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Abstract

The adoption of agriculture during the Neolithic period triggered the �rst demographic

explosion in history. When fertility returned to its original level, agriculturalists were more

numerous, more poorly nourished, and worked longer hours than their hunter-gatherer ances-

tors. We develop a dynamic price-theoretic model that rationalizes these events. In the short

run, people are lured into agriculture by the increased labor productivity of both adults and

children. In the long run, the growth in population overrides the productivity gains, and the

later generations of agriculturalists end up being worse o¤ than the hunter-gatherers. Counter-

intuitively, the increase in the labor productivity of children causes the long-term reduction in

welfare. In the long run, the increase in adult labor productivity only contributes to population

growth.
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1 Introduction

The shift from hunting and gathering to agriculture, a transition known as the Neolithic Revolution,

was followed by a sharp increase in fertility (Bocquet-Appel 2002; Ashraf and Galor 2008). In the
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course of a few centuries, typical communities grew from about 30 individuals to 300 or more, and

population densities increased from less than one hunter-gatherer per square mile to 20 or more

agriculturalists (Johnson and Earle 2000, pp. 43, 125, 246).

This demographic explosion has been attributed to two main causes. First, food production

per unit of land increased (Price and Gebauer 1995). Second, having children was less costly

for early agriculturalists than for hunter-gatherers. This was in part because caring for children

interfered more with the nomadic lifestyle of hunting and gathering than it did with the sedentary

life of agriculturalists (Locay 1983, pp. 60�98). More importantly, the children of agriculturalists

contributed substantially more to food production than did the children of hunter-gatherers (Kramer

and Boone 2002). In most hunter-gatherer societies, children and adolescents contribute almost

nothing to family subsistence (Draper 1976; Kent 2006). Among the !Kung, for example, people

do not work until they marry. This takes place at about 20 years of age for males and between 15

and 20 years of age for females (Lee 1965). The children of Gambian primitive agriculturalists, in

contrast, work the land from the age of 10 (Ulijaszek 1993).

Although compared to hunter-gatherers early agriculturalists produced food in larger quantities,

agriculturalists were more poorly nourished and su¤ered from poorer health (see, for example,

Armelagos et al. 1991; Cohen and Armelagos 1984; Cohen and Crane-Kramer 2007).1 For example,

the archeological record of the Eastern Mediterranean region reveals that male hunter-gatherers

who reached adulthood had a life expectancy of 33 years, while females who reached adulthood had

a life expectancy of 29 years. After the Neolithic Revolution, the life expectancy of adult males

dropped to 32 years, and the life expectancy of adult females dropped to 25 years. Average statures

also diminished, from 177 to 165 centimeters among males and from 165 to 152 centimeters among

females (Angel 1975).

To make matters worse, the average daily working time increased upon the arrival of agriculture

(Harlan 1995; Sahlins 1972). Ethnographic studies suggest that hunter-gatherers worked less than

six hours per day, whereas primitive horticulturists worked seven hours on average, and intensive

agriculturalists worked nine (Sackett 1996, pp. 338�42).

In this paper, we develop a dynamic price-theoretic model that rationalizes the stylized facts

of the transition to agriculture. These include a short-term increase in fertility and long-term

reductions in consumption, leisure, and welfare.

The model follows the history of a tribe of hunter-gatherers. The adult members of the tribe

derive utility from food consumption, leisure, and childbearing. When the story begins, the tribe

is in demographic equilibrium; given his family income and the cost of childbearing, each adult in

the tribe chooses to reproduce at the rate of replacement.

1Hutchinson et al. (2007) and Eshed et al. (2010) provide new archeological evidence that contradicts previous
�ndings.
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At some point in its history, the tribe discovers agriculture. This new food production tech-

nology has two advantages over hunting and gathering. First, agriculture has higher total factor

productivity than hunting and gathering; ceteris paribus, its higher total factor productivity trans-

lates into a higher family income. Second, the children of agriculturalists are more productive than

are the children of hunter-gatherers. Because the cost of a child is o¤set by the food he produces,

childbearing is less costly for agriculturalists than for hunter-gatherers.

The sudden increase in the family income and the lower cost of childbearing triggers a demo-

graphic explosion among the early agriculturalists. The growth in population progressively reduces

the family income of the subsequent generations. Eventually, the family income is so low that the

adults once again choose to reproduce at the rate of replacement. When that happens, the popu-

lation restabilizes at a higher level. In the long run, the family income is even lower than before

the onset of agriculture; childbearing carries such low cost for agriculturalists that the only way

to persuade them to restrain their fertility is to give them less income than the level obtained by

hunter-gatherers. The impoverished agriculturalists also consume less food and have to work more,

as compared to their ancestors.

The increase in the labor productivity of children drives the results of the model. In the long

run, the increase in the labor productivity of adults only contributes to population growth.

Three conditions must hold for the stylized facts to emerge as implications of the model. The �rst

condition is that children must be normal goods. That is, fertility must be an increasing function

of income. The second condition is that the implicit wage rate must decrease with population size.

Together, conditions one and two correspond to the classical Malthusian-Ricardian assumptions.

The third condition is that consumption and leisure must be normal goods and gross complements

of each other.

The remainder of this introduction covers the related literature. We present our model in Section

2. Finally, in Section 3, we o¤er some conclusions.

1.1 Related literature

A variety of theories has been advanced to explain the emergence of agriculture. These range from

excessive hunting (Smith 1975) to warfare (Rowthorn and Seabright 2008) and climate change (Dow

et al. 2009). Theories on the adoption of agriculture have been extensively surveyed by Weisdorf

(2005), who also surveys the main hypotheses forwarded by anthropologists and archaeologists.

