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Abstract

Building on Battigalli and Dufwenberg (2009)’s framework of dynamic psychologi-

cal games and the recent progress in the modeling of dynamic unawareness, we provide

a general framework that allows for ‘unawareness’ in the strategic interaction of players

motivated by belief-dependent psychological preferences like reciprocity and guilt. We

show that unawareness has a pervasive impact on the strategic interaction of psycholog-

ically motivated players. Intuitively, unawareness influences players’ beliefs concerning,

for example, the intentions and expectations of others which in turn impacts their be-

havior. Moreover, we highlight the strategic role of communication concerning feasible

paths of play in these environments.
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1 Introduction

Recent lab and field evidence suggests that people not only care about the monetary con-

sequences of their actions, but that their behavior is also driven by belief-dependent psy-

chological preferences [see e.g. Fehr et al. (1993), Charness and Dufwenberg (2006), Falk

et al. (2008), Bellemare et al. (2010)]. Two prominent examples of belief-dependent prefer-

ences in the hitherto existing literature are reciprocity [see e.g. Rabin (1993), Dufwenberg

and Kirchsteiger (2004), Falk and Fischbacher (2006)] and guilt aversion [see e.g. Charness

and Dufwenberg (2006), Battigalli and Dufwenberg (2007b)]. Departing from the strictly

consequentialist tradition in economics Geanakoplos et al. (1989) and Battigalli and Dufwen-

berg (2009) present general frameworks for analyzing the strategic interaction of people with

belief-dependent psychological preferences: ‘psychological games’. Roughly speaking, psy-

chological games are games in which players’ preferences depend upon players’ beliefs about

the strategies that are being played, players’ beliefs about the beliefs of others about the

strategies that are being played, and so on ad infinitum.

A widely unspoken assumption that is underlying all psychological as well as standard (i.e.

non-psychological) game-theoretic analyses is that players are aware of the complete structure

of the strategic environment they are in. Bluntly speaking, it is assumed that players are

aware of everything. However, in many real life situations this is not the case–people often

have asymmetric awareness levels concerning their own as well as others’ feasible choices

although they are part of the same strategic environment. Players are frequently ‘surprised’

in the sense that they become aware of new strategic alternatives by e.g. observing actions

they had previously been unaware of or through verifiable communication. It has been

shown that, although unawareness has important implications for strategic interactions, any

non-trivial notion of unawareness is precluded in the standard Bayesian framework [see e.g.

Dekel et al. (1998), Modica and Rustichini (1999)]. In the standard framework there may

be ‘details’ (i.e. states of the world) that players do not know, but they can identify all of

them (this is known as the axiom of wisdom [see e.g. Samuelson (2004)]). In a sense players

cannot be truly surprised.

However, it is not only in standard games that unawareness is important. In line with

recent experimental evidence suggesting that people are more prone to selfish choices if they

believe that others will remain unaware of them [see e.g. Dana et al. (2006), Dana et al.

(2007), Broberg et al. (2007), Tadelis (2008), Andreoni and Bernheim (2009), Lazear et al.

(2009)], we show in our analysis here that asymmetric awareness also has a profound impact

on the strategic interaction of players with belief-dependent psychological preferences. To see
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this consider the following intuitive example: Imagine two friends, Ann and Bob. Assume

it is Bob’s birthday, he is planning a party and would be very happy, if Ann could come.

Unfortunately, Ann has an important exam the next day and therefore cannot make it. Ann

is certain that Bob would feel let down, if she were to cancel his party without having a very

good excuse. Quite intuitively, in this situation Ann might not experience any guilt towards

Bob for not coming to his party. She knows that the important exam is a good excuse and

that Bob is not let down as he does not expect her to come. In contrast, consider now the

following variant of the same example: Ann is aware of the fact that the exam is postponed,

meaning that it is feasible for her to attend Bob’s party. However, she has studied so hard

for days and nights that she feels too tired to go. Quite intuitively, in this situation Ann

might not feel guilty towards Bob as long as she believes that Bob is unaware of the fact

that the exam is postponed.1 As long as she believes that Bob is unaware of the fact that

she actually has the possibility/time to come, she might not feel guilty towards him as she

believes that he does not expect her to come and, hence, is not let down. In fact, if she were

sure that Bob would never become aware of the fact that her exam can and is postponed,

she probably had a strong emotional incentive to stick to the original story and leave him

unaware in order not to raise his expectations. In other words, she had a strong incentive

not to make him aware of the fact that she actually has the time to come to his party, but

is too tired. Interestingly, if Ann were only interested in her own payoff in this strategic

situation with unawareness, she would not care whether Bob is or will become aware of the

postponement. She would simply not attend his party irrespective of his awareness. Only

her belief-dependent feeling of guilt towards Bob creates the strong emotional incentive not

to make him aware.

Bob’s unawareness concerning Ann’s possibility to come to his party and, connectedly,

Ann’s incentive not to tell him about the postponement of her exam intuitively highlight

the focus of our analysis here. We analyze the influence and importance of asymmetric

awareness and communication concerning feasible paths of play for the strategic interac-

tion of players with belief-dependent preferences. This means, building on Battigalli and

Dufwenberg (2009)’s framework of dynamic psychological games and the recent progress in

the modeling of unawareness [i.e. Heifetz et al. (2006), Heifetz et al. (2008) and Heifetz

1Assume, for example, that Ann thinks that Bob can simply not conceive that exams can be postponed.
One may wonder to what extend Bob’s unawareness can be modeled as zero probability events. First, Bob is
unable to conceive the event ‘the exam is postponed’ and will have to assign probability zero to it. Second, if
we are to take Bob’s limited cognition seriously, then Bob must also be unable to conceive the complementary
event ‘the exam is not postponed’ and thus also assign probability zero to that. Because of additivity, a
probability measure in the standard Bayesian framework can never assign both zero to an event and its
complement. Capturing unawareness thus requires drastic modeling innovations, including a rethinking of
the basic concept of the standard framework.
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et al. (2010)], we first present an extensive form that allows for unawareness and commu-

nication in the strategic interaction of players motivated by belief-dependent psychological

preferences like reciprocity and guilt. Second, we provide a solution concept which can be

used in our class of dynamic games with unawareness, communication and belief-dependent

preferences and, third, we discuss an application to exemplify the influence of unawareness

and communication using a specific type of belief-dependent preference: reciprocity.

More specifically, to allow for unawareness we extend the existing multi-stage framework

along two dimensions. First, we divide extensive forms into subforms consisting of paths of

play. These subforms are used to define players’ levels of awareness. Second, players may

become aware of more by learning from choices made by others. However, as our analysis

concentrates on the influence of asymmetric awareness on the strategic interactions of players

with belief-dependent preferences, we abstract from the question of how players become

aware. We simply assume that whenever they observe a choice that they had previously

been unaware of they become aware of some ‘larger’ subforms which is consistent with

observed choices. To model unawareness and changes in awareness levels we adopt Heifetz

et al. (2010)’s definition of unawareness in dynamic strategic environments. Other ways

of modeling unawareness that have been suggested in recent years include e.g. Fagin and

Halpern (1988), Modica and Rustichini (1999), Halpern (2001), Heifetz et al. (2006), Halpern

and Rêgo (2008), Heifetz et al. (2008), Feinberg (2009), Grant and Quiggin (2009), Li (2009)

and Mengel et al. (2009).

In the spirit of our example above, we also allow for communication in our framework. We

model such communication by assuming that players can choose to send verifiable ‘awareness

messages’ containing feasible paths of play they are aware of, or they can choose not to com-

municate. Note that this is different from the communication allowed for in, for example, the

experimental setting of Charness and Dufwenberg (2006). In their setting players are aware

of everything and can send messages concerning intended play. In contrast, a message in

our setting contains information concerning a set of feasible paths of play. Communicating

feasible paths of play is obviously meaningless in strategic environments without unaware-

ness. It is the asymmetric awareness of players which makes communication an important

integral part of the strategic environment with unawareness. If a player observes a message

containing information about paths of play that he was previously unaware of, he will update

his level of awareness by taking this information into account.

Having defined our class of extensive forms with unawareness and communication, we

formally characterize belief-dependent preferences. In synthesis, for each player confined to
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a certain awareness level, his pure strategy is defined on the extensive form he is confined to

and his beliefs concerning the other players’ strategies are defined on each of the extensive

forms induced by all subforms he is aware of. A behavioral strategy profile is thus an

independent probability distribution over these pure strategies each specifying a definite

choice. Beliefs about others’ pure strategies a player is aware of (first-order beliefs), beliefs

about their beliefs about others’ pure strategies he is aware of (second-order beliefs), and

so on, are shown to exist for all possible hierarchies. We use these hierarchies of beliefs for

the general specification of belief-dependent psychological preferences. As mentioned above,

specific types of belief-dependent preferences that can be embedded in our general setting

with unawareness and communication are among others reciprocity and guilt aversion. In

contrast to Battigalli and Dufwenberg (2009), in our setting such psychological preferences

will be limited by the awareness of each player who plays ‘partial games’. A partial game

is a description of the strategic situation a player is aware of. As players may be aware

of different partial games at different stages, we define a dynamic psychological game with

unawareness and communication as the ‘modelers’ game which entails all relevant partial

games.

Given the characterization of dynamic psychological games with unawareness and com-

munication, we propose a sequential equilibrium solution concept and prove its existence.

We assume that a profile of first-order beliefs (conjectures) in a partial game is derived from

a behavioral strategy profile in the same game. This implies, that in equilibrium any two

players confined to the same partial game will independently hold the same first-order beliefs

about any third player. An assessment in our structure, a behavioral strategy profile and

a profile of infinite hierarchies of beliefs, is consistent if the profile of first-order beliefs is

derived from the behavioral strategy profile and each higher-order belief assigns probability

one to lower-order beliefs. Intuitively, players aware of the same must in equilibrium hold

common, correct beliefs about each others infinite belief hierarchies. A consistent assessment

and sequential rationality (based on belief-dependent preferences) induce a sequential equi-

librium in the partial game. As players are unaware of any situation in which other players

are aware of more than themselves, they believe that the game they are confined to is the

most expressive. This implies that there exists an equilibrium strategy in which players

confined to a partial game fix the equilibrium strategies of other players, whom they believe

are confined to ‘smaller’ partial games, and then choose an equilibrium strategy based on

this belief.

After defining our class of extended psychological games and characterizing our solution

concept, we use an application to demonstrate the influence and importance of unawareness
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on the strategic interaction of agents with belief-dependent preferences. That is, we use

the sequential prisoners dilemma also analyzed by Dufwenberg and Kirchsteiger (2004) to

show the impact of unawareness and communication on the strategic interaction of reciprocal

agents. As a benchmark we start from their results and subsequently discuss two scenar-

ios in which players have asymmetric awareness levels. Importantly, the application shows

how asymmetric awareness levels of players concerning feasible paths of play can give rise

to equilibrium predictions that are distinct from predictions using Dufwenberg and Kirch-

steiger (2004)’s setting without unawareness and a standard setting in which people are only

concerned about the monetary consequences of their actions.

The organization of the paper is as follows: In section 2 we introduce a class of extensive

forms with unawareness and communication. Following this, in section 3 we define hierarchies

of conditional beliefs and belief-dependent preferences in our class of extensive forms. Section

4 contains the definition of our equilibrium concept: sequential equilibrium. In section 5

we discuss a specific application. Sections 6 and 7 respectively contain extensions and a

discussion of some of our assumptions as well as a conclusion.

2 The framework

In this section we introduce a class of extensive forms with unawareness and communica-

tion. First, we define awareness subtrees as the basis for our analysis (2.1). Following this,

we characterize the messages players can send (2.2), and introduce extensive forms with

unawareness and communication (2.3).

2.1 Awareness subtrees

A multi-player decision tree with observable actions, no chance moves, and complete infor-

mation is a tuple ⟨I,N⟩ where I is the finite set of players, and N is the finite set of decision

nodes. Let ANi be the set of all actions player i can take in N . A decision node of length

l ∈ L is a sequence of actions n = (a1, . . . , al) where each at = (at1, . . . , a
t
∣I ∣) represents the

profile of actions taken at stage t (1 ≤ t ≤ l). The decision node ñ = (ã1, . . . , ãk) precedes

n = (a1, . . . , al), written ñ < n, if ñ is a prefix of n (i.e., k < l and (ã1, . . . , ãk) = (a1, . . . , ak)).

