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Abstract

This paper proposes a general incomplete information framework for studying be-
havior in strategic games with stepwise (viz. ‘level-k’ or ‘cognitive hierarchy’) thinking,
which has been found to describe strategic behavior well in experiments involving play-
ers’ initial responses to games. It is shown that there exist coherent stepwise beliefs,
implied by step types, that have the potential to encode all relevant information. In
the structure of stepwise beliefs, players are unaware of opponents doing at least as
much thinking as themselves. As a result, there exists a Bayesian Nash equilibrium
strategy profile in which any player at some step fixes the best responses of opponents
at lower steps and then best responds herself.
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1 Introduction

The emergence of strategic (or non-cooperative) games has had a profound effect on eco-

nomic theory. In these games it is, in general, assumed that when players strategize they

correctly predict opponents’ behavior and, by rationality, their actions in equilibrium must

be best responses to opponents’ actions. Despite the apparent success of strategic games, a

large body of experimental research has come to question players’ ability to make such ac-

curate predictions in ‘initial response games’ (viz. games without learning, feedback or clear

precedence).1 One idea that has emerged from this research is that when players strategize,

they think in steps: some players are nonstrategic and do not best respond (step 0), while

others believe that their opponents are nonstrategic when they best respond (step 1), and

yet others believe that they play against some distribution of opponents thinking in step 0

and step 1 when they best respond (step 2), and so on. The specification of steps of thinking

typically assumes that step k thinkers know opponents think in k−1 steps (viz. level-k mod-

els), or believe that opponents think in k − 1 or fewer steps with a frequency described by

the Poisson distribution (viz. cognitive hierarchy models). The population of step thinkers

in initial response games tend to be stable with most weight on step 1 and 2–regardless of

the specification.

This paper proposes a general incomplete information framework for studying strategic

games in which players, who think in steps, might have different information about the

payoff relevant parameters. In doing so we take on a view of irrationality that is somehow

different from what is conventional.2 Here nonstrategic players are assumed to have well-

defined beliefs, but fail to payoff maximize because they are unaware of the payoff relevant

parameters. While strategic players are aware of the payoff relevant parameters, but are in

general unaware of others doing at least as much thinking as themselves. Such a description

does not concur with the standard belief system, as proposed by Harsanyi (1967–68) and

constructed by Mertens and Zamir (1985), since it assumes that all players have beliefs

about the payoff relevant parameters Θ, beliefs about opponents’ beliefs about Θ, beliefs

about opponents’ beliefs about their beliefs about Θ, and so on ad infinitum.3 If all players

1The experimental literature was initiated by Stahl and Wilson (1994, 1995) and Nagel (1995), and
further developed and applied by Ho et al. (1998), Costa-Gomes et al. (2001), Bosch-Domenech et al. (2002),
Camerer et al. (2004), Costa-Gomes and Crawford (2006), Crawford and Iriberri (2007b) and Crawford and
Iriberri (2007a).

2Irrationality has typically been modeled as players’ inability to payoff maximize (Aumann, 1992, 1997).
It is assumed that players have well-defined probabilities over opponents’ actions, yet it is permitted that
players sometimes fail to maximize these payoffs. However, this raises a difficulty since subjective proba-
bilities are usually defined via payoff maximization (Savage, 1954); non-maximizers of payoffs do not have
probabilities.

3See also Brandenburger and Dekel (1993), Heifetz (1993), Mertens et al. (1994), and Heifetz and Samet
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form such beliefs in the infinite, then the belief system is by construction commonly known.

This observation motivates a reconsideration of how players thinking in steps form beliefs

about each other.

The explicit description of the stepwise belief system begins with step 0 in which players

are nonstrategic and unaware of the payoff relevant parameters, such that beliefs are defined

on the empty set. The next step of thinking (step 1) is a bit more sophisticated, here beliefs

are about Θ and opponents’ nonstrategic beliefs. In step 2 players form beliefs about Θ, about

opponents possible nonstrategic beliefs, and opponents’ beliefs about Θ and their opponents

nonstrategic beliefs, and so on. Explicitly describing ‘epistemic’ step types as interactive

belief systems ensures that beliefs are constructed solely in terms Θ. Such a specification

tells us what all stepwise belief configurations should look like. However, the disadvantage is

that the entangled web of increasing steps of beliefs makes practical applications increasingly

complex.

If we assume that players’ stepwise belief system at each step can be summarize by a

single entity, their step type, then the modeling becomes more ‘manageable’. However, by

introducing such step types it seems that a second ‘level’ of beliefs is required, wherein each

player has beliefs over opponents’ step types, over opponents’ beliefs over their step type, and

so on. Such beliefs about opponents’ step types obtains naturally for any finite step type.

The notion of a ‘omniscient’ player thinking in all stepwise belief configurations is however

in this case not well define. Only considering finite step types may therefore be restrictive

in the following sense: by modeling a specific strategic game with incomplete information

using only finite step types we may miss some step types that are not present in the beliefs

of a finite stepwise thinker, and can be found only in some higher step. If this is true for

any finite step type, then the concept of step types is necessarily restrictive.

Our construction of infinite step types has two stages. First, it is shown that each coher-

ent step type–compromising an explicit description–defines, in a natural way, a probability

measure over the set of opponents’ coherent lower step types, which can be extended to a

unique probability measure associated with the infinite step type. (Coherency requires that

a players’ beliefs at different steps do not contradict each other–see Definition 1). This result

(Proposition 1) is obtained in the broadest and most natural setup, that of probability (or

measure) theory. Second, the model of stepwise beliefs is closed at each step by imposing,

via a simple inductive definition, the requirement that each step type knows (belief with

probability one) that opponents’ lower step types are coherent, that each of these step types

(1998).
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know that each of their opponents’ lower step types are coherent, and so on. That is, the

model is closed at each step by imposing stepwise mutual knowledge of coherency. Common

knowledge is reached in the unrestricted situation where all players think in infinite steps.

Related to this observation is Strzalecki (2009) who shows how stepwise thinking, when play-

ers put less weight on the types immediately below them as they think in more steps, can

mitigate the discontinuity of predictions made by solution concepts when mutual knowledge

comes close to common knowledge.4

To formalize the idea that there is noting intrinsically restrictive about the structure

of stepwise thinking, the existence of a ‘universal’ step type that contains all step types is

proven in Proposition 2. The existence of a universal step type guarantees that in principle

any strategic game with incomplete information can be modeled using step types without

any loss of generality. In most applications it is however convenient to use a smaller step

type spaces than that implied by the universal step type space. A smaller set of step types

which defines the strategic situation without loss of generality is therefore needed. For this

purpose belief closed subsets are defined–see Definition 2. Belief closed subsets imply that

when we choose only to consider a subset of players’ step types, we also implicitly assume

that all beliefs that are relevant for each player in a given strategic situation are included.

