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Abstract

The strategic commitment moves that game theory predicts players make
may sometimes seem counter-intuitive. We therefore conducted an experiment
to see if people make the predicted strategic move. The experiment uses a sim-
ple bargaining situation. A player can make a strategic move of committing to
not seeing what another player will demand. Our data show that subjects do,
but only after substantial time, learn to make the predicted strategic move. We
find only weak evidence of physical timing effects.

Keywords: Strategic moves; commitment; bargaining; strategic value of in-
formation; physical timing effects; endogenous timing; experiment.

JEL Classification: C72; C78; C90; C92; D63; D80.

1 Introduction

A crucial insight from game theory is that a player involved in an interactive situation
can gain from making what Schelling (1960) calls a strategic move. Well-known ex-
amples are moving before someone else to get a first-mover advantage (Bagwell, 1995,
Huck and Müller, 2000, and Schelling, 1960); signing contracts with third-parties
(Aghion and Bolton, 1985, and Bensaid and Gary-Bobo, 1993); burning money (Ben-
Porath and Dekel, 1992, van Damme, 1989, Huck and Müller, 2005); strategic delega-
tion (Fershtman and Gneezy, 2001, Fershtman and Kalai, 1997, and Schelling, 1960);
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Werner Güth, and Hans-Theo Normann for their comments. Toke Fosgaard, Mads Harmsen, and
Frederik Øvlisen from the LEE lab in Copenhagen gave professional lab assistance. Financial support
from the Danish Social Science Research Council (Poulsen) is gratefully acknowledged.

†Fakultät für Wirtschaftswissenschaft, Ruhr-Universität Bochum, D-44780 Bochum, Germany.

1

mailto:poulsen@uea.ac.uk


changing the information structure (Hauk and Hurkens, 2001, Hurkens and Vulkan,
2006, and Schelling, 1960) or controlling the flow of information (Brocas and Carrillo,
2007).

These important game-theoretic results about strategic moves lead naturally to
the question: Do players in practice understand the usefulness of making such strate-
gic moves? This is, we believe, a non-trivial issue: the strategic moves mentioned
above involve a deliberate restriction of one’s freedom of action, a reduction of one’s
payoffs in certain outcomes, or an avoidance of information. Such moves may appear
irrational and unattractive, and players may consequently avoid them. Also, bounded
rationality or cognitive biases could lead players to underestimate or completely ig-
nore the impact of the strategic move on the other players’ behavior. Such biases have
been experimentally documented in other, mostly non-strategic, decision problems.
See Loewenstein, Moore, and Weber (2006) and the references therein.

It seems highly relevant to investigate if players understand the strategic role of
information since many important interactive economic situations involve decisions
about how much information to collect. Some examples are negotiators engaging in
fact finding missions before sitting down at the negotiating table, and bidders going
to viewing days to get a feel for the value of the items on sale (see Hauk and Hurkens,
2001, and Hurkens and Vulkan, 2006). It is useful when considering such situations
to know the extent to which players make the theoretically predicted strategic move
since deviations from the prediction could have sizeable economic implications for the
players.

To shed empirical light on these questions we conducted an experiment using a
simple bargaining situation based on the Nash Demand Game (Nash, 1953). In our
first treatment a player, B, has the opportunity to make a strategic move of seeing or
not seeing what another player, A, has demanded before player B makes a demand,
and this strategic move is observed by player A before he makes his own demand. We
call this move strategic information avoidance. Our second treatment is the same as
the first except for the fact that player B’s strategic move is not observed by player A.
The theoretical model predicts that player B avoids information in the first and obtains
it in the second treatment. The crucial role of the visibility of the strategic move was
emphasised early on in Schelling (1960). We also test a related theoretical result and
intuition, namely that behavior in the situation where player B’s strategic move is not
observed by player A is the same as in the situation where player B makes the strategic
move after player A has moved. This hypothesis is of some interest since experimental
research have shown that the order of moves can influence behavior although game
theory predicts it should not; see for example Güth, Huck, and Rapoport, 1998, Weber,
Camerer, and Knez, 2006, and Huck and Müller, 2005. This is referred to as ‘physical
timing effects’ or ‘virtual observability’. Finally we consider the hypothesis that when
player B’s strategic move is unobserved players behave in the same way as in the
situation where player B has no commitment option available.

Other experimental papers have studied issues related to strategic moves and in-
formation acquisition. Fischer, Güth, Müller, and Stiehler (2006) consider the case
where a second mover is with a certain probability informed about the first mover’s
action. Fonseca, Müller, and Normann (2006) consider the choice of when to move
(endogenous timing), and hence how much information to possess, in a duopoly game.
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Studying the ultimatum game Poulsen and Tan (2007) consider the decision of Pro-
posers whether or not to learn the Responders’ smallest acceptable offers. We discuss
how our experiment relates to these contributions in Section 6 below.