Therefore, we limit this review to previous explanations for the loss of welfare that followed the

Neolithic Revolution.

According to Locay (1989), the fall in the price of children motivated early agriculturalists to

substitute fertility for consumption and leisure. He maintains that these changes were welfare-

enhancing, as the fall in the price of children expanded the agriculturalists� feasible choice set.
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Weisdorf (2003) develops a model in which early agriculturalists exchange their leisure time for goods

produced by an emerging class of non-food-producing specialists (e.g., craftsmen and bureaucrats).

Marceau and Myers (2006) model the fall in consumption and leisure as a tragedy of the commons.

Locay (1989), Weisdorf (2004), and Marceau and Myers (2006) assume that the population remains

constant during the transition to agriculture. Demography plays no role in their models.

Weisdorf (2009) incorporates Malthusian-Ricardian population principles into a model with two

sectors; hunting and agriculture. In his model, the higher productivity of agriculture motivates

its adoption, but the subsequent population growth overrides the productivity gain. Weisdorf

implicitly assumes that people�s only desire in life is to reproduce and that they will work as many

hours as it takes to maximize their fertility. He also assumes that food consumption is an increasing

function of the energy spent at work, which explains why agriculturalists have to work more than

hunter-gatherers.

Robson (2008) develops a model with two goods, children and children�s health. In Robson�s

model, agriculture leads to a higher population density. Infectious diseases, in turn, become more

prevalent as the population density increases. This makes the health of children more expensive

for agriculturalists than for the less populous hunter-gatherers. Agriculturalists respond by having

more children and investing less in their health than did their predecessors. Dalgaard and Strulik

(2010) propose a similar model to explain the decline in human body size. They provide some

empirical evidence that supports their explanation.

Finally, Lagerlöf (2009) develops a model in which population pressure spurs the development

of agriculture. When a society transits to agriculture, a leisurely elite seizes power and enslaves the

rest of the population. Slavery reduces the income of the working class below the level they would

earn in an egalitarian society of hunter-gatherers.

2 A model of agriculture adoption

2.1 Model setup

A tribe of hunter-gatherers is on the verge of adopting agriculture.

Time is discrete, indexed by t 2 N. In time t, the tribe has Nt 2 (0;1) identical adult members.
Adults live for one period. When they die, they are replaced by their children.

A representative time-t adult chooses food consumption ct 2 [0;1), leisure lt 2 [0;1), and the
number of his children nt 2 [0;1) to maximize the following utility function:

ut =
h

1
� c

��1
�

t + (1� )
1
� l

��1
�

t

i ��
��1

n1��t ; (1)
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where �;  2 (0; 1), and � 2 [0;1) is the elasticity of substitution between consumption and leisure.2

Note that the adult does not care about the wellbeing of his children. In Appendix A.2.1 we extend

the model to account for this possibility.

There is no labor market. Families produce their own food using three inputs: adult labor, child

labor, and a common resource Z 2 (0;1) shared by all families in the tribe (e.g., land or water).
A family�s food production is given by a production function with constant returns to labor:

qt =
AZ

Nt
(T � lt + �nt) ; (2)

where A 2 (0;1) measures the total factor productivity (TFP), Z=Nt 2 (0;1) is the family�s share
of the common resource, T 2 (0;1) is the adult�s available time, and � 2 [0;1) measures child
labor productivity in man-hours. Without loss of generality, we normalize Z to 1.

The representative adult is subject to the following budget constraint:

qt � ct + �nt (3)

where � 2 [0;1) represents the food requirements of a child.
Combining equation (2) with inequality (3), and rearranging, we can restate the budget con-

straint as follows:

It � ct + wtlt + ptnt;

where It is the implicit total income, wt is the implicit hourly wage rate (which is also the price of

leisure), and pt is the implicit price of children:

It =
AT

Nt
= wtT; (4)

wt =
A

Nt
; (5)

pt = �� �A
Nt

= �� �wt: (6)

Note that total income and wages decrease with population, whereas the price of children increases

with population. In addition, note that the price of a child is equal to the food he consumes minus

the food he produces.

2The assumption that the adult chooses the number of his children may seem unrealistic, but it is not. There
is ample evidence that pre-modern peoples controlled their fertility. The methods they used included abstinence,
celibacy, prolonged breast-feeding, abortion, and infanticide (Douglas 1966; Cashdan 1985).
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Finally, the following equation governs the population dynamics:

Nt+1 =
nt
n�
Nt; (7)

where n� > 0 is the exogenous replacement fertility rate.3

2.2 Solution

The representative time-t adult solves the following problem, taking his total income and the prices

as given:

max
fct;lt;ntg

h

1
� c

��1
�

t + (1� )
1
� l

��1
�

t

i ��
��1

n1��t ;

subject to It � ct + wtlt + ptnt;

ct; lt; nt 2 [0;1) :

Standard calculations yield the adult�s demands for consumption, leisure, and children:

ct =
�It

 + (1� )w1��t

; (8)

lt =
� (1� )w��t It

 + (1� )w1��t

; (9)

nt =
(1� �) It

pt
: (10)

These demand functions have two important properties. First, the demands are downward-sloping;

that is, consumption, leisure, and children are ordinary goods. Second, the demands increase with

income; that is, consumption, leisure, and children are normal goods.4

Inserting the demand functions into the utility function, we obtain an expression for the indirect

utility function (i.e., utility as a function of income and prices):

ut =
�� (1� �)1�� It

p1��t

�
 + (1� )w1��t

� �
1��

: (11)

Proposition 1 In the long run, fertility nt converges to the rate of replacement n�, and population
Nt reaches a unique positive steady state. The steady state is given by

N� =
[(1� �)T + �n�]A

�n�
; (12)

3One can think of n� as equivalent to ��1, where � 2 (0; 1] is the probability that a child will survive to reach
adulthood.

