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Abstract

This paper explores a model of dynamic signaling without commitment. It is known that
separating equilibria do not exist if the sender cannot commit to future costly actions, since
no single action can have enough weight to be an effective signal. This paper, however,
shows that informative and payoff-relevant signaling can occur even without commitment and
without resorting to unreasonable off-path beliefs. Such signaling can only happen through
attrition, when the weakest type mixes between revealing own type and pooling with the stronger
types. The possibility of full information revelation in the limit hence depends crucially on the
assumptions about the state space. We illustrate the results by exploring a model of dynamic
price signaling and show that prices may be informative of product quality even if the seller
cannot commit to future prices, with both high and low prices being able to signal high quality.

Keywords: dynamic signaling, repeated signaling, reputation, attrition
JEL Codes: C73, D82, D83, L15

1 Introduction

In his seminal contribution, Spence [1973] argued that economic agents’ actions can signal their
private information, giving an example of schooling as a signal of ability in labor markets. In
the years since, researchers have extensively studied signaling models, describing the fundamental
driving forces driving them and identifying signaling patterns in a wide spectrum of applications:
from bargaining (Vincent [1990]) and limit pricing (Milgrom and Roberts [1982a,b]) to corporate
finance (Leland and Pyle [1977]) and advertising (Milgrom and Roberts [1986]).1

While most signaling models explore static interactions, dynamic signaling models may be better
suited to explore some applications. For example, the choice of price to signal product quality or the
choice of education/effort to signal worker’s ability are both inherently dynamic problems, since the
sender must in both cases repeatedly reaffirm their action choice. However, signaling in dynamic
settings has a salient conceptual problem. In the context of Spence’s story of signaling ability
through education, this problem was formulated by Admati and Perry [1987]: “Once a high ability
worker has gone to school long enough to distinguish himself from a worker of lower ability, the firms

∗This paper is based on chapter 3 of the author’s Ph.D. thesis. The author thanks Nemanja Antić, Eddie Dekel,
Jeffrey Ely, Yingni Guo, Nicolas Inostroza, Johan Lagerlöf, Alexey Makarin, Wojciech Olszewski, Marco Schwarz,
Ludvig Sinander, Peter Norman Sørensen, Bruno Strulovici and seminar participants at Northwestern University and
University of Copenhagen for valuable feedback and helpful comments.

†Department of Economics, University of Copenhagen, Øster Farimagsgade 5, bygning 26, 1353 København K,
Denmark; e-mail: egor@starkov.email.

1See Riley [2001] for an excellent survey of the early literature on signaling.
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would offer wages appropriate to a high ability worker before enough time has elapsed to present
an effective screen” (p.363). In other words, if neither workers can commit to completing their
education in the future, nor firms can commit to not hire undereducated workers, then education
cannot serve as an effective signal.2 To give a particular example: when low-ability workers are not
supposed to pursue a college degree, a single day spent in that pursuit would imply that a worker’s
ability is not low, and market wages for college dropouts would be correspondingly high – too high
to actually deter low-ability workers from enrolling in college only to drop out soon thereafter.

The literature has responded to this conceptual challenge by searching for aspects of such
dynamic interactions which would neutralize the argument above, thus enabling variations of the
dynamic signaling model in which static separation is possible. Proposed solutions include: altering
the payoffs to add intrinsic motivation for signaling (Weiss [1983]), tacit collusion on the receivers’
side to generate instrumental commitment (Nöldeke and van Damme [1990a], Swinkels [1999]),
evolving sender’s type to create the need for maintaining reputation as opposed to establishing it
once (Roddie [2012a,b]), or receivers observing noisy outcomes instead of the sender’s actions (Dilmé
[2017], Heinsalu [2018]).3 The basic case without any of the above is implicitly perceived as one
in which informative signaling is impossible – if an equilibrium even exists, that is. However, the
impossibility argument of Admati and Perry [1987] only applies to perfectly separating outcomes –
it does not preclude partial separation, meaning the outcome where certain actions act as suggestive
rather than conclusive evidence of the sender’s information. The limits of such suggestive signaling
in dynamic settings have, to our best knowledge, not been carefully investigated in the literature.
We aim to fill this gap.

This paper undertakes the mission to characterize all informative outcomes that can arise in a
general model of dynamic (a.k.a. repeated) signaling without commitment. Our main result shows
that the scope for signaling, while limited, does in fact exist in dynamic settings, contrary to the
intuition of Admati and Perry [1987]. In particular, payoff-relevant signaling is possible via what is
effectively a war of attrition, in which all sender types pool on the same action, with the lowest type
mixing between pooling with the rest and separating to a myopically optimal action. Beyond such
attrition, actions are as informative as cheap talk. The contribution of this paper is both in showing
the existence of a wedge between signaling and cheap talk in the setting under consideration – a
wedge presumed nonexistent by the existing literature, – and characterizing this wedge explicitly.

The conclusion regarding the uniqueness of attrition as an informative equilibrium outcome
leads into another message of the paper, which is methodological. The mechanism of attrition of
the lowest type can yield full separation asymptotically if there are only two types in the game but
not if there are more (but finitely many). Further, one can show that in an analog of our model
with a continuous type space, full asymptotic revelation is possible again.4 This aims to show that
one’s modelling assumptions may crucially affect the result even when they are about an object
that is as seemingly abstract and arbitrary as type space.

While the attrition structure is restrictive, it nonetheless allows for a nontrivial equilibrium
multiplicity. In addition to various possible combinations of informative and uninformative periods,

2One possible explanation for the lack of commitment is the possibility of renegotiation; see Beaudry and Poitevin
[1993].

3See Whitmeyer [2019] for a discussion regarding the sender-optimal amount of noise in signaling.
4An example of such outcome is presented by Fuchs and Skrzypacz [2010].
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multiple attrition outcomes can, ceteris paribus, be sustained in equilibrium in any given period.
These outcomes would be different in their informativeness, i.e., the probability of separation of the
lowest type. This dimension of multiplicity (as well as the range of informative outcomes sustainable
in equilibrium in a given period more generally) depends on the richness of the action set.

Our paper can be seen as formalizing the folk wisdom, since the attrition equilibrium structure
outlined above (“the high type chooses action a′, the low type mixes between a′ and a′′ with
positive probabilities”) is encountered in many applied dynamic models.5 However, in spite of
the overwhelming presence in the applied theory literature, the issue has never received a rigorous
treatment in signaling literature. Our paper amends that, demonstrating that the uniqueness of
attrition as an equilibrium structure arises in general settings well beyond the specific models
explored previously.

Our analysis relies on the restriction of off-equilibrium path beliefs to be “reasonable”. In
particular, we adopt the assumption of non-increasing belief supports or, as labeled by Bond and
Zhong [2016], NDOC (“Never Dissuaded Once Convinced”) assumption. As the name suggests, it
implies that once the receiver has ruled out some type of the sender as impossible, the receiver stands
by this belief and never again assigns positive probability to that type, including off the equilibrium
path. Kaya [2009] and Roddie [2012a,b] have shown that in the absence of NDOC full instantaneous
separation is possible in dynamic settings, since the sender’s behavior can be disciplined by strong
reputational threats in case of deviations. While the approach can be justified when the sender’s
type may change over time and hence needs constant re-verification, in other settings it is susceptible
to a critique of using unreasonable off-path threats to sustain an equilibrium – a practice typically
reproved in the literature on equilibrium refinements for static signaling games, as well as equilibrium
concepts for dynamic games.6

To illustrate, consider again the job market signaling example. In the story of Spence [1973],
high-ability students commit (during the college applications period) to obtaining a college degree.
This commitment is too costly for low-ability students, who then forego college altogether and accept
lower wages. In the absence of commitment – if a student must every day decide whether to stay in
college or drop out and pursue a job at a competitive wage – this equilibrium can still be sustained
by unreasonable employers’ beliefs off path. Such beliefs would treat any high school graduate as
high-ability as long as they are on track for a college degree – but any college dropout is immediately
downgraded to low-ability in employers’ eyes. This belief system incentivizes high-ability students
to endure all four years of college to obtain higher wages and disincentivizes low-ability students
from pursuing higher education. However, this belief system is internally inconsistent: only high-
ability students are believed to go to college in the first place, so dropouts cannot be of low ability!
NDOC rules out exactly this kind of inconsistency.