Having completed the construction of step types in Section 2, the idea of cognitive lim-

itations is introduced. The reason for considering cognitive limitations is often justified by

arguing that the brain has limits, and that it does not understand its own limitations.5 Such

an assumption imply that players are unaware of opponents doing at least as much thinking.

However, conventional models of level-k and cognitive hierarchy thinking represent players’

cognitive limitations by assuming that they believe that the event that opponents think in

at least as many steps occurs with probability zero. Such an assumption lacks transparency:

if players assigns probability zero to an event, then it is not clear whether they do so because

they are unaware of the event, or because they are aware of the event but assigns probabil-

ity zero to it occurring. The latter is not compatible with the common notion of cognitive

limitations. The point made in Section 3 is that a nontrivial notion of unawareness (Dekel

et al., 1998; Modica and Rustichini, 1999), which does not imply modeling unawareness as

zero probability events, naturally obtains in the definition of step types–see Proposition 3.6

4The quintessential illustration of such discontinuity is the email game of Rubinstein (1989), see Monderer
and Samet (1989) and Dekel et al. (2006) for treatments developed in response to the email.

5Cognitive limitations have been studied (and found) in strategic games using selfreports, tests of mem-
ory, response times, measures of eye gaze and attention (Camerer et al., 1994; Costa-Gomes et al., 2001),
and even brain imaging (Camerer et al., 2005).

6Many different ways of modeling unawareness have been suggested, see for example, Fagin and Halpern
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Given the characterization of the stepwise belief system, a Bayesian Nash equilibrium for

games with stepwise thinking is proposed and its existence is proven for any finite game. From

the definition of step types in the previous sections it may not be clear how one can analyze

stepwise thinking using the standard tools of game theory. Section 4 starts by clarifying this

relation. Thereafter a game with stepwise thinking is defined as a finite sequence of step k ≥ 1

games, each describing a strategic situation at different steps of thinking. The step 0 game

in which only nonstrategic players play against each other is omitted for obvious reasons.

However, players thinking in more steps still take the nonstrategic players into account, since

the actions of the nonstrategic players influence their expected payoffs. Because players

are unaware of any situation which involves opponents doing at least as much thinking

as themselves, they believe that the step k game they are confined to is the ‘true’ game,

and does not change their beliefs in step games that demand more thinking than they are

capable of. This implies that there exists a Bayesian Nash equilibrium strategy in the game

with stepwise thinking in which players in any step k game fix the equilibrium strategies

of opponents, who they belief do less thinking and thus are confined to some step l < k

game, and then choose their equilibrium based on this belief (Proposition 4 and 5). This

observation suggest a procedure for constructing a Bayesian Nash equilibrium in a game with

stepwise thinking; first we have to find an equilibrium in the step 0 game and then extend it

step-by-step to ‘higher’ step games by fixing the equilibrium strategies of opponents in the

respective ‘lower’ step games.

Finally, it it worth noticing that there exists a complementary literature which assumes

that players can comprehend infinite hierarchies of beliefs (implicitly given by their types),

but make systematic mistakes in equilibrium conjectures (first-order beliefs). For example,

Eyster and Rabin (2005) propose a ‘cursed’ equilibrium where players have correct beliefs

about the joint distribution of types, and also have correct beliefs about the aggregated

distribution of opponents’ play, conditional on each of their own types. However, instead

of playing best response to the actual opponents’ actions, each player chooses the best

response to a convex combination of the actual actions and the aggregate distribution. Jehiel

and Koessler (2008), building on Jehiel (2005), consider the ‘analogy-based’ equilibrium in

which players group opponents’ actions into analogy classes, with the player believing that

actions in a given class are identical. Given this, the player’s beliefs must correspond to

the aggregate distribution of play across actions in an analogy class. However, in these

‘behavioral’ equilibrium models it is not obvious why it is fair to assume that players are

(1988), Modica and Rustichini (1999), Halpern (2001) and Heifetz et al. (2006). The relation between these
models are understood from Halpern and Rêgo (2008) and Heifetz et al. (2008). The notion of unawareness
used in this paper is closest to that of Heifetz et al. (2009).
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sophisticated enough to consider infinite hierarchies of beliefs and at the same time fail to

reason about first-order equilibrium beliefs.

The plan of the paper is as follows. Step types structures are constructed in Section

2. Section 3 shows why cognitive limitations induces a non-trivial notion of unawareness.

Bayesian games with stepwise thinking and the associated Bayesian Nash equilibrium are

developed in Section 4. Concluding remarks are made in Section 5, and proofs that does not

appear in the paper can be found in Appendix A.

2 Construction of step types

In this section step k types are constructed. We begin with some mathematical preliminaries

(2.1). Then the notion of a stepwise beliefs, coherency and mutual coherency are given (2.2-

2.3), it is shown that the infinite step type is ‘universal’, and belief closed subspaces are

defined (2.4).

2.1 Preliminaries

For a given topology space X and associated Borel sigma-algebra BX , let ∆(X) be the

set of Borel probability measures µ : BX → [0, 1] on (X,BX). A class BX of subsets

of X is a Borel sigma-algebra if it contains X itself and is closed under the formation of

complements and countable unions. An element µ ∈ ∆(X) satisfies µ(∅) = 0, µ(X) = 1,

µ(A) ∈ [0, 1] for A ∈ BX , and if A1, A2, . . . is a countable disjoint sequence of sets in BX

then µ(
⋃∞
α=1A

α) =
∑∞

α=1 A
α. The triplet (X,BX , µ) is a probability space. the support

supp(µ) = {x ∈ X : µ(x) > 0} is a set of points with positive probability, and the marginal

of a measure µ on some set Aα ∈ BX is denoted margAαµ = µα.

2.2 Stepwise beliefs

LetN = {1, . . . , n} players face a sequence−i ∈ N\{i} of opponents in a strategic game. In a

n-player game of incomplete information the crucial elements governing strategic interaction–

such as individual feasibility constraints, how actions are mapped into consequences and

individual preferences over consequences–are represented by a vector of payoff relevant pa-

rameters θ which is (partially) unknown to some players. For the sake of simplicity, let us

assume that θ in the finite set Θ determines the shape of each player’s payoff function. The

form of the parametric payoff functions ui(·, θ)–or, more generally, the form of the mapping

associating each conceivable parameter θ to the ‘true’ (but unknown) game G(θ)–is assumed

6



common knowledge. We may adopt a Bayesian approach by assuming that a player who

has only partial knowledge about the payoff relevant parameters has some beliefs about the

parameters which he does not know or he is uncertain about. However, unlike in a problem

which involves a single decision maker, this is not enough in an interactive situation: as the

decisions of other players are relevant, so are their beliefs, since they affect their decisions.

Thus a player must have beliefs about the beliefs of other players. For the same reason, a

player needs beliefs about the beliefs of other players about his beliefs and so on. In princi-

ple, a complete description of every relevant attribution of a player should include, not only

her payoff relevant parameters, but also her epistemic type–that is, an infinite hierarchy of

beliefs.