The main purpose of the experiment is to see if people make the predicted strategic
move in the various strategic environments described above. Our experimental find-
ings can be summarized as follows: First, players learn to correctly distinguish between
situations where being informed is optimal and those where it is best to avoid informa-
tion. It does however take more time for players to learn to avoid harmful information
than it does for them to learn to obtain beneficial information; indeed, in the latter
case most players make the optimal strategic move right from the start. Second, we
find no evidence of a persistent physical timing effect. We find some weak evidence
of such an effect in the initial periods of the experiment but it becomes insignificant
over time. Finally, we find as predicted by game theory no significant behavior differ-
ences between the case where commitment is unobserved and when no commitment is
available at all. Overall, our findings show that players’ make the predicted strategic
moves when they have sufficient time to understand the situation and to learn the
appropriate behavior. Game theory seems to correctly predict the strategic moves
people make, at least in the simple situations investigated in our experiment.

The rest of the paper is organized as follows. In Section 2 we develop the theo-
retical background. Section 3 formulates our hypotheses and Section 4 describes the
experiment. Section 5 reports our findings and these are discussed and related to the
existing literature in Section 6. Section 7 concludes and outlines some possible future
research. The Appendix contains proofs.

2 Theoretical Predictions

2.1 The Games

Our experiment is based on four games: A game where a player’s strategic move is
made and observed by the other player before the latter chooses an action (called the
‘Commitment game’); a second game where the strategic move is made at the same
time as in Commitment game but is unobserved (‘Unobserved Commitment’); a third
game where the strategic move is made after the other player has decided on an action,
and hence is trivially unobserved (‘No Commitment’); and, finally, a game where no
strategic move is available (‘Benchmark’). In what follows we describe these games
more precisely and develop some predictions.

There are two players, A and B, and a sum of money, denoted X. Let ǫ > 0 denote
the smallest monetary unit. The set of feasible demands is D = {0, ǫ, 2ǫ, ..., X− ǫ,X}.
We assume that X is even, that ǫ is such that X/2 ∈ D, and that ǫ < X/2. Denote
player i’s demand by xi, i = A,B, where xi ∈ D. If xA + xB ≤ X, each player gets
what he demanded. If xA + xB > X, each player gets zero. We assume all players
are rational and seek to maximize their expected money earnings, and that this is
common knowledge.
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2.1.1 The Commitment Game (C)

In the C game player B first irrevocably decides whether or not to see the demand
that player A will make. We refer to this as player B’s information decision. Player A
observes which information decision player B made, and then player A makes his de-
mand. Player B then sees player A’s demand or not, as determined by his information
decision. Finally player B makes his demand.

2.1.2 The Unobserved Commitment Game (UC)

In the UC game Player B first irrevocably decides whether or not to see player A’s
demand, as in the Commitment game. Player A does however not learn player B’s
information decision. In other words, player A knows that player B has made some
information decision (to see or not to see player A’s demand), but player A does not
know which information decision player B made. Then player A makes a demand.
After this player B sees player A’s demand or not, as determined by player B’s infor-
mation decision. Finally player B makes his demand.

Any difference between behavior in the C and UC game is due to the observability
or otherwise of player B’s information decision.

2.1.3 The No Commitment Game (NC)

In the No Commitment game player B has no opportunity to commit to see player
A’s demand or not before player A makes a demand. The order of moves are: player
A first makes a demand. Then player B decides whether or not to see player A’s
demand. Finally, player B makes his demand.

The UC and NC games are strategically equivalent. Any difference in behavior
is solely due to a physical timing effect, as described in the papers mentioned in the
Introduction.

2.1.4 The Benchmark Game (BM)

The Benchmark game is a sequential Nash demand game with perfect information.
Player A first makes a demand. Player B sees player A’s demand, and then player B
makes his demand.

2.2 Equilibria

There is a multiplicity of Nash equilibria in our bargaining games. To obtain a unique
prediction we select among equilibria by making some assumptions. The first one is
specific to the Commitment game. Suppose player B decides not to see player A’s
demand. It is then common knowledge in the subgame that follows that player B
has not seen player A’s demand when player B makes his demand. Any feasible pair
of demands (xA, xB) such that xA + xB = X is a Nash equilibrium of this subgame.
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We assume players in this subgame select the Nash equilibrium where each player
demands half the surplus. This assumption can be justified by noticing that it is
the only equilibrium that equates the players’ earnings (apart from the implausible
equilibrium where each player demands the entire surplus), and this makes it a ‘focal’
equilibrium (Schelling, 1960).

The second assumption is that players do not play dominated strategies. Given
these assumptions we obtain the following predictions for our games. We first charac-
terize the BM game since this makes it easier to characterize the Commitment game.