Furthermore, it feels tongue-in-cheek to even call equilibria like the one above “separating”, since
the sender of some type can never properly “separate” from other types in that scenario. While the

5Some examples include Vincent [1990], Deneckere and Liang [2006], Daley and Green [2012], Lee and Liu
[2013], Dilmé and Li [2016], Dilmé [2017], Kaya and Kim [2018] in bargaining and bilateral trade; Strebulaev, Zhu,
and Zryumov [2016] in corporate finance; Vettas [1997], Aköz, Arbatli, and Çelik [2017], Gryglewicz and Kolb
[2019], Smirnov and Starkov [2020] in industrial organization/marketing; Smirnov and Starkov [2019] in cheap talk;
De Angelis, Ekström, and Glover [2018] in Dynkin games.

6C.f. Banks and Sobel [1987] and Cho and Kreps [1987] for signaling and chapter 4 in Myerson [1997] for extensive-
form games respectively.
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receiver’s belief may assign probability zero to those other types as long as the sender plays by the
rules, these types are still perceived as possible, and the sender’s deviation from the equilibrium
path would lead the receiver to recognize these types as probable. If any tremble away from the
prescribed strategy can ruin all of the sender’s acquired reputation, then what is such reputation
worth? In contrast, the NDOC assumption allows us to explore the limits of credible signaling –
that which is not reversed by future deviations. NDOC has been widely used in applied models.7

On a separate note, NDOC has been criticized as leading to possible equilibrium nonexistence (see
Madrigal, Tan, and Werlang [1987] and Nöldeke and van Damme [1990b]). We thus characterize
the equilibria conditional on existence, without making any existence claims. Section 5, however,
provides some examples of such equilibria.

In order to illustrate our results, we explore a simple model of price signaling. In this model
a firm is privately informed about the quality of its product, and sets the price of the product in
every period in an attempt to signal this quality and increase the consumers’ willingness to pay.
We construct a family of informative equilibria in this setting and show that both inefficiently low
and inefficiently high prices are equally fit to signal high quality in equilibrium, while the literature
(some mentioned in Section 5) typically focused on one of the two as a signal. As a consequence, the
price path in informative equilibria is highly indeterminate (even beyond the dichotomy outlined
above, as we show), which makes it difficult to test empirically whether price signaling is taking
place in a given industry.8

The remainder of this paper is organized as follows. Section 2 describes the model. We then
proceed to analyze two versions of this model. The two-type version in Section 3 can be seen as an
illustrative example. The version with finitely many types is then explored in Section 4. Section 5
considers an application to price signaling and illustrates how our results can be used to construct
informative equilibria. Section 6 concludes. All proofs and a number of summplementary results are
contained in Appendix A. Further applications of the general model are briefly outlined in Appendix
B.

2 Model

2.1 Primitives

We will be looking at a continuous limit of a discrete-time infinite-horizon game. Time is indexed
by t ∈ T ≡ {0, dt, 2dt, ...}; period length dt is assumed to be arbitrarily small. There is a long-lived
agent (sender) who has some persistent type θ ∈ Θ, where Θ is a finite ordered set. Alternatively,
θ can be the state of the world that the agent is privately informed of.

In every period t the agent has to choose an action at ∈ A, where A is some compact set. Agent’s
action choices affect public outcome xt ∈ X, which is a random process, and its distribution at time
t depends on θ and at (more generally, it can depend on the whole past history).9 We assume that
outcomes never allow to perfectly identify θ: the support of xt conditional on at does not depend

7Away from Bond and Zhong [2016], one can also find analogs of NDOC in Grossman and Perry [1986], LeBlanc
[1992], Vettas [1997], Kraus, Wilkenfeld, and Zlotkin [1995], Sen [2000], Feinberg and Skrzypacz [2005], Lai [2014],
Gryglewicz and Kolb [2019], Smirnov and Starkov [2019, 2020].

8A similar point was made by Kaya [2013] in relation to signaling product quality via advertising expenditures.
9One could call xt a public “signal”; we avoid this phrasing so as to not create confusion with the process of

signaling through actions.
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on θ. Let ht ≡ {as, xs}s∈T ,s<t denote the history of agent’s past action choices and outcomes up to
(but not including) time t ∈ T . Let Ht denote the set of all such time-t histories and H ≡ ∪t∈THt
the set of all such histories.

A passive player (receiver), who is also long-lived, starts the game with some prior belief
p0 ∈ ∆(Θ) about the agent’s type. The receiver updates this belief pt every period upon observing
the agent’s action choice at and outcome xt. In shaping this belief the receiver employs Bayes’ rule
whenever possible. Off-path beliefs are described further. For specificity, we use p(ht) to denote
belief after history ht. Hereinafter, belief pt is also referred to as the agent’s reputation. For any pt,
let S(pt) ⊆ Θ be the support of belief pt, i.e., the set of types to which pt assigns positive weight.
With abuse of notation, let S(ht) ≡ S(p(ht)).

At the end of every period the agent receives flow payoff uθ(at, pt). For simplicity, we assume
that payoff uθ does not depend on outcome xt except through reputation pt. This assumption can
be relaxed as long as the payoff effect of outcomes is weak relative to reputation and the assumption
of payoff monotonicity as given in 2.3 is adjusted accordingly. Define a bliss (myopically optimal)
action set for type θ given reputation p as

B(p|θ) ≡ arg max
a∈A

{
uθ(a, p)

}
.

All in all, the intra-period timing is as follows: (1) action at is chosen; (2) outcome xt is realized;
(3) belief pt is updated; (4) payoff uθ(at, pt) is awarded.

The agent maximizes his expected discounted sum of utilities. A pure strategy for the agent of
type θ is aθ : H → A. Given some belief system p, let U θ(aθ|ht) denote the expected discounted
continuation utility of type θ from following strategy aθ starting from ht ∈ H:

U θ(aθ|ht) ≡ Eh

 ∑
s∈T ,s≥t

e−r(s−t)uθ(aθ(hs), p(hs))dt | θ, ht

 ,
where r is the agent’s discount rate. The expectation is taken over future histories or, equivalently,
over the future outcomes. Strategy aθ is optimal for the agent of type θ given belief system p(ht)

if it maximizes his continuation payoff at every history ht ∈ H:

U θ(aθ|ht) = U θ(ht) ≡ max
a

{
U θ(a|ht)

}
. (1)

With a slight abuse of notation we let U θ(ht∪a) ≡ Ex
[
maxa

{
U θ(a|ht ∪ (a, x))

}]
denote the highest

expected continuation utility that type θ can achieve conditional on taking action a at history ht.
Finally, a (behavioral) strategy for the agent of type θ is αθ : H → ∆(A). We let αθ(ht)(a)

denote the probability with which action a should be played by type θ after history ht according to
strategy αθ(ht). A behavioral strategy αθ is then optimal for θ if there exists an equivalent mixed
strategy (i.e., a probability distribution over pure strategies), such that all pure strategies in its
support are optimal.
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2.2 Equilibrium Concept

Introduced above is a dynamic game of incomplete information. The lowest common
denominator among the solution concepts used for this class of games is Perfect Bayesian
Equilibrium (PBE). In such an equilibrium, all players maximize their expected continuation payoffs
given their beliefs about other players’ actions and beliefs, and these beliefs must be consistent on
path with the players’ knowledge of the game.