Stepwise beliefs are related to, but different from Harsanyi’s beliefs. In particular, we

assume that the nonsophisticated players are unaware of the payoff relevant parameters,

while the sophisticated players have limited cognitive abilities in the sense that they do not

believe that others think in at least as many steps as themselves. The iterated process of

stepwise thinking begins with step 0 in which players are nonstrategic and beliefs are defined

on the empty set. Players doing one or more steps of thinking are assumed strategic. In step

1 players think about the strategic situation Θ and opponents’ beliefs in step 0. In step 2

players think about Θ and opponents’ possible nonstrategic beliefs 0 and their beliefs about

the payoff functions and their opponents’ nonstrategic beliefs, and so on. Formally, define

spaces

X0
i = ∅; (1)

for all k ≥ 1,

Xk
i = Θ× [∪k−1

l=0 ∆(X l
−i)].

An epistemic step k type tki is just a belief in step k; tki = µ ∈ ∆(Xk
i ). Let T k0,i = ∆(Xk

i )

denote the set of all possible step k types of player i. Similar for −i. This characterization

is explicit because it specifies the whole hierarchy of stepwise thinking.

By casual observation it seems that a second ‘level’ of step beliefs is required, wherein

player i has beliefs over opponents’ step types, over opponents’ beliefs over her own step

type, and so on. It can easily be verified that by imposing step types, Equation 1 becomes

7



T 0
0,i = ∆(∅);

for all k ≥ 1,

T k0,i = ∆(Θ× [∪k−1
l=0 T

l
0,−i]).

This characterization of stepwise thinking introduce a step type space, which provides

an implicit description of step types. Each point in the step type space is associated with a

payoff relevant parameter, as well as opponents’ belief at lower steps. A players’ step type is

thus an implicit description her beliefs about such points. This does however not necessarily

mean that beliefs are well defined. The conditions under which the specification of beliefs is

meaningful is defined next.

2.3 Coherent stepwise thinking

The step k types just constructed may not be meaningful. For example, if t1i ∈ T 1
0,i, then for

this to describe meaningful beliefs of player i (or −i), the marginal distribution of t1i on X0
i

must coincide with t0i ∈ ∆(X0
i ). We therefore impose that the various step k types cannot

contradict each other. In other words, different step k types should be coherent.

Definition 1. A step k type tki ∈ T k0,i is coherent7 if for every k ≥ 1

margXk−1
i
tki = tk−1

i .

Let T k1,i denote the set of all coherent step k types belonging to player i. The following

proposition shows that a coherent infinite step type exists and induces a belief over Θ and

the space of all possible step types of opponents.

Proposition 1. For any i ∈ N there exists an coherent infinite step type t∞i ∈ T∞1,i which

closes the hierarchy of stepwise thinking such that

T∞1,i = ∆(Θ× [∪∞l=0T
l
0,−i]).

Proof of Proposition 1 follows naturally from the following Lemma, which itself is essen-

tially an adaptation of Kolmogorov’s Extension Theorem due to Bochner (1960).

7What is here called coherency is usually refered to as (Kolmogorov) consistency. The term coherency
is used to avoid confusion with Harsanyi’s use of consistency, which means something different.
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Lemma 1. Let {BZk}∞k=0 be an increasing sequence of Borel sigma-algebras on Z0 ⊂ Z1 ⊂
· · · . If each probability measure µk on BZk is coherent such that

margZ0∪···∪Zk−1µk = µk−1 for all k ≥ 1,

then there exists a unique extension of the sequence {µ0, µ1, . . . } to µ on σ(∪∞k=0BZk) satis-

fying margZ0∪···∪Zkµ = µk for all k ≥ 0.

Proof. Let Z = ∪∞k=0Z
k and BZ = ∪∞k=0BZk be the corresponding collection of Borel sigma-

algebras (note that ∅, Z ∈ BZ).

Define a measure µ on the field BZ by µ(E) = µk(E) for E ∈ BZk . Coherency guarantees

that this is well defined. Now note that µ is nonnegative and µ(Xk) = µk(Xk) = 1 for all

k ≥ 0 (viz. µ is a probability measure on each BZk).

First we proof that µ is finitely additive. µ is finitely additive, for if a finite collection of

sets belongs to BZ , then since {BZk} is an increasing sequence of sigma-algebras, there is

some k for which every member of the collection belongs to BZk . Consequently their union

also belongs to BZk and hence to BZ . The finitely additivity of µ is then guaranteed by

that of each µk. This also proves that BZ is a field (viz. algebraic structure).

Now observe that µ on BZ is continuous from above because for any set An ∈ BZ it is

true that An ↓ ∅, such that µ(An) ↓ 0 (Billingsley, 1995, Theorem 2.1).8 If µ is a finitely

additive probability measure on the field BZ , and if An ↓ ∅ for sets An ∈ BZ implies

µ(An) ↓ 0, then µ is countably additive. To see this define B1 = A1 and Bn = An\An−1.

Then the Bn’s are disjoint, An = ∪nk=0B
k, and A∞ = ∪∞k=0B

k. Z = A∞ since Z is the largest

set in BZ . Indeed, if Z = ∪∞k=0B
k for disjoint sets Bk, then Cn = ∪∞k>nBk = Z\ ∪nk=0 B

k

lies in the field BZ , and Cn ↓ ∅. The hypothesis, together with finite additivity, gives

µ(Z) −
∑n

k=0 µ(Bk) = µ(Cn) ↓ 0, and hence µ(Z) =
∑∞

k=0 µ(Bk). This also proves that

(Z,BZ , µ) is a probability space.

We may now use Carathéodory’s Lemma (Billingsley, 1995, Theorem 3.1) to extend the

probability measure µ on the field BZ uniquely to the generated Borel sigma-algebra σ(BZ).

�

Proof of Proposition 1. In Lemma 1, set Z0 = {∅} and Zk = Θ × [∪k−1
l=0 T

l
0,−i] for k ≥ 1, so

Z0 ⊂ Z1 ⊂ · · · , Z0 ∪ · · · ∪ Zk = Xk and ∪∞k=0Z
k = Θ× [∪∞l=0T

l
0,−i]. A coherent infinite step

type t∞i ∈ T∞1,i is exactly µ ∈ ∆(∪∞k=0Z
k). Lemma 1 thus implies that there exists a collection

T∞1,i = ∆(Θ× [∪∞l=0T0,−i]). �

8By An ↓ ∅ is meant An ⊃ An−1 ⊃ · · · ⊃ A0 and ∩n≥0An = ∅; µ(An) ↓ 0 means that µ(An) ≥ µ(An−1) ≥
· · · ≥ µ(A0) and µ(An)→ 0 (or limn→0 µ(An) = 0).
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Coherency implies that player i’s step types determines i’s beliefs over opponents’ step

types in a meaningful way. But player i’s step type does not necessarily determine i’s belief

over opponents’ beliefs over i’s step types–in particular i might assign positive probability

to opponents’ possible step 0 to k − 1 types being incoherent. For a step type to determine

all step 0 to k− 1 types of her opponents, mutual knowledge of coherency must be imposed.