The initial empty node, denoted by n0, is an element of N . Y denotes the set of terminal

nodes.

Consider now a family T of awareness subtrees of N , partially ordered ⪯ by the inclusion
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of paths of play. That is,

T = {T ⊆ N ∶ ∃D ∈ 2Y /{∅}, T = {n ∶ ∃y ∈D ∶ n ≤ y}},

where n ≤ y means that n is y or a prefix of y.

Each subtree T ∈ T represents a set of feasible paths of play. The ‘largest’ of these trees

is the set N itself. To further clarify the structure of each T ∈ T we state the following

definition for awareness subtrees:

Definition 1 (Awareness subtrees). A set of nodes T ∈ T is an awareness subtree if there is

some nonempty subset of terminal nodes D ⊆ Y such that

T = {n ∈ N ∶ n ≤ y for some y ∈D}.

Such a construction of subtrees ensures that any T ∈ T starts at the root n0, that it is

naturally ordered by proper subnodes, and implies that each terminal node of each subtree

y ∈ D is associated with a well defined terminal history in Y . We denote the set of actions

of player i in the subtree T by ATi .

Example 1: The construction of the family T can be demonstrated by a simple example.

Consider the extensive form underlying the sequential prisoners dilemma also analyzed by

Dufwenberg and Kirchsteiger (2004).

[Figures 1]

Figure 1 shows an extensive form without communication ⟨I,N⟩ with I = {Ann,Bob} and

N = {n0, n1, n2, n3, n4, n5, n6}.2 In the initial node n0 Ann can choose between cooperate

and defect and Bob is passive. In nodes n1 and n2 Bob can respectively choose between

cooperate and defect and Ann is passive. Histories n3, n4, n5 and n6 are terminal nodes.

The cardinality of the family of subtrees T is ∣T ∣ = 2∣Y ∣ − 1. In the context of our example

this means ∣Y ∣ = 4 and ∣T ∣ = 15:

[Figures 2]

2We will draw on this example in the subsequent sections and develop it further along the lines of our
analysis.
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2.2 Messages about feasible paths of play

Verifiable communication is an integral and important part of strategic interactions in situa-

tions in which players might be unaware concerning feasible paths of play. Therefore we next

define the set of verifiable messages that players can send concerning the feasible paths of

play and then augment our extensive form with unawareness and communication. Assume

that players can either choose to communicate some set of feasible paths of play or choose

not to communicate which we denote by sending the empty message m∅. This means, the

set of possible messages associated with some subtree T is defined as:

MT = {{T ′}T ′⪯T ∪m
∅} .

The set of possible messages for all other subtrees is defined analogously. The set of messages

which is associated with the largest tree in the family T is denoted by MN .

Each of these messages only reveals information about the structure of the game, i.e.

feasible paths of play. Therefore, over and above a potential role as coordination devices, our

messages are irrelevant in settings with full awareness since they contain no new information.

However, in settings with asymmetric awareness such messages are an important part of the

strategic environment. By construction our messages can only be informative.

2.3 Extensive forms with unawareness and communication

A finite extensive form with unawareness and communication is a tuple ⟨I,HT ⟩ where HT is

the finite set of histories. Let CT
i = ATi ×M

T be the set of choices player i can make in HT .

A history of length l ∈ L is a sequence of choices hT = (c1, . . . , cl) where each ct = (ct1, . . . , c
t
∣I ∣)

with cti ∈ Ci,T represents the profile of choices made at stage t (1 < t < l). The finite set

of feasible choices for player i at history hT is denoted by Ci,hT . Player i is active at hT if

Ci,hT is not a singleton.3 The set HT of histories hT will rather informally be referred to

as a ‘T -sub-extensive-form’, or just ‘subform’. ZT denotes the set of terminal histories zT .

The ‘largest’ of these subforms is HN . HT consists of copies hT of the histories hN ∈ HN .

Obviously, whenever two histories hT ∈ HT and hT ′ ∈ HT ′ are copies of the same history

hN ∈ HN , they are also copies of each other. Let H = {HT}T ∈T be the family of subforms,

partially ordered ⪯ by the inclusion of paths of play based on choices.

Example 2: Consider again the extensive form in Figure 1. Let’s concentrate on

3The restrictions made by observable actions, no chance moves, and complete information can be re-
moved, at the cost of additional notational complexity. Different extensions of our general framework are
discussed in section 6.
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the initial node n0. In our extensive form without communication Ann can take

actions (C)ooperate and (D)efect. Her set of feasible choices in the initial his-

tory h0
N of the extensive form ⟨I,HT ⟩ associated with ⟨I,N⟩ could thus be CA,h0N =

{(C,T1),⋯, (C,T15), (C,m∅), (D,T1),⋯, (D,T15), (D,m∅)}. On the other hand, Bob who

is (P)assive in n0 can only communicate, i.e. his set of feasible choices could be CB,h0N =

{(P,T1),⋯, (P,T15), (P,m(∅))}.

To model that players may have different views on the set of feasible paths of play in

different histories we define players’ perceptions concerning the strategic environment.

Definition 2. For each player i ∈ I in our extensive form with communication there exists

a perception function:4

πi ∶ [ ⋃
T ∈T

HT ] → [⋃
T ∈T

HT ] .

which defines for each hT player i’s perception πi(hT ).

The properties of this function parallel the properties in Heifetz et al. (2006, p. 83) and

Heifetz et al. (2010, p. 47):5

(i) Confined Awareness: If hT ∈HT , then πi(hT ) ∈HT ′ , with HT ′ ⪯HT .

(ii) Generalized Reflexivity: If HT ′ ⪯ HT , hT ∈ HT , πi(hT ) ∈ HT ′ and HT ′ contains a

copy hT ′ of hT , then hT ′ = πi(hT ).

(iii) Subforms Preserve Awareness: If hT ∈ HT , hT = πi(hT ), HT ′ ⪯ HT and HT ′

contains a copy hT ′ of hT , then hT ′ = πi(hT ′)

(iv) Subforms Preserve Ignorance: If HT ′′ ⪯HT ′ ⪯HT , hT ∈HT , πi(hT ) ∈HT ′′ and HT ′

contains the copy hT ′ of hT , then πi(hT ′) = πi(hT ).

(v) Subforms Preserve Knowledge: If HT ′′ ⪯ HT ′ ⪯ HT , hT ∈ HT , πi(hT ) ∈ HT ′ and

HT ′′ contains a copy hT ′′ of hT , then πi(hT ′′) consists of the copy that exists in HT ′′ of

the node πi(hT ).

(vi) Dynamic Awareness: for any two histories h̃T , hT ∈HT directly preceding each other

(i.e. hT = (h̃T , c)) and πi(h̃T ) ∈HT ′ , then (i) πi(hT ) ∈HT ′ , if HT ′ contains the copy hT ′

of hT , or (ii) πi(hT ) ∈HT ′′ with HT ′ ⪯HT ′′ .

4We have chosen the term ‘perception function’ instead of possibility correspondence in order to avoid
any confounding with settings of imperfect information.

5Note that introspection does not play a role in our setting as our setting is restricted to observable
actions, i.e. singleton information sets.
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The perception function and its properties describe for all possible histories the players’

perceptions and change in perceptions about the strategic environment. More specifically,

‘Confined Awareness’ says that the players’ perceptions in some history hT are confined to

subforms ‘smaller or equal’ to the subform hT is in. The property of ‘Generalized Reflexivity’

implies that at some history hT players know the (observable) choices that have led to history

hT . Properties (iii) − (v) guarantee the coherence of the knowledge and the awareness of

players down the partial order. ‘Subforms Preserve Awareness’ means that players that can

perceive some history in some subform must also perceive copies of that history in ‘smaller’

subforms. ‘Subforms Preserve Ignorance’ implies that at histories in ‘smaller’ subforms

players cannot perceive anything that they cannot perceive at copies of these histories in

‘larger’ subforms and ‘Subforms Preserve Knowledge’ says that players who perceive to be

in some history also perceive copies of that history in all ‘smaller’ subforms. Finally, the

property of ‘Dynamic Awareness’ regards the dynamic nature of the strategic interaction. It

implies that at each history players perceive subforms that are consistent with the choices

made. If a player observes that the choices taken by others are different from what he

had foreseen, he will have an enlightening moment and discover some subform HT ′ which is

consistent with the choices just taken. This kind of learning thus implies that player i, by

constructing a new subform to which he is confined, updates his current awareness. He does

so by aggregating information about paths of play gained from either unforeseen actions

taken by others, or messages containing new information.

For extensive forms HT ,HT ′ ∈H we (abuse notation slightly and) denote T ↣ T ′ when-

ever for some history hT ∈ HT it is the case that the copy πi(hT ) ∈ HT ′ . Denote by ↪ the

transitive closure of ↣. That is, T ↣ T ′′ if there is a sequence of trees HT ,HT ′ ...,HT ′′ ∈ H

satisfying T ↣ T ′ ↣ ... ↣ T ′′. If hT ∈ HT but T 0 T ′, then at the history hT a player may

be interpreted as being unaware of histories in HT ′/HT . We denote by hT = {hT ′}T↪T ′ the

‘historical event’ that a history and copies thereof that a player is aware of obtains. HT is

the set of such events and ZT denotes the set of terminal historical events.

For any given subform HT ∈ H , let SHT
i denote the set of (pure) strategies of player i.

A typical strategy is denoted sTi = (sTi,hT )hT ∈HT /ZT
, where sTi,hT is the choice that would be

selected by sTi if history hT obtained. Define SHT = ∏i∈I S
HT
i and SHT

−i = ∏j≠i S
HT
j . The set of

i’s strategies that allow history hT is denoted SHT
i (hT ). Similar notation is used for strategy

profiles: SHT (hT ) = ∏i∈I S
HT
i (hT ) and SHT

−i (hT ) = ∏j≠i S
HT
j (hT ).

Strategies cannot be interpreted as an ex-ante plan of choices since players might be

unaware of histories in HT ′ for which T 0 T ′. A strategy should therefore rather be viewed
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as a list of answers to the hypothetical question: ‘what would the player do if hT where

the history he considered possible?’ However, there is no guarantee that such a question

is meaningful to the player at histories he is unaware of. The answer should therefore be

interpreted as given by the modeler, as part of the description of the strategic situation.

This concludes the definition of our class of extensive forms with observable actions,

messages and unawareness. In the next section we define dynamic psychological games in

the context of our class of extensive forms.

3 Dynamic psychological games with unawareness

In this section we develop our notion of dynamic psychological games with unawareness. We

start by model a universal belief space that accounts for updated beliefs (3.1), and put forth

our general definition of a psychological game with unawareness (3.2).

3.1 Belief hierarchies in the unawareness structure

As the game progresses, players update and/or revise their beliefs in light of newly ac-

quired information. To account for this process, we represent beliefs by means of conditional

probability systems (see Battigalli and Siniscalchi (1999) for proofs, details, and further

references).

Consider a player who is uncertain about which element in a set X is true. Assume X

is a compact Polish space. Players assign probabilities to events E,F, ... in the Borel sigma-

algebra BX of X according to some (countably additive) probability measure. Let ∆(X)

denote the set of all probability measures on (X,BX). As events unfold players update their

beliefs. Let C ⊆ BX be a nonempty, finite or countable collection, such that each ∅ ∉ BX .

The interpretation is that any given player i is uncertain about the element x ∈ X, and C

represents a collection of ‘relevant hypotheses’.

Definition 3. A conditional probability system (cps) on (X,BX ,C ) is a mapping µ (⋅∣⋅) ∶

BX ×C → [0,1] such that, for all E ∈ BX and F ′, F ∈ C , (i) µ (⋅∣⋅) ∈ ∆ (X), (ii) µ (F ∣F ) = 1,

and (iii) E ⊆ F ′ ⊆ F implies µ (E∣F ) = µ (E∣F ′)µ (F ′∣F ).