Definition 1. A Perfect Bayesian Equilibrium is given by the agent’s strategy profile α = {αθ}θ∈Θ

with αθ : H → ∆(A) and the receiver’s belief system p : H → ∆(Θ) such that:
1. the agent’s strategy profile α is optimal for all types θ;
2. the observer’s belief p is updated using Bayes’ rule whenever possible.

PBE is a maximally permissive solution concept. Our main results characterize signaling in all
PBE that satisfy NDOC (as defined in the following subsection), hence they will also apply if one
imposes additional restrictions or equilibrium refinements on top of PBE with NDOC.

2.3 Assumptions

The two sections above define the primitives of the model but impose only very minimal
restrictions on them. Throughout the paper, we will also impose the following assumptions:

(MON) Flow payoff function uθ(at, pt) is weakly increasing in pt w.r.t. FOSD mass shifts.
I.e., for any p′, p′′ ∈ ∆(Θ) such that p′(θ′) > p′′(θ′), p′(θ′′) < p′′(θ′′) for some θ′ > θ′′, and
p′(θ) = p′′(θ) for all θ ∈ Θ\{θ′, θ′′}, it should be that uθ(at, p′) ≥ uθ(at, p

′′). Further, for any
θ and at, if pt >FOSD δθ then uθ (at, pt) > uθ (at, δθ).
(FIN) Equilibrium strategy α has finite support for all ht ∈ H.

(NDOC) Process pt is progressively absolutely continuous. I.e., for any hs ⊃ ht, p(hs) is
absolutely continuous w.r.t. p(ht).

In the above, as well as everything that follows, δθ is the Dirac delta: “p(ht) = δθ for some θ ∈ Θ”
is equivalent to saying that p(θ|ht) = 1 and p(θ′|ht) = 0 for all θ′ 6= θ.

Below are some conditions equivalent or related to the above, with the relations between the
respective pairs of conditions described in the subsequent text and summarized in Lemma 1.

(MON-2) Θ = {H,L} and uθ(at, pt) is weakly increasing in pt(H) and uL(at, pt) > uL(at, δL)

for all at and pt 6= δL.
(FIN-M) Action set A is finite.

(NDOC-P) After any action a that is not on path at ht ∈ H: p(ht ∪ (a, xt)) = δminS(ht) for any
xt ∈ X.10

The first assumption, (MON), requires the sender’s flow payoff function to be monotone w.r.t.
reputation pt. It is sufficient to have weak monotonicity (w.r.t. FOSD order on beliefs) with the
exception that it must always be strictly beneficial to pool with the higher types.11 This assumption

10On-pathness is defined in the usual way; see Section 4.2 for a formal definition.
11The strict part of (MON) simplifies the analysis but rules out some relevant cases. E.g., it disallows the payoff

to be a step function, which is the case when the agent only cares about his reputation being above some cutoff.
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will be imposed throughout, and in the two-type model (|Θ| = 2) it will also be the only restriction
on payoffs needed for the result. Further, in case of two types it can be written more simply as
(MON-2). In other words, if |Θ| = 2 then (MON) and (MON-2) are equivalent.

The next pair of assumptions is (FIN) and (FIN-M). The former is an equilibrium refinement
that demands that the sender’s equilibrium strategy has finite support at any history. The latter is
a restriction on the model in that the action set of the sender is finite. The analysis in the remainder
of the paper relies on one of these two conditions to hold in order to avoid the problem of Bayesian
inference from zero probability events. This problem is illustrated by the following example.

Example 1. Let Θ = {L,H}, A = [0, 1], and suppose that outcomes are uninformative: xt ≡ 0. Fix
some equilibrium and history ht ∈ H therein. Suppose that the high type’s strategy αH(ht) assigns
weight one to action a = 1, while the low type’s strategy αL(ht) mixes uniformly over all actions
a ∈ [0, 1]. By Bayes’ rule, the receiver’s belief at history ht+dt = ht ∪ (1, 0) must assign probability
one to type H and probability zero to type L. However, it is not immediate whether the receiver
must in such cases rule out type L at all histories following ht+dt (which he does if (NDOC) holds).

It is immediate that (FIN-M) is sufficient for (FIN) to hold, therefore in the remainder of
this paper we use (FIN). However, (FIN-M) is a useful reminder that in finite games no further
equilibrium refinements are required, apart from (NDOC).

Finally, (NDOC) is the assumption on the equilibrium beliefs that drives our analysis. In
particular, it says that if p(θ|ht) = 0 then p(θ|hs) = 0 for any pair of histories hs ⊃ ht in H. Note
that this applies both on and off the equilibrium path. For the discussion of (NDOC), refer to
Secton 1. To simplify the analysis, we strengthen (NDOC) to (NDOC-P), which requires that off
the equilibrium path, the receiver’s belief p(ht) must be pessimistic – it must put all weight on the
lowest type among those not yet ruled out by the receiver. Given (MON), this condition imposes
the strongest possible punishment on the sender for any deviation, among those punishments that
satisfy (NDOC). Therefore, we argue that for any equilibrium that satisfies (NDOC), there exists
an equivalent one that satisfies (NDOC-P), despite the latter being a stronger condition.

The claims made in this section are summarized by the following lemma.

Lemma 1. Model assumptions are connected through the following relations.
1. If |Θ| = 2 then (MON) and (MON-2) are equivalent.
2. (FIN-M) implies (FIN).
3. If (MON) holds then for any equilibrium that satisfies (FIN) and (NDOC), there exists a

payoff-equivalent and on-path strategy-equivalent equilibrium that satisfies (FIN) and (NDOC-
P).

2.4 Discussion of Assumptions

This section discusses the assumptions that are implicit in the model set-up so that the reader
can get a clearer picture of which aspects of the model are important for the results, and which
modelling assumptions were made purely for expositional simplicity.

To start with, the model setup includes a number of assumptions that impede with instantaneous
separation of types, namely: persistent sender’s type θ, vanishing period length, compact action
set and finite action costs. The former is required for (NDOC) to have any bite: if type could
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change over time then the sender’s reputation would need constant re-verification, meaning that
credible signaling is impossible by design. The other three assumptions are meant to remove any
implicit commitment power the sender may have (since in discrete time he can effectively commit
to not revise his action until the next period) and to remove the potential of any given single action
to be informative. All of these assumptions restrict us to the world in which, according to Weiss
[1983] and Admati and Perry [1987], perfect separation is impossible, since this is the world we are
interested in exploring.

This paper’s message is not about arguing that this is the only plausible set of assumptions in
dynamic signaling. Indeed, there are many settings in which a single action has the weight to be
informative enough by itself, or the sender has at least some commitment power, or the sender’s
type is, in fact, volatile. This paper argues instead that there exist real-world settings, to which the
aforementioned set of assumptions applies, and we as economists care about characterizing them.
For example, one such setting is price signaling by the firm – be it signaling of the firm’s product
quality to consumers or signaling of its production costs to existing and potential competitors.
Prices are typically perfectly observable and can be changed frequently at no cost.

The above raises the question of why we limit ourselves to discrete time, thus giving the sender
limited commitment power, rather than exploring a proper continuous time model. The answer is
simplicity. While the essence of our results carries over to the continuous time case, their statements
become less clear-cut, and the analysis of such model becomes encumbered by the specifics of the
continuous-time analysis. Furthermore, one can argue that discrete-time model is more general,
since continuous time is its limit (special) case.

