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Abstract

The Forward Search Algorithm is a statistical algorithm for obtaining robust
estimators of regression coe¢ cients in the presence of outliers. The algorithm
selects a succession of subsets of observations from which the parameters are
estimated. The present note shows how the theory of empirical processes can
contribute to the understanding of how the subsets are chosen and how the
sequence of estimators is changing.
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1 Introduction

The paper by Atkinson, Riani and Ceroli, henceforth ARC, is concerned with detection
of outliers and unsuspected structures which is rather important in practice. This is
done through a Forward Search Algorithm. The statistical analysis of such algorithms
poses many challenging problems, and we would like to contribute to the theory of the
algorithm in this discussion.
We establish some results in a simple case for a single iteration of the algorithm using

empirical process theory. This would then have to be extended to more models, and
developed further to understand the properties of the full algorithm. The established
results suggest that the heuristic results from ARC could be correct if the parameters
were known, but not when the parameters are estimated.
A general reference for empirical process theory is the monograph by Koul (2002)

which analyses weighted empirical processes. Some further developments are made in
Johansen and Nielsen (2009) which we exploit here. For simplicity we only consider
a simple location-scale problem but the results would generalize to regressions and
time-series regressions.
The discussion is organized so that the algorithm is described in §2. Some potential

results are described in §3. The analysis of a single step of the algorithm is then
provided for the known parameter case in §4 and for the unknown parameter case in
§5. We conclude in §6 and leave some proofs to an Appendix.

2 The algorithm

We consider the regression problem yi = �+�"i; i = 1; : : : ; n; where the i.i.d. "i follow a
known distribution function F and symmetric density f, with mean zero and variance 1.
The distribution is assumed to be continuous and to satisfy some regularity conditions
for smoothness which are met by the standard normal distribution, see Johansen and
Nielsen (2009, Assumption A). The absolute standardized error j"ij has distribution
function G satisfying G(u) = P(j"ij � u) = F(u) � F(�u); and u = G�1( ) is the
 -quantile of G and its density is g(u) = 2f(u):

2.1 Description of the algorithm

We start with some initial robust location estimator �̂ and an initial observation set of
size m0: This set is constructed by calculating absolute residuals r̂i = jyi � �̂j; �nding
their order statistics r̂(i), and de�ning the initial observation index set of size m0 as
the m0 observations closest to �̂; that is

S(m0)
� = fi : jyi � �̂j � r̂(m0)g:

The algorithm then proceeds in the steps
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1. Given an index set S(m)� calculate estimators

�̂(m) = m�1P
i2S(m)�

yi; (�̂(m))2 = m�1P
i2Sm(yi � �̂(m))2;

residuals r̂(m)i = jyi � �̂(m)j; and their order statistics r̂(m)(i) for i = 1; : : : ; n:

2. Test whether the residual nearest to the observations in S(m)� does not correspond
to an outlier. In ARC the test is based upon

u
(1)
test = min

i62S(m)�

r̂
(m)
i =�̂(m);

but we suggest to use
u
(2)
test = r̂

(m)
(m+1)=�̂

(m):

3. In the next step we either continue with step 1 or stop the algorithm.

(a) If the test based on the nearest residual does not reject, then de�ne

S(m+1)� = fi : r̂(m)i � r̂
(m)
(m+1)g

and return to 1.

(b) If the test rejects, then set m̂ = m and de�ne the terminal estimators
�̂n = �̂(m̂); �̂n = �̂(m̂) and the observation set Ŝn = S

(m̂)
� :

An important problem is to determine distributions of test statistic and estimators
in the case of a sample without outliers.
ARC suggest that the initial estimator �̂ could be chosen as the least trimmed

squares estimator, see Rousseeuw (1984). This is constructed by choosing some m >
n=2 and �nding

�̂(LTS;n;m) = argmin
�

Pn
i=1(r

(�)
i )

21
(r
(�)
i �r(�)

(m)
)
; r

(�)
i = jyi � �j: (2.1)