Proposition 1. a. The Benchmark game has two pure-strategy subgame-perfect equi-
libria. In the first subgame-perfect equilibrium player A demands x∗

A = X, and player
B demands x∗

B = X−xA for any demand xA made by player A. In the second subgame-
perfect equilibrium player A demands x∗

A = X−ǫ, and player B demands x∗

B = X−xA

for any demand xA < X, and makes some demand x∗

B > 0 for xA = X. In any
subgame-perfect equilibrium of the Benchmark game player B therefore gets at most ǫ
and player A gets at least X − ǫ.

b. The subgame-perfect equilibrium of the Commitment game is: Player B decides
not to see player A’s demand, and player B demands half of the money when it is his
turn to make a demand; if player A observes that player B decided not to see player
A’s demand, player A demands half of the money; and if player A observes that player
B decided to see player A’s demand, then one of two subgame-perfect equilibria of the
ensuing subgame, which is similar to the Benchmark game, is played.

c. The unique equilibrium in undominated strategies of the UC game is that player
B decides to see player A’s demand, and the players’ equilibrium demands are identical
to those in the Benchmark game.

d. The unique equilibrium in undominated strategies of the NC game is the same
as that for the UC game.

Proof: Please see the Appendix.

3 Hypotheses

We use four treatments corresponding to our theoretical games: The Commitment (C),
the Unobserved Commitment (UC), the No Commitment (NC), and the Benchmark
(BM) treatment. Based on the theoretical results in the previous section we formulate
the following hypotheses:

Hypothesis 1 (information decision): Player B avoids information about
player A’s demand in the C treatment, but obtains the information in the UC treat-
ment.

Hypothesis 2 (no physical timing effect:) Player B makes the same informa-
tion decision in the NC treatment as in the UC treatment.

Hypothesis 3 (demands): Part A: If in the C treatment Player B decides not
to see player A’s demand then each player demands half the surplus. Part B: Player
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A and B demands in the Benchmark treatment equal those in the C treatment when
player B decides to see A’s demand. These in turn equal the demands in the UC and
NC treatments.

The first half of Part B in Hypothesis 3 follows from the fact that the subgame played
in the C game when player B sees player A’s demand is identical to the BM game.

4 Experimental Procedures

The experiments took place in the spring and fall of 2006 at the Laboratory for Exper-
imental Economics (LEE) at University of Copenhagen, Denmark. The experiment
was programmed and conducted with the software z-Tree (Fischbacher, 2007). The
ORSEE system (Greiner, 2004) was used for recruitment.

4.1 Subjects

In total 254 subjects, recruited from across the University of Copenhagen, participated
in the experiment. Subjects received a show-up fee of 50 Danish Kroner (DKK), equal
to about US $ 9 at the time of the experiment. On average a session lasted 45 minutes.
There were 4 sessions with 74 subjects for the Benchmark treatment. For the C (UC)
[NC] treatments sessions and subjects numbers were 4 and 72 (3 and 44) [4 and 64].
Average earnings across all treatments, including the show-up fee, was DKK 171.6, or
about US $ 30.9.

4.2 Experimental Procedure

After entering the laboratory each subject was seated in front of a computer. All
computers were separated by cubicles and no verbal or visual communication between
subjects took place during the experiments. Once all subjects had read the instruc-
tions, a test was distributed. When all students had answered the test questions the
experimenters checked all answers. If a subject gave an incorrect answer to a ques-
tion, he was asked to try again. Any questions about the instructions or the test were
answered privately. Once all subjects had answered all test questions correctly, this
was announced and the experiment began.

The experiment consisted of 15 periods. At the start of the experiment each subject
was randomly given the player A or the player B role. A subject stayed in the same
role for all 15 periods. In each period one A player was randomly matched with a
B player. The set of feasible point demands was {0, 1, 2, ..., 99, 100} (i.e. X = 100
and ǫ = 1). At the end of each period both players were informed about each other’s
demands, about player B’s information decision, and about their own point earnings.
After the last period the points a player had earned in each period were summed and
converted into Danish Kroner (DKK), using the following exchange rate: 5 points
is equal to DKK 1 (so 100 points equals DKK 20, or about US $ 3.6). After the
experiment this number of Danish Kroner was, together with the show-up fee, paid
privately to each subject in a separate room.
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5 Experimental Results

5.1 Player B’s Information Decision

Figure 1 shows for each of the 15 periods the percentage of B players who decided not
to see player A’s demand in the C, UC, and NC treatments.

0
20

40
60

80
10

0
%

0 5 10 15
Period

C NC UC

Figure 1: Percentage of B players who decide not to see player A’s demand in the C,
UC, and NC treatments.

In the C treatment less than 40 % of B players initially avoid seeing player A’s demand.
This percentage rises steadily over time, and towards the end more than 85 % of
the B players avoid seeing player A’s demand. The average across all periods is
70.7 %. Behavior in the two other treatments differ markedly: in the NC treatment
the percentage fluctuates between 5 and 20 %. The average is 11.2 %. In the UC
treatment there is a initially a slight increase in the percentage of B players who avoid
information, but the percentage seems later to stabilize around 10 %. The average is
18.2 %.