We regard the set of cps’ on (X,BX ,C ) as a subset of the topological space [∆(X)]C ,

where ∆(X) is endowed with the topology of weak convergence of measures (which makes

it Polish) and [∆(X)]C is endowed with the product topology.
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Throughout this paper, we shall solely be interested in ‘relevant hypotheses’ cor-

responding to the event that a certain partial history has occurred. Fix some sub-

form HT ∈ H and player i ∈ I. Player i’s first-order cps’ about −i’s behavior in

any subform he is aware of may be represented by taking X = [⋃T↪T ′ S
HT ′

−i ] and C =

{F ⊆ [⋃T↪T ′ S
HT ′

−i ] ∶ F = [⋃T↪T ′ S
HT ′

−i (hT ′)] for copies hT ′ of hT ∈HT}. Since each element

of C represents the historical event that a history and copies thereof that a player is aware

of obtains, we simplify our notation of cps’ on [⋃T↪T ′ S
HT ′

−i ] and replace C with HT .

The collection of cps’ on [(⋃T↪T ′ S
HT ′

−i ,C )] is thus defined by ∆HT (⋃T↪T ′ S
HT ′

−i ). Since

[⋃T↪T ′ S
HT ′

−i ] and HT are finite, ∆HT (⋃T↪T ′ S
HT ′

−i ) is easily seen to be a closed subset of

Euclidean ∣HT ∣⋅∣⋃T↪T ′ S
HT ′

−i ∣-dimensional space. To present player i’s higher-order beliefs, we

introduce the notion of a hierarchical cps space. Hierarchies of cps’ are in our unawareness

structure defined recursively as follows:

X0
−i,T = SHT

−i ;

for all k ≥ 1,

Xk
−i,T =Xk−1

−i,T ×∆HT ( ⋃
T↪T ′

Xk−1
−j,T ′) .

A cps µki,T ∈ ∆HT (⋃T↪T ′X
k−1
−i,T ′) is called a k-order cps. A hierarchy of cps’ is a countably

infinite sequence of cps’ µi,T = (µ1
i,T , µ

2
i,T , . . . ) ∈ ∏k≥1 ∆HT (⋃T↪T ′X

k−1
−i,T ′). If player i is as-

signed with the lowest level of awareness (T 0 T ′ for all T ′ ∈ T different from T ), then the

hierarchy will be equal to the that provided by Battigalli and Dufwenberg (2009).

Let Bi,T be the set of hierarchies of cps’ that are known with common cer-

tainty of coherency6 at the subform i is confined to. The finite disjoint union

of Polish spaces is Polish and each Xk
−i,T is thus a cross-product of compact Pol-

ish spaces, hence Bi,T is itself a compact Polish space. Player i has higher-order

cps’ about −i’s strategies and beliefs in any subform he is aware of. Therefore

the structure (X,C ) is specified as follows: X = [⋃T↪T ′ S
HT ′

−i ×B−i,T ′] and C =

{F ⊆ [⋃T↪T ′ S
HT ′

−i ×B−i,T ′] ∶ F = [⋃T↪T ′ S
HT ′

−i (hT ′) ×B−i,T ′] for copies hT ′ of hT ∈HT}. The

set of cps’ on ([⋃T↪T ′ S
HT ′

−i ×B−i,T ′] ,C ) will be denoted by ∆HT (⋃T↪T ′ S
HT ′

−i ×B−i,T ′)–a

compact Polish space.

The following definition establish that countably infinite hierarchies of cps’ are sufficient

6Coherency is the condition that various orders of cps’ of a player cannot contradict each other, i.e.
µk
i,T (⋅∣hT ) = margXk−1

−i,T
µk+1
i,T (⋅∣hT ) for all k ≥ 1 and hT ∈HT .
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for the strategic analysis; Bi,T is isomorphic to ∆HT (⋃T↪T ′ S
HT ′

−i ×B−i,T ′), so each µi,T ∈ Bi,T

corresponds to a cps on [⋃T↪T ′ S
HT ′

−i ×B−i,T ′]:

Lemma 1. (cf. Battigalli and Dufwenberg (2009)) For each player i ∈ I:

fi,T = (fi,hT
)hT ∈HT

∶ Bi,T →∆HT ( ⋃
T↪T ′

S
HT ′

−i ×B−i,T ′)

is a 1-to-1 and onto continuous mapping whose inverse is also continuous.

We let Bk
i,T denote the set of k-order cps’ consistent with common certainty of co-

herency, that is, the projection of Bi,T on ∆HT (⋃T↪T ′X
k−1
−i,T ′). For example, the set

of player i’s second-order beliefs (B2
i,T ) are about −i’s strategies and first-order beliefs

(S
HT ′

−i ×B1
−i,T ′) in any subform he is confined to. One might be concerned as to why the

isomorphism fi,hT
is ‘natural’. The reason is that the marginal probability assigned by

each fi,hT
(µ1

i,T , µ
2
i,T , . . . ) to a given event in [⋃T↪T ′X

k−1
−i,T ′] is equal to the probability that

µki,T assigns to that same event. That is, in deriving probabilities on the product space

[⋃T↪T ′X
∞
i,T ′] = [⋃T↪T ′ S

HT ′

−i ×B1
−i,T ′ ×B

2
−i,T ′ ×⋯] from (µ1

i,T , µ
2
i,T , . . . ), the function fi,hT

pre-

serves the probabilities specified by µki,T on each [⋃T↪T ′X
k−1
−i,T ′].

Lemma 2. Each coordinate function fi,hT
is such that for all µi,T = (µ1

i,T , µ
2
i,T , . . . ) ∈ Bi,T ,

and k ≥ 1:

µki,T (⋅∣hT ) = marg[⋃T↪T ′ S
HT ′
−i ×B1

−i,T ′
⋯×Bk−1

−i,T ′
]fi,hT

(µi,T ).

Absent in our definition of a hierarchical cps space is the description of the beliefs of

a player about himself. We omit such beliefs about the opponents. Thus, beliefs about

oneself do not play an explicit role. However, our analysis is consistent with the standard

assumption that a player knows his beliefs and assigns probability one to the strategy he

intends to carry out.

3.2 Psychological multi-stage games with unawareness

We are now ready to state our definition of a dynamic psychological game with unawareness:

Definition 4. A dynamic psychological game with unawareness and belief-dependent pref-

erences is a tuple

Γ = ⟨I, [⋃
T ∈T

HT ] , (πi)i∈I , (ui)i∈I⟩ , 7

7In conventional game theory payoffs are the same if the paths of actions (as opposed to choices) leads to
the same terminal. If we only allow players to send ‘empty messages’, then our framework will be equivalent
to the conventional framework.
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where ui = (ui,T )T ∈T and ui,T ∶ ZT ×Bi,T → R is a continuous psychological payoff function of

player i ∈ I who is confined to the subform HT .

In a game where some players are unaware of some paths of play, other players will, in

general, be aware of this possibility. A game with unawareness is therefore not common

knowledge among the players, and should be interpreted as the modelers’ point of view.

However, if we were to make such a common knowledge assumption here, then the domain

and codomain of the perception function πi will become the same for all players. The

game is therefore just a Battigalli and Dufwenberg (2009, Definition 4) game (henceforth;

B&D-game). The standard assumption of common knowledge of the game must therefore

be replaced with a structure in which each player assigns to the others a possible level of

awareness. For this purpose we define partial games as follows:

Definition 5. For any HT ∈H , a T -partial game is a tuple

GT = ⟨I,HT , (ui,T )i∈I⟩ .

From the modelers point of view there exists a set of T -partial games G = {GT}T ∈T , with

the partial order ⪯ on G defined (with slight abuse of notation) by the transitive closure ↪

generated by the relational requirement ↣ on subforms. Since G is a finite set of T -partial

games, any ‘awareness chain’ in G must have both a minimal element under ⪯, characterized

as a strategic situation in which all players think that others are aware of the same paths of

play as themselves (the B&D-game), and a maximal element under ⪯, namely the modelers

game.

To highlight the recursive nature of this structure consider the following variant of our

introductory example, in which Ann’s exam was postponed and she could have gone to

Bob’s party: assume now that Ann is aware that the exam change-of-date is posted on the

instructor’s website. Furthermore, assume that Ann imagines that Bob is also aware of that

fact, but think that Ann is unaware (cannot conceive that there exist a website). That is,

Ann thinks that Bob is unaware (cannot conceive) that she could be aware that he revealed

her lie. This situation could be modeled by having Ann being confined to some partial

game in which she thinks that, (i) Bob is confined to the same partial game as her, and (ii)

Bob thinks that she is confined to some ‘smaller’ partial game which exclude paths of play

with Bob’s action ‘check instructors website’. Bob might in this situation be either generous

enough not to reveal that he caught her lying, or reveal everything because he is furious that

she lied to him.
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4 Sequential psychological equilibrium

In the following we propose a sequential equilibrium concept for dynamic psychological games

with unawareness. We will define and interpret consistent assessments (4.1), state the main

definition of equilibrium and provide an existence theorem (4.2). Lengthy mathematical

proofs are relegated to Appendix (A).

4.1 Consistent assessments

Battigalli and Dufwenberg (2009) adapt Kreps and Wilson (1982)’s concept of sequential

equilibrium to their class of dynamic psychological games without unawareness. They do so

by characterizing consistent assessments that do not only consist of first-, but also of higher-

order beliefs and defining sequential equilibria as sequential rational consistent assessments.

In turn, we adapt Battigalli and Dufwenberg (2009) concept to our setting with un-

awareness and communication. As in Battigalli and Dufwenberg (2009), assessments in our

setting also refer to behavioral strategies, i.e. implicit randomizations over sets of choices

at each history the player is aware of. The interpretation of behavioral strategies used in

psychological games exclude actual randomizations. Rather, we assume that players do

not know the pure strategies of others, and the randomization represents their uncertainty,

their first-order beliefs (conjectures) about others’ pure strategies (Aumann and Branden-

burger, 1995). Fix any T -partial game GT . We denote a behavioral strategy of player i

by σi,T = (σi,T (⋅∣hT ))hT ∈HT
. The behavioral choice σi,T (⋅∣hT ) ∈ ∆(⋃T↪T ′ Ci,hT ′) should be

understood as a stochastic independent randomization over the set of choices in histories

player i is aware of.

Each behavioral strategy σj,T induces a probability measure Prσj,T on the set

[⋃T↪T ′ S
HT ′

j (hT ′)] of strategies, in the continuation of play (i.e. strategies defined on histo-

ries h′T ′ that are not predecessors of hT ′–denoted h′T ′ ≮ hT ′), allowed for by a history hT ′ that

player i believes j is at: for all sT
′

j ∈ [⋃T↪T ′ S
HT ′

j (hT ′)],

Prσj,T (sT
′

j ∣hT ) ∶= ∏
h′
T ′
∈HT ′/ZT ′ ∶h′T ′≮hT ′

σj,T (sT
′

j,h′
T ′
∣hT) .

In the original characterization Kreps and Wilson (1982) propose three conditions to

ensure consistency of assessments: (i) beliefs must be derived using Bayes’ rule, (ii) beliefs

must reflect that players choose their strategies independently, and (iii) players with identical

information have identical beliefs. In addition to these conditions, an additional requirement
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for consistency is needed in psychological games: (iv) players hold correct beliefs about each

others beliefs.

Condition (i) holds by the definition of cps’ (Definition 3). That is, cps’ are defined in

such a way that they are consistent with Bayes’ rule. Conditions (ii)-(iii) are ensured if

we assume that the profile of first-order beliefs µ1
T = ((µ1

i,T (⋅∣hT ))hT ∈HT
)
i∈I

is derived from

the stochastic independent behavioral strategy profile σT = (σi,T )i∈I . That is, for all i ∈ I,

sT
′

−i ∈ [⋃T↪T ′ S
HT ′

−i ], and hT ∈HT :

µ1
i (s

T ′

−i ∣hT ) =∏
j≠i

Prσj,T (s
T ′

j ∣hT ).

If a profile of first-order beliefs is derived from a profile of stochastic independent behavioral

strategies, then the marginal first-order belief of any two players i, j about a third player k

must coincide. That is, for all sT
′

k ∈ [⋃T↪T ′ S
HT ′

k ] and hT ∈HT :

marg
S
HT ′
k

µ1
i (s

T ′

k ∣hT ) = Prσk,T (s
T ′

k ∣hT ) = marg
S
HT ′
k

µ1
j(s

T ′

k ∣hT ).