2.2 Comments on the choice of test statistic

Comment 2.1 The motivation for the test statistic �̂(m)u(2)test = r̂
(m)
(m+1) is that it will

be the largest of the residuals with index in S(m+1)� : The rank of the observation r̂(m)(m+1)

may, however, not enter S(m)� :

Comment 2.2 The index sets S(m+1)� are constructed independently of the choice of
test statistic, u(1)test or u

(2)
test:

Comment 2.3 In general the test statistics u(1)test and u
(2)
test will be di¤erent. Three

results follow.
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1. the statistic �̂(m)u(1)test = mini62S(m)�
r̂
(m)
i suggested by ARC is not an order statistic

of the residuals r(m)i , because S(m)� is based on the previous set of residuals r̂(m�1)i :

2. it holds u(1)test � u
(2)
test: Indeed, if S

(m)
� is the ranks of r(m)(1) ; : : : ; r

(m)
(m) then these

statistics are equal. If S(m)� does not have this form then the complement of S(m)�
must include one of the ranks of r(m)(1) ; : : : ; r

(m)
(m):

3. The di¤erence between the two test statistics relates to the distance j�̂(m�1)��̂(m)j
and is therefore likely to be unimportant.

As a numerical example consider the data set

(�13;�8;�5; 5; 6; 7; 8):

The initial estimator is chosen as the sample average �̂ = �y = 0: The absolute residuals
are then

(r̂i)
n
i=1 = (13; 8; 5; 5; 6; 7; 8):

An initial index set of size 3 is then the ranks S(3)� = (3; 4; 5) pointing at the observations
(�5; 5; 6): Now, in the �rst step of the algorithm compute the estimator and absolute
residuals

�̂(3) = 2; (r̂
(3)
i )

n
i=1 = (15; 10; 7; 3; 4; 5; 6):

Then u(1)test is based on
min
i62S(3)�

r̂
(3)
i = min(15; 10; 5; 6) = 5;

whereas u(2)test is based on the order statistic r̂
(3)
(4) = 6: Regardless of the choice of

test statistic the updated index set is S(4)� = (4; 5; 6; 7) pointing at the observations
(5; 6; 7; 8): Note that

(3; 4; 5) = S(3)� 6� S(4)� = (4; 5; 6; 7);

so the sets S(m)� are not in general increasing.

3 Some potential results

In order that the Forward Search Algorithm can be applied with con�dence it is im-
portant to derive the distributions of the test statistics and the estimators. It would
also be of interest to see if the sets S(m)� are monotone in m:

3.1 Consistency

One would like to have a result as the following
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Potential Theorem 3.1 If the initial estimator (�̂; �̂2) is consistent for n!1, and
if m =  n+O(1) for 0 <  < 1; or if m = m̂; then it holds that �̂(m) and �̂(m) have a
probability limit.

Comment 3.1 We do not have a general proof of such a result, but some examples
are given in §5. One can note here that the di¤erence between order statistics from
i.i.d. observations are of the order of OP(n�1); so averaging order statistics which are
that close to the initial (consistent estimator) will at most give a deviation from this
of the order of OP(n�1); and hence should not disturb consistency. If we could �nd the
probability limit of �̂(m) and �̂(m); we could correct the estimators to give consistent
estimators, see ARC §3.3, and Theorem 5.3.

3.2 Monotonicity

The next result is alluded to in a number of places in ARC, even though it is realized
that it does not hold without some conditions.

Potential Theorem 3.2 The sets S(m)� are monotone

S(m)� � S(m+1)� ; m = 2; : : : ; m̂:

Comment 3.2 As it stands it is unfortunately false, as seen in the example in Com-
ment 2.3. If in general we have found S(m)� for some m; and want to add one point to
S
(m)
� ; call it ym+1; then the new average becomes

�y(m+1) = �y(m) +
1

1 +m
(ym+1 � �y(m)):

Thus, if for instance ym+1 > �y(m); the average is moved up by (ym+1 � �y(m))=(m + 1)
which is of the order ofm�1 � n�1: The distance between order statistics is of the order
of n�1; so if one of the observations in S(m) is close to the lower boundary of the band
de�ning S(m)� ; then it could easily happen that it falls outside when the band is moved
up by (ym+1 � �y(m))=(m+ 1). Thus a point can leave the band when another is added
even for large m: This event may have small probability, however, so the following
result could hold, but we have no proof.