To put these results on a firmer footing, and to study the dynamics of individual
behavior over time, we proceed with an econometric analysis of player B’s information
decision. We first regress the fraction of B players who decide not to observe player
A’s demand in period t, denoted NOt, on treatment dummies Ti, i = UC,NC (the C
treatment is the reference group), and a linear time trend, PERIODt:

NOt = β0 + β1TUC + β2TNC + (β3 + β4TUC + β5TNC)PERIODt + εt. (1)
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β0 β1 β2 β3 β4 β5 ρ R2 DWo DWt #
coeff .41 -.27 -.33 .035 -.035 -.033 .69 .50 .56 2.41 165
σ .10 .13 .11 .007 .007 .007
p .003 .071 .015 .000 .000 .001

Table 1: Aggregate behavior. ρ denotes the coefficient of the first-order autoregressive
error term; DWo is the Durbin-Watson statistic of the original model with ρ = 0; DWt

is the Durbin Watson statistic for the transformed model controlling for autocorrela-
tion; σ are robust standard errors adjusted for cluster effects.

This specification allows us to compare the UC and NC treatments with the baseline
C treatment.1

The results of estimating (1) are summarized in Table 1. The intercept β0, which
measures the initial fraction of B players that make the predicted strategic move of
not seeing player A’s demand, is significantly larger than zero but also significantly
smaller than one (Wald test, p = 0.0002). This means that at the beginning of
the experiment a large fraction of B players do not make the predicted information
decision. Nevertheless, as the trend coefficient β3 is positive, more and more B players
make the predicted information decision over time. On average, the share of these
B players increases by 3.5 percentage points in each period. This can be interpreted
as evidence that B players learn to behave strategically over time. The 15 periods,
however, are not enough for every subject to learn the strategic move: the trend
prediction, β0 + 15β3 = 0.935, is still significantly smaller than one (Wald test, p =
0.0026).

In the UC treatment the initial fraction of B players who decide not to see player
A’s demand is much lower than in the C treatment. In fact, the intercept for the
UC treatment, β0 + β1 = 0.14, is not statistically different from zero (Wald test,
p = 0.1327). This means that on average B players in the UC treatment make the
commitment decision that is theoretically predicted. Moreover, this behavior does not
change over time as there is no significant trend (β3 + β4 = 0, Wald test, p = 0.638).

Studying the aggregate proportion of B players who make the predicted strategic
move tells us little about the nature of any learning. Although as just seen there is an
aggregate trend in the data, individual subjects could switch back and forth between
the two information decisions, contradicting that they actually learn how to behave
optimally. To test for learning, we estimate a panel probit model for the probability
that player B individual i in period t decides not to observe player A’s demand as
a function of time. If this probability is positively related to the time variable this
provides evidence that the individual has learnt over time. Moreover, we would expect
that a subject who learnt to make the optimal information decision sticks to this choice.

1Two econometric problems arise when we want to estimate this model with data pooled over time
and across sessions. First, there may be session-specific effects, due to the repeated interaction of the
same individuals within a session. In order to control for such potential session effects, we correct
for intra-group correlation (such correlation would otherwise violate the assumption of independent
observations) by using the clustered sandwich estimator for the standard errors. Second, if some
dynamic effects are not captured by the linear time trend there will be autocorrelation in the error
term. We deal with this potential problem by assuming first-order autocorrelation in the error term
and using the Prais-Winston estimator to estimate the model.
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If so, the probability of making the predicted information decision of not seeing player
A’s demand should depend positively on having made this information decision in the
previous period.

Denoting the decision by player B individual i to not see player A’s demand at
time t by noit, a straightforward model to test for individual learning is the following
panel probit model:

P (noit = 1|xit) = G(γ0 + γ1noit−1 + γ2PERIODt), (2)

where G(·) is the standard normal cumulative distribution function. If individuals
learn, we should expect γ1 > 0 and γ2 > 0.

A potential problem with this specification is that the individual observations may
not be independent.2 We deal with this by explicitly modeling the potential source
of dependence. The independence assumption may be wrong if B players use past
experience to update their beliefs about how A players respond to the B players’
information decision. If B players change their beliefs and their information decision
in response to their past earnings experience, this is equivalent to saying that they
learn to make the predicted information decision. If we include a plausible measure
of past experience with each information decision, we can capture the presence of
learning, and this should ensure independent errors.

For each period t we compute the average payoff that B player i received after
choosing to observe player A’s demand:

πo
it =

∑t

τ=1
oiτπiτ

∑t

τ=1
oiτ

,

where oiτ is an indicator function equal to 1 if player B chose to observe player A’s
demand in period τ and 0 otherwise. Analogously, we define πno

it as the average payoff
of player B after choosing not to observe the demand of player A. Both measures
capture the earnings feedback player B receives after having made the information
decision. We therefore estimate an alternative panel probit model for the B subjects
in the C treatment:

P (noit = 1|xit) = G(δ0 + δ1PERIODt + δ2π
no
it−1

+ δ3π
o
it−1

). (3)

Theoretically, we expect πno
t > πo

t . If there is learning based on past earnings (‘rein-
forcement’ learning), then subjects should pursue the optimal information decision and
avoid the inferior one. In that case we expect δ2 > 0 and δ3 < 0. However, subjects
might during the course of the experiment come to understand that the strategic move
of not seeing A’s demand is optimal, irrespective of their past earnings experience. In
that case δ1 > 0 should hold.