4Empirical evidence indicates that children are normal goods. See, for instance, Lee (1997).
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and it will be stable if and only if �n� < (1� �)T .

Proof. Combining equations (4), (6), (7), and (10), we form a dynamic system for the tribe�s

population:

Nt+1 = f(Nt) =

(1��)AT
Nt

�� � A
Nt

Nt:

Setting Nt = Nt+1 = N� and solving the system for N�, we obtain the positive steady state given

in equation (12). In Appendix A.2.1 we prove the stability of the steady state.

Inserting the steady-state value of Nt into equations (4), (5) and (6), we obtain the the steady-

state income and prices:

I� =
�n�T

(1� �)T + �n� ; (13)

w� =
�n�

(1� �)T + �n� ; (14)

p� =
(1� �)�T

(1� �)T + �n� : (15)

Because It, wt, and pt are all constant in the steady state, consumption, leisure, and fertility remain

constant as well.

2.3 The adoption of agriculture

Assume that, before the onset of the agricultural era, the tribe has already reached its steady state.

This means that all adults chose to reproduce at the exogenous rate of replacement, causing the

population and all other model variables to remain constant.

At a certain time � , the tribe discovers agriculture; for instance, through interaction with

a neighboring tribe of agriculturalists. This new production technology has two advantages over

hunting and gathering. First, agriculture has a higher total factor productivity. Second, the children

of agriculturalists are more productive than the children of hunter-gatherers. In the language of

our model, A and � are permanently higher for agriculture than they are for hunting and gathering.

Figure 1 shows the trajectories of A and �.

In this section, we will explore the short-term e¤ects of the adoption of agriculture; that is, the

changes in the time-� variables induced by the increases in A and �. We will �nd that consumption

and fertility rise in the short run and that leisure time rises if and only if it is a gross complement

of consumption. Finally, we will prove that the time-� adults will adopt agriculture because their

utility increases when they become agriculturalists.
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Figure 1: Trajectories of total factor productivity (A) and child productivity (�).

Henceforth, we will use linear expansions to approximate percent changes in variables:

�x

x
=
@ lnx

@ lnA

�A

A
+
@ lnx

@ ln�

��

�
;

where �x is the change in any given variable x. Needless to say, this approximation is more exact

the smaller are A and �.

Proposition 2 In time-� , the total income and the wage rise, and the price of children falls:

�I�
I�

=
�A

A
> 0;

�w�
w�

=
�A

A
> 0;

�p�
p�

= ��w�
p�

�A

A
� �w�

p�

��

�
< 0:

Proof. See Appendix A.2.2.
The intuition is this. The population is �xed at time-� . Therefore, a time-� family has access to

the same amount of the common resource as before the adoption of agriculture. This implies that

the increase in TFP translates into a short-term increase in the total income. The wage also rises

because each hour of labor is more productive. Finally, the price of children falls in the short run

because each child supplies more man-hours (� is higher), and each man-hour pays a higher wage.

Proposition 3 In time-� , consumption and fertility rise:

�c�
c�

=
c� + �w� l�
c� + w� l�

�A

A
> 0;

�n�
n�

=
�

p�

�A

A
+
�w

p�

��

�
> 0:
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Leisure rises if and only if it is a gross complement of consumption:

�l�
l�

=
(1� �) c�
c� + w� l�

�A

A

8>><>>:
> 0 if � < 1;

= 0 if � = 1;

< 0 if � > 1:

Proof. See Appendix A.2.3.
The intuition behind these results is the following. Consumption is a normal good; thus, when

the total income rises, consumption tends to rise as well. If consumption is a gross substitute to

leisure (� > 1), the increase in the price of leisure (i.e., the hourly wage rate) also tends to increase

consumption. Because the income e¤ect and the substitution e¤ect act in the same direction,

consumption must rise. If, on the other hand, consumption is a gross complement of leisure (� < 1),

the increase in the price of leisure tends to reduce consumption. In the particular case of our

model, the positive income e¤ect always overrides the substitution e¤ect. Therefore, consumption

unambiguously rises in the short run.

Because children are ordinary and normal goods, the reduction in their price and the increase

in the total income induce a short-term increase in fertility.

The change in leisure is ambiguous. Because leisure is a normal good, the increase in the total

income will act to increase leisure. However, leisure is also an ordinary good. Consequently, the

increase in its price will act to reduce leisure. If the complementarity between consumption and

leisure is su¢ ciently high (i.e., if � < 1), then the income e¤ect will override the price e¤ect; the

adults will increase their leisure time to better enjoy their extra consumption.

Up to this point, we have asked ourselves what would happen if the time-� hunter-gatherers

became agriculturalists. The next proposition proves that the time-� hunter-gatherers will indeed

become agriculturalists because the career switch improves their utility.

Proposition 4 In time-� , utility rises:

�u�
u�

=

�
c� + p�n�

I�
+
(1� �)�w�

p�

�
�A

A
+
(1� �)�w�

p�

��

�
> 0:

Proof. See Appendix A.2.4.
The economics behind this result is straightforward; using the same amount of resources, a

family of agriculturalists always produces more food than a family of hunter-gatherers.
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2.4 Long-term e¤ects of the adoption of agriculture

To determine the long-term e¤ects of agriculture, we will compare the steady states of the model

before and after time � . We will �nd that the population rises in the long run, whereas consumption

and utility fall. Leisure falls in the long run if and only if it is a gross complement of consumption.