To do so, define a sequence of sets {T km,i}m≥2 by

T km,i = {tki ∈ T k1,i : tki (Θ× [∪k−1
l=0 T

l
m−1,−i]) = 1}.

Let the set of player i’s mutual coherent step k types be given by T ki = ∩km=1T
k
m,i,

where T ki is the subset of T k1,i obtained by requiring that i’s step k type knows (belief with

probability one) that opponents’ step 0 to k − 1 types are coherent, that i’s step k type

knows that opponents’ step 0 to k − 1 types knows that i’s own step 0 to k − 2 types are

coherent, and so on. (Similar for −i.)

A question that often arises in the discussion of strategic situations is whether the infor-

mation structure is common knowledge. The observation we wish to make is that the neces-

sary rationality assumption made in strategic situations with stepwise thinking is not that of

common knowledge, but rather the ‘natural’ assumption of stepwise mutual knowledge of co-

herency. To see this, consider, for example, the set T k2,i = {tki ∈ T k1,i : tki (Θ× [∪k−1
l=0 T

l
1,−i]) = 1}

as defined above. The set T k2,i is the set of step k types of player i that know that opponents’

step 0 to k − 1 types are coherent. So T k2,i is the set of step k types of player i which can

calculate beliefs about opponents’ beliefs about i’s own step 0 to k− 2 types, that is the set

of step k types that know of opponents’ information structure. Similarly, T k3,i is the set of

step k types belonging to player i that can calculate beliefs about opponents’ beliefs about

i’s beliefs over opponents’ step 0 to k − 3, that is, the set of step k types that know that

opponents know of i’s information structure, and so on in k inductive steps. The upshot is

that the information structure relevant for a step k type is guaranteed by the assumption of

mutual knowledge of coherency.

Corollary 1. For all i ∈ N there exists a well defined hierarchy of stepwise thinking such

that

T 0
i = ∆({∅});

for all k ≥ 1,

T ki = ∆(Θ× [∪k−1
l=0 T

l
−i]).

Proof. From mutual knowledge of coherency we have that T ki ⊆ T k1,i. Since Proposition 1
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implies that T∞1,i exists, T∞i ⊆ T∞1,i also exists. �

An obvious question to ask at this point is why the particular information structure

in Corollary 1 is a natural (or ‘canonical’) description of stepwise thinking. The reason is

that the marginal probability assigned by t∞i to a given event in ∪kl=0X
l
i is equal to the

probability that tk assigns to that same event. That is, in deriving probability on the space

Θ × [∪k−1
l=0 T

l
−i] = ∪kl=0X

l
i from tk, the measure t∞i preserves the probabilities specified by tki

for all k ≥ 0.

2.4 The universal belief space and belief closed subspaces

The structure developed in the previous subsections generated a set T∞i of infinite step types

into which the infinite stepwise hierarchies of beliefs regarding the payoff relevant parameters

can be embedded. We can rightfully deem the infinite step type set ‘universal’ if it contains

all possible hierarchies of possible stepwise hierarchies.

Proposition 2. There exist a belief preserving embedding

T ki ⊆ T∞i for any k ≥ 0,

such that the belief system can rightfully be deemed universal TUi for all i ∈ N .

Proof. See Appendix.

The coherency assumption (Definition 1) ensures that there is one and only one way to

assign to any player of any step type tki a corresponding step type tUi in TUi so that the same

probability is assigned by tki and tUi to the same event E ⊆ Θ× [∪k−1
l=0 T

l
−i]. By definition the

universal belief space TUi includes all possible beliefs over the payoff relevant parameters in

the strategic situation as well as all the stepwise beliefs of opponents. That is, there exists

a stepwise thinking model that describes all the relevant information in a given strategic

situation with incomplete information, such that we can be confident that there is nothing

intrinsically restrictive about the structure of stepwise thinking.

In most applications we would however typically only consider some subset of the uni-

versal type space. A smaller set of step types which defines the strategic situation without

loss of generality is therefore needed, and for this purpose belief closed subsets are defined.

For example, in most applications of interest player i does not assign positive probabilities

to all points in Θ× [∪∞l=0T
l
−i]. That is, player i does not consider as possible any point not in

supp(tki ) ⊆ Θ× [∪k−1
l=0 T

l
−i]. Note that the finiteness of Θ× [∪k−1

l=0 T
l
−i] implies that tki must be a
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probability measure with finite support. Now let tki ∈ Y k
i denote the set of all points player

i believes possible. Clearly all step types for which supp(tki ) 6= ∅ are relevant, but this is not

all because some opponent j may not consider all points in Θ× [∪l−1
m=0T

m
−j] (where 1 < l < k)

as possible, that is they may only consider possible points in supp(tlj) ⊆ Θ × [∪l−1
m=0T

m
−j].

Let tlj ∈ Y l
j denote the set of all points opponent j belief possible. Similar for all other

opponents. This observation motivates the following definition:

Definition 2. A belief closed subspace is a closed subset Y k
i ⊂ TUi for which each i ∈ N ,

any k ≥ 1, and all tki ∈ Y k
i satisfies

supp(tki ) ⊂ Θ× [∪k−1
l=0 Y

l
−i].

A belief closed subspace is a closed subset of TUi which is also closed under stepwise

beliefs. In any tki ∈ Y k
i , it contains all the epistemic features which are relevant in the mind

of player i who thinks in step k. If tki /∈ Y k
i , then player i thinking in step k do not believe

that tki is possible, she does not belief that any of her opponents believes it is possible,

she does not believe that any of her opponents believes that their opponents believes it is

possible, and so on. Belief closed subsets implies that when we choose only to consider a

subset of players’ step types, we also assumes that all beliefs that are relevant for each player

in a given strategic situation are included.

3 Cognitive limitations and unawareness

In this section the definitions necessary to talk about cognitive limitations are introduced

(3.1), and it is shown that a nontrivial notion of unawareness arises naturally in our definition

of such limitations (3.2).

3.1 States, events, and belief operators

A state specifies, for each player what she would do and believe if the state obtains. Note

the subjunctive conditional; stepwise thinking with incomplete information does not only

concern what actually happens, but also considers what could have happened in states that

did not actually occur. Let Ω be the set of states, every element ω ∈ Ω corresponds to a

complete description of all the relevant aspects of the strategic situation, including what

each player beliefs. The information structure on Ω is specified in terms of sigma-algebras.

