/A -0.521 -0.500 -0.547 -0.563

S1: NP4 = A/G -0.699 -0.658 -0.828 -0.848

S2: NP4 = G/A 0.687 0.658 0.818 0.848

T: F/B -0.466 -0.578 -0.378 -0.336

( ) 0.51 0.537 0.55 0.572

Urate 6.02 6.04 6.02 6.00

Duration in Weeks

Mean 8.01 8.05 8.28 8.23

Stdev 1.70 1.43 1.95 1.89

Cohort Size

Mean 51.1 51.1 51.1 51.1

Stdev 7.97 7.90 7.94 7.90

 1.020 0.769 1.444 1.9375

Panel: 6900 workers, average 414 unemployed and 51 job losses per week
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