On the other hand, finiteness of the type space is a crucial assumption. For example, if type
θ is distributed on an interval, then attrition takes a very different form from what is stated in
Theorems 1 and 2. Instead of the lowest type separating with positive probability in every period
(in which payoff-relevant signaling happens), we could have a positive mass of types at the lower
end of the support separating every period. In continuous time, the lower bound of the support of
types would increase smoothly over time along the pooling path, shrinking the support; an example
of such equilibrium is constructed by Fuchs and Skrzypacz [2010]. Importantly, such attrition could
lead to full separation in the limit as t→∞, unlike in the case with finitely many (but more than
two) types. Furthermore, we can no longer guarantee that with a continuum of types, attrition is
the only way in which payoff-relevant signaling can proceed.

Finally, we assume that the receiver is passive, and the sender receives utility from reputation
p. One may see this as a reduced form of a repeated Stackelberg game in which in every period
t the sender first chooses action at, which together with the respective outcome xt determines his
current reputation pt, and the receiver then responds with some action bt, after which both players
i ∈ {S,R} receive utilities uθi (at, bt).12 This is a standard reduction used both in signaling literature
(Kaya [2009], Roddie [2012a,b]) and other literatures (e.g., Bayesian Persuasion – see Kamenica and
Gentzkow [2011]). Given that this is by now a standard technique, we do not describe the full game
in order to economize on notation. However, our results can be easily extended to both repeated
Stackelberg games in which the sender and the receiver act in sequence in every period, and (with
slightly more effort) to repeated games in which both act simultaneously.

12The receiver’s utility may depend on true θ as long as the receiver does not observe his own utility flow.
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3 Two Types

This section explores the version of the model with only two types: Θ = {L,H}. Here we show
that signaling must take the form of attrition regardless of payoffs, as long as they are monotone
in reputation pt. The first part of Theorem 1 states that perfect separation cannot occur at any
history in equilibrium: if a given action is on path for θ = H then it is also on path for θ = L. This
statement captures the idea of Admati and Perry [1987] and Nöldeke and van Damme [1990a]. We
also observe that there may effectively be only one such pooling action in any period, in the sense
of all pooling actions must be payoff-equivalent for all types of the agent. This follows trivially from
the fact that both types must be indifferent between playing any such action if there are more than
one.

The new insight is that the converse to the first statement is not necessarily true: if αL(a|ht) > 0

then αH(a|ht) may or may not be positive. In other words, there may exist actions which perfectly
identify the low type, even if there do not exist any that identify the high type. It is immediate
that the low type must be mixing for this to be possible. All this is summarized by the second part
of the theorem. The statement does not claim existence of any such separating actions, since they,
of course, need not exist in any given case. However, Section 5 presents an example of a setting in
which such informative equilibrium exists.

Theorem 1. Suppose that Θ = {L,H} and (MON-2) holds. In any equilibrium such that (FIN)
and (NDOC) hold, at any ht ∈ H with S(ht) = {L,H}, and for any a ∈ A:

1. if αH(a|ht) > 0 then αL(a|ht) > 0. Further, all such a are payoff-equivalent in the sense that
U θ(ht ∪ a) is the same across such a for all θ.

2. if αH(a|ht) = 0 and αL(a|ht) > 0 then a ∈ B (δL|L) and UL(ht ∪ a) = UL(ht ∪ a′) for any a′

such that αH(a′|ht) > 0.

Note that the attrition structure of signaling imposes strong restrictions on actions that can
be played in equilibrium. Firstly, any separating action perfectly identifies the low type, meaning
it cannot reflect any signaling motives, and must hence be myopically optimal for the low type.
Secondly, if the low type mixes between pooling and separating, then he must be indifferent between
the two – meaning that pooling with the high type must yield exactly the same expected payoff
for the low type as separation. Gains from pooling in this scenario (higher reputation) are exactly
offset by the cost of taking suboptimal actions in current and/or future periods.

It is worth emphasizing that the result holds under very minimal assumptions on payoffs and
signals: the only requirements imposed on the model are that the sender’s payoff is increasing in
p (which, in fact, is only required for the low type) and that the outcomes x are not perfectly
revealing. In other words, if your game fits the following framework:

• dynamic game with continuous time or short time intervals or patient players,
• binary state of the world known by one player but not other(s),
• the informed player has a preference over other(s)’ beliefs, and the direction of this preference

does not depend on the state,
• the informed player chooses an action every period but cannot verifiably reveal the state

(action set is independent of type),
then the only informative equilibrium structure that can arise in this game (unless you are willing
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to allow for NDOC-nonconformant beliefs off the equilibrium path) is attrition. Under attrition, the
high type is playing some pooling action, while the low type mixes between that and a separating
action.

4 Finite Types

We now move to exploring the setting with more than two but finitely many types. In this
section we show that the insight of Theorem 1 can be extended to this case, although allowing for
many types does raise a number of additional issues and calls for extra assumptions.

4.1 Single-Crossing

In order to secure the result in case of many types, we need to impose the following new
assumption on payoffs:

(SC) U θ(a|ht) satisfies single-crossing in (θ,a) at all ht ∈ H. I.e., for any a′,a′′ ∈ ∪ht∈H ∪θ∈S(ht)

arg maxa U
θ(a|ht) and all ht ∈ H, function U(θ) ≡ U θ(a′′|ht) − U θ(a′|ht) either crosses zero

at most once, or is identically zero.

This assumption belongs to a family of single-crossing conditions widely encountered in the
literature on signaling, monotone comparative statics, and mechanism design.13 The purpose of
our condition is standard: to ensure that the agent’s preferences over strategies satisfy a kind
of monotonicity w.r.t. his type. Our condition, however, has three distinctive features which
differentiate it slightly from other single-crossing conditions in the literature.

Feature 1. This is an assumption about an equilibrium object, since belief system p(ht) – which
enters U θ(a|ht) – is endogenous to equilibrium. The simplest way to justify the assumption in this
respect is strengthening the assumption to all combinations of actions and beliefs (a, p), i.e., to
assume that

Eh

 ∑
s∈T ,s≥t

e−r(s−t)uθ(a(hs), p(hs))dt | θ, ht

 ,
satisfies single-crossing for all pairs (a′, p′), (a′′, p′′).

Feature 2. Unlike most standard single-crossing assumptions, (SC) does not require that a′′ > a′

(and that single-crossing happens from below).14 In contrast, we also require the statement to hold
for any pair of unordered strategies and respective belief profiles. The reason for that is while the
grand set of choices (A×∆(Θ))H is a lattice w.r.t. the product order for some given order on A, the
subset of these choices available to the sender at any given history is not necessarily its sublattice.
The standard monotone comparative statics results are then of limited use. On the upside, however,
we only require that single-crossing is satisfied for those strategies that may be optimal for any type.
I.e., if one can rule out some actions as certainly suboptimal at certain histories, these actions may
be safely ignored.

13See Laffont and Martimort [2002] from a contract theory perspective (e.g., Ch. 2.2.3). Classic references on
MCS, in turn, include Milgrom and Shannon [1994] and Athey [2002].

14The order implied here is the product order on the set (A×∆(Θ))H of all collections (a(ht), p(ht)), composed of
some order on A (although we have not imposed any) and FOSD order on ∆(Θ).
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Feature 3. (SC) is a condition on the expectation of a discounted sum E
∑

t e
−rtuθ(at, pt) rather

than on the flow utility uθ(a, p). While the latter would be more preferable, aggegating single-
crossing is not a trivial problem. Quah and Strulovici [2012] discuss this problem and offer possible
solutions, but none of them apply to our setting due to feature 2 above.