Let BΩ denote the Borel sigma-algebra on Ω. Each subset E ∈ BΩ is an event; its negation

is denoted ¬E = Ω\E.
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States are related to step types by introducing a mapping τI : Ω → [∪∞l=0T
l
I ], where

I ⊆ N is a group of players and ∪∞l=0T
l
I is the set of induced step types related to I. The

mapping τI(ω) = tkI is the profile of step k types assigned to group I, when the state

is ω. If the group I observes τI(ω) then they deduces that the state must be in the set

τ−1
I (tkI ). For example, if I = {i} then τi(ω) ∈ ∆(Θ× [∪k−1

l=0 T
l
−i]) defines i’s beliefs about her

opponents’ ‘limited cognitive’ abilities (see Section 2), and τ−1
i (tki ) denotes the event ‘the

step type of player i is tki ’. Finally, let ϕ : Ω → Θ specify the payoff relevant parameter

ϕ(ω) = θ corresponding to any state ω. We need to relate any event E ⊆ Ω to any

event in our universal type space. Since it is assumed that i knows her own step type tki ,

she will consider elements (θ, tk−i) such that (θ, tki , t
k
−i) ∈ E. Slightly abusing notation let

E−i = {(ϕ(ω), τ−i(ω)) : (ϕ(ω), τi(ω), τ−i(ω)) ∈ E} denote the event E−i ⊆ Θ× [∪∞l=0T
l
−i] that

correspond to the event E ⊆ Ω.

At state ω player i believes event E ⊆ Ω, conditional on observing τi(ω), with probability

τi(ω)(E−i). Thus {ω : τi(ω)(E−i) = 1} is the event ‘i belief event E conditional on observing

τi(ω) at ω.’ We use belief operators to represent events about interactive beliefs:

Definition 3. For any i ∈ N and some event E, the belief operator for i is defined by:

Bi(E) = {ω : τi(ω)(E−i) = 1}.

Clearly, Bi(E) ∈ BΩ is itself an event. Note also that Bi(·) satisfies monotonicity

[E ⊆ F implies Bi(E) ⊆ Bi(F )], conjecture [Bi(E ∩ F ) = Bi(E)∩Bi(F )], and consistency

Bi(∅) = ∅.

3.2 Nontrivial unawareness

Players are in models with stepwise thinking assumed overconfident and limited in their

beliefs about their opponents–that is, players are in general unaware of opponents doing at

least as much thinking as themselves. We now consider whether the hierarchy of stepwise

thinking allows for a ‘nontrivial’ notion of such unawareness. By nontrivial we mean that

the state space Ω can have states ω in which players do not know an event, and do not

know that they do not know. Dekel et al. (1998) show that standard state spaces allow only

for a trivial notion of unawareness. Namely, if a player is unaware of something then she

is unaware of everything and knows nothing. More generally, they show that no standard

state space can capture adequately the notion of unawareness.

We will in the following clarify why cognitive limitations are nontrivial. In other words,

why stepwise thinking models imply a nontrivial notion of unawareness of opponents doing
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at least as much thinking as herself. Intuitively, there exists events which are unmeasurable

in the mind of a stepwise thinker, these are events which demand that opponents do at least

as much thinking as the player (see Corollary 1). Formally, the set of states in which player

i is aware of E is given by an awareness operator:

Definition 4. For any i ∈ N , π ∈ [0, 1] and some event E, the awareness operator for i is

defined as:

Ai(E) = {ω : τi(ω)(E−i) ≥ π}.

It follows that Ai(E) ∈ BΩ. A player is at ω aware of E if and only if her step type as

defined by ω is concentrated on a space in which the event is ‘expressible’. That is, a player

is aware of any event to which she can assign some probability. The unawareness operator

is naturally defined as the negation of awareness:

Definition 5. For any i ∈ N and some event E, the unawareness operator for i is defined

as:

Ui(E) = ¬Ai(E).

Again, clearly Ui(E) ∈ BΩ. By showing that the unawareness operator complies with

the properties that any appealing concept of unawareness should satisfy, as suggested by

Dekel et al. (1998), the following proposition shows that unawareness of opponents doing as

much or more thinking is nontrivial in stepwise thinking models.

Proposition 3. Let E be an event. In stepwise thinking the following properties of un-

awareness obtains:

(i) Plausibility: Ui(E) ⊆ ¬Bi(E) ∩ ¬Bi¬Bi(E),

(ii) BU introspection: BiUi(E) = ∅,

(iii) AU introspection: Ui(E) ⊆ UiUi(E).

(iv) Weak necessitation: ¬Ui(E) ⊆ Bi(Ω).

Proof. See Appendix.

Plausibility implies that a player is unaware of E if she does not have any beliefs about

E, and does not have any beliefs about not having any beliefs about E. BU introspection
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states that a player cannot have any beliefs about her own unawareness. AU introspection

is the property that if a player is unaware of an event E, then she must be unaware of being

unaware. Finally, weak necessitation says that if a player is not unaware of E, then she

knows any tautology involving E. The four properties together preclude unawareness in any

standard state space model. In other words, the state space of stepwise thinking models is

nonstandard. In particular, stepwise thinking rule out ‘strong’ necessitation (Bi(Ω) = Ω).

That is, a player in our state space does not need to be certain of all tautologies. This is

fundamental for stepwise thinking; a player need not to know the ‘true’ state if it involves

opponents doing as much or more thinking as herself.

4 Bayesian games with stepwise thinking

The Bayesian Nash equilibrium has become a benchmark for the analysis of ‘standard games’

with incomplete information, this concept is now applied to the class of games with stepwise

thinking. First the main definitions are given (4.1), then it is shown how we can represent

our Bayesian games as a ‘random vector model’ and a ‘prior lottery model’ (4.2), we then

consider how we can analyze such models using the standard tools of game theory (4.3)-(4.4),

and finally an example is considered (4.5).

4.1 Strategic forms with stepwise thinking

A strategic form game with stepwise thinking consists of different layers of strategic form

step k games each describing the strategic situation at a step of thinking. We will say

that a step k type is confined to a step k game. Remember that a belief closed subset Y k
i

contains all the epistemic features which are relevant in the mind of player i who is thinking

in step k. This implies that if some player i is confined to a step l < k game, then because

of unawareness her belief closed subspace will be the same in any step k ≥ l game (that

is, Y l
i = Y k

i ). Situations in which only nonstrategic players play against each other will

for obvious reasons be omitted. The nonstrategic step 0 types will however still be in the

beliefs of step k ≥ 1 types, since step 0 types actions influence their expected payoff. These

observations motivates the following definition:

Definition 6. A Bayesian game with stepwise thinking Γ is a finite ordered set of step k ≥ 1

games Gk ∈ Γ defined by

Gk =
〈
A1, . . . , An;Y k

1 , . . . , Y
k
n ;u1, . . . , un

〉
. (2)
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The notation Ai denotes the finite set of player i’s actions; Y k
i is the (belief closed) set of

player i’s step k types, each representing different information that player i can have in the

step k game; and player i’s payoff function ui : A× Y k
i × [∪k−1

l=0 Y
l
−i]→ R depends on the set

of action profiles A =
∏

i∈N Ai, player i’s own step k types, and the step types of opponents

she is aware of.