Table 2 presents the results of the panel probit estimations for the C treatment3.

2We thank an anonymous referee for stressing this point.
3All the models were also estimated with session dummies in order to control for session effects,

but the dummies were never significant at the conventional 5% level.
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1 2 3 4 5
cons -.61 -.80 -1.01∗ -.29 .40

(.38) (.61) (.42) (.68) (.44)
noit−1 .79∗∗

(.27)
PERIODt .17∗∗ .08 .10∗∗ .23∗∗ .11∗

(.04) (.04) (.04) (.03) (.05)
πno

it−1
.05∗∗ .05∗∗

(.01) (.01)
πo

it−1
-.00 -.03
(.01) (.02)

πno
it−1

− πo
it−1

.03∗∗

(.01)
Pseudo R2 .23 .22 .22 .22 .19
AIC 299.8 136.7 163.3 268.9 140.1
# 504 257 389 372 257

Table 2: Individual behavior. Standard errors in parentheses. AIC: Akaike Informa-
tion Criterion. ** 1%, * 5%

The estimated coefficients of model (2) are reported in the first column. All are sig-
nificantly positive, as expected. The probability of making the predicted information
decision increases over time and it is also positively related to having made this infor-
mation decision in the previous period. This is evidence for learning at the individual
level.

Model (3) is estimated in the table’s second column. Only the estimate of δ2 is
significantly positive. The period coefficients δ1 and δ3 are insignificant at the 5% level.
This is evidence of learning through positive earnings feedback. As a robustness check
we also estimate the model with the each of the two experience variables individually
(see the third and fourth column). The trend coefficient is once more positive. If we
only include πo

it−1
the estimated coefficient is negative, as expected, and significantly

different from zero at p = 0.065.

Instead of recalling and being influenced by the previous payoffs from each infor-
mation decision separately, subjects may consider the difference between the average
payoffs, πno

it−1
−πo

it−1
. To test this hypothesis we estimate the model with the constraint

δ2 = −δ3; see the fifth column. The estimated coefficient of the difference between the
average profits is significantly positive and so is the trend.

In conclusion, not only do more subjects in the C treatment make the predicted
information decision over time, they seem to learn this based on past experience.
Furthermore, since the trend coefficient is significantly positive there seems to be an
additional kind of learning taking place, which we attribute to an enhanced under-
standing over time of the structure of the game itself. We can summarise all the above
in

Result 1. There is clear evidence that B players in the Unobserved Commitment
treatment make the predicted strategic move of seeing player A’s demand, and that B
players in the Commitment treatment learn to make the predicted strategic move of
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not seeing player A’s demand. We fail to reject Hypothesis 1.

5.2 Physical Timing Effects

The difference in physical timing between the UC and the NC games could make player
B more likely to avoid seeing player A’s demand in the UC than in the NC treatment.
Figure 1 shows that on average and especially in the earlier periods fewer B players
decide to see player A’s demand in the UC than in the NC treatment. Over time
however behavior in the UC and NC treatments become indistinguishable. Indeed,
based on the estimation of model (1) in the previous section, the joint hypothesis
β1 = β2 and β4 = β5 cannot be rejected (Wald test, p = 0.631). We find no evidence
in favour of a physical timing effect. Summarizing, we can formulate

Result 2. There is no evidence of a persistent physical timing effect. We fail to reject
Hypothesis 2.

The results from the existing experimental literature can help explain why there is no
persistent physical timing effect in our experiment. Our bargaining game is sequential
and asymmetric, so physical timing cannot work as a symmetry breaker, as in Huck
and Müller (2005). Moreover, since player B in all treatments makes his demand
after player A, player B is in a relatively weak position, as the Responder in the
Ultimatum Game (of course, due to reciprocity and fairness concerns they in practice
get a higher payoff than what is theoretically predicted). The fact that player B in the
UC treatment makes his information decision before player A makes his demand can
not, according to the data, compensate for this weakness. Finally, not seeing player
A’s demand is a weakly dominated strategy for player B and, as pointed out by Güth,
Huck, and Rapoport (1998), this weakens any physical timing effect. See also the
findings in Weber, Camerer, and Knez (2006) and Huck and Müller (2005).

5.3 Demands

5.3.1 Hypothesis 3A

Figure 2 shows player A’s and B’s average demands in each period in the C treatment
conditional on whether or not player B decided to see player A’s demand. Figure
3 shows the relative frequency distributions of player A and B demands. In the C
treatment player A demands 50 points in 343 out of the 382 cases (89.8%) where player
B decided not to see player A’s demand. Player B demands 50 points in 337 out of the
same 382 cases (88.2%). Pooling all player A and B demands across periods, player
A and B on average demand 49.5 and 50.2 points respectively when player B decided
not to see player A’s demand. When player B decides to see player A’s demand, the
average across-period player A and B demands are 63.3 and 42.8, respectively.