Finally, condition (iv) follows from the second condition in the following definition of a

consistent assessment:

Definition 6 (cf. Battigalli and Dufwenberg (2009)). An assessment (σT , µT ) in any T -

partial game GT ∈G is consistent if

(i) µ1
T is derived from σT ,

(ii) and higher order beliefs in µT assign probability 1 to the lower order beliefs, such that

for all i ∈ I, k > 1, hT ∈HT

µki,T (⋅∣hT ) = µ
k−1
i,T (⋅∣hT ) × δµk−1

−i,T

where δx is the Dirac measure which assigns probability 1 to singleton {x}.

The first condition capture the assumption that beliefs should be the end-product of a trans-

parent reasoning process of rational players. The second condition is analog to Geanakoplos

et al. (1989)’s condition requiring that players (confined to the same T -partial game) hold

common and correct beliefs about each others’ beliefs.

4.2 Equilibrium concept

We now move to the section’s main definition: a consistent assessment is a sequential equi-

librium if it satisfies sequential rationality. Formally, fix a T -partial game, a player i, a
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hierarchy of cps’ µi,T , a (non-terminal) history hT that i thinks that he is at, and a strategy

sTi ∈ SHT
i (hT ). The expectation of ui conditional on hT , given sTi and µi,T is:

EsTi ,µi,T [ui,T ∣hT ] ∶= ∑
T↪T ′

µ1
i,T (hT ′ ∣hT )× (1)

∑
sT

′

−i ∈S
HT ′
−i (hT ′)

µ1
i,T (sT

′

−i ∣hT ′)ui,T (ζ (sTi , s
T ′

−i) , µi,T ) ,

where ζ(sTi , s
T ′

−i) ∈ ZT is a path function which defines the terminal history zT induced by

(sTi , s
T ′

−i).
8 This expression gives the expected payoff from the strategies of others he is

aware of. However, player i confined to the T -partial game does–in general–not know the

awareness and strategies of the others and thus evaluates his payoff with respect to his first-

order belief. Here we first use the idea that the event F ′ = hT ′ is a subset of the event F = hT

(for F ′, F ∈ C ) such that µ1
i (⋅∣hT ) = µ1

i (⋅∣hT ′)µ
1
i (hT ′ ∣hT ), and then the fact that the sets

[⋃T↪T ′ S
HT ′

j (hT ′)] are disjoint.

Definition 7. An assessment (σT , µT ) is a sequential equilibrium (SE) if it is consistent

and for all players i ∈ I, non-terminal hisorical event hT ∈ HT /ZT , and optimal strategies

sT,∗i ∈ SHT
i (hT ) allowed for by the history hT that player i thinks he is at: for all j ≠ i,

supp marg
S
HT
i

µ1
j,T (⋅∣hT ) ⊆ arg max

sT,∗
i ∈SHT

i (hT )
EsT,∗

i ,µi,T
[ui,T ∣hT ].

By consistency, σi,T represents the first-order beliefs of the other players about player i, and

furthermore there is common certainty of the correct belief profile µT at every history in the

T -partial game. This clarifies that SE is a an equilibrium in beliefs.

The next result shows that it suffices to check whether there are any histories hT at player

i’s awareness level where he can gain by deviating from the choices prescribed by sT,∗i at hT

and conforming to sT,∗i thereafter. Since this ‘one-stage-deviation principle’ is essentially the

principle of optimality in dynamic programing, which is based on backwards induction, it

also establishes that one can use backwards induction to find optimal strategies in T -partial

games.

First we need to define what we mean by taking the point of view of an ‘agent’ (i, hT )

of player i in charge of the move at hT . In order to facilitate comparison with the existing

8The path function ζ ∶ SHT

i × [⋃T↪T ′ S
HT ′

−i ] → ZT is defined such that zT = (c1, . . . , cL) = ζ(sTi , s
T ′

−i) if

and only if c1 = (sT
i,h0

T
, sT

′

−i,h0
T ′
) and ct+1 = (sTi,(c1,...,ct), s

T ′

−i,(c1,...,ct)) for all t ∈ {1, . . . , L − 1}.
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literature on dynamic games, we will in the following adopt the standard notation. The

expectation operator using PrσT = ∏j∈I Prσj,T is denoted EσT ,µT [⋅]; particular EσT ,µT [ui,T ]
is player i’s expected payoff in the T -partial game from the assessment (σT , µT ). Agent

(i, hT ) considering whether he should deviate by making some choice has to consider the

uncertain continuation of play following his choice (strategies defined on histories h′T that

are not predecessors or hT itself–denoted h′T � hT ). The induced probability measure of

agent (i, hT ) following his choice ci ∈ Ci,hT is: for all sTi ∈ SHT
i (hT ),

Prσi,T (sTi ∣hT , ci) ∶= ∏
h′T ∈HT /ZT ∶h′T�hT

σi,T (sTj,h′T
∣hT) .

The expected utility of agent (i, hT ) conditional on the copies he is aware of hT and his

choice ci given the assessment (σT , µT ) can be expressed as

EσT ,µT [ui,T ∣hT , ci] ∶= ∑
T↪T ′

∑
sT

′

−i ∈S
HT ′
−i (hT ′)

∏
j≠i

Prσj,T (sT
′

j ∣hT )×

∑
sTi ∈S

HT
i (hT ,ci)

Prσi,T (sTi ∣hT , ci)ui,T (ζ (sTi , s
T ′

−i) , µi,T ) .

This expression gives player i’s expected payoff for a given combination of continuation

strategies of others, and his own continuation strategies given his choice. Remember, player

i knows his own belief and assigns probability one to the strategy he intends to carry out.

The following property formalizes the intuition of the one-stage-deviation principle: For

a given combination of strategies of others, a player’s strategy is optimal from any stage of

the T -partial game if and only if there is no stage from which the player can gain by changing

his strategy there, keeping it fixed at all other stages.

Proposition 1. An optimal strategy of any player in the T -partial game GT ∈ G satisfies

the one-stage-deviation property since it holds for all i ∈ I, hT ∈HT /ZT , that

max
ci∈Ci,hT

EσT ,µT [ui,T ∣hT , ci] = max
sTi ∈S

HT
i (hT )

EsTi ,µi,T [ui,T ∣hT ′].

Proof. See Appendix (A).

The following existence theorem of T -partial games obtains:

Theorem 1. If belief-dependent payoffs are continuous, then there exists at least one se-

quential equilibrium assessment in each T -partial game GT ∈G.
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Proof. See Appendix (A).

The proof of existence basically relies on the trembling-hand perfect equilibrium concept

[Selten (1975)]: no matter how close to being rational players are, they will never be per-

fectly rational. There will always be some chance that a player will make a mistake. This

idea can be used to approximate a candidate equilibrium behavioral strategy profile by a

nearby completely mixed strategy profile (tremble) and require that any deliberately made

choices, i.e. those given positive probability in the candidate strategy profile be optimal–not

only against the candidate strategy profile, but also against the nearby mixed strategy pro-

file. More formally, any profile of behavioral strategies σT is a perfect equilibrium if there

is a sequence of completely mixed strategy profiles {εk} such that at each history and for

each εk, the behavior of σT at the history is optimal against εk, i.e. is optimal when be-

havior at all other histories is given by εk. It is shown by Kakutani’s fixed point theorem

that in each εk-perturbed game there exists at least one εk-equilibrium strategy profile σkT ,

implying that there exist an assessment (σkT , β(σ
k
T )) where β(σkT ) = µT .9 As εk → 0 the

corresponding strategy σkT has an accumulation point σ∗T , such that (σ∗T , β(σ
∗
T )). For each

agent (i, hT ), σ∗i,T (⋅∣hT ) assigns positive probability only to choices that are best responses

to (σ∗T , β(σ
∗
T )) at hT . By Definition 7 and Proposition 1 each (σ∗T , β(σ

∗
T )) is a sequential

equilibrium assessment.

Corollary 1. Define the order l as the maximum length of an awareness chain in the

partially ordered set (G,⪯). For any l > k ≥ 0, sequential equilibria in the Tl-partial game

can be found by first considering the T0-partial game (the B&D-game), and then extend the

equilibria step-by-step to the Tl-partial game by taking the equilibria of other players in the

Tk-partial games as given.

Proof. See Appendix (A).

This corollary suggests a procedure for finding equilibria in our structure. First, fix the

T -partial game under consideration. Start from the last stage in this game: any historical

event in this partial game for which the feasible choices terminate the game. Then look for

equilibria in each subgame a player is aware of, by: (i) calculating the best responses of other

players at the history of the last stage in the ‘smallest’ partial game (the B&D-game), and

(ii) extend the equilibria step-by-step to histories of the last stage in ‘larger’ partial games

by finding a fixed point given the optimal choices of other players at the copies in ‘smaller’

9Let β1(σT ) = (β1(σT ))i∈N denote the profile of first-order beliefs derived from σT according to condition
(i) in Definition 6. The profile of infinite belief hierarchies µT = β(σT ) is obtained by applying condition
(ii) in the same definition.
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partial games. Now go backward and look at historical events in the second-to-last stage.

The best responses has already been calculated for the historical event (hT , c), because such

events correspond to the last stage of the game. We assume that each active player at the

second-to-last stage makes feasible choices that maximizes his expected payoff given the best

responses in the last stage, because he expects that the other players will also best respond

in the last stage. Again, extend the equlibria in the second-to-last stage step-by-step from

the ‘smallest’ partial game to the T -partial game. We continue to go backwards in this ways

until we reach the initial stage. If a player at some history becomes aware of more (a new

chain of partial games in G), then he re-evaluates the strategic situation and starts over by

backward inducting from the last stage.

5 Application

In the following we will use a sequential prisoners dilemma to highlight the impact and

importance of unawareness in the strategic interactions of players with belief-dependent

preferences. The specific belief-dependent motivation that we concentrate on is a modified

version of Dufwenberg and Kirchsteiger (2004)’s ‘theory of sequential reciprocity’ (5.1). A

full description of the strategic interaction with all possible awareness levels and equilibria is

beyond the scope of this paper. Therefore, we limit the analysis to three different awareness

scenarios and the respective characterization of only one equilibrium (5.2). Results and

intuitions are presented in this section, lengthy mathematical proofs are relegated to the

Appendix (B).

5.1 A sequential prisoners dilemma with reciprocity

Consider the following sequential prisoners dilemma also analyzed by Dufwenberg and Kirch-

steiger (2004):

[Figure 3]

Figure 3 is a multi-player decision tree, where I = {Ann,Bob}, N =

{n0, n1, n2, n3, n4, n5, n6}, augmented with material payoffs associated with each joint strat-

egy profile. Ann can in the initial node n0 choose between Cooperate and Defect and

Bob is passive. While in node n1 and n2 Bob can choose between cooperate and defect,

respectively, and Ann is passive. If the path (Cooperate, cooperate) is chosen both players

get a material payoff of 1, if (Cooperate, defect) is chosen Ann gets −1 and Bob gets 2.
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Figure 3: ‘Sequential Prisoners Dilemma’
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Furthermore, if path (Defect, defect) is chosen both players get a material payoff of 0 and

if (Defect, cooperate) is chosen Ann gets 2 and Bob gets −1.

Following Section 2, we now consider the extensive form with unawareness and commu-

nication associated with the just described game.

For simplicity we assume that only Bob is motivated by belief-dependent reciprocity.10

More specifically, for any T ∈ T Bob’s utility is given by:

uB,T (ζ(s
T
B, s

T ′

A ), µB) = πB(⋅) + Y × κBA(⋅) × λBAB(⋅),

where sTB ∈ SHT

B and sT
′

A ∈ [⋃T↪T ′ S
HT ′

A ]. πB(⋅) is Bob’s expected monetary payoff which

depends on his first-order belief concerning Ann’s strategy (µ1
B,T (s

T ′

A )) and his own strategy

(sTB). That means, at hT Bob’s expected monetary payoff is given by πB(µ1
B,T (sT

′

A ∣hT ) , sTB).

Y > 0 is a constant that captures his sensitivity to reciprocity towards Ann. Bob’s belief

about his kindness towards Ann is κBA(⋅) and Bob’s perception of Ann’s kindness towards

him is λBAB(⋅).