Proposition 5 The population increases in the long run:

�N�

N� =
�A

A
+
�w�

�

��

�
> 0:

Proof. See Appendix A.2.5.
The chain of causality goes like this. As proved in the previous section, agriculture induces a

short-term increase in the total income and the wage and a short-term reduction in the price of

children. The time-� agriculturalists respond to this change in incentives by increasing their fertility

above replacement. The demographic equilibrium breaks down, and the population begins to grow.

As the population grows, each family receives an ever-smaller share of the common resource.

Therefore, the wage and the total income gradually fall from their time-� levels. At the same time,

the price of children gradually rises because each hour of child labor pays progressively less.

In response to the gradual reduction in the total income and the gradual increase in the price

of children, fertility declines through the generations. Eventually, fertility returns to the rate of

replacement. When this happens, the population restabilizes at a higher level than before the

adoption of agriculture.

Figure 2 illustrates this process.

Proposition 6 The total income, the wage, and the price of children fall in the long run:

�I�

I�
= ��w

�

�

��

�
< 0;

�w�

w�
= ��w

�

�

��

�
< 0;

�p�

p�
= ��w

�

�

��

�
< 0:

Proof. See Appendix A.2.6.
The economic rationale behind proposition 6 is the following. Equations (4) and (6) relate the

population to the total income and to the price of children. Combining these equations we obtain

pt = ��
�It
T
: (Technological constraint)
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Figure 2: Trajectories of fertility (nt), population (Nt), the family income (It), the wage (wt), and
the price of children (pt).
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The above equation is a technological constraint because it derives from the budget constraint,

which in turn derives from the production function. The technological constraint tells us that when

income is high, children are cheap because they are very productive. This constraint must hold at

all times, including the steady state.

Equation (10), which we reproduce here, relates fertility to the total income and to the price of

children:

nt =
(1� �) It

pt
:

In words, the representative adult will increase his fertility when the total income rises and will

reduce his fertility when the price of children increases. In the steady state, fertility must be equal

to the rate of replacement, n�. Setting nt = n� in the above equation and rearranging, we obtain

the following steady-state condition:

p� =
(1� �) I�

n�
: (Steady-state condition)

This condition tells us that, to keep the population constant, I� and p� must move in the same

direction. If p� falls and I� remains the same, the adult will demand more than n� children. The

only way to persuade the adult to restrain fertility is to reduce I� whenever p� falls.

Panel A of Figure 3 depicts the technological constraint and the steady-state condition. The

steady-state values of It and pt lie at the intersection of the two lines.

When � increases, the line that represents the technological constraint rotates inwards. Panel B

of Figure 3 represents this situation. As the technological constraint rotates, the equilibrium moves

from E to E2, the total income falls from I� to I�2 , and the price of children falls from p� to p�2.

Note that this result is driven entirely by the increase in child labor productivity. The increase

in TFP plays no role in the determination of I� and p�. In the long-term, the increase in TFP only

contributes to population growth.

Proposition 7 Consumption falls in the long run:

�c�

c�
= �c

� + �w�l�

c� + w�l�
�w�

�

��

�
< 0:

Leisure falls if and only if it is a gross complement of consumption:

�l�

l�
= � (1� �) c

�

c� + w�l�
�w�

�

��

�

8>><>>:
< 0 if � < 1;

= 0 if � = 1;

> 0 if � > 1:

Proof. See Appendix A.2.7.
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Figure 3: Determination of the steady-state equilibrium values of It and pt (panel A). When the
child labor productivity rises, the technology constraint rotates inwards, and both I� and p� fall
(panel B).
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Figure 4: Trajectories of consumption (ct) and leisure (lt).

The above results are a direct consequence of the long-term reductions in the total income, the

wage, and the price of children.

Consumption is a normal good; thus, when total income falls, consumption tends to fall as well.

If consumption is a gross substitute to leisure, the reduction in the price of leisure (i.e., the hourly

wage rate) also tends to reduce consumption. Because the income e¤ect and the substitution e¤ect

act in the same direction, consumption must rise. If, on the other hand, consumption is a gross

complement of leisure, the reduction in the price of leisure tends to increase consumption. In the

particular case of our model, the negative income e¤ect always overrides the substitution e¤ect.

Therefore, consumption unambiguously falls in the long run.

The change in leisure is ambiguous. Because leisure is a normal good, the reduction in the

total income will act to reduce leisure. However, leisure is also an ordinary good. Therefore, the

reduction in its price will act to increase leisure. If the complementarity between consumption and

leisure is su¢ ciently high (i.e., if � < 1), then the income e¤ect will override the price e¤ect; the

adults will reduce their leisure time because leisure becomes less interesting when consumption falls.

Figure 4 displays the trajectories of consumption and leisure.

Proposition 8 Utility falls in the long run:

�u�

u�
= � c

�

I�
�w�

�

��

�
< 0:

Proof. See Appendix A.2.8.
In the long run, fertility always returns to the exogenous rate of replacement. Therefore, the

long-term gain or loss of utility is entirely determined by the changes in consumption and leisure.
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Proposition 8 states that it does not matter whether consumption and leisure are gross complements,

gross neutral, or gross substitutes; agriculturalists always end up being worse-o¤ than hunter-

gatherers.