Potential Theorem 3.3 The sets S(m)� are monotone with probability tending to one,
that is for m =  n+O(1) as n!1 then

P(S(m)� � S(m+1)� )! 1;

or, perhaps,
1

n�m0 + 1

Pn
m=m0

1
(S
(m)
� �S(m+1)� )

P! 1:
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3.3 The test statistics

In ARC it is suggested to �nd the distribution of the test statistics by simulation, and
it is argued that it could be costly measured by computer time. An approximation
is suggested in §3.3 of ARC, using the theory of order statistics, and in a previous
paper (Atkinson and Riani, 2006) another approximation based on order statistics is
suggested.
One would like to show that the test statistics are asymptotically normal.

Potential Theorem 3.4 If the initial estimators (�̂; �̂) are consistent for n ! 1,
and m =  n+O(1); or m = m̂; and if (�̂(m); �̂(m)) is consistent, then the test statistic

n1=2f(�̂(m))�1r̂(m)(m+1) � u g

is asymptotically normally distributed.

CommentWe can prove this result under suitable conditions and we have collected
these contributions in §5, where we outline a general strategy for �nding these limit
distributions.

4 The case of known location and scale

When the parameters are known, the residuals are ri = jyi��j = �j"ij, which we order
as r(1) � � � � � r(m). Then

S(m)� = fi : jui � �j � r(m)g; m = 2; 3; : : : ; m̂:

In this case we clearly have S(m)� � S
(m+1)
� so Theorem 3.2 is correct.

The empirical distribution function of j"ij = jyi � �j=� is denoted

Gn(u) = n�1
nX
i=1

1(j"ij�u):

The order statistics r(m) have the well known relation

��1r(m) � u, m

n
� Gn(u) since Gn(��1r(m)) =

m

n
; (4.1)

which transforms expressions in order statistics into expression involving the empirical
distribution function.
Moreover, u(1)test = u

(2)
test = ��1r(m) and the distribution is given by the expression (5)

in ARC by applying (4.1) as

P(��1r(m) � u) = Pfm
n
� Gn(u)g =

Pn
j=m

�
n

j

�
G(u)jf1� G(u)gn�j: (4.2)
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Thus, the distribution suggested as an approximation in ARC would in fact be the
exact distribution if the parameters were known.
In Atkinson and Riani (2006) another approximation to the distribution of the test

statistic is suggested. It is argued that if m is proportional to n; then we are essentially
working in a truncated distribution where 100 % have been included in the sample.
Thus, it is suggested to approximate the distribution of the test statistic u(j)test = ��1r(m)
by the distribution of the largest of m observations, zi say, where zi are drawn from
the truncated distribution G(u)= for 0 � u � u . By the same methodology as in
§3.3 of ARC we then get the approximate result

P(��1r(m) � u) � P(max
i�m

zi � u) =
�
 �1G(u)

	m
=
h�
 �1G(u)

	 in
; (4.3)

which is suggested as an approximation, which is clearly di¤erent from (4.2).
Yet another way of arguing is that when we have already used r(1); : : : ; r(m) to

construct S(m)� and the estimator �̂(m); then signi�cance of r(m+1) could be evaluated
in the conditional distribution given r(1); : : : ; r(m); and that is given by

P(��1r(m+1) � ujr(1); : : : ; r(m)) =
�

1� G(u)
1� G(��1r(m))

�n�m
; u � ��1r(m):

This distribution can be interpreted as the distribution of the smallest observation
among n�m observations ri = jyi � �j with density ��1g(��1r)=f1� G(��1r(m))g for
r � r(m) and could be used for a conditional test of the next residual given what has
already been used.