In order to test for these and other differences we estimate a panel regression model:

xk,it = α0 + α1TC + α2TUC + α3TNC + (α4TC + α5TUC + α6TNC)noit + εit, (4)

11
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Figure 2: Average player A and B demands in the C treatment, conditional on player
B’s information decision.

where xk,it is the demand of player i of type k = A,B in period t, Tj with j =
C,UC,NC are treatment dummies (with BM as the reference treatment), and noit

an indicator variable taking the value 1 when player B decides not to see player A’s
demand.4. Table 3 shows the results.

The coefficient α4 is for both player A and player B different from zero at any
conventional significance level, indicating, as shown in Figure 2 and 3, that player B’s
information decision clearly impacts on both players’ subsequent demand behavior in
the C treatment. We cannot reject the hypothesis that both players coordinate on the
50:50 split when player B makes the strategic move of not seeing player A’s demand,
as α0 + α1 + α4 is not different from 50 (Wald tests, p = 0.632 for xA and p = 0.417
for xB).

Result 3. In the C treatment there is strong evidence that the 50:50 split is focal when
player B does not see player A’s demand. We cannot reject Hypothesis 3A.

4We estimate a random effects model by GLS with robust standard errors adjusted for cluster
effects in the sessions. The Breusch-Pagan LM test strongly rejects the null hypothesis of no random
errors. The model was estimated with a linear time trend, but the trend coefficient is not significantly
different from zero, which means that the demands do not change over time within the treatments.
We also tested for autocorrelated error terms using the Wooldridge (2002) test for serial correlation
in panel-data models, but did not find evidence of autocorrelation at any conventional significance
level.
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Figure 3: Relative frequency distributions of player A and B demands in the C treat-
ment, conditional on player B’s information decision.

5.3.2 Hypothesis 3B

Table 4 shows the average player A and B demands (denoted xA and xB), average
point earnings (πA and πB), and average efficiency (πA + πB) in the treatments. In
the UC and NC treatments player A’s demands do, by definition, not vary with player
B’s information decision. The player B point earnings in the first and the last row
differ only in the second decimal (they equal 34.62 and 34.64, respectively).

If player B in the C treatment decides to see player A’s demand, the game is the
same as the BM game, so demands should be indistinguishable. This is what we find
in Table 3, as the dummy for the C treatment, α1, is not significantly different from

α0 α1 α2 α3 α4 α5 α6 R2 #
coeff 60.33 2.97 -.57 -.60 -13.61 1.42 -.80 .18 1905

xA σ 1.45 2.23 2.75 2.10 1.73 1.39 .95
p .000 .181 .837 .776 .000 .307 .402
coeff 43.93 -1.33 .14 3.73 8.24 4.81 1.76 .05 1905

xB σ 1.67 2.24 2.61 1.99 1.85 .65 1.51
p .000 .553 .957 .061 .000 .000 .245

Table 3: Individual player A and B demands. Panel estimations with random effects;
robust standard errors adjusted for cluster effects.
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xA xB πA πB πA + πB

BM 60.2 43.4 48.9 34.6 83.5
C: player B does not see A’s demand 49.6 50.2 46.1 46.3 92.4

C: player B sees A’s demand 63.3 42.8 45.9 31.2 77.1
UC: player B does not see A’s demand 59.9 49 23.8 21.4 45.2

UC: player B sees A’s demand 59.9 43.6 46.6 33.7 80.3
NC: player B does not see A’s demand 59.5 48.7 28.3 25.9 54.2

NC: player B sees A’s demand 59.5 47.2 46.3 34.6 80.9

Table 4: Average player A and B demands, point earnings, and efficiency, computed
as averages across all periods.

zero for both player A and B.

Result 4. When in the C treatment player B decides to see player A’s demand, de-
mands are equal to those in the Benchmark treatment. We cannot reject the first part
of Hypothesis 3B.

Consider next the demands in the UC and the NC treatment when player B de-
cides to observe player A’s demand. Player A demands are not different between the
two treatments as α2 = α3 cannot be rejected (Wald test, p = .992) Since both
coefficients are not significantly different from zero there is also no difference from
the BM treatment. For player B, the demand in the NC treatment is slightly higher
than in the BM treatment, but again there is no significant difference between NC
and UC (Wald test, p = 0.104). Comparing C with NC and UC, the only significant
difference is that B players in the NC treatment make larger demands than those in
the C treatment, α1 < α3 (Wald test, p = 0.004). This difference can be attributed
to the fact that if player B decides to be informed player A knows this in the C but
not in the NC treatment; player A then reacts by making larger demands in C than
in the NC treatment and player B responds by demanding correspondingly less in C
than in the NC treatment. This is consistent with α1 > α3 for player A, although the
difference is not statistically significant.