Formally, Bob’s perception of Ann’s kindness towards him at hT is:

λBAB(⋅) = πB (µ1
B,T (sT

′

A ∣hT ) , µ
2
B,T (⋅∣hT )) − π

eA
B (µ1

B,T (sT
′

A ∣hT ) , µ
2
B,T (⋅∣hT )) ,

where µ1
B,T (sT

′

A ∣hT ) and µ2
B,T (⋅∣hT ) respectively are Bob’s (updated) first- and second-order

beliefs conditional on hT in hT . Of course the domain of λBAB(⋅) is hT . However, we assume

Bob only cares about Ann’s strategies allowed for by the history hT in his evaluation of

Ann’s kindness towards him. That implies, in his evaluation of Ann’s kindness towards him,

Bob basically assigns probability 0 to every strategy in [⋃T↪T ′ S
HT ′

A ] /SHT

A . Intuitively, these

beliefs describe what Bob believes Ann would do and believe had she the same awareness

level as him. Given this, πB(⋅) and πeAB (⋅) respectively describe what Bob believes Ann would

intend for him and the average that Ann would be able to give had she the same awareness

level as Bob. The equitable payoff is formally defined as follows:

πeAB (⋅) =
1

2

⎡
⎢
⎢
⎢
⎢
⎣

max{πB (µ1
B,T (sT

′

A ∣hT ) , µ
2
B,T (⋅∣hT )) , s

T ′

A ∈ [ ⋃
T↪T ′

S
HT ′

A ]}

+min{πB (µ1
B,T (sT

′

A ∣hT ) , µ
2
B,T (⋅∣hT )) , s

T ′

A ∈ [ ⋃
T↪T ′

S
HT ′

A ]}

⎤
⎥
⎥
⎥
⎥
⎦

. (2)

10It is assumed that Ann is only interested in her own monetary payoff.
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The first term in the brackets, max{πB(µ1
B,T (s

T ′

A ∣hT ), µ2
B,T (⋅∣hT ))}, describes Bob’s belief

about Ann’s belief about the maximum that she could have given to him. On the other hand,

min{πB(µ1
B,T (s

T ′

A ∣hT ), µ2
B,T (⋅∣hT ))} describes Bob’s belief about Ann’s belief concerning the

minimum she could have given to him. Intuitively Bob does not blame Ann for being unaware

of some paths of play. He just forms a belief about what Ann would and could do were she

of the same awareness level as he is.

In Dufwenberg and Kirchsteiger (2004) the set of joint strategy profiles is commonly

known. However, in our setting with unawareness kindness perceptions take into account

the fact that others might be aware of less. Furthermore, full awareness implies, that the

basis upon which the others’ kindness is evaluated remains unchanged. In contrast, in our

setting the basis upon which the own as well as the kindness of others is judged changes as

players become aware of more feasible paths of play.

Bob’s kindness towards Ann at hT can be described as:

κBA(⋅) = πA (µ1
B,T (sT

′

A ∣hT ) , s
T
B) − π

eB
A (µ1

B,T (sT
′

A ∣hT ) , s
T
B) ,

where sT
′

A ∈ [⋃T↪T ′ S
HT ′

A ] and πeBA (⋅) is defined in an analogous fashion to Equation 2.

Ann’s expected material payoff πA (⋅) describes what Bob believes Ann gets, given his

beliefs concerning her strategy sT
′

A ∈ [⋃T↪T ′ S
HT ′

A ] and his own strategy sTB ∈ SHT

B where SHT

B

is the set of own strategies that Bob is aware of in copies hT . Furthermore, πeBA (⋅) is Bob’s

belief about the average that he can give to Ann.

This concludes the definition of our sequential prisoners dilemma with reciprocity.

5.2 Three Different Awareness Scenarios

As already mentioned, we will concentrate on three different awareness scenarios and the re-

spective characterization of one equilibrium. By considering these three awareness scenarios

we limit our attention to a subset of all possible equilibria. The first scenario represents the

benchmark case without unawareness also analyzed in Dufwenberg and Kirchsteiger (2004).

Scenarios 2 and 3, on the other hand, include asymmetric awareness. For simplicity, both

have the following characteristics:

(i) one player is initially aware of more than the other,

(ii) the player that is initially aware of more is certain of the other player’s awareness and

about the impact of his choices on the other player’s awareness,
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(iii) the player that is initially aware of less is certain that the other player is of the same

awareness level as himself,

These simplifying assumptions imply that we can check for equilibria in our sequential pris-

oners dilemma in the normal way, i.e. by looking at the second mover following all possible

choices of the first mover. Analyze his optimal behavior given his awareness. Go one step

backward and analyze the optimal behavior of the first mover given the optimal choices of

the second mover.

Scenario 1: As a first awareness scenario consider the benchmark case in which Ann and

Bob are aware of everything. That is, there is no unawareness. Obviously, in such an

environment messages that contain feasible paths of play are irrelevant because everyone

is aware of all feasible paths of play. Given this we can abstract from messages in our

benchmark case and concentrate on the actions of Ann and Bob. From Dufwenberg and

Kirchsteiger (2004) we know that:

Result 1. If Ann chooses Defect, Bob also chooses defect in equilibrium independent of his

sensitivity to reciprocity Y . Furthermore, if Ann chooses Cooperate, Bob chooses cooperate

in equilibrium if his sensitivity to reciprocity is Y ≥ 1.

Proof. See Dufwenberg and Kirchsteiger (2004), p. 293.

Given Bob’s behavior following Ann’s action, it also holds in our benchmark case that:

Result 2. If Bob’s sensitivity to reciprocity is Y ≥ 1, Ann chooses Cooperate in equilibrium.

Proof. It is easy to see that Ann chooses Cooperate given Bob’s equilibrium behavior, as

this gives her 1 in monetary payoffs, rather than 0 which she would get by choosing Defect.

∎

This shows that without unawareness and a reciprocal Bob (Y ≥ 1), Ann can trigger a

cooperative reaction from Bob by choosing to cooperate. Note that this very intuitive result

stands in contrast to the result we would obtain with traditional assumptions about human

behavior, i.e. egoistic preferences. If both players are only interested in their own monetary

payoff, then Ann and Bob defecting would be part of the only pure strategy sequential

equilibrium.

Scenario 2: As a second simple awareness scenario consider now the following:

� Bob is aware of everything, i.e. {HT ′}T15↪T ′ with T15 = {n0, n1, n2, n3, n4, n5, n6}.11

11Note that subtree in our application are indexed in line with the subtree in Figure 2.
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� Ann is initially only aware of {HT ′}T3↪T ′ with T3 = {n0, n2, n5, n6}.

� Bob is certain that Ann is initially only aware of {HT ′}T3↪T ′ .

� Wherever Ann finds herself, she will be certain that Bob has the same awareness level

her.

Different to the previous scenario without unawareness, in this scenario Ann is initially

unaware of her action Cooperate and Bob’s actions cooperate and defect following it. As

before, we start by looking at the optimal behavior of Bob. That is, we start to look at

all possible partial games Bob can find himself in after Ann’s choice. We fix his optimal

behavior in these worlds and then go one step back to analyze Ann’s optimal choice given

the optimal choice of Bob.

Result 3. If Ann chooses Defect, then Bob chooses cooperate and sends any message if his

sensitivity to reciprocity is Y ≥ 1.

Proof. See Appendix (B).

The reason why Bob nevertheless cooperates even after the seemingly unkind action

Defect of Ann is the following: Bob is aware of the fact that Ann is not aware of her action

Cooperate and his actions cooperate and defect following it. However, Bob evaluates Ann’s

kindness on the basis of what he is aware of. Bob holds the equilibrium belief that Ann would

have cooperated had she been aware of what he is aware of. In equilibrium Bob believes that

Ann would have played Cooperate and, hence, would have acted kind, had she been aware

of what he is aware of. As he is the last to choose in this situation, his choice is independent

of the specific message that he sends, i.e. any of his messages is part of this equilibrium.

Concerning the behavior of Ann it is easy to see that her equilibrium behavior is:

Result 4. In any sequential equilibria Ann chooses Defect and sends any message.

Obviously Ann chooses Defect in Scenario 2 because this is the only feasible action that

she is initially aware of. Furthermore, as she is certain that Bob is aware of what she is

aware of messages do not play any strategic role for her, and, therefore, any message is part

of this sequential equilibrium. This completes the second awareness scenario.

Different to the setting without unawareness by Dufwenberg and Kirchsteiger (2004), in

our setting with unawareness Bob still cooperates even after the seemingly unkind action

Defect. Bob simply takes into account that Ann was unaware of her action Cooperate and

his subsequent actions defect and cooperate and, hence, evaluates her kindness on what she
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would have done had she been aware of what he is aware of. Importantly, (Defect, cooperate)

is neither part of an equilibrium given classical assumptions about human behavior, nor is it

part of an equilibrium given reciprocal preferences and full awareness. It is the asymmetric

awareness of Bob and Ann that produces this prediction. This demonstrates how allowing

for asymmetric awareness influences our equilibrium predictions.

This scenario practically demonstrates how one can solve for sequential equilibria in our

class of psychological games with unawareness and communication. One first has to look

at the optimal behavior of all players active in the last non-terminal histories in all their

partial games and then go backward history by history repeating the same procedure until

the initial history.

Scenario 3: To furthermore see the importance of messages assume now the following

awareness scenario:

� Ann is aware of everything, i.e. {HT ′}T15↪T ′ with T15 = {n0, n1, n2, n3, n4, n5, n6}.

� Bob is initially only aware of {HT ′}T4↪T ′ with T4 = {n0, n1, n3, n4}

� Ann is certain that Bob is initially only aware of {HT ′}T4↪T ′ .

� Ann is certain that, wherever Bob finds himself, he will believe that Ann has the same

awareness level as him.

� Ann is certain that Bob will become aware of everything, i.e. {HT ′}T15↪T ′ , if she

chooses Defect.

We start again by analyzing this situation by looking at Bob’s choices in all the partial

games that he can be in following all possible choices of Ann.

Result 5. If Ann chooses Defect and any message, Bob chooses defect and sends any

message in all sequential equilibria.

Proof. See Appendix (B).

To see this, remember that if Ann chooses Defect, Bob becomes aware of everything

independent of the message that Ann sends in addition to her action. This means, in any

history following Ann’s action Defect Bob re-evaluates Ann’s kindness towards him on the

basis of {HT ′}T15↪T ′ . Doing this, Bob perceives Ann’s choice as unkind independent of the

message that she sends. Therefore, Bob chooses defect out of reciprocity as well as own

monetary considerations. Note, our result 5 is analog to Dufwenberg and Kirchsteiger (2004,

p. 282)’s Observation 1 in the context of their sequential prisoners dilemma.
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Next, consider Bob’s behavior following Ann’s action Cooperate:

Result 6. If Ann chooses Cooperate and sends

(i) a message that does not contain any new information, then Bob chooses defect in

equilibrium and sends any message independent of his sensitivity to reciprocity.

(ii) a message which contains T3 = {n0, n2, n5, n6} , then Bob chooses cooperate in equilib-

rium and sends any message, if his sensitivity to reciprocity is Y ≥ 1.

(iii) a message which contains only T2 = {n0, n2, n6}, then Bob chooses cooperate in equi-

librium and sends any message, if his sensitivity to reciprocity is Y ≥ 1.

(iv) a message which contains only T1 = {n0, n2, n5}, then Bob chooses cooperate in equi-

librium and sends any message, if his sensitivity to reciprocity is Y ≥ 1
2 .

Proof. See Appendix (B).

Result 6 gives a first impression of how messages about feasible paths of play influence

the strategic interaction of reciprocal players. Different to Dufwenberg and Kirchsteiger

(2004, p. 282) in the context of their sequential prisoners dilemma with full awareness, our

result 6 depends on Ann’s message to Bob. By sending a message Ann can influence the

basis on which Bob evaluates her kindness. That is, she can influence the partial game

that Bob will find himself in. If he is unaware of Ann’s action Defect and all of his own

subsequent actions, Bob evaluates the kindness of Ann following her choice Cooperate on

the basis of {HT ′}T4↪T ′ with T4 = {n0, n1, n3, n4}. This implies that he perceives a kindness

λBAB = 0. This in turn means that Bob only takes into account his own monetary payoff when

optimizing his choice. Only when Ann sends a message that contains some new information,

i.e. a subtree consistent with her action Defect, Bob’s awareness and, hence, the partial

game he plays as well as the basis upon which he evaluates Ann’s kindness changes.