4.2 Induced stepwise belief systems

The induced beliefs of any player i is given by the conditional probability pi(·|tki ) ∈
∆(∪k−1

l=0 Y
l
−i), and can be derived from her ‘signal’ τi(ω) at state ω ∈ Ω. Remember that the

only information a player has about the payoff relevant parameters Θ is given by τi(ω) = tki ,

we can therefore without loss of generality impose that Θ is Y k
i -measurable. That is, there

is a mapping αi : ∪∞k=0Y
k
i → Θ which relates any step k type of player i to an element in Θ.

We can now relate the two concepts by having τi(ω) ∈ ∆(Θ× [∪k−1
l=0 Y

l
−i]) satisfying:

τi(ω)(θ, tl−i) =

pi(tl−i|tki ) if θ = α−i(t
l
−i),

0 otherwise.
(3)

A system of induced beliefs is an array (pi(·|tki ))tki ∈Y ki for which: (i) the system is

projective–the marginal of pi(·|tki ) on ∆(∪k−2
l=0 T

l
−i) is pi(·|tk−1

i ) for all k ≥ 2, and (ii) for

player i of step k type the priors pi(·|tmi ) for m > k are undefined. Note that by assuming

that there is a one-to-one correspondence between the payoff relevant parameters and step

types, we restrict our intention to a smaller class of Bayesian models.

In defining the conditional probability pi(·|tki ) we took on an interim point of view. The

strategic situation was implicitly assumed to be analyzed at a stage subsequent to the player

knowing her step k type. That is, we rendered any prior stage meaningless. However, most

applications of incomplete information games assumes an ex ante point of view before the

player knows her type. In this view players have prior beliefs over a common set of types.

At the interim stage players are given their types, update their priors, and make appropriate

adjustments in their beliefs. This interpretation can however be misleading when players

think in steps; if a player has beliefs over all step k types ex ante she should also have beliefs

over all step k types interim, that is, after learning her own step k type (her own limited

ability to think about opponents’ even more limited thinking).9

9The plausibility and justification of the ex ante versus the interim view of information models has
been extensively discussed in the literature, see Harsanyi (1967–68), Dekel and Gul (1997), Gul (1998), and
Aumann (1998).
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However, an array of conditional probabilities (pi(·|tki ))tki ∈Y ki can always be derived from

some ‘prior’ by imposing consistency through a convex combination pi =
∑

tki ∈Y ki
βtki pi(·|t

k
i )

(where
∑

tki ∈Y ki
βtki = 1, βtki ≥ 0 for all tki ∈ Y k

i ) for each step of thinking. Such a ‘prior’

does not represent i’s beliefs in a hypothetical ex ante stage, it is only a technical device

to express the belief pi(·). If we moreover assume that these priors are the common for all

players, then p = pi for all i ∈ N . In this case, a game with incomplete information simply

corresponds to a game with imperfect information about a fictitious chance move selecting

the vector of step types according to probability measure p. This is the so called ‘random

vector model’ of the Bayesian game. The random vector model can also be interpreted as

a population model in which for each player/role i ∈ N there is a population of potential

players characterized by the different step types. An actual player is drawn at random from

each population i to play the game. This is the ‘prior lottery model’ of the Bayesian game.

The following two examples illustrate how the two most frequently used applied stepwise

thinking models–the level-k model (Stahl and Wilson (1994, 1995) and Nagel (1995)) and

the cognitive hierarchy model (Camerer et al. (2004)) are special cases of the ‘prior lottery

model’ presented above. In both models it is typically assumed that there is no uncertainty

about the payoff such that Θ is a singleton. We can therefore ease notation and let step k

types be identified by the corresponding k ∈ N.

Example 1 (Level-k models). In level-k models step k types believe with probability one

that opponents are step k − 1 thinkers, that is, p(k − 1|k) = 1.

Example 2 (Cognitive Hierarchy models). In Cognitive Hierarchy models step k types

believe that they play against a distribution of step l < k opponents, that is, p(l|k) = λ(l)∑k−1
l=0 λ(l)

where λ ∈ ∆(N) is assumed to be a Poisson distribution.

4.3 Mixed strategies and expected payoffs

We interpret players’ ‘plan of play’ not as deterministic, but rather regulated by probabilistic

rules. Denoted by ∆(Ai) the set of probability distributions over Ai and refer to the mapping

σi : Y k
i → ∆(Ai) as a mixed strategy of player i of step k type. A mixed strategy σi(ai|tki )

for player i thus specifies the conditional probability that player i of step k type plays action

ai. Let A−i =
∏

j 6=iAi be the set of action profiles of opponents and σ−i : Y l
−i → ∆(A−i)

be a mixed strategy profile of player i’s opponents, where σ−i(a−i|tl−i) is the conditional

probability that opponents −i of step l types plays action profile a−i.

The specification of nonstrategic players ‘plan of play’ is key. It is often assumed that

any given player i think that nonstrategic opponents choose their actions uniformly, such
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that σ−i(a−i|t0−i) ∈ U(A−i). However, we do not here restrict ourselves to any interpretation

of how nonstrategic players behave, but instead leave it to applications.

We assume that the probability distribution p puts positive weight on each tki ∈ Y k
i and

fully determines the probability distribution p(tl−i|tki ); player i’s conditional belief about the

step types [∪k−1
l=0 Y

l
−i] of opponents given her own step k type tki ∈ Y k

i . The expected payoff

of player i thinking in step k conditioned on the strategy profile σ = (σi, σ−i) ∈ Σ can now

be expressed as

Etki [ui|σ] :=
∑

tl−i∈[∪k−1
l=0 Y

l
−i]

p(tl−i|tki )
∑

a−i∈A−i

σ−i(a−i|tl−i)ui(ai, a−i; tki , tl−i), (4)

where σ−i(a−i|t′−i) is player i thinking in step k’s mixed strategy about the action profile

a−i of opponents tl−i which induce payoff ui(ai, a−i; t
k
i , t
′
−i). Evaluating this term gives the

expected utility from the actions of opponents. However, player i thinking in step k does, in

general, not know the profile of opponents facing her and thus evaluates her expected utility

with respect to her beliefs p(tl−i|tki ).

4.4 Equilibrium and existence

Although a stepwise game is not a ‘standard game’, the Bayesian Nash equilibrium concept

based on the notion of best response can be adapted yielding a solution concept.