Result 5. When in the UC and the NC treatment player B decides to see player A’s
demand, player A demands are equal in the C, UC, and NC treatments. Player B’s
demands are equal in the UC and BM and in the UC and NC treatments. However,
demands in the NC treatment are larger than those in the BM and C treatments. We
cannot reject the second part of Hypothesis 3B for player A, but (weakly) do so for
player B.

Let us consider efficiency. As shown in Table 4, efficiency is 92.4 % when player B
in the C treatment decides not to see player A’s demand. In the Benchmark treatment
efficiency is 83.5. Pooling all observations across time, we find that the difference in
these percentages is highly significant (Chi-square test, df = 1, X2 = 18.2, p < 0.001).
When player B in the C treatment sees player A’s demand efficiency is only 77.1
%. Comparing with the Benchmark treatment the difference is again very significant
(Chi-square test, df = 1, X2 = 4.36, p < 0.05). Overall, efficiency in the C treatment
is 87.4 %. On comparing with the Benchmark treatment the difference is once more
highly significant (Chi-square test, df = 1, X2 = 4.28, p < 0.05). The explanation
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for the efficiency difference between the Benchmark treatment and the C treatment
when player B avoids seeing player A’s demand is quite straightforward. In the Bench-
mark treatment player B frequently ‘rejects’ large player A demands by deliberately
demanding more than the residual. These rejections seem to be driven by the same
reciprocity and fairness concerns that are observed in the ultimatum game. In the
Benchmark treatment about 22 % of B players demand more than 35 when player A
demands 65; if player A demands 70, 75, or 80 the percentages are 32, 35, and 70
%. This reduces efficiency. In the C treatment, on the other hand, when player B
commits to not see player A’s demand the players avoid disagreement by coordinating
on the equal split.

6 Discussion

Our work is related to several other contributions. Using a sequential bargaining game
Fischer, Güth, Müller, and Stiehler (2006) experimentally vary the probability that the
second mover will observe the first mover’s choice (see also Güth, Müller, and Spiegel,
2006). In their setup the probability with which the first mover’s choice will be seen
by the second mover is exogenous. Our paper is related to theirs in that it provides
an answer to the question: if the second mover could influence the probability of
observing the first mover’s demand, would the second mover understand that it would
serve his or her interests best to set the probability equal to zero? Our theoretical
answer is that the second mover should decide not to see the first mover’s action when
this decision is observed by the first mover, and our data show that subjects learn to
understand this.5

Poulsen and Tan (2007) use the ultimatum game to study if information acqui-
sition interacts with fairness considerations. In their main treatment the Responder
commits to a smallest acceptable offer (SAO), and the Proposer decides at the same
time whether or not to observe the Responder’s SAO. Poulsen and Tan consider if
fairness concerns influence if players decide to obtain information that is predicted to
be useful for a decision maker seeking to maximize expected money earnings, but they
do not consider if harmful information is avoided. The main innovation of the current
experiment is the C treatment, to which there is no analogue in Poulsen and Tan’s
experiment.6

Our paper is also related to the literature on games with endogenous moves (‘timing
games’). See for example Fonseca, Huck, and Normann (2005) and Fonseca, Müller,
and Normann (2006). In these (mostly duopoly) games, the order of moves is endoge-

5In the light of the setup in Fischer et. al. (2006), it could be interesting to adapt our model such
that player B, instead of making a yes/no information decision, decides on a probability of seeing
player A’s demand. In the C game, player A then observes the probability but not the realization.
This version would correspond to the setup in Fischer et. al. (2006) if the observation probability
in the latter model were chosen by the second mover and so endogenous. We conjecture that the
second mover would then decide to set the probability equal to zero, as is done in the C game. I
thank Werner Güth for indicating this relationship between the models.

6In Poulsen and Tan’s ‘Information’ treatment the Proposer commits to seeing the Responder’s
SAO or not and the Responder decides on a SAO. The Proposer then makes an offer either seeing the
SAO or not as decided at the first stage and the offer is then accepted or rejected by the Responder
according to the chosen SAO.
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nous. The literature seeks to understand whether sequential or simultaneous move
games arise. In our design the order of moves is fixed and players instead decide
on how much they would like to know when making a move. Nevertheless, from a
game-theoretic point of view moving after another player but not knowing what the
player did is the same as moving simultaneously. Our design is therefore the same
as a timing game where one player moves first and the other player decides between
being an informed second mover or to move at the same time as the first player.7 Our
data show that the predictions made by the theory of endogenous timing are, when
sufficient learning has taken place, borne out for our bargaining experiment: players
learn that if the other player can condition his decision on one’s timing decision it is
better to move at the same time as the other player than to wait and see what he or
she did.