By sending a message which contains T1 = {n0, n2, n5} as new information, Bob becomes

aware of {HT ′}T12↪T ′ with T12 = {n0, n1, n2, n3, n4, n5} (case (iv) of result 6). Hence, Bob finds

himself in a new partial game and has a new basis upon which he evaluates the kindness

of Ann. Now Bob is aware of the fact that Ann could have chosen Defect which would

have implied (according to his awareness) a material payoff of −1 for him. Given this, he

perceives Ann’s choice Cooperate as kind because independent of his choice following Ann’s

choice Cooperate, his material payoff is higher than −1. He reciprocates this kindness in

equilibrium if his sensitivity to reciprocity is Y ≥ 1
2 . Following the same kind of reasoning in
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cases (ii) and (iii) implies that Bob reciprocates by choosing cooperate, if his sensitivity to

reciprocity is Y ≥ 1.

As can easily be seen, if Ann had no possibility to send a message to Bob, i.e. to make Bob

aware of what else she could have done, Ann would be unable to induce Bob to cooperate.

Bob would simply remain aware of what he was aware of before and continue to evaluate

Ann’s kindness on this basis.

This brings us to the equilibrium behavior of Ann

Result 7. Ann’s equilibrium behavior depends on Bob’s sensitivity to reciprocity Y :

(i) If Bob’s sensitivity to reciprocity is Y < 1
2 , Ann chooses Defect in equilibrium and

sends any message.

(ii) If Bob’s sensitivity to reciprocity is 1
2 ≤ Y ≤ 1, Ann chooses Cooperate in equilibrium

and sends a message which contains only T1 = {n0, n2, n5}.

(iii) If Bob’s sensitivity to reciprocity is Y ≥ 1, Ann chooses Cooperate in equilibrium and

sends a message which contains at least T1 = {n0, n2, n5}.

Proof. See Appendix (B).

Intuitively, if Bob’s sensitivity to reciprocity is low, i.e. Y < 1
2 , Ann knows that whatever

she makes Bob aware of, he will always choose defect. Given this, she prefers to choose

Defect to get 0 in monetary payoffs, rather than Cooperate which would give her −1. Now,

if Bob has a sensitivity to reciprocity Y ≥ 1
2 , Ann can induce Bob to cooperate by choosing

Cooperate and making him aware of her action Defect and Bob’s subsequent possibility

cooperate (case (ii) of result 7). Making Bob aware changes the basis on which he evaluates

the kindness of Ann towards him. Aware of Ann’s action Defect and Bob’s action cooperate,

Bob realizes that Ann’s action Cooperate was actually kind. This is something he would not

have realized had he remained unaware of Defect and his subsequent action cooperate. By

choosing action Cooperate and communicating either T3 = {n0, n2, n5, n6} or T2 = {n0, n2, n6}

Ann also induces a positive perception of her action, but less than in case (ii). Hence, Ann

only chooses Cooperate and one of these messages in equilibrium if Bob’s sensitivity is higher

Y ≥ 1.

The bottom line: awareness messages are important in the interaction of players with

reciprocal preferences as they influence their perceptions about their own as well as others’

kindness.
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These three simple awareness scenarios demonstrate how unawareness influences the

strategic interaction of players with belief-dependent preferences. Furthermore, they show

the important role of awareness messages through which players can influence other players’

awareness. By influencing awareness levels players influence equilibrium behavior. To put

it differently, taking into account asymmetric awareness levels of players when analyzing

strategic interactions leads to new and intuitive equilibrium predictions.

6 Extensions and discussion

In this section we first consider some relevant extensions of our model, namely guilt aversion

(6.1), moves by nature (6.2), initial asymmetric information (6.3), and strategic information

transmission (6.4). We then go on to discuss how to interpret hierarchies of beliefs (6.5),

and finally consider the relevance of non-equilibrium solution concepts in out setting (6.6).

6.1 Guilt aversion and unawareness

In Section 5 we focused on reciprocity, however our framework is general implying that it

can be used to analyze how unawareness affects other forms of belief-dependent motivation

such as guilt and regret. In the following we will consider a simple two player example

highlighting how unawareness might influence guilt aversion.

We will say that Ann ‘lets down’ Bob if his actual material payoff from Ann’s

strategy, denoted πB(sTA), is lower than the payoff Ann believes he expects to get,

πB(µ2
A(⋅∣hT ), µ

1
A(s

T ′

B ∣hT )). This can be measured by the following expression:

max{0, (πB(µ
2
A(⋅∣hT ), µ

1
A(s

T ′

B ∣hT )) − πB(s
T
A))}.

Taking Ann’s belief concerning Bob’s disappointment into account, we obtain the follow-

ing utility function exhibiting guilt aversion:

uA(ζ(s
T
A, s

T ′

B ), µA) = πA(zT ) − Y ×max{0, (πB(µ
2
A(⋅∣hT ), µ

1
A(s

T ′

B ∣hT )) − πB(s
T
A))},

where Y ≥ 0 is some psychological sensitivity parameter of Ann.

Now consider the example considered in the introduction, in which Ann’s exam was

postponed and she could have gone to Bob’s party. Remember, Ann would rather not go

to the party because she is tired. Now imagine that Ann correctly believes that Bob is

unaware of the postponement: Ann will in equilibrium be certain that Bob will be certain
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that she cannot come, and Ann will therefore feel no guilt if she stays away. In a game

with full awareness this would however not be a unique equilibrium. Ann could also be

certain that Bob expects her to come because her exam was canceled. If Ann’s sensitivity

to disappointing Bob in this situation is high enough, she would come to his party.

The two forms of belief-dependent motivation we have considered up to now (reciprocity

and guilt) have relied on first- and second-order beliefs. However, our model is not restricted

to only looking at these forms of beliefs. An example involving dependence on third-order

beliefs is Battigalli and Dufwenberg (2007b)’s ‘guilt from blame,’ which assumes that a player

cares about the other player’s inferences regarding the extend to which he is willing to let

him down. Intuitively, Ann experiences guilt to the extent that Bob’s beliefs indicate that

Ann intended to disappoint him.

6.2 Moves by nature

Moves by nature is an important extension for applications. For example, Sebald (2010)

shows that the strategic interactions of reciprocal players may be influenced by the possibility

that material payoffs are affected by moves of nature rather than players. One could easily

imagine that such considerations might be amplified (or mitigated) by unawareness.

Let I0 = {0,1, . . . , n} where index 0 denotes nature, and σ0,T ∶= σ0,T (⋅∣hT ) ∈

∏hT ∈HT /ZT
∆0(⋃T↪T ′ C0,hT ′) be the awareness restricted strictly positive objective plan of

moves by nature. Note that given some awareness level, a player would never think that na-

ture would send messages from which he could learn. We do therefore not consider messages

send by nature.

An assessment (σT , µT ) = (σi,T , µi,T )i∈I0 is consistent if there is a sequence of strictly

positive behavioral strategy profiles σk → σ such that for all i ∈ I, sT
′

−i ∈ [⋃T↪T ′ S
HT ′

−i ],

hT ∈HT ,

µ1
i,T (s

T ′

−i ∣hT ) = lim
k→∞

Prσ0,T ∣hT
(sT

′

0 )∏j≠0,i Prσk
j,T

(sT
′

j ∣hT )

∑
s̃T

′

−i ∈[⋃T↪T ′ S
HT ′
−i ]

Prσ0,T (s̃
T ′
0 ∣hT )∏j≠0,i Prσk

j,T
(s̃T

′

j ∣hT )
.

Kreps and Wilson (1982, Section 5) have a similar condition that refers to cps’ of histories

(or nodes), and further more for all l > 1, µli,T assigns probability 1 to µl−1
−i,T . (σT , µT ) is a

sequential equilibrium if it is consistent and for all i ∈ I, hT ∈HT /ZT ,
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∀j ≠ i, supp marg
S
HT
i

µi,T (⋅∣hT ) ⊆ arg max
sTi ∈S

HT
i (hT )

EsTi ,µi,T ′ [ui,T ∣hT ],

where EsTi ,µi,T [ui,T ∣hT ] is the obvious modification of Equation 1. It can easily be proven

that that the existence theorem also holds when we add nature as a player (if the payoff

functions are continuous).

6.3 Initial asymmetric information

One might argue that it is unrealistic to assume that players know each psychological propen-

sity, unless one models interaction within a family or amongst friends. This observation

motivates the following extension.

If we want to model asymmetric information about initial moves by nature, we should

assume that at the initial history h0
T the only active player is 0 (nature), C0,h0T

= Θ, where

Θ ⊆ Θ1 × ⋯ × Θn is a set of exogenous payoff relevant parameters. Each player i observes

only coordinate θi of θ = (θ1, . . . , θn); θ may affect payoffs, or choice sets, or the probability

of future moves by nature. Note that by defining asymmetric information in this way one

introduces fictitious ex ante beliefs.

A full blown generalization of information in our model would also include imperfectly

observable choices. However, such an extension is beyond the scope of this paper.

6.4 Strategic information transmission

Strategic information transmission has been studied in economic theory for over a quarter

of a century. Traditionally this has been done via signaling, whereby a player can influence

the beliefs of other players by his actions (e.g. choice of education). To highlight the

difference between influencing players’ perceptions through signals and awareness messages,

we will focus solely on the updating of players’ beliefs. The discussion is therefore relevant

for, among others, costly market signaling [Spence (1973), Rothschild and Stiglitz (1976),

Wilson (1977)], cheap talk [Crawford and Sobel (1982), Farrell (1993)], and observational

learning [Banerjee (1992), Bikhchandani et al. (1992), Smith and Sørensen (2000)].

The canonical signaling game for our class of unawareness games is basically a Bayesian

extensive form with observable actions. We will say that nature selects types independently

for the players and refer to player i after he receives information θi as type θi and θ = (θ1×⋯×

θn) as the state of nature. We assume that there exists a common prior p ∈ ∆(Θ) with the
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properties that for all i, θi and θ−i, p({θi}×Θ−i) > 0 (type θi has positive ‘prior’ probability)

and p(θ−i∣θi) = p((θi, θ−i)∣{θi} ×Θ−i) (i.e., p(θ−i∣θi) is the conditional probability of θ−i given

θi). Since types are independent we have that the product measures p = (p1 × ⋯ × pn) is a

common prior, where pi ∈ ∆(Θi) is the marginal probability on Θ1 × ⋯Θn for some i ∈ I;

equivalently, p(θ−i∣θi) = ∏j≠i pj(θj) for all i and θ. We can now associate a signaling game

with the set of histories HT × Θ. Each information set of each player j takes the form

I(hT , θj) = {(hT , (θj, θ′−j)) ∶ θ
′
−j ∈ Θ−j} for θj ∈ Θj. Player j’s behavioral strategies is denoted

by σj,T ′(⋅∣(hT , θj))) ∈ [∆(⋃T↪T ′ Aj,hT ′)]
Θ. We interpret σj,T as a common array of common

conditional first-order beliefs µ1
−j,T held by j’s opponents. As is standard in signaling we

assume that beliefs are determined by actions, which implies that: (i) if player j does not

have to move then the actions taken do not affect the other players’ belief about player j’s

type and (ii) if player j is one of the players who takes an action then the other players’

beliefs about j’s type depend only on the action taken by j, not on the other players’ actions.

(This is consistent with behavioral strategies being independent.) If pj(θj ∣h0
T ) = pj(θj) and

aj is in the support of µ1
−j,T (⋅∣(hT , θj)) then for any θj ∈ Θj we have

pj(θj ∣hT , a) =
µ1
−j,T (aj ∣(hT , θj)) ⋅ pj(θj ∣hT )

∑θ′j∈Θj
µ1
−j,T (aj ∣(hT , θ

′
j) ⋅ pj(θ

′
j ∣hT )

.