All of the above means that (SC) is quite a non-trivial condition and may be difficult to verify
in many models. If anything, verifying (SC) might as well be the main impediment to exploiting
our results in applied models. However, this task is not impossible. Some examples of applied
models, in which payoff functions can be easily verified to satisfy (SC) are presented in Section 5
and Appendix B.

4.2 Attrition Structure of Equilibrium Signaling

Theorem 2 that we gradually build up to is the analog of Theorem 1 for the case when |Θ| > 2, in
the sense of characterizing the actions available in equilibrium at any history. We begin, however,
by stating a weaker result which provides a clearer characterization of the attrition structure of
equilibrium signaling with |Θ| > 2. Proposition 1 below establishes that as long as (SC) and other
previously stated assumptions hold, strategies played in an arbitrary equilibrium of the game can
be split into two classes. The first class consists of pooling strategies played by all types. While
there may be many such strategies nominally, they must all be payoff-equivalent, so this class is, in
a sense, degenerate. The second class is that of separating strategies employed by the lowest type –
these may differ in which pooling strategies they mimic and for how long. However, any separating
strategy is only played by the lowest type.

To state this and following results we need to introduce some additional notation and definitions.
Firstly, denote the two boundaries of the belief support as S̄(ht) ≡ maxS(ht) and S(ht) ≡ minS(ht)

respectively. Furthermore, in a manner similar to type support S, given an equilibrium strategy
profile let us define action support as

Aθ(ht) ≡
{
a ∈ A|αθ(ht)(a) > 0

}
,

A(ht) ≡ ∪θ∈S(ht)A
θ(ht).

We say that a pure strategy a arrives at ht = {as(ht), xs(ht)}s∈T ,s<t – and denote it as a ⊃ ht – if
a(ht′) = at′(ht) for any ht′ = {as(ht), xs(ht)}s∈T ,s<t′ with t′ < t.15 Further, say that a is on path
for θ at ht if a ⊃ ht and a is on path according to type θ’s equilibrium strategy α starting from
ht, and a is on path at ht if it is on path at ht for some θ ∈ S(ht). Note that action supports and
“on-pathness” only work properly if (FIN) is satisfied. To give a counterexample, if some αθ(ht)
prescribed mixing uniformly over an interval of actions a ∈ [0, 1] in violation of (FIN), then none
of these actions would be included in the support (since they are all played with zero probability)
and none of them would be on path according to the definitions above.

We proceed by defining payoff equivalence of strategies in a straightforward manner.

Definition 2. Fix an equilibrium and history ht ∈ H. Any two pure strategies a′,a′′ ⊃ ht are:
• payoff-distinct at ht if there exists θ ∈ S(ht) such that U θ(a′|ht) 6= U θ(a′′|ht);

15We also use notation a ⊃ ht ∪ a to state “a ⊃ ht and at = a”.
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• payoff-equivalent at ht if they are not payoff-distinct at ht.

Note also that while using the notation for full pure strategies, throughout the whole analysis we
actually work with continuation strategies from some history ht ∈ H. When discussing strategies
conditional on some history ht we ignore all game paths that are ruled out by ht. In particular, two
pure strategies a′,a′′ ⊃ ht that prescribe the same actions at all hs ⊇ ht but differ at some hs 6⊇ ht
are treated as the same strategy for all means and purposes. We avoid introducing the continuation
strategies explicitly in order to economize on notation, which is quite heavy as is.

The result can now be stated as follows.

Proposition 1. Suppose the payoff function uθ satisfies (MON) and (SC). Fix an equilibrium such
that (FIN) and (NDOC) hold. Fix some history ht ∈ H. Then, defining θ ≡ S(ht), the following
hold:

1. all pure strategies a′ on path at ht for any θ ∈ S(ht)\θ are payoff-equivalent and optimal for
all θ ∈ S(ht) at ht, and at least one of these strategies is on path for θ at ht;

2. any pure strategy a′′ that is on path at ht and payoff-distinct at ht from any such a′ is only
on path for θ.

The proposition implies, in particular, that any pure strategy a that is on path for some type
θ ∈ S(ht) is also on path for the currently-lowest type θ. Therefore, no type of the agent can ever
conclusively separate from θ. At the same time, there may exist strategies that separate θ away
from the remaining types. The weight that the receiver’s belief assigns to θ may thus decrease over
time along the pooling path of play – it may even converge to zero asymptotically as t→∞, – but
it may never become exactly zero.

The proposition above is stated in terms of strategies rather than actions, and so provides only
limited insight into how equilibrium actions look in any given period. That is, if a′ as defined in the
proposition is unique then it is relatively straightforward that in every period there will be some
single pooling action as prescribed by a′ that all types above θ will play for sure, while the lowest
type will somehow mix between this pooling action and some number (between zero and infinity)
of separating actions. The challenge, however, comes from possible non-uniqueness of a′. If there
are many pooling actions, then they may be informative in that different pooling actions convey
different information – even though (or exactly because) all types are indifferent between them.
The following sections explore this issue in more detail and works around it to characterize the
within-period signaling outcomes.

4.3 Payoff-Relevant Signaling

To talk about signaling in relation to individual actions (rather than whole strategies), we need
to define more precisely what “signaling” means in a dynamic context with many types. It is clear
that if all types pool on the same action in a given period then no information is revealed, while if
every type plays an action different from all others then full separation occurs, which is the most
informative signaling outcome. The two grey zones are partitioning – when, for example, some
types play action a′ and some others play a′′ – and mixing, – when one type plays action a′ for
sure and another type mixes between two actions a′ and a′′. Both of the aforementioned outcomes
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are usually dubbed as “semi-separation” in static settings and considered informative outcomes in
signaling models. In dynamics, however, there are further complications.

In a dynamic setting, it matters – for both sender’s payoff and reputation – not only what
action the sender plays in a given period, but also his past and future actions. In particular, a
single costly action is inconsequential by itself, having only infinitesimal effect on payoff and, as a
result, reputation – unless, that is, it is backed up by costly actions at future periods. Symmetrically,
future actions also have the power to negate the payoff consequences of past actions. This issue is
illustrated by the following example, and its consequences are discussed further.

Example 2. Suppose Θ = {1, 2, 3}, types are ex ante equiprobable, A = R+, and uθ(a, p) =

Ep(θ)−a. Then the following would be an equilibrium: type θ = 2 plays some a′′ at t = 0 and a = 0

at all t ≥ dt, while types θ = 1, 3 play a′ = a′′(1− e−rdt) at all t ≥ 0. This is a PBE of the game as
long as a′′ ≤ 1. In this PBE some information about type is conveyed in period zero – namely, type
θ = 2 separates from θ = 1, 3, – but this signaling is not relevant to the sender’s payoff.

The same is not necessarily true for the receiver. In particular, we can think of this example
as a game between a worker (sender) and a firm (receiver), where a is the worker’s effort and θ
is his ability. Suppose the receiver’s flow payoff is given by v(a, p, θ) = θa2 − Ep(θ), with the first
term being the worker’s output, and Ep(θ) in both players’ payoffs is the worker’s wage, dictated
by the market. In this case the firm’s expected discounted profit from hiring a worker of type
θ = 2 at t = 0 equals 2(a′′)2 − 2

1−e−rdt , while that from hiring a worker of type θ ∈ {1, 3} is
2(a′′(1−e−rdt))

2−2

1−e−rdt = 2(a′′)2(1 − e−rdt) − 2
1−e−rdt , which is strictly less. This is reversed for hiring

decisions made at t ≥ dt.