Definition 7. A Bayesian Nash equilibrium of a stepwise thinking game Γ is a profile σ∗ ∈ Σ

of strategies with the property that for every i ∈ N , tki ∈ Y k
i , Gk ∈ Γ we have

supp(σi) ⊆ arg max
ai∈Ai

Etki [ui|σi(ai), σ
∗
−i]. (5)

Thus, a Bayesian Nash equilibrium of a stepwise thinking game specifies a behavior for

each player which is a best response to what she believes is the behavior of her opponents,

that is, a best response to the mixed strategies of her opponents given his step type.

Proposition 4. There exists a Bayesian Nash equilibrium in each step k game Gk ∈ Γ.

Proof. See Appendix.

Step k types are unaware of opponents doing at least as much thinking as themselves and

do not consider these players when calculating their expected payoffs. However, step k types

are aware of opponents thinking in steps l < k and take these types in to account. When
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choosing an equilibrium mixed strategy a step k type who is confined to Gk thus maximizes

her expected payoffs based on the mixed strategies of opponents thinking in step l < k,

but does not consider the mixed strategies of opponents doing more thinking than her. An

equilibrium mixed strategy profile in a game with stepwise thinking Γ is thus a profile in

which step types who do more thinking fix the equilibrium strategies of step types doing less

thinking, before they find their own equilibrium strategy. The following proposition helps

clarify the existence of such an equilibrium mixed strategy profile.

Proposition 5. Consider any two step games Gl, Gk ∈ Γ where l < k. There exists an

equilibrium strategy profile σ∗ in Gk, in which step l types play their equilibrium strategies

in Gl and step k types play theirs in Gk.

Proof. See Appendix.

This proposition suggests a procedure for constructing a Bayesian Nash equilibrium in

a game with stepwise thinking. We start with an equilibrium in the step 1 game, and

then extend it step-by-step to ‘higher’ step games by taking the equilibrium strategies of

opponents in the respective ‘lower’ step games as given. This formulation suggest a method

of finding a Bayesian Nash equilibrium in a game with stepwise thinking: (i) First calculate

for each player thinking in step 1 the best response to the nonstrategic players thinking in

step 0, then (ii) extend it step-by-step to players thinking in higher steps by fixing the best

response of players doing less thinking.

4.5 Example

Stepwise thinking and the solution concept just characterized is illustrated by the following

trivial example of a run on the bank (Diamond and Dybvig, 1983). First we consider a ‘prior

lottery model’ with complete information, and then extent it to a situation with asymmetric

information.

(i) Complete information

Let there be two (almost) equally sized populations of depositors A andB. Each depositor

is small in that her stake is negligible as a proportion of the whole. If a population of

depositors withdraws their money from the bank, then they obtain a guaranteed payoff of

r > 0. If they leave their money in, and the other population of depositors leave their money

in as well, they get a payoff of R, where r < R < 2r. But if they leave their money in, and

the other population depositors withdraws, then the bank will go bankrupt and they get a

payoff of zero. The payoffs in each of these situations are:
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A

B
In Out

In R,R 0, r
Out r, 0 r, r

Figure 1: Payoff matrix

If this was a ‘standard game’ it would have two equilibria: [In,In] and [Out,Out]. We

will however here be interested in a scenario in which population A thinks in one step and

population B in two, and each population is certain that the other thinks in one less step.10

For simplicity let the nonstrategic depositors choose their actions according to an uniform

distribution. The two populations chooses simultaneously.

First, assume that the actions of step 0 thinkers are perfectly correlated. Population A

believes that depositors in population B are nonstrategic. Depositors in A thus theorize that

depositors in B withdraw their money with probability 1
2

and stays in otherwise. Population

A therefore expects that the payoff is r if they withdraw and R
2

if they stay in. Since

r > R
2

, population A’s best response is to withdraw their money. Population B believes

that depositors in A are thinking in step 1 and expect that they will withdraw their money.

The best response of population B is therefore to withdraw their money as well since r > 0.

That is, we have a run on the bank since [Out,Out] is the unique (inferior) equilibrium in

the game with stepwise thinking just described.

Now assume that the actions of step 0 thinkers are independent. This implies that de-

positors in B withdraw their money with probability 1
2n

, where n is the number of depositors

in population B. It follows that r < (1− 1
2n

)R for n ≥ 2 such that depositors in A thinking

in step 1 expects that depositors in B thinking in step 0 stays in, and therefore choose to

stay in themselves. Foreseeing this line of events the depositors in B thinking in step 2 will

also stay in since R > r. The unique (superior) equilibrium is in this case [In,In].

Notice that the coordination on equilibrium is not determined only by the fundamentals

(money), nor is it determined by some payoff irrelevant variable that has nothing to do

with the fundamentals (‘sunspots’). Rather, what matters are depositors steps of thinking.

Especially, the beliefs of depositors in population A about the actions of the (in their mind)

nonstrategic depositors in B.

(ii) Asymmetric information

10Evidence of such level-k thinking between a population of step 1 and 2 types, in which step types
are certain that opponents think in one less step, has been found in many experiments (see, for example,
Costa-Gomes and Crawford, 2006).
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Now imagine that if the bank goes bankrupt, then there exists some institution which

can either do nothing or bail out the bank (Θ = {Nothing, Bailout}). If the bank is bailed

out, then the depositors who does not withdraw their money will get a payoff of R instead

of zero. Assume for simplicity that population A, thinking in step 1, is uncertain about

whether or not the bailout is going to happen (Y 1
A = {t1A[Nothing], t1A[Bailout]}). Whereas

population B, thinking in two steps, knows it will (Y 2
B = {t2B[Bailout]}). The payoffs in each

of these situations are:

A

B
In Out

In R,R 0, r
Out r, 0 r, r

Nothing

A

B
In Out

In R,R R, r
Out r, R r, r

Bailout

Figure 2: Two payoff relevant parameters: Θ = {Nothing, Bailout}

Consider again the situation in which the actions of step 0 thinkers are perfectly corre-

lated. Population A reasons that the payoff is r if they withdraw, and p(t0B|t1A[Bailout])R+

(1− p(t0B|t1A[Bailout])) R
2

if they stay in. That is, if p(t0B|t1A[Bailout]) > 2r
R
− 1 then the

depositors in population A will stay in, otherwise they will withdraw their money. Being

certain that the bailout is going to happen, the depositors in population B will always stay

in. The unique equilibrium is therefore [In,In] if p(t0B|t1A[Bailout]) > 2r
R
− 1, and [Out,In]

otherwise.

Intuitively, a run on the bank can (in this simple example) be prevented if depositors

assigns a ‘high enough’ probability to the bank being bailed out. That is, the higher the

payoff is from staying in relative to withdrawing, the lower the probability of a bailout has

to be.

5 Conclusion

This paper introduced a general incomplete information framework for studying stepwise

thinking. The framework we considered was general enough to: (i) analyze players abilities

to predict opponents’ behavior at the most fundamental level, (ii) cover payoff relevant

uncertainty; and (iii) allow for the examination of situations involving stepwise thinking

separate from the solution concept.