Upon observing the signal from player j the other players update their beliefs about player

j’s exogenous type using Bayes’ rule until his behavior contradicts the other players’ common

belief µ1
−j,T , at which point they form a new conjecture about player i’s type that is the basis

for future Bayesian updating until there is another conflict with µ1
−j,T . Such influencing of

others’ beliefs through signaling does not exists when there is perfect information (i.e., Θ is

a singleton).

Taking actions or sending messages that other players are unaware of can in our class

of games (with complete information) also be interpreted as strategic information transmis-

sion. Since each of these actions/messages only reveals information about the structure of

the game, and not about the probability of other players being of certain exogenous types,

the information transmission we allow for is different from that known from signaling. Re-

member, in equilibrium player i confined to some subform forms beliefs about some other

player j’s equilibrium beliefs at each subform he might be aware of. By strategically revealing

paths of play, player i can exclude the subforms player j can be confined to which does not

allow for the revealed paths. This means that our information revealing actions/messages

are irrelevant in settings with full awareness. However, in games with asymmetric awareness

such information transmission becomes an important part of the strategic interaction.
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6.5 Hierarchy representation of beliefs

The hierarchy representation of beliefs plays a prominent role in belief-dependent preferences.

The interpretation of such a representation has been discussed a great deal in the literature,

and it is therefore important to clarify how one should interpret such hierarchies in our

framework. By using a hierarchy representation, we implicitly assume that the game is

analyzed at a ‘point in time’ subsequent to the player knowing his beliefs. That is, there

exist no beliefs at a ‘prior’ point in time, nor is there any information about what the players

would have believed had their information been ‘less’ or ‘more’ than what it in fact is. The

hierarchy of beliefs therefore offers no meaningful argument for identifying beliefs at a prior

point in time. When considering unawareness any interpretation of beliefs at a prior point

in time becomes nonsensical: one would have to imagine that each player had been aware

of all relevant paths of play at some prior point and then become unaware of some of the

paths ex-ante, while nevertheless having received more information about the paths they are

aware of. Insisting that priors be common does in this setting not reflect where differences

in beliefs may come from, but rather constitutes a complex and unintuitive restriction on

each hierarchy of beliefs. Even if we were to impose common priors this would not render a

prior point in time relevant, nor would it render the prior distribution meaningful.12

6.6 Non-equilibrium solution concepts

Our solution concept ideally involves interpreting hierarchies beliefs as a rest-point of a trans-

parent reasoning process, one could argue that it is difficult to carry over such interpretations

to a setting in which every increase of awareness is by definition a shock or surprise. Once the

player’s view of the game itself is challenged in the course of play, some may find it difficult

to justify the idea that a new set of equilibrium hierarchy beliefs for the continuation of the

game are readily available. One could, for example, consider some version of extensive-form

rationalizability (Battigalli, 1997) since it embodies forward inductive reasoning. If some-

body makes a player aware of some relevant paths of play, it seems like a strong assumption

to dismiss the increased level of awareness as an unintended consequence of others’ behavior.

Rather, the player should try to infer from others’ choices, re-interpret others’ past behavior,

and try to infer from it their future moves. In psychological games payoffs are affected by

hierarchical beliefs, so rationalizability has to be defined as a property of the whole structure

the player is aware of rather than of strategies, and one therefore has to consider players’

belief revision processes (Battigalli and Siniscalchi, 2002).

12The plausibility and justification of the ex-ante versus the interim view of beliefs has been extensively
discussed in the literature, see Harsanyi (1967–68), Dekel and Gul (1997), Gul (1998), and Aumann (1998).
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In order to facilitate comparison, and highlight common features, with the existing lit-

erature on psychological games with sequential moves, we have chosen to adopt Kreps and

Wilson (1982)’s sequential equilibrium concept which has become a benchmark for the anal-

ysis of such games (see for example, Dufwenberg and Kirchsteiger, 2004 and Battigalli and

Dufwenberg, 2007b).

7 Conclusion

In our analysis we have shown that unawareness has a profound impact on the strategic

interaction of players with belief-dependent preferences. That means, taking account of

asymmetric awareness levels leads to intuitive and distinct equilibrium predictions. More-

over, we have demonstrated that communication is an important integral part of the strate-

gic environment when players have asymmetric awareness–a type of communication that is

meaningless in environments without unawareness. In our analysis we have first formalized

a general framework with unawareness, communication and belief-dependent psychological

preferences. Second, we have presented a solution concept and shown that all dynamic psy-

chological games with continuous utility functions have at least one sequential equilibrium.

Third, we have analyzed a specific application to demonstrate the impact of unawareness and

communication in a specific context with reciprocal agents. The application has highlighted

the fact that any analysis of strategic interactions with asymmetric awareness levels has to

start with a description of what players are aware of and what they become aware of when

play unravels. Finally, the application has also practically demonstrated how sequential

psychological equilibria can be found in specific strategic settings.

Summarizing, unawareness has a profound impact on the strategic interaction of play-

ers with belief-dependent psychological preferences. Thus, it should not be neglected and

assumed away, but rather taken into account as an integral part of strategic environments.
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A Appendix

A.1 Proof of Proposition 1

The Proof follows naturally from the following Lemma, which itself is essentially an adap-

tation of the dynamic programming approach due to Battigalli and Dufwenberg (2007a,

Section 3). We want to relate the problem max
sTi ∈S

HT
i (hT )EsTi ,µi,T [ui,T ∣hT ] to a dynamic pro-

gramming problem on the decision tree induced by µi,T , that is the decision tree player i

thinks he is in. Important for the following analysis is our assumption that player i knows

his own belief and assigns probability one the the strategy he intends to carryout. However,

first we develop some notation needed for the Lemma.

Depth of the decision tree:

� For each k with 0 ≤ k ≤ l(hT ) (recall that l(hT ) denotes the length of history hT ). Let

cki be the choice made by some i ∈ I in hT at the predecessor of hT of length k. Thus,

by definition hT = (c0, c1, . . . , cl(hT )−1) where ck = (ck1, . . . , c
k
∣I ∣).

� Let d(hT ) = maxhT ≤zT [l(zT ) − l(hT )] denote the depth of the decision tree with root

hT .

Strategies :

� (sTi ∣hT ) denotes the strategy that takes all the choices of player i in history hT and

behaves as sTi otherwise:

(sTi ∣hT )h̃T =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sT
i,h̃T

if h̃T ≮ hT ,

c
l(h̃T )
i if h̃T < hT .

Intuitively, (sTi ∣hT ) is a strategy that takes on the observed choices made prior to the

history hT , and then agrees with strategy sTi at hT and in what follows.

� Now change (sTi ∣hT ) at hT so that it is the strategy obtained from (sTi ∣hT ) by replacing

sT
i,h̃T

with ci ∈ Ci,hT . The resulting strategy is denoted (sTi ∣hT , ci). That is,

(sTi ∣hT , ci)h̃T =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(sTi ∣hT )h̃T if h̃T ≠ hT ,

ci if h̃T = hT .

In words, (sTi ∣hT , ci) is the strategy consistent with hT that chooses ci at hT and behaves

as (sTi ∣hT ) in all other histories h̃T . That is, (sTi ∣hT ) takes an ex ante (before player i
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makes his choice at hT ) point of view of the strategy sTi ∈ SHT
i (hT ) which is consistent

with hT , while (sTi ∣hT , ci) takes on an ex post (after player i makes his choice at hT )

view of the strategy sTi ∈ SHT
i (hT , ci) which is consistent with hT and the choice ci he

is about to make.

Value functions on the decision tree:

� Define the two value functions Vµi,T ∶HT → R and V µi,T ∶ (HT /ZT )×Ci,hT → R induced

by µi,T .

� For terminal copies player i is aware of zT ∈ ZT , let

Vµi,T = ∑
T↪T ′

µ1
i,T (S

HT ′

−i (zT ′)∣zT )ui,T (zT , µi,T ).

� Assuming that the value function Vµi,T (hT , c) has been defined for all immediate suc-

cessors (hT , c) of copies player i is aware of, let

V µi,T (hT , ci) = ∑
T↪T ′

∑
c−i∈C−i,hT ′

µ1
i,T (S

HT ′

−i (hT ′ , c−i)∣hT )Vµi,T (hT , c). (i)

For each ci ∈ Ci,hT , Vµi,T (hT ) is defined as

Vµi,T (hT ) = max
ci∈Ci,hT

V µi,T (hT , ci).

Next we state the dynamic programming problem:

Lemma 3 (Dynamic Programming). Suppose that for all hT ∈HT /ZT ,

sT,∗i,hT ∈ arg max
ci∈Ci,hT

V µi,T (hT , ci).

Then for all hT ∈HT /ZT ,

E(sT,∗
i ∣hT ),µi,T [ui,T ∣hT ] = Vµi,T (hT ) = max

sTi ∈S
HT
i (hT )

EsTi ,µi,T [ui,T ∣hT ]. (DP)

Proof of Lemma. The proof is by induction on d(hT ).

Basic step: We start from the last stage of any T -partial game: hT is such that all

feasible choices following copies hT terminate the game, i.e. d(hT ) = 1. Clearly (DP) holds

for all hT for which d(hT ) = 1.
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Inductive step: We now fix some stage k ≥ 1, which is not the last stage, and look

at the stage just preceding it. Suppose (DP) holds for all hT such that 1 ≤ d(hT ) ≤ k. Let

d(hT ) = k + 1.

By the law of iterated expectations for all ci ∈ Ci,hT :

E(sT,∗
i ∣hT ,ci),µi,T [ui,T ∣hT ] = ∑

T↪T ′
∑

c−i∈C−i,hT ′
µ1
i,T (S

HT ′

−i (hT ′ , c−i)∣hT )E(sT,∗
i ∣hT ,ci),µi,T [ui,T ∣hT , c]. (ii)

By the inductive hypothesis, for all c ∈ ∏i∈I Ci,hT :

E(sT,∗
i ∣hT ,ci),µi,T [ui,T ∣hT , c] = Vµi,T (hT , c) = max

sTi ∈S
HT
i (hT ,c)

EsTi ,µi,T [ui,T ∣hT , c]. (iii)

If we plug (iii) into (ii) and compare with (i), we get:

E(sT,∗
i ∣hT ,ci),µi,T [ui,T ∣hT ] = V µi,T (hT , ci).

Therefore,

E(sT,∗
i ∣hT ),µi,T [ui,T ∣hT ] =Vµi,T (hT ) = max

sTi ∈S
HT
i (hT )

EsTi ,µi,T [ui,T ∣hT ]

if and only if

sT,∗i,hT ∈arg max
ci∈Ci,hT

E(sT,∗
i ∣hT ,ci),µi,T [ui,T ∣hT ]

if and only if

sT,∗i,hT ∈arg max
ci∈Ci,hT

V µi,T (hT , ci).

The latter condition holds by assumption and the inductive step is hereby proven. ∎

Proof of Proposition. Let (σT , µT ) be consistent. Then for each zT ∈ ZT ,

Vµi,T (zT ) = EσT ,µT [ui,T ∣zT ],

and for all hT with d(hT ) = 1 we have

Vµi,T (hT ) = max
ci∈Ci,hT

EσT ,µT [ui,T ∣hT , ci]. (BI)
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Then a straightforward backwards induction argument shows (BI) holds for all hT ∈

HT /ZT . Therefore the Lemma implies that the Proposition holds.

∎

A.2 Proof of Theorem 1

First let β1(σT ) = (β1(σT ))i∈I denote the profile of first-order beliefs derived from σT accord-

ing to condition (i) in Definition 6. The profile of infinite belief hierarchies µT = β(σT ) is

obtained by condition (ii) in Definition 6. By construction, the assessment (σT , β(σT )) is

consistent. It follows that β(⋅) is a continuous function.