The example above illustrates that arbitrary information can in principle be conveyed via payoff-
irrelevant signaling – when different types play different actions, but nonetheless all types are
indifferent between all actions and respective continuations. This can be seen as a manifestation
of “cheap talk”: for small dt, actions in a single period are effectively costless, and so can be used
as a pure communication device with no regard for action costs. Situations in which informative
communication arises through cheap talk have been studied extensively, see Sobel [2013] for a
recent survey. Further, one can claim that there will often be scope for such cheap/payoff-irrelevant
communication in our model. This is due to multi-dimensionality of reputation p: with more than
two types there are bound to be situations in which an agent is indifferent between two kinds of
average reputation – one that says the agent is of average type for sure and the one that says the
agent is of either high or low type with comparable probabilities, just like in the example above.16

Consequently, in this paper we focus on payoff-relevant signaling – communication that relies on
heterogeneity across the agent’s types of costs or benefits from different actions, in the spirit of
Spence [1973]. The information revealed through payoff-relevant signaling is that which cannot be
communicated via plain cheap talk. Our contribution to characterizing the informative outcomes
in dynamic signaling games without commitment should then be seen as complementary to that of
the cheap talk literature.

16Battaglini [2002] and Chakraborty and Harbaugh [2007, 2010] explore cheap talk with multidimensional
information (which our setting is an instance of in case |Θ| > 2) and show that there generally exist informative
equilibria in which the receiver can perfectly learn about N − 1 out of N dimensions of uncertainty from a single
sender.
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We now provide the formal definitions of payoff-relevant and irrelevant signaling in our setting.

Definition 3. Fix an equilibrium and history ht ∈ H.
• Payoff-relevant signaling happens at ht if there exist a′, a′′ ∈ A(ht) and θ ∈ S(ht) such that
U θ(ht ∪ a′) 6= U θ(ht ∪ a′′).

• Payoff-irrelevant signaling happens at ht if there exist a′, a′′ ∈ A(ht) such that p(ht ∪ a′) 6=
p(ht ∪ a′′) but U θ(ht ∪ a′) = U θ(ht ∪ a′) for all θ ∈ S(ht).

In other words, payoff-relevant signaling implies that at a given history ht there are two distinct
actions on path, a′ and a′′, and there is some type of the agent for which the choice between these
two actions has payoff consequences. Note that since both actions are on path, it cannot be the
case that all types prefer one over another – both a′ and a′′ must be optimal for some types of the
agent. Payoff-relevance of this action choice is then defined as some type θ ∈ S(ht) having strict
preference between the two.

4.4 From Action Profiles to Actions

We are now ready to state the theorem that characterizes payoff-relevant signaling in terms
of actions, making the implications of Proposition 1 more explicit. The result below expands the
message obtained in Theorem 1 to the case of finitely many types, albeit at the cost of restricting
model scope to payoff functions that satisfy (SC).

Theorem 2. Suppose the payoff function uθ satisfies (MON) and (SC). Fix an equilibrium such
that (FIN) and (NDOC) hold. Fix some history ht ∈ H. If payoff-relevant signaling happens at ht
then, defining θ ≡ S(ht), the following hold:

1. any on-path action a ∈ A(ht) is on path for θ at ht;
2. A(ht) ∩B

(
δθ|θ

)
is nonempty, and any a in the intersection is on path only for θ at ht;

3. any action ā ∈ A(ht)\B
(
δθ|θ

)
is optimal at ht for all θ ∈ S(ht).

What the theorem says is that in any equilibrium with payoff-relevant signaling, there are
effectively at most two types of actions (as opposed to strategies in Proposition 1) on path at any
history – pooling actions (typical element ā) and separating actions (typical element a). The latter
are only ever played by the currently-lowest type θ = S(ht) and separate him from the remaining
types. As in Theorem 1, any separating action must be myopically optimal for the lowest type given
that he is revealed.

Pooling actions, on the other hand, are optimal for all types. Further, if no payoff-irrelevant
signaling takes place then any pooling action is, in fact, on path for all θ ∈ S(ht) – i.e., all types do
actually pool on the pooling action(s). Notably, both payoff-relevant and payoff-irrelevant signaling
may occur simultaneously at a given history. In that case there will be more than one pooling
action, and while all of them are necessarily on path for θ, higher types may select different actions
despite all types being indifferent between all of these actions (and the continuations they induce).

The corollary below relates to the situations when payoff-relevant signaling occurs at successive
histories. It states that the pooling action in the earlier history must then be such that the low type
is indifferent between separating and pooling – meaning that flow payoffs the low type gets from
the separating and pooling actions must be the same. The low type must be indifferent between
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separating at t and t + dt, so one period of pooling must be exactly as attractive as one period of
being identified as θ. In practice, this means that pooling action must be costlier for θ than the
separating action, since the former yields higher reputation payoff.

Corollary 1. Suppose the conditions in Theorem 2 hold. Suppose payoff-relevant signaling occurs
also at ht+dt ≡ ht ∪ (ā, x) for some ā and all x in the support. Then such ā must satisfy
Ex
[
uθ (ā, p(ht ∪ (ā, x))) |θ

]
= uθ

(
a, δθ

)
.

Finally, the theorem applies to all histories, including those off the equilibrium path. Applying
it inductively starting from the root history, we get the following corollary, which states that in the
absence of payoff-irrelevant signaling, only the lowest type min Θ can ever separate from the rest,
while the remaining ones can never separate from one another. It is worth noting that there may be
histories ht at which p(ht) assigns arbitrarily small weight to the lowest type. What is important
is that this type can never be ruled out completely along the pooling path.

Corollary 2. In any equilibrium in which no payoff-irrelevant signaling happens, for any on-path
history ht, one of the following must hold:

1. S(ht) = Θ;
2. S(ht) = {min Θ}.

The corollary above together with Theorem 2 effectively provide a cookbook on how to construct
an equilibrium with payoff-relevant signaling only. Suppose we want signaling to occur during the
time interval [0, T ]. Then in every period along the pooling path we shall have two actions available
to the sender: a separating action a ∈ B

(
δθ|θ

)
only taken by the lowest type L ≡ min Θ and a

pooling action ā that satisfies the condition in the last part of the theorem – the latter action will
be played by L with some probability and by all other types for sure. Note that we have a degree
of freedom in this construction: reputation from taking a pooling action depends on the probability
with which type L separates in that given period. Hence by changing these probabilities we will be
able to sustain different pooling actions ā in equilibrium. Finally, we need to verify that from time
T onwards, the pooling strategy is such that L is exactly indifferent at T (or the last period before
T ) between separating and following this pooling path.

The following section takes this cookbook and uses it to construct an informative equilibrium
in a concrete setting.

5 Application to Price Signaling

5.1 Background

This section looks at a simple model of price signaling with product reviews. Price signaling is a
phenomenon that is widespread in the real world – high-quality products may be priced at a premium
to signal quality, or, conversely, they may offer more free trials or giveaways to help consumers learn
about the product. Models exist that support both kinds of behavior. For example, Bagwell and
Riordan [1991] show that if some consumers are initially informed of product quality while others
learn from repeated purchases, then high and declining prices signal product quality. They also refer
to empirical cases which support their conclusions. On the other hand, Vettas [1997] demonstrates
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that in the presence of social learning, high-type firm prices low on entry, gradually increasing the
price afterwards, which is another pattern commonly observed in reality.

While this apparent contradiction – that both high and low introductory prices can serve to
signal quality – has been recognized in the literature (see, e.g., Kirmani and Rao [2000]), we are
not aware of a theory that addresses it. The simple dynamic model below amends this and shows
that both high and low prices are equally fit to serve as (suggestive yet inconclusive) signals of high
quality in an informative equilibrium.