Why should utility fall in the long run?

From equation (10) it follows that a typical adult will destine a fraction 1 � � of his income
to buy children, leaving the remaining fraction to buy consumption and leisure. It follows that an

adult who lives in a steady state faces the following budget constraint:

w� ~T � ct + w�lt,

where ~T = �T . We know that, in the steady state, the adult chooses nt = n�. Therefore, the

steady-state adult problem can be restated as follows:

max
fct;ltg

�
h

1
� c

��1
�

t + (1� )
1
� l

��1
�

t

i ��
��1

;

subject to w�
�
~T � lt

�
� ct

ct; lt 2 [0;1) ;

where � = (n�)
1�� is a constant. The above problem is the classical consumer problem with

CES preferences. It is well known that the utility of the consumer increases when the hourly

wage increases. Because the wage is lower for steady-state agriculturalists than for steady-state

hunter-gatherers, the utility of the agriculturalists must also be lower.

Panel A of Figure 5 shows the trajectory of utility.

Although agriculture reduces welfare in the long run, agriculturalists will not revert to hunting

and gathering. For any given population size, families can always produce more by farming than

by hunting and gathering. From equation (2), it follows that

A+�A

Nt
[T � lt + (� +��)nt]| {z }

Production of a family
of agriculturalists

>
A

Nt
(T � lt + �nt)| {z }

Production of a family
of hunter-gatherers

;

for all values of Nt, lt and nt. This explains why people will never abandon agriculture.

Panel B of Figure 5 shows the utility of agriculture and the utility of hunting and gathering

for each period. Note that the utility of hunting and gathering always runs below the utility of

agriculture.
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Figure 5: Trajectory of utility (panel A). The utility of hunting and gathering always runs below
the utility of agriculture (panel B).

3 Conclusion

Our model sheds some light on a central puzzle in the literature: did agriculture emerge out of

opportunity, or were our ancestors forced into farming? Traditional scholarship regards agriculture

as highly desirable: once humans discovered agriculture and recognized the potential productivity

gains associated with it, beginning to farm was an obvious decision (Trigger 1989). In recent times,

this idea has been called into question, largely because it has been shown that taking up agriculture

reduced the standard of living of our ancestors (Harlan 1992; Sahlins 1974). The reduction in the

standard of living seems to suggest that our ancestors did not willingly become agriculturalists.

Instead, they may have been forced into agriculture by some external pressure [e.g., overpopulation

(Binford 1968; Flannery 1969) or by the extinction of mammoths and other game (Smith 1975)].

Diamond (1987) has called agriculture �the worst mistake in the history of the human race.�

We have shown herein that the adoption of agriculture is perfectly consistent with economic

rationality. People were lured into agriculture by the immediate productivity gains that resulted

from its development; however, the demographic explosion that ensued overrode the gains and

impoverished later generations of agriculturalists. The later generations were forced to remain
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agriculturalists for the same reason that agriculture was originally adopted, which is that agriculture

is more productive than hunting and gathering for any given level of population.

Some external factors may have in�uenced our ancestors�decision to become and remain agri-

culturalists. Their decision, however, is hardly an economic puzzle. It can be explained within the

standard framework of price theory.

A Appendix

A.1 A forward-looking version of the model

For the sake of simplicity, we will assume that the adults supply all their available time as labor and

that children do not work. We will continue to assume that children are cheaper for agriculturalists

than for hunter-gatherers; for example, because it is easier for adults to care for children when the

tribe is sedentary.

We will show that the tribe will adopt agriculture only if its members care little about the

welfare of future generations, if the TFP of agriculture is high relative to the TFP of hunting and

gathering, and if children are not too cheap for agriculturalists. We will also show that, if the tribe

adopts agriculture, the population will rise in the long run, and consumption and utility will fall.

A representative time-t adult maximizes

ut =
c�tn

1��
t u�t+1

�� (1� �)1��
:

where � 2 (0; 1) and � 2 [0; 1). Parameter � is a discount factor. If � > 0, the adult cares about the
welfare of his children. Taking logarithms, we reformulate the utility function as follows:

vt = lnut = ln
c�tn

1��
t

�� (1� �)1��
+ �vt+1: (16)

The adults do not leave inheritances. Only through its fertility decisions does one generation

a¤ect the welfare of those to follow. A higher fertility in the present generation leads to a lower

income of future generations. Because each adult is in�nitesimal, he cannot by himself a¤ect the

future population levels. Therefore, from the point of view of an adult, vt+1 is a constant.

The representative adult is subject to the following budget constraint:

AtT

Nt
� ct + �tnt:
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Standard calculations yield

ct =
�AtT

Nt
; (17)

nt =
(1� �)AtT
�tNt

: (18)

Combining equations (16), (18) and (17), we obtain the adult�s indirect utility function:

vt = ln
AtT

Nt�
1��
t

+ �vt+1: (19)

The following equation governs the population dynamics:

Nt+1 =
nt
n�
Nt: (20)

Replacing equation (17) into equation (20), we obtain

Nt+1 =
(1� �)AtT

�tn�
(21)

Generation-t of the tribe has a chief. He must choose between agriculture and hunting and

gathering. Let st 2 f0; 1g denote the chief�s decision. If st = 0, generation t will hunt and gather.
If st = 1, generation t will practice agriculture. The TFP and the cost of children depend on the

chief�s choice of production technology:

At = stA
a + (1� st)Ah; (22)

�t = st�
a + (1� st)�h; (23)

where Aa > Ah > 0, and 0 < �a < �h.