5 The case of unknown location and scale

We assume we have n1=2-consistent estimators (�̂; �̂2) = (�; �2)+OP(n�1=2) and de�ne
r̂i = jyi � �̂j; with order statistics r̂(i): We de�ne ~r = r̂(m) and

~� = m�1
nX
i=1

yi1(jyi��̂j�~r); (5.1)

~�2 = m�1
nX
i=1

(yi � ~�)21(jyi��̂j�~r): (5.2)

We �nd stochastic expansions and limit distributions of ~r and the one-step estimators
(~�; ~�2), which are based upon the m observations closest to the initial estimator �̂.
When applied to the �rst iteration of the algorithm then �̂; �̂2; r̂(m) represent the

initial estimator �̂ and residual r̂(m) along with some suitable variance estimator so
~� = �̂(m0) and ~� = �̂(m0):
When applied to a later iteration of the algorithm then �̂; �̂; r̂(m) represent �̂(m�1);

�̂(m�1); r̂
(m�1)
(m) so ~� = �̂(m) and ~� = �̂(m).
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5.1 The asymptotic expansions

We �rst �nd an expansion of the test statistic u(2)test = �̂�1~r which can be applied to
�nd the asymptotic distribution of the test for di¤erent choices of estimators (�̂; �̂2),
and then give expansions of the one-step estimators ~� and ~�2; which show how the
estimator is changed from initial estimators (�̂; �̂2) to one-step estimators (~�; ~�2). The
proofs are given in the Appendix.

Theorem 5.1 If m =  n+O(1) and if (�̂� �; �̂2 � �2) 2 OP(n�1=2) then

n1=2(�̂�1~r � u ) = �
1

2f(u )
n�1=2

Pn
i=1f1(j"ij�u ) �  g

� u 
2
n1=2(��2�̂2 � 1) + oP(1):

Theorem 5.2 If m =  n+O(1) and if (�̂��; �̂2��2) 2 OP(n�1=2) then the estimator
~� de�ned in (5.1) satis�es

n1=2(~�� �) =
�

 
n�1=2

Pn
i=1"i1(j"ij<u ) +

2u f(u )

 
n1=2(�̂� �) + oP(1):

Theorem 5.3 If m =  n+O(1) and if (�̂��; �̂2��2) 2 OP(n�1=2) then the estimator
~�2 de�ned in (5.2) satis�es ~�2 P!  �1�

u 
2 ; where �u 2 =

R u 
�u u

2f(u)du:

We therefore de�ne ~�2corrected =  ~�2=�
u 
2 : It holds

n1=2f��2~�2corrected � 1g = (�
u 
2 )

�1n�1=2
Pn

i=1("
2
i �  �1�

u 
2 )1(j"ij<u )

� (�u 2 )�1(u4 �  �1�
u 
2 )n

�1=2Pn
i=1f1(j"ij�u ) �  g+ oP(1):

Comment 5.1 Note that these results are all derived for symmetric distributions. If
this assumption is dropped, a bias term will appear in some asymptotic distributions
and terms including n1=2(�̂� �) will appear in Theorems 5.1, 5.3.

5.2 Examples

We illustrate these results by �nding the asymptotic distribution of the test statistic
for di¤erent choices of initial estimators (�̂; �̂2).
First, for comparison we give the result for the test statistic for known parameters,

where we re-discover a classical result on the asymptotic distribution of order statistics,
see for instance David (1981, Theorem 9.2, p. 255).

Corollary 5.1 If m =  n+O(1) and if �̂ = �; �̂ = � then

n1=2(��1~r � u )
D! N[0;

 (1�  )

f2f(u )g2
]:
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Proof of Corollary 5.1. In the expansion of Theorem 5.1 the second term drops
out since �̂ = �: Then apply the Central Limit Theorem to the �rst term.

Alternatively, initial estimators could be chosen as full sample estimators �̂ =
n�1

Pn
i=1 yi and �̂

2 = n�1
Pn

i=1(yi � �y)2. This changes the limit distribution.