5.2 Model Setup

There is a long-lived firm i that faces a continuum of consumers j ∈ [0, 1] every period
t ∈ T ≡ {0, dt, 2dt, ...}, where period length dt is “small”. The firm offers for sale a single product of
privately known quality θ ∈ Θ = {H,L} (in Section 5.4 we discuss the case |Θ| > 2). The marginal
costs of production are zero. In every period the firm sets price at of its product and the consumers
decide whether to purchase it or not. A consumer’s payoff from buying the product is given by
θvj − at, where vj ∼ i.i.d.U [0, 1] is the consumer’s value for quality. Payoff from not buying the
product is zero. Consumer j then buys the item if and only if E[θ] ≥ at

vj
.

The population of consumers is renewed every period. The newly arriving consumers base their
belief p(ht) about the product quality on the prior p0 ∈ int∆(Θ), the whole price path {as}s≤t, and
product reviews as described below.17 With probability 1−e−φdt ≈ φdt for φ ∈ [0, 1) the population
of consumers in a given period generates an informative review xt = θ which perfectly reveals the
firm’s quality and is observable by all future consumers. With complementary probability e−φdt no
review is generated: xt = ∅.18

The flow profit of a firm of type θ receives in period t after setting price at is then given by

uθ(at, pt) ≡ at
(

1− at
E[θ|pt]

)
+

. (2)

According to Theorem 1, (payoff-relevant) signaling must necessarily take the form of attrition.
Under such attrition signaling, type θ = L mixes between some pooling price apt and separating to
bliss price aL|L = L

2 , whereas type H sets the pooling price. We then show that Theorem 2 applies
as well, meaning that the result translates to the case |Θ| > 2.

5.3 Equilibrium

We will be looking for an equilibrium of the game that satisfies (NDOC-P) and (FIN). In
particular, let us construct an equilibrium in which prices are informative at every history where
the firm’s type is not perfectly known (i.e., p(ht) 6= δθ). This would be the most informative
equilibrium, since in the remaining histories informative signaling is trivially impossible. If the firm
is believed to be bad (p(ht) = δL) then there are no signaling motives – it sets price aθ|Lt ≡ L

2 and
earns profit uθ

(
a
θ|L
t , δL

)
= L

4 . Similarly, if p(ht) = δH then a
θ|L
t ≡ H

2 and uθ
(
a
θ|H
t , δH

)
= H

4 .

17Here int∆(Θ) denotes the interior of ∆(Θ), i.e., we assume that the prior p0 does not rule out any states in Θ.
This assumption is not strictly necessary, but all results are trivial without it.

18The analysis carries over fully to the case when the review arrival rate depends on the number of consumers who
purchased the product in a given period.
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The latter is due to (NDOC) – without this assumption we could enforce a wide spectrum of prices
using the threat of losing reputation in case the firm deviates from some prescribed price level.
With (NDOC) such threats are ruled out, hence the firm’s behavior at histories with p(ht) = δH

must be myopically optimal.
We begin by deriving the pooling price apt that renders the low type indifferent between

separating and pooling. The former yields the continuation value equal to

UL(aL|L|ht) =
dt

1− e−rdt
L

4
≈ L

4r
,

since 1− e−rdt ≈ rdt is a valid approximation when dt is small enough. Pooling, in turn, yields

UL(apt |ht) = apt

(
1− apt

E[θ|pt]

)
dt+ e−rdtExtUL(ht ∪ (apt , xt)), (3)

where pt ≡ p(ht ∪ (apt ,∅)) and the continuation value can be written as

ExtUL(ht ∪ (apt , xt)) = (1− e−φdt)UL(ht ∪ (apt , L)) + e−φdtUL(ht ∪ (apt ,∅)).

After a bad review xt = L the consumers are sure that the firm is bad, i.e., p(ht ∪ (apt , L)) = δL,
so we have UL(ht ∪ (apt , L)) = L

4r . After no review xt = ∅ the consumers’ belief is inconclusive,
hence in our construction signaling should continue. This means L must be indifferent between
pooling and separating once again, so UL(ht ∪ (apt ,∅)) = L

4r as well. Finally, L’s indifference at ht
yields UL(apt |ht) = UL(aL|L|ht) = L

4r . Plugging all of these into (3), we obtain that flow payoff from
pooling must coincide with that from separating:

L

4
= apt

(
1− apt

E[θ|pt]

)
.

The solution to the above is given by

apt =
E[θ|pt]

2

[
1±

√
1− L

E[θ|pt]

]
. (4)

Therefore, for a fixed E[θ|pt] we have two equivalid candidates for the pooling price apt . The negative
root corresponds to signaling by setting a low price – below L’s preferred price (for any reputation).
Such pooling price can be seen as low entry pricing à la Vettas [1997]. The positive root, conversely,
corresponds to the price well above the myopic optimum and signaling through exclusivity, in the
spirit of Bagwell and Riordan [1991].

Further, the pooling output apt (whichever root to (4) we choose) is a function of the seller’s
reputation

p(ht ∪ (apt ,∅)) =
p(ht)

1− λt(1− p(ht))
, (5)

where λt is the probability with which type L separates at ht. In particular, we can choose these
probabilities freely and construct an equilibrium for arbitrary λt. Conversely, if we are restricted
in our choice of apt – e.g., if this pooling price must amount to an integer number of dollars, – this
constrains the set of p(ht ∪ apt ) and, consequently, λt that we can implement in equilibrium at any
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given history ht.19

Therefore, in general the pooling price path is indeterminate given the market conditions (seller’s
reputation), so inferring whether price signaling is taking place in a given market by looking at price
data is a daunting task. This point was originally raised by Kaya [2013] in relation to advertising
expenditures.

To complete the equilibrium description we only need to argue that setting the pooling price apt
is optimal for H. His continuation value from doing so is

UH(apt |ht) =
L

4
dt+ e−rdt

[
(1− e−φdt)H

4r
+ e−φdtUH(ht ∪ (apt ,∅))

]
.

Indeed, his flow payoff is the same as for L (the two types only differ in the reviews they get),
and in case a good review is generated at ht, he will be receiving H

4 in every future period. The
same, however, applies to any history with p(ht) ∈ int∆(Θ), hence UH(ht ∪ (apt ,∅)) = UH(apt |ht),
which allows us to conclude that UH(apt |ht) = 1

4r
rL+φH
r+φ . Setting any price other than apt results in

p(ht+dt) = δL (by (NDOC-P)), and hence yields value of at most L
4r <

1
4r
rL+φH
r+φ . Therefore, pooling

is indeed optimal for H. All of the above proves the following proposition.

Proposition 2. The following constitutes an equilibrium of the price signaling game for any profile
of λt. At any history ht ∈ H:

1. if p(ht) = δθ then all types play θ
2 and p(ht+dt) = p(ht) for all ht+dt ⊃ ht;

2. if p(ht) ∈ int∆(Θ) then:
(a) type θ = H plays apt as given by (4) with probability one;
(b) type θ = L plays apt w.p. 1− λt and aL|L = L

2 w.p. λt;
(c) belief p(ht∪(apt ,∅)) is computed according to (5); p(ht∪(apt , H)) = δH , and p(ht+dt) = δL

for all other ht+dt ⊃ ht.

5.4 Many Types

The equilibrium described in the Proposition 2 traslates immediately to the case with |Θ| > 2.
In that case all types θ ∈ Θ\L would behave as the high type above. Therefore, signaling through
attrition is still possible. We now show that Theorem 2 can be applied in this problem as well to
verify that payoff-relevant signaling is possible only through attrition, even despite the presence of
informative reviews.