Suppose that each player i is subject to a slight imperfection of rationality (tremble) of

the following kind. At every history hT there is a small positive probability εi,hT for the

breakdown of rationality. Whenever rationality breaks down, every choice ci will be selected

with some positive probability σi,T (ci∣hT ) = εi,hT (ci). Formally, fix a strictly positive vector

ε = (εi,hT (ci)ci∈Ci,hT
)i∈I,hT ∈HT /ZT

such that for all hT ∈ HT /ZT , ∑ci∈Ci,hT
εi,hT (ci) < 1. Now

define an (agent-form, psychological) ε-constrained equilibrium in a T -partial game:

Definition 8 (ε-constrained equilibrium). An ε-constrained equilibrium in a T -partial game

GT ∈G is a set of behavioral strategies profiles σT such that for all i ∈ T , hT ∈HT , ci ∈ Ci,hT :

(i) σi,T (ci∣hT ) ≥ εi,hT (ci),

(ii) ci ∉ arg maxci∈Ci,hT
EσT ,β(σT )[ui,T ∣hT , ci] ⇒ σi,T (ci∣hT ) = εi,hT (ci).

Let Σε = ∏i∈I Σε,i be the set of behavioral strategy profiles satisfying condition (i) in

Definition 8, and let BRε ∶ Σε → Σε be the ε-best response correspondence that assigns to

each profile σT the subset of profiles in Σε satisfying condition (ii) of the definition,

BRε,i(σT ) = {σi,T ∈ Σε,i ∶ci ∉ arg max
c̃i∈Ci,hT

EσT ,β(σT )[ui,T ′ ∣hT , c̃i]

⇒ σi,T (ci∣hT ) = εi,hT (ci),∀hT ∈HT ,∀ci ∈ Ci,hT },

BRε(σT ) =∏
i∈I

BRε,i(σT ).

BRε,i(σT ) is a nonempty convex subset of Euclidean space ∆(Ci,hT ). Since

EσT ,µT [ui,T ∣hT , ci] is continuous in (σT , µT ) and µT = β(σT ) is a continuous function,

EσT ,β(σT )[ui,T ∣hT , ci] is continuous in σT .
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We now have enough structure to apply Kakutani’s fixed point theorem to the best re-

sponse correspondence. BRε(σT ) is upper hemicontinuous because EσT ,β(σT )[ui,T ∣hT , ci] is

continuous for each (finite) hT ∈HT and ci ∈ Ci,hT , nonempty since each EσT ,β(σT )[ui,T ∣hT , ci]

is continuous and Σε is compact, and convex valued because each EσT ,β(σT )[ui,T ∣hT , ci] is

quasi-concave on Σε. Therefore BRε(σT ) has a fixed point, which is an ε-constrained equi-

librium.

Fix a sequence εk → 0 and a corresponding sequence of εk-constraint equilibrium strategies

σkT . By compactness, the sequence (σkT ) has a limit point σ∗T . A trembling-hand perfect

equilibrium is any limit of ε-constraint equilibria as εk → 0. We will now prove that the

trembling-hand perfect equilibrium (σ∗T , β(σ
∗
T )) is a sequential equilibrium.

Assessment (σ∗T , β(σ
∗
T )) is continuous: to see this note that, by continuity, β(σ∗T ) is a

limit point of β(σkT ), and that the set of consistent assessment is closed. By continuity of

EσT ,β(σT )[ui,T ∣hT , ci] in σT (and fitness of Ci,hT ), for k sufficiently large

arg max
ci∈Ci,hT

Eσ∗T ,β(σ∗T )[ui,T ∣hT , ci] = arg max
ci∈Ci,hT

Eσk
T ,β(σk

T )[ui,T ∣hT , ci].

By Definition 7 and Proposition 1 each (σ∗T , β(σ
∗
T )) is a sequential equilibrium assessment.

∎

A.3 Proof of Corollary 1

Define the order l as the maximum length of a chain in the set G of T -partial games. We

can now derive the Corollary by induction, staring with the observation that any maximal

chain in G must have, as its minimal element under ⪯, a game with common knowledge of

the structure.

For the case l = 1, the T1-partial game corresponds to a standard dynamic psychological

game [Battigalli and Dufwenberg (2009)] and therefore the standard computation of sequen-

tial equilibria apply. For any l > k ≥ 0, the Tl-partial game is such that players thinking that

they are in Tk-partial (due to unawareness) play their sequential equilibria in the Tk-partial

game.

The recursive nature of the chain in G ensures that we can solve for sequential equilibria

by first considering the T0-partial game (with common knowledge of the game), and then

extend the equilibria step-by-step to the Tl-partial game by taking the equilibria of other

players in Tk-partial games as given. ∎
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B Appendix

B.1 Proof of Result 3

Remember in Scenario 2 Bob is aware of everything. Hence, if Ann chooses Defect, Bob

evaluates Ann’s kindness on the basis of {HT ′}T15↪T ′ with T15 = {n0, n1, n2, n3, n4, n5, n6} in

the history that he finds himself in. In Result 1 we have shown that full awareness would

imply that Bob chooses defect out of monetary and reciprocity reasons. Although Bob is

aware of everything and observes Ann’s choice Defect, he knows that Ann is unaware of her

action Cooperate and his subsequent actions. Bob, hence, forms an equilibrium belief about

what Ann would have done had she been of the same awareness level as he is. From Scenario

1 we know that the only sequential equilibrium given full awareness and Y ≥ 1 involves Ann

playing Cooperate and Bob playing cooperate. This means, Bob holds the equilibrium belief

given his awareness level that (Cooperate, (cooperate, defect)) would have been the actions

in the joint equilibrium strategy, if Ann had been of the same awareness level as he is. Given

this, Bob’s evaluation of Ann’s kindness even following Ann’s choice Defect is:

λBAB = 1 −
1

2
[1 + 0] = 0.5.

λBAB = 0.5 is Bob’s perception about Ann’s kindness after Ann’s action Cooperate in the

equilibrium they would have played had both been aware of everything. As Bob does not

hold her responsible for being unaware, this is also his perception concerning Ann’s kindness

following her choice Defect and T15 = {n0, n2, n5, n6}. In other words, this is Bob’s equilib-

rium belief about Ann’s kindness given T = {n0, n2, n5, n6} and following her choice of action

Defect. On the other hand, the kindness that Bob can show to Ann is given by

κBA = 2 −
1

2
(2 + 0) = 1

by choosing cooperate and

κ21 = 0 −
1

2
(2 + 0) = −1

by choosing defect. Bringing things together, Bob chooses cooperate if the utility from

choosing cooperate, i.e. −1 + Y ⋅ (0.5) ⋅ (1), is higher than the utility from choosing defect,

i.e. 0 + Y ⋅ (0.5) ⋅ (−1). This is the case when Y ≥ 1. In other words, Bob chooses to accept

−1 in order not to be unkind to Ann who he believes would have been kind to him if she

had been aware of everything that he is aware of. ∎
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B.2 Proof of Result 5

To understand Result 5 it is important to see that whatever Ann beliefs about Bob’s strategy

following her choiceDefect, Bob is worse of than if she would have chosen Cooperate (see also

Result 1 and the proof to observation 1 in Dufwenberg and Kirchsteiger (2004)). This means

it is sure that Bob who becomes aware of everything when Ann chooses Defect considers

Defect as an unkind choice. Given this, his belief-dependent reciprocity preferences plus his

own monetary payoff makes him to choose his action defect. Furthermore, as Bob correctly

believes that Ann is also aware of everything, messages do not play any strategic role for

him and, hence, he chooses any message. ∎

B.3 Proof of Result 6

Consider first part (i): By sending a message which does not contain any new information

Bob does not become aware of any new feasible path of play. This implies that Bob will

continue to evaluate Ann’s kindness on the basis of {HT ′}T4↪T ′ with T4 = {n0, n1, n3, n4}.

As T4 = {n0, n1, n3, n4} only entails one action for Ann, Bob’s belief about the intentions

of Ann towards him as well as Bob’s belief about the maximum and minimum that Ann

could have given to him coincide. Hence, λBAB = 0. Given this, Bob’s psychological utility

from reciprocity is Y ⋅ κBA ⋅ λBAB = 0 and he consequently maximizes his own monetary

payoff, i.e. Bob chooses action defect. Consider now part (ii) and (iii): if Ann chooses

Cooperate and a message that contains at least T2 = {n0, n2, n6} as new information, then

Bob evaluates Ann’s kindness either on {HT ′}T15↪T ′ with T15 = {n0, n1, n2, n3, n4, n5, n6} or

{HT ′}T13↪T ′ with T13 = {n0, n1, n2, n3, n4, n6} depending on Ann’s message. To evaluate Bob’s

perception concerning Ann’s kindness in this case we have to specify his belief concerning

Ann’s belief regarding his choice following Ann’s action Cooperate. Denote Bob’s belief

concerning Ann’s belief concerning the likelihood with which he plays cooperate following

her action Cooperate by β. This implies that he believes that Ann believes that he plays

defect following her choice of Cooperate with probability (1−β). Furthermore, note that in

this situation Bob believes that in equilibrium he would have chosen defect following Ann’s

choice Defect giving him a payoff of 0. Given this, Bob perceives Ann’s choice Cooperate

and the message which contains at least T2 = {n0, n2, n6} as

λBAB = β + (1 − β)2 −
1

2
[β + (1 − β)2 + 0]

where 1
2[β +(1−β)2+0] is Bob’s perception given his awareness level concerning the average

that Ann could have given him. λBAB reduces to 1 − 1
2β. In equilibrium beliefs have to be
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correct! Hence, Bob’s perception of Ann’s kindness in an equilibrium involving his action

cooperate following Ann’s action Cooperate (β = 1) is 1
2 . On the other hand, in this situation

Bob’s kindness towards Ann by choosing cooperate and any message is κBA = 1− 1
2[1+(−1)] =

1 and his kindness from choosing defect and any message is κBA = −1 − 1
2[1 + (−1)] = −1.

This means he chooses cooperate in equilibrium if:

1 + Y (
1

2
)(1) ≥ 2 + Y (

1

2
)(−1)

which holds if Y ≥ 1. Consider now part (iv). We follow the same reasoning as before: if Ann

chooses Cooperate and a message that contains only T1 = {n0, n2, n5} as new information,

then Bob evaluates Ann’s kindness on {HT ′}T12↪T ′ with T12 = {n0, n1, n2, n3, n4, n5}. In this

case Bob believes that he would have chosen cooperate following Ann’s choice Defect as

this is the only of his actions following Ann’s choice Defect that he has become aware of by

Ann’s message. Again, denote Bob’s belief concerning Ann’s belief concerning the likelihood

with which he plays cooperate following Ann’s action Cooperate by β. This means that Bob

perceives Ann’s choice Cooperate and the message which contains only T1 = {n0, n2, n5} as

new information as:

λBAB = β + (1 − β)2 −
1

2
[β + (1 − β)2 + (−1)]

which reduces to 11
2 −

1
2β. As before, in equilibrium beliefs have to be correct. Hence, Bob’s

perception of Ann’s kindness in an equilibrium involving his action cooperate following Ann’s

choice Cooperate (β = 1) is 1. As in the cases (ii) and (iii), in this situation Bob’s kindness

towards Ann by choosing cooperate and any message is κBA = 1 − 1
2[1 + (−1)] = 1 and his

kindness from choosing defect and any message is κBA = −1 − 1
2[1 + (−1)] = −1. This means

he chooses cooperate in equilibrium if:

1 + Y (1)(1) ≥ 2 + Y (1)(−1)

which holds if Y ≥ 1
2 . ∎

B.4 Proof of Result 7

Case (i): If Bob’s sensitivity to reciprocity is Y < 1
2 , Ann knows that Bob will defect no

matter what she does and which messages she sends. Hence, she chooses Defect to get in

equilibrium 0, rather than −1 which she would get by choosing Cooperate. Case (ii): If

Bob’s sensitivity to reciprocity is 1
2 ≤ Y ≤ 1, Ann knows that Bob will cooperate when she
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chooses Cooperate and a message which contains only T1 = {n0, n2, n5} as new information.

As this gives her 1 in monetary payoffs which is more than with any of her other actions and

messages, she chooses to cooperate and send a message which contains only T1 = {n0, n2, n5}

as new information. Case (iii): In case (iii) we can apply the same reasoning as in case (ii).

But, as a message that contains either T3 = {n0, n2, n5, n6} or T2 = {n0, n2, n6} implies a lower

kindness perception in Bob’s eyes about Ann’s action Cooperate, Bob chooses to cooperate

in equilibrium only if Y ≥ 1. Hence, Ann chooses this action and message only if Y ≥ 1.
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