Along the way it was also shown that there exists a coherent universal step type space

which contains all step types such that there is nothing intrinsically restrictive about the
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proposed structure. Such universality was obtained in the broadest and most natural setup,

that of probability (or measure) theory. The structure of stepwise thinking implied that

players were unaware of opponents doing at least as much thinking as themselves. Within this

structure, we could admit as much uncertainty as might seem appropriate in any situation,

by enlarging the set of step types which represents uncertainty about the payoff relevant

parameters.

Onto this structure we appended the orthodox Bayesian Nash equilibrium concept. Be-

cause players are unaware of any situation involving opponents doing at least as much think-

ing as themselves, they believe that the game they are confined to is the ‘true’ game. This

implies that there exists a Bayesian Nash equilibrium strategy in the game with stepwise

thinking in which players in any step game fix the equilibrium strategies of opponents, who

they believe do less thinking, and choose their own equilibrium strategy based on this belief.

This suggest a procedure for constructing an equilibrium; first we have to find an equilib-

rium in the step 0 game and then extend it step-by-step to ‘higher’ step games by fixing the

equilibrium strategies of opponents in the respective ‘lower’ step games.
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A Appendix

A.1 Proof of Proposition 2

First note that T ki ⊆ T∞i is equivalent to ∆(∪kl=0X
l
i) ⊆ ∆(∪∞l=0X

l
i). We need to show that it

is true that for all k ≥ 0, ∆(∪kl=0X
l
i) ⊆ ∆(∪∞l=0X

l
i).

The construction of hierarchies of stepwise thinking implies that for all k ≥ 0, ∪kl=0X
l
i ⊆

∪∞l=0X
l
i . We know from the proof of Proposition (5) that the Borel sigma-algebra on

∪∞l=0X
l
i is well defined. Since the generated Borel sigma-algebra is the smallest algebra

containing all open sets (or, equivalently, all closed sets), it holds true that for all k ≥ 0,

B[∪kl=0X
l
i ]
⊆ B[∪∞l=0X

l
i ]

and thus ∆(∪kl=0X
l
i) ⊆ ∆(∪∞l=0X

l
i). The coherency assumption ensures

that ∆(∪kl=0X
l
i) = margX0∪···∪Xk∆(∪∞l=0X

l
i), such that beliefs are preserved. �

A.2 Proof of Proposition 3

With slight abuse of notation we write Bi(E−i), Ai(E−i) and Ui(E−i) for the events in the

step type space which corresponds to events Bi(E), Ai(E) and Ui(E), respectively, in the

state space. For example, Bi(E−i) = {(ϕ(ω), τ−i(ω)) : (ϕ(ω), τi(ω), τ−i(ω)) ∈ Bi(E)}. Now

to the proofs of the four properties:

(i) Plausibility : This property is equivalent to Bi(E)∪Bi¬Bi(E) ⊆ Ai(E). By Definition

3 and 4 we have that Bi(E) ⊆ Ai(E). To see that Bi¬Bi(E) ⊆ Ai(E), note that

ω ∈ Bi¬Bi(E) iff τi(ω)(¬Bi(E−i)) = 1. This implies that ¬Bi(E) ⊆ Ai(E). Hence

ω ∈ Ai(E).

(ii) BU introspection: BiUi(E) = ∅. To see that this is true consider that some ω ∈
BiUi(E) iff τi(ω)(Ui(E−i)) = 1, which can only be true if Ui(E) ⊆ Ai(E). By

Definition 5 this is impossible and ω /∈ BiUi(E).

(iii) AU introspection: Ui(E) ⊆ UiUi(E) is equivalent to AiUi(E) = Ai(E). Then ω ∈
AiUi(E) iff τi(ω)(Ui(E−i)) ≥ π. Hence ω ∈ AiUi(E) iff ω ∈ Ai(E) by Definition 4.

(iv) Weak necessitation: ¬Ui(E) ⊆ Bi(Ω) is equivalent to Ai(E) ⊆ Bi(Ω). ω ∈ Ai(E) iff

τi(ω)(E−i) ≥ π (Definition 4), and ω ∈ Bi(Ω) iff τi(ω)(Θ× [∪∞l=0T
l
−i]) = 1 (Definition

3). Since E−i ⊆ Θ× [∪∞l=0T
l
−i] and π ≤ 1 (awareness if a weaker condition than belief)

then it hold true that ω ∈ Ai(E) iff ω ∈ Bi(Ω). �
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A.3 Proof of Proposition 4

Proposition 4 follows naturally from the following Theorem:

Theorem 1 (Kakutani, 1941). If D is a nonempty compact and convex subset of Euclidean

space, and φ is an upper hemicontinuous, nonempty, and convex valued correspondence

φ : D → D, then φ has a fixed point, that is, there is a d ∈ D such that d ∈ φ(d).

Proof of Proposition 4. By using Definition 7 define βk : ∆(A) → ∆(A) by βk(σ∗) =∏
i∈N β

k
i (σ∗−i) where

βki (σ∗−i) = {σ∗i ∈ Σi : Etki [ui|σ
∗] ≥ Etki [ui|(σi, σ

∗
−i)] for all tki ∈ T ki , σi ∈ Σi}. (6)

∆(A) is by definition a nonempty compact and convex subset of Euclidean space. βk(σ∗)

is upper hemicontinuous because Etki [ui|σ
∗] is continuous for each (finite) tki ∈ Y k

i and

i ∈ N , nonempty since each Etki [ui|σ
∗] is continuous and ∆(A) is compact, and convex

valued because each Etki [ui|σ
∗] is quasi-concave on ∆(A) (βki (σ∗−i) = {σi : Etki [ui|(σi, σ

∗
−i)] ≥

Etki [ui|σ
∗] for each tki ∈ T ki }). Therefore, by Theorem 1, βk(σ∗) has a fixed point, that is,

there is some σ∗ ∈ βk(σ∗). By definition, σ∗ is a fixed point of βk(σ∗) iff it is a Bayesian

Nash equilibrium in Gk ∈ Γ. �

A.4 Proof of Proposition 5

We need to show that σ∗ is an equilibrium strategy profile in Γk in which step l < k types

play their equilibrium strategies in Γl and step k types play theirs in Γk. Suppose not, then

there would be a profitable deviation

Etχi [ui|(σi, σ∗−i)] > Etχi [ui|σ∗] (7)

for some tχi ∈ T
χ
i , χ ∈ {l, k} and i ∈ N .

(i) For χ = k, a player’s strategy σi is not an equilibrium strategy in Γk by Definition 7–a

contradiction.

(ii) For χ = l, since a player’s expected payoff is (due to unawareness) identical in Γl and

Γk, her strategy σi is not an equilibrium strategy in Γl by Definition 7–a contradiction.

Hence σ∗ must be an equilibrium strategy profile in Γk. �
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