The time-t chief maximizes the utility of the adults, assuming that they will respond optimally

to incentives. He also takes into account the fact that all future chiefs will make optimal decisions.

This gives rise to a recursive maximization problem. Using equations (19), (22) and (23), we form

the chief�s value function:

v(N; s) = ln
[sAa + (1� s)Ah]T
N [s�a + (1� s)�h]1��

+ �v[N 0(s); s�(N 0(s))]: (24)

Population N is the only state variable, and N 0(s) is the next period�s population, and Finally,

s�(N) is the chief�s optimal decision when the population level is N . From equations (21), (22) and
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(23), we get

N 0(s) =
(1� �) [sAa + (1� s)Ah]T

[s�a + (1� s)�h]n� : (25)

Note that N 0(s) does not depend on N .

The chief�s optimal decision is given by

s�(N) =

(
1 if v(N; 1) > v(N; 0),

0 otherwise.

Proposition 9 Regardless of the level of population, the chief will choose agriculture if and only if

� <
ln(Aa=Ah)

ln(�h=�a)
+ 1� �:

That is,

s�(N) =

8><>: 1 if � <
ln(Aa=Ah)

ln(�h=�a)
+ 1� �,

0 otherwise.

Proof. The chief will adopt agriculture if and only if v(N; 1)�v(N; 0) > 0. However, from equation
(24), we know that

v(N; 1)� v(N; 0) = ln A
a

Ah

�
�h

�a

�1��
� � fv[N 0(1); s�(N 0(1))]� v[N 0(0); s�(N 0(0))]g

No term in the above equation depends on N . This implies that the chief�s decision will not depend

on N . In other words, s�(N) = s�, where s� is a constant.

Iterating the value function once more, we obtain

v(N; s) = ln
[sAa + (1� s)Ah]T
N [s�a + (1� s)�h]1��

+ �

 
ln

[s�Aa + (1� s�)Ah]T
N 0 (s) [s��a + (1� s�)�h]1��

+ �v[N 0(s�); s�]

!
:

From this equation, it follows that

v(N; 1)� v(N; 0) = ln
"
Aa

Ah

�
�h

�a

�1��#
+ � ln

N 0 (0)

N 0 (1)
:

Combining this equation with equation (25), we obtain

v(N; 1)� v(N; 0) = ln
"
Aa

Ah

�
�h

�a

�1��#
� � ln �

h

�a
:
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Therefore, v(N; 1)� v(N; 0) > 0 if and only if

ln

"�
Aa

Ah

��
�h

�a

�1��#
� � ln �

h

�a
> 0;

or, equivalently, if and only if

� <
ln(Aa=Ah)

ln(�h=�a)
+ 1� �: (26)

Proposition 9 tells us that the chief will never change his mind. If he chooses agriculture, he

will stick to this decision. From equations (10), (21) and (22), we obtain the steady-state level of

population:

N (s�) =
(1� �) [s�Aa + (1� s�)Ah]T

[s��a + (1� s�)�h]n� : (27)

Let Na be the steady-state level of population if the chief chooses agriculture, and let Nh be the

steady-state level of population if he chooses hunting and gathering. From equation (27) it follows

that

Na �Nh =
(1� �) (Aa�h �Ah�a)T

�a�hn�
> 0;

which is positive because Aa > Ah and �a < �h. In the long run, the population is higher if the

tribe adopts agriculture.

Combining equations (18), (22), (23), (27), we obtain the steady-state level of consumption:

c(s�) =
� [s��a + (1� s�)�h]n�

1� � : (28)

Let ca be the steady-state level of consumption if the chief chooses agriculture, and let ch be the

steady-state level of consumption if he chooses hunting and gathering. From equation (28) it follows

that

ca � ch = � (�a � �h)n�
1� � < 0:

In the long-term, agriculturalists enjoy a lower level of consumption.

Setting vt = vt+1 = v(s�) in equation (19), solving for v(s�), and combining the result with

equations (22), (23) and (27) we obtain the steady-state level of utility:

v(s�) =
1

1� � ln
n�
h
s� (�a)

�
+ (1� s�) (�a)�

i
1� � ;

In the long run, utility will be lower for agriculturalists:

va � vh = �

1� � ln
�a

�h
< 0.
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A.2 Proofs

A.2.1 Proof of Proposition 1

To prove the stability of the positive steady state, we resort to the Hartman-Grobman theorem.

According to this theorem, the steady state N� will be stable if jf 0(N�)j < 1. Di¤erentiating f(Nt),
and evaluating the derivative at N�, we get

f 0(N�) =
� (1� �)�A2T
n� (�A� �N�)

2 = �
�n�

(1� �)T ;

which will be less than one in absolute value if and only if �n� < (1� �)T .