Corollary 5.2 If m =  n+O(1) and if (�̂; �̂2) are the full sample estimators then

n1=2(�̂�1~r � u )
D! N[0;

 (1�  )

f2f(u )g2
+
u2 
2
f1 + �

u 
2 �  

u f(u )
g]:

Proof of Corollary 5.2. Apply Theorem 5.1 by inserting the expansion

n1=2(��2�̂2 � 1) = n�1=2
Pn

i=1("
2
i � 1) + oP(1)

to get that n1=2(�̂�1~r � u ) equals

� 1

2f(u )
n�1=2

Pn
i=1f1(j"ij�u ) �  g � u 

2
n�1=2

Pn
i=1("

2
i � 1) + oP(1):

This is asymptotically normal with a variance as indicated.

Comment 5.2 In general we get a di¤erent limit distribution for the test statistic
when the variance is estimated. Note the curious result that for the standard normal
distribution we �nd

�
u 
2 =

Z u 

�u 
"2f(")d" =

Z u 

�u 
f(")d"� ["f(")]"=u "=�u =  � 2u f(u ):

so the asymptotic variance in Corollary 5.2 becomes f2f(u )g�2 (1� )�u2 =2; which
is less than the variance we get for known parameters.

Finally, we shall see what happens when we choose �̂ as the least trimmed squares
estimator �̂(LTS;n;m) de�ned in (2.1). A stochastic expansion of �̂(LTS;n;m) is given by
Ví�ek (2006, Theorem 1, p. 215) as

n1=2(�̂(LTS;n;m) � �) =
�

 � 2u f(u )
n�1=2

Pn
i=1"i1(j"ij�u ) + oP(1): (5.3)

Corollary 5.3 If m =  n+O(1) and �̂ = �̂(LTS;n;m) we �nd the expansion

n1=2(~�� �) =
�

 � 2u f(u )
n�1=2

Pn
i=1"i1(j"ij�u ) + oP(1);

so that the limit distribution is

n1=2(~�� �)
D! N[0;

�2�
u 
2

f � 2u f(u )g2
]:

If F is standard normal then �u 2 =  � 2u f(u ) so the variance is �2=�
u 
2 :
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Proof of Corollary 5.3. Insert Ví�ek�s expansion (5.3) in Theorem 5.2 to get

n1=2(~�� �) =
�

 
f1 + 2u f(u )

 � 2u f(u )
gn�1=2

Pn
i=1"i1(j"ij�u ) + oP(1)

=
�

 � 2u f(u )
n�1=2

Pn
i=1"i1(j"ij�u ) + oP(1):

This converges to a normal distribution with the variance as indicated.

Comment 5.3 Thus, if the initial estimator �̂ has the expansion of the least trimmed
squares estimator, then so does the one-step estimator ~�: In this sense the least trimmed
squares estimator is a "�xed point" in the mapping from the initial estimator to the
one-step estimator. ARC do indeed suggest, possibly for other bene�cial reasons, to
start with the least trimmed squares estimator. A similar result holds if the initial
estimator is the Huber skip, which has the same expansion and limit distribution as
the least trimmed squares estimator, see Johansen and Nielsen (2009).

6 Some �nal comments

6.1 The simulation method

The above theoretical results indicate that the idea of judging signi�cance using the
exact theory of order statistics, seems to be �ne if parameters are known. But if
parameters are estimated the (asymptotic) distributions change, depending on the
choice of initial estimator.
Thus it would be very helpful with some simulations of the algorithm, as it is used,

to check if asymptotic distributions can describe the variation of estimators and tests.
We have seen that di¤erent initial estimators give di¤erent (limit) distributions. There
may also be a problem for very large  ; where a di¤erent asymptotic theory may be
needed.

6.2 Generalizations

The results of Johansen and Nielsen (2009) cover models with general �xed or random
regressors, as well as time series regressions, both stationary and non-stationary. Tools
to study the general theory of empirical processes for residuals of such models are
outlined in Engle and Nielsen (2009). So it is possible to extend the theory of the
Forward Search Algorithm much beyond what we have indicated in this discussion.