To which extent does our main finding, that players learn to optimally condition
their strategic move on the strategic environment, generalize to other strategic sit-
uations? It is instructive to compare our findings with those from Fonseca, Müller,
and Normann (2006). In their two-period duopoly quantity-setting game with observ-
able delay (Hamilton and Slutsky, 1990) the unique equilibrium is that both players
produce in period 1; in fact, moving in period 1 is a dominant strategy. In spite of
this a substantial proportion of subjects decide to wait and move in period 2. The
authors offer several explanations for their finding, such as inequality aversion and
a preference for waiting, in order to resolve strategic uncertainty about the order of
moves, although this is disadvantageous.

It is not entirely clear why our results differ from those in Fonseca, Müller, and
Normann’s experiment. One explanation, pointed out by an anonymous reviewer, is
that it can be easier for players to understand the value of commitment in some envi-
ronments, such as our bargaining environment, than in other more complex situations.
In a simple bargaining situation such as those captured by the Nash demand game
a player will, after some learning, come to understand that deciding to move second
makes one vulnerable to exploitation by first movers; in a duopoly game on the other
hand players must not only learn this but must also at the same time learn the more
complex underlying relationship between the players’ output choices and profits. This
hypothesis is consistent with the finding in Fonseca et. al. (2006) that the proportion
of players who decide to wait falls but only very slowly. Understanding which strategic
contexts are conducive for learning strategic moves and which ones are not seems a
fruitful area for future research.

7 Conclusion

Game theory predicts that rational and self-interested players optimally exploit any
strategic commitment opportunity. Strategic commitments, such as ‘burning the
bridge’, can however appear counterproductive or be too cognitively demanding for
people to use in practice. We conducted a simple experiment using a simple bargain-
ing game to see whether or not people make the predicted strategic move. Our data

7The formal structure of our C game corresponds to a bargaining game with endogenous timing
and with observable delay (Hamilton and Slutsky, 1990).
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show that the experimental subjects do after some time learn to make the predicted
strategic move. Our results imply that the game theoretic intuition and modeling of
strategic moves seem, at least in our simple setup and once players has been given
enough time to understand the situation, to have a solid empirical foundation.

8 Appendix

8.1 Proof of Proposition 1:

a. In any subgame-perfect Nash equilibrium of the BM game player B demands
x∗

B = X − xA when observing that player A demanded xA with xA < X. If player
A demands the entire surplus, xA = X, player B is indifferent between his feasible
demands so any demand is optimal. It follows that the BM game has two pure-strategy
subgame-perfect equilibria, described in the proposition.

b. Suppose first player B decides to see player A’s demand. The subgame that
follows is identical to the BM game, so in any subgame-perfect equilibrium of the C
game player B gets at most ǫ if he sees player A’s demand. Suppose next player B
decides not to see player A’s demand. With the assumption that the equal split results
it follows that player B in any subgame-perfect equilibrium of the overall game gets
half of X if he decides not to see player A’s demand. Since by assumption X/2 > ǫ it
is optimal for player B to decide not to see player A’s demand.8

c. There are many Nash equilibria in this game and in some of them player B does
not see player A’s demand.9 However the following result provides an argument for
ignoring any equilibrium where player B does not see player A’s demand. Consider
the player B strategy that sees and best replies to any player A demand xA, that is
demands X−xA for any xA < X and makes some demand y ∈ D for xA = X. Denote
this strategy sBR,y and denote the set of all such strategies BR.

Lemma 1. Each of the strategies in BR weakly dominates any other player B strategy
not in BR.

Proof. Consider first any player B strategy that does not see player A’s demand and
demands x; denote this strategy sx. Since sBR,y best replies to player A’s demand
it by definition earns at least as high a payoff against any player A demand as sx.
Furthermore, sBR,y earns a strictly higher payoff than sx against any player A demand
xA < X satisfying X − x < xA or xA < X − x. Next, compare sBR,y and any player
B strategy, denote it s′, that sees player A’s demand but is not in the set BR defined
above. There is then at least one player A demand x′

A < X such that s′ does not play

8A reviewer pointed out that the conclusion that player B will see player A’s demand will also
hold if it were merely assumed that some Nash equilibrium giving player B at least ǫ is played in the
subgame where player B decides not to see player A’s demand; the player B strategy of not seeing
player A’s demand and making the corresponding equilibrium demand would then weakly dominate
any player B strategy that sees player A’s demand and that, on observing that player A demands
X − ǫ or X, demands the residual.

9For example, the following strategies are in a Nash equilibrium: player B does not see player A’s
demand and demands one-half; player A demands one-half.
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a best reply to x′

A. But then sBR,y earns a strictly higher payoff against x′

A than does
s′, and since sBR,y earns at least as high a payoff against any other player A demand,
the lemma follows.

Assuming that player B avoids weakly dominated strategies it follows that player
B decides to see player A’s demand. This being common knowledge, the players’
equilibrium demands are identical to those in the BM game described above.

d. As in the UC game, the player B strategy of seeing player A’s demand and
playing a best reply weakly dominates all other strategies. The proof is identical and
hence omitted. Assuming once more that player B does not play weakly dominated
strategies, the equilibrium demands for the NC game is the same as for the UC game.
�
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