A.2.2 Proof of Proposition 2

By de�nition,
�I�
I�

=
@ ln I�
@ lnA

�A

A
+
@ ln I�
@ ln�

��

�
: (29)

Log-di¤erentiating equation (4), we obtain

@ ln I�
@ lnA

= 1; (30)

@ ln I�
@ ln�

= 0: (31)

Combining equations (29), (30), and (31), it follows that

�I�
I�

=
�A

A
> 0:

By de�nition,
�w�
w�

=
@ lnw�
@ lnA

�A

A
+
@ lnw�
@ ln�

��

�
: (32)

Log-di¤erentiating equation (5), we obtain

@ lnw�
@ lnA

= 1; (33)

@ lnw�
@ ln�

= 0: (34)

Combining equations (32), (33), and (34), it follows that

�w�
w�

=
�A

A
> 0:
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By de�nition,
�p�
p�

=
@ ln p�
@ lnA

�A

A
+
@ ln p�
@ ln�

��

�
: (35)

Log-di¤erentiating equation (6), we obtain

@ ln p�
@ lnA

= ��w�
pt
; (36)

@ ln p�
@ ln�

= ��w�
pt
: (37)

Finally, combining equations (35), (36), and (37), it follows that

�p�
p�

= ��w�
p�

�A

A
� �w�

p�

��

�
< 0:

A.2.3 Proof of Proposition 3

By de�nition,
�c�
c�

=
@ ln c�
@ lnA

�A

A
+
@ ln c�
@ ln�

��

�
: (38)

Applying the chain rule, we obtain

@ ln c�
@ lnA

=
@ ln c�
@ ln I�

@ ln I�
@ lnA

+
@ ln c�
@ lnw�

@ lnw�
@A

+
@ ln c�
@ ln p�

@ ln p�
@ lnA

; (39)

@ ln c�
@ ln�

=
@ ln c�
@ ln I�

@ ln I�
@ ln�

+
@ ln c�
@ lnw�

@ lnw�
@ ln�

+
@ ln c�
@ ln p�

@ ln p�
@ ln�

: (40)

On the other hand, the income and price elasticities for ct are given by

@ ln ct
@ ln It

= 1; (41)

@ ln ct
@ lnwt

=
(� � 1)wtlt
ct + wtlt

; (42)

@ ln ct
@ ln pt

= 0; (43)

for all t. Finally, combining equations (30), (31), (33), (34), and (38) to (43), it follows that

�c�
c�

=
c� + �w� l�
c� + w� l�

�A

A
> 0;

which we set out to prove.
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By de�nition,
�n�
n�

=
@ lnn�
@ lnA

�A

A
+
@ lnn�
@ ln�

��

�
: (44)

Applying the chain rule, we obtain

@ lnn�
@ lnA

=
@ lnn�
@ ln I�

@ ln I�
@ lnA

+
@ lnn�
@ lnw�

@ lnw�
@A

+
@ lnn�
@ ln p�

@ ln p�
@ lnA

; (45)

@ lnn�
@ ln�

=
@ lnn�
@ ln I�

@ ln I�
@ ln�

+
@ lnn�
@ lnw�

@ lnw�
@ ln�

+
@ lnn�
@ ln p�

@ ln p�
@ ln�

: (46)

On the other hand, the income and price elasticities for nt are given by

@ lnnt
@ ln It

= 1; (47)

@ lnnt
@ lnwt

= 0; (48)

@ ln ct
@ ln pt

= �1; (49)

for all t. Combining equations (30), (31), (36), (37), and (44) to (49), we get

�n�
n�

=

�
p� � �A
p�

�
�A

A
+
�A

p�

��

�
:

However, from equation (6), we know that p���A = �. Using this identity with the above equation,
we obtain

�n�
n�

=
�

p�

�A

A
+
�A

p�

��

�
;

which we set out to prove.

By de�nition,
�l�
l�

=
@ ln l�
@ lnA

�A

A
+
@ ln l�
@ ln�

��

�
: (50)

Applying the chain rule, we obtain

@ ln l�
@ lnA

=
@ ln l�
@ ln I�

@ ln I�
@ lnA

+
@ ln l�
@ lnw�

@ lnw�
@A

+
@ ln l�
@ ln p�

@ ln p�
@ lnA

; (51)

@ ln l�
@ ln�

=
@ ln l�
@ ln I�

@ ln I�
@ ln�

+
@ ln l�
@ lnw�

@ lnw�
@ ln�

+
@ ln l�
@ ln p�

@ ln p�
@ ln�

: (52)
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On the other hand, the income and price elasticities for lt are given by

@ ln lt
@ ln It

= 1; (53)

@ ln lt
@ lnwt

= ��ct + wtlt
ct + wtlt

; (54)

@ ln lt
@ ln pt

= 0; (55)

for all t. Finally, combining equations (30), (31), (33), (34), and (50) to (55), we get

�l�
l�

=
(1� �) c�
c� + w� l�

�A

A
;

which is positive if � < 1, zero if � = 1, and negative if � > 1. That completes the proof.

A.2.4 Proof of Proposition 4

By de�nition,
�u�
u�

=
@ lnu�
@ lnA

�A

A
+
@ lnu�
@ ln�

��

�
: (56)

Applying the chain rule, we obtain

@ lnu�
@ lnA

=
@ lnu�
@ ln I�

@ ln I�
@ lnA

+
@ lnu�
@ lnw�

@ lnw�
@A

+
@ lnu�
@ ln p�

@ ln p�
@ lnA

; (57)

@ lnu�
@ ln�

=
@ lnu�
@ ln I�

@ ln I�
@ ln�

+
@ lnu�
@ lnw�

@ lnw�
@ ln�

+
@ lnu�
@ ln p�

@ ln p�
@ ln�

: (58)

On the other hand,

@ lnut
@ ln It

= 1; (59)

@ lnut
@ lnwt

= �wtlt
It
; (60)

@ lnut
@ ln pt

= � (1� �) ; (61)

for all t. Combining equations (30), (31), (33), (34), (36), (37), and (56) to (61), we get

�u�
u�

=

�
1� w� l�

I�
+
(1� �)�w�

p�

�
�A

A
+
(1� �)�w�

p�

��

�
:
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However, from the budget constraint, we know that w� l� = I� � ct � �pt. Using this identity with
the above equation, we obtain

�u�
u�

=

�
c� + �p�
I�

+
(1� �)�w�

p�

�
�A

A
+
(1� �)�w�

p�

��

�
� 0;

which we set out to prove.