6.3 Algorithms for time series

In §7 of ARC it is suggested �However, many things remain to be developed in the
application of the Forward Search in the time series context, such as ... the construc-
tion of an algorithm which can automatically distinguish among the di¤erent types of
outliers and level shifts�.

10



While it could prove very useful to develop extensions of the Forward Search to
time series one should bear in mind that the algorithm Autometrics by Doornik (2009)
building on the work of Hoover and Perez (1999) and the PcGets algorithm of Hendry
and Krolzig (2005) has been developed for this purpose.
In any case, it is a bit surprising to see in ARC that the results suggested for

regression analysis be applied to ozone data where the residuals are likely to be auto-
correlated.

A Proofs of main theorems

The proofs exploit Theorem 1.17 of Johansen and Nielsen (2009); see also their equation
1.46. For (â; b̂) = OP(n�1=2) and ` = 0; 1; 2; it was shown under regularity conditions
that

n�1=2
Pn

i=1"
`
if1(j"i�b̂j�a+â) � 1(j"ij�a)g = a`�1n1=2(â�

u 
`+1 + b̂�

u 
` ) + oP(1); (A.1)

where, for a symmetric density �u 2j = 0 and �
u 
2j+1 = 2u

2j+1
 f(u ) for j = 0; 1; : : :

Proof of Theorem 5.1. In order to �nd the asymptotic distribution of the test
statistic �̂�1~r we expand as

n1=2(
~r

�̂
� u ) = n1=2

�

�̂
f( ~r
�
� u )� u (

�̂

�
� 1)g:

Since �̂2 � �2 = OP(n
�1=2) then ��1�̂ � 1 = (��2�̂2 � 1)=2 + oP(n�1=2) and �̂�1� =

1 + oP(1): It follows that

n1=2(
~r

�̂
� u ) = n1=2f( ~r

�
� u )�

u 
2
(
�̂2

�2
� 1)gf1 + oP(1)g+ oP(1): (A.2)

The �rst term in (A.2), is now shown to be asymptotically normal

n1=2(
~r

�
� u )

D! Nf0;  (1�  )

2f(u )
g: (A.3)

The quantile ~r satis�es bGn(~r=�) = m=n where bGn(r) = n�1
Pn

i=1 1(j"i���1(�̂��)j<r) is an
empirical distribution function; see (4.1). Thus it holds

Pn
def
= Pfn1=2( ~r

�
� u ) � zg = Pf ~r

�
� u + n�1=2zg

= Pfm
n
� bGn(u + n�1=2z)g = P(0 � Gn);

where

Gn = n1=2fbGn(u + n�1=2z)� m

n
g = n�1=2

Pn
i=1[1(j"i���1(�̂��)j<u +n�1=2z) �

m

n
]:
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This can be expanded as

Gn = n�1=2
Pn

i=1f1(j"ij<u ) �  g

+ n�1=2
Pn

i=1[1(j"i���1(�̂��)j<u +n�1=2z) � 1(j"ij<u )] + n1=2( � m

n
): (A.4)

Here, the �rst term is asymptotically Nf0;  (1 �  )g: Applying (A.1) with ` = 0;
a = u ; â = n�1=2z; b̂ = ��1(�̂ � �) the second term is 2f(u )z + oP(1): The third
term vanishes by assumption. Thus, Gn is asymptotically Nf2f(u )z;  (1 �  )g: In
particular, it follows that

Pn
def
= Pfn1=2( ~r

�
� u ) � zg ! �f 2f(u )zp

 (1�  )
g:

In turn, ~r is asymptotically normal as stated in (A.3).
Next, an expansion for ~r is derived. Since bGn(~r=�) = m=n then

n1=2fbGn( ~r
�
)�  g = n1=2(

m

n
�  ) = oP(1);

by the assumption to m: Expanding the left hand term as in (A.4) then gives

n�1=2
Pn

i=1f1(j"ij<u ) �  g+ n�1=2
Pn

i=1[1(j"i���1(�̂��)j<��1r̂(m)) � 1(j"ij<u )] = oP(1):

Applying (A.1) with ` = 0; a = u ; â = ��1~r � u ; b̂ = ��1(�̂� �) then shows

n�1=2
Pn

i=1f1(j"ij<u ) �  g+ 2f(u )n1=2(��1~r � u ) = oP(1):

Solving this equation for n1=2(��1~r � u ) gives the desired expansion when inserted
into (A.2).

Proof of Theorem 5.2. The estimator ~� satis�es

~�� � = m�1Pn
i=1(yi � �)1(jyi��̂j�~r) =

n

m
n�1

Pn
i=1(yi � �)1(j"i���1(�̂��)j<��1~r):

Adding and subtracting 1(j"ij<u ) and using yi = �+ �"i it holds

m

n
��1n1=2(~�� �) = n�1=2

Pn
i=1"i1(j"ij<u )

+ n�1=2
Pn

i=1"if1(j"i���1(�̂��)j<��1~r) � 1(j"ij<u )g:

Here, m�1n!  by assumption. The �rst term on the right converges in distribution
by the central limit theorem. Applying (A.1) with ` = 1; a = u ; â = ��1~r � u ;

b̂ = ��1(�̂ � �) the second term is 2u f(u )��1n1=2(�̂ � �) + oP(1): Inserting these
results gives the desired expansion.
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Proof of Theorem 5.3. The estimator ~�2 satis�es

��2~�2 �  �1�
u 
2 = m�1Pn

i=1f��2(yi � �̂)2 �  �1�
u 
2 g1(jyi��̂j�~r):

Using yi � �̂ = �"i � (�̂� �) then

��2(yi � �̂)2 �  �1�
u 
2 = ("2i �  �1�

u 
2 ) + ��2(�̂� �)2 � 2��1(�̂� �)"i;

while 1(jyi��̂j�~r) = 1(j"i���1(�̂��)j<��1~r) as before. We de�ne the functions h2(u) =
u2 �  �1�

u 
2 ; h1(u) = "; and h0(u) = 1; and, for ` = 0; 1; 2;

S` = n�1=2
Pn

i=1h`("i)1(j"i���1(�̂��)j<��1~r) = n�1=2
Pn

i=1h`("i)1(j"ij<u ) +R`;

R` = n�1=2
Pn

i=1h`("i)[1(j"i���1(�̂��)j<��1~r) � 1(j"ij<u )];

so that
m

n
n1=2f��2~�2 �  �1�

u 
2 g = S2 + ��2(�̂� �)2S0 � 2��1(�̂� �)S1: (A.5)

For S2 the �rst term converges in distribution by the central limit theorem. Applying
(A.1) with ` = 2 and ` = 0, a = u ; â = ��1~r � u ; b̂ = ��1(�̂ � �); the second term
is R2 = 2f(u )(u

4
 �  �1�

u 
2 )n

1=2(��1~r � u ) + oP(1): It follows that

S2 = n�1=2
Pn

i=1("
2
i �

�
u 
2

 
)1(j"ij<u ) + 2f(u )(u

4
 �

�
u 
2

 
)n1=2(��1~r � u ) + oP(1):

Inserting the expression for ~r from Theorem 5.1 with �̂ = � then shows

S2 = n�1=2
Pn

i=1("
2
i �

�
u 
2

 
)1(j"ij<u ) � (u4 �

�
u 
2

 
)n�1=2

Pn
i=1f1(j"ij�u ) �  g+ oP(1):

The terms S0 and S1 are OP(1) by a similar argument. These terms, are however,
pre-multiplied by vanishing terms in that �� � = OP(n�1=2) by assumption. Inserting
these results in (A.5) noting that m�1n!  by assumption shows

 n1=2f��2~�2 �  �1�
u 
2 g = S2 + oP(1):

With ~�2corrected =  ~�2=�
u 
2 the left hand side becomes

�
u 
2 n1=2f��2~�2corrected � 1g

and the desired result follows.
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