A.2.5 Proof of Proposition 5

By de�nition,
�N�

N� =
@ lnN�

@ lnA

�A

A
+
@ lnN�

@ ln�

��

�
:

Di¤erentiating equation (12), we get

@ lnN�

@ lnA
= 1;

@ lnN�

@ ln�
=

�n�

(1� �)T + �n� :

Combining the three equations above, we obtain

�N�

N� =
�A

A
+

�n�

(1� �)T + �n�
��

�
: (62)

On the other hand, from equation (14), we know that

w� =
�n�

(1� �)T + �n� :

Rearranging the above expression, we obtain

�w�

�
=

�n�

(1� �)T + �n� : (63)

Finally, inserting equation (63) into equation (62), we obtain

�N�

N� =
�A

A
+
�w�

�

��

�
> 0;

which we set out to prove.
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A.2.6 Proof of Proposition 6

By de�nition,
�I�

I�
=
@ ln I�

@ lnA

�A

A
+
@ ln I�

@ ln�

��

�
(64)

Log-di¤erentiating equation 13, we obtain

@ ln I�

@ lnA
= 0; (65)

@ ln I�

@ ln�
= ��w

�

�
: (66)

Combining equations (64), (65), and (66) we get

�I�

I�
= ��w

�

�

��

�
< 0;

as desired.

By de�nition,
�w�

w�
=
@ lnw�

@ lnA

�A

A
+
@ lnw�

@ ln�

��

�
(67)

Log-di¤erentiating equation (14), we obtain

@ lnw�

@ lnA
= 0; (68)

@ lnw�

@ ln�
= ��w

�

�
: (69)

Combining equations (67), (68), and (69), we get

�w�

w�
= ��w

�

�

��

�
< 0;

as desired.

By de�nition,
�p�

p�
=
@ ln p�

@ lnA

�A

A
+
@ ln p�

@ ln�

��

�
(70)

Log-di¤erentiating equation (15), we obtain

@ ln p�

@ lnA
= 0; (71)

@ ln p�

@ ln�
= ��w

�

�
: (72)
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Combining equations (70), (71), and (72), we get

�p�

p�
= ��w

�

�

��

�
< 0;

as desired.

A.2.7 Proof of Proposition 7

By de�nition,
�c�

c�
=
@ ln c�

@ lnA

�A

A
+
@ ln c�

@ ln�

��

�
: (73)

Applying the chain rule, we obtain

@ ln c�

@ lnA
=

@ ln c�

@ ln I�
@ ln I�

@ lnA
+
@ ln c�

@ lnw�
@ lnw�

@A
+
@ ln c�

@ ln p�
@ ln p�

@ lnA
; (74)

@ ln c�

@ ln�
=

@ ln c�

@ ln I�
@ ln I�

@ ln�
+
@ ln c�

@ lnw�
@ lnw�

@ ln�
+
@ ln c�

@ ln p�
@ ln p�

@ ln�
: (75)

Combining equations (41), (42), (43), (65), (66), (68), (69), (73), (74), and (75), we get

�c�

c�
= �c

� + �w�l�

c� + w�l�
�w�

�

��

�
< 0;

which we set out to prove.

By de�nition,
�l�

l�
=
@ ln l�

@ lnA

�A

A
+
@ ln l�

@ ln�

��

�
: (76)

Applying the chain rule, we obtain

@ ln l�

@ lnA
=

@ ln l�

@ ln I�
@ ln I�

@ lnA
+
@ ln l�

@ lnw�
@ lnw�

@A
+
@ ln l�

@ ln p�
@ ln p�

@ lnA
; (77)

@ ln l�

@ ln�
=

@ ln l�

@ ln I�
@ ln I�

@ ln�
+
@ ln l�

@ lnw�
@ lnw�

@ ln�
+
@ ln l�

@ ln p�
@ ln p�

@ ln�
: (78)

Combining equations (53), (54), (55), (65), (66), (68), (69), (73), (74), and (75), we get

�l�

l�
= � (1� �) c

�

c� + w�l�
�w�

�

��

�
;

which is negative if � < 1, zero if � = 1, and positive if � > 1. This completes the proof.
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A.2.8 Proof of Proposition 8

By de�nition,
�u�

u�
=
@ lnu�

@ lnA

�A

A
+
@ lnu�

@ ln�

��

�
:: (79)

Applying the chain rule, we obtain

@ lnu�

@ lnA
=

@ lnu�

@ ln I�
@ ln I�

@ lnA
+
@ lnu�

@ lnw�
@ lnw�

@A
+
@ lnu�

@ ln p�
@ ln p�

@ lnA
; (80)

@ lnu�

@ ln�
=

@ lnu�

@ ln I�
@ ln I�

@ ln�
+
@ lnu�

@ lnw�
@ lnw�

@ ln�
+
@ lnu�

@ ln p�
@ ln p�

@ ln�
: (81)

Combining equations (59), (60), (61), (65), (66), (68), (69), (71), (72), (79), (80), and (81), we get

�u�

u�
= ��I

� � w�l�
I�

�w�

�

��

�
: (82)

On the other hand, from equations (8) and (9), we obtain

ct + wtlt = �It;

for all t. Therefore,

�I� � w�l� = c�:

Using the above identity with equation (82), we obtain

�u�

u�
= � c

�

I�
�w�

�

��

�
;

which we set out to prove.
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