To do so, we need to verify that (SC) holds for the seller’s payoff function. Whenever a review
arrives – which happens with probability 1− e−φdt in every period – the continuation play is trivial
(cf. Lemma 2 in the Appendix). Every type sets a myopically optimal price, thus obtaining payoff
θ
4 per period. Therefore, we only need to consider strategies that are non-trivial at histories with
non-degenerate beliefs p(ht). The agent’s value from following a given strategy a starting from any
such history ht in the reduced game is given by

U θ(a|ht) =
∑

s∈T ,s≥t
e−(r+φ)(s−t)

[
e−φdt · at

(
1− at

Es[θ|a]

)
+

dt+ (1− e−φdt) · θ
4r

]
,

19Such an integer constaint will also apply to the bliss action aL|L, but this would not affect the overall argument.
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where Es[θ|a] ≡ E
[
θ|ht ∪ a(t,s]

]
. It is easy to see that this value function satisfies (SC): for any

a′,a′′ we have

U(θ) ≡ U θ(a′′|h0)− U θ(a′|h0)

=
∑

s∈T ,s≥t
e−(r+φ)(s−t)−φdt

[
a′′t

(
1− a′′t

Es[θ|a′′]

)
+

− a′t

(
1− a′t

Es[θ|a′]

)
+

]
dt,

which is independent of θ. Therefore, the conclusions of Theorem 2 apply, and payoff-relevant
signaling is only possible through attrition.

5.5 Takeaways

The price signaling model presented in this section does, despite being highly stylized,
demonstrate that:

1. informative price signaling is possible without commitment, cost advantages, and with or
without consumers learning from experiences;

2. signaling price may be either low (e.g., in the form of free trials or frequent sales) or inefficiently
high (excluding most consumers) as a result of sunspots;

3. multiple informative equilibria exist that differ in the speed of separation;
4. due to the above, the empirical identification of price signaling in a given market is a daunting

task.

6 Conclusion

This paper explores a model of dynamic signaling without commitment. In this model a single
privately-informed agent takes an action every period, but cannot commit to future actions. The
receiver tries to infer the agent’s information from his actions, and the receiver’s opinion is relevant
to the agent’s payoff. The existing literature has assumed signaling to be impossible in such setting,
unless strong assumptions about off-equilibrium-path beliefs are adopted. This paper overturns this
view, demonstrating that signaling is, in fact, possible even under reasonable off-path beliefs.

Contrary to the literature, we allow for suggestive signaling rather than requiring conclusive
separation. We show that such signaling must necessarily happen through the attrition of the
lowest type of the agent. In this attrition scenario, all types pool on the same action (or split
across some payoff-equivalent actions), while the lowest type also plays some separating action with
positive intensity.

The paper also contains a methodological contribution. In particular, we demonstrate the
importance of seemingly innocuous assumptions regarding the type space for the conclusions one
obtains. In particular, our results imply that perfect learning is possible in the limit as t → ∞
in the model with two sender types but not possible with finitely many types, while the literature
demonstrates that perfect learning is possible with a continuum of sender types.

Finally, we explore an application of our results to a model of dynamic price signaling. We
construct an informative equilibrium in which prices set by the firm contain information about the
quality of its product. We show that price signaling can happen through both inefficiently low and
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inefficiently high prices, thus reconciling some of the disparate conclusions in the literature and
arguing that empirical identification of price signaling in the data is a complicated venture.
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Appendix A. Proofs and Supplementary Results

A.1 Proofs: Preliminaries

Our first observation states that once there is no need for signaling any more – i.e., when the receiver’s

belief assigns probability 1 to some type of the agent – there are no reasons for the agent to steer away from

the myopically optimal action.

Lemma 2. In any equilibrium that satisfies (NDOC), at any ht ∈ H, if |S(ht)| = 1 then for all θ and all

hs ⊇ ht: αθ
(
B(δS(ht)|θ) | hs

)
= 1.

Proof. By (NDOC), for all hs ⊇ ht: p(hs) = δS(ht). In particular, p(hs) is independent of all actions

and outcomes during [t, s). Therefore, the solution to (1) is given by pointwise maximization of the flow

utility.

Lemma 2 above is the direct consequence of (NDOC): actions cannot affect a degenerate belief under

this assumption, hence the myopic optimum is chosen. This captures the main tension between signaling

and sequential rationality: signaling requires sticking to the costly action over an extended period of time,

while sequential rationality as captured by Lemma 2 pushes against that when no further signaling concerns

are present. The remaining statements formalize this intuition. However, before proceeding any further, we

use Lemma 2 to prove Lemma 1 from the text.

Proof of Lemma 1. Parts 1 and 2 are trivial. For part 3, denote the original equilibrium strategy and belief

profile as α1 and p1 respectively. Construct the new equilibrium (α2, p2) by setting α2(ht) = α1(ht) and

p2(ht) = p1(ht) for all on-path histories ht. Then for all off-path histories ht set p2(ht) = δS(h) where h ⊂ ht
is the last on-path history preceding ht. The strategy α2(ht) for off-path histories ht is set in conformance

with Lemma 2.

Belief profile p2 will then satisfy (NDOC-P) and be consistent with the strategy α2. The strategy itself

will be optimal at off-path histories by Lemma 2. Optimality of α2 at any on-path history ht can be verified
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by observing that Uθ(ht ∪a) is the same in both equilibria for all a ∈ A(ht) and weakly smaller in the newly

constructed equilibrium for a ∈ A\A(ht). I.e., the choice between any pair of off-path actions is unaffected

by the off-path modifications, while deviations to off-path actions are less appealing in the new equilibrium.

Therefore, (α2, p2) is an equilibrium.

A.2 Proofs: Two Types

Proof of Theorem 1. Statement 1. Suppose first, by way of contradiction, that there exist ht ∈ H and

a ∈ A such that αH(a|ht) > 0 but αL(a|ht) = 0. Then p(ht ∪ (a, x)) = δH for any x ∈ X by (NDOC).

By playing a at ht the low type receives the highest possible continuation utility after t (since by Lemma 2

he can play the myopically optimal action thereafter), while by following the equilibrium path he receives

strictly less. The utility is bounded, hence for dt small enough deviating to a at ht is optimal for L – a

contradiction.

Payoff-equivalence is shown as follows: for any two a, a′ ∈ A such that αH(a|ht) > 0 and αH(a′|ht) > 0

it must be that UH(ht ∪ a) = UH(ht ∪ a′), otherwise the high type would only play one of the actions

and not the other. The first part of the argument showed that αL(a|ht) > 0 and αL(a′|ht) > 0, hence

UL(ht ∪ a) = UL(ht ∪ a′) by the same logic.

Statement 2. Begin with the first part (that a ∈ B (δL|L)). For any such a that αH(a|ht) = 0

and αL(a|ht) > 0 and any outcome x, we have p(ht+dt) = δL, where ht+dt = ht ∪ (a, x). By Lemma 2,

a′ ∈ B(δL|L) must be played at all histories beginning with ht+dt. If a /∈ B(δL|L) then playing a′ at ht
instead – and continuing with a′ at all subsequent histories – yields a strictly higher flow payoff at ht and

the same continuation payoff. Hence playing a at ht was not optimal.

The second part of the second statement follows from the same argument as did payoff equivalence for

L in the first statement.

A.3 Proofs: Finite Types

Before stating the proof of Theorem 2, we need some supplementary lemmas. We begin by arguing in

Lemma 3 that at no history can actions lead to separation of types into disjoint sets that can be compared

by a strong set order – unless one of these sets is a singleton coinciding with the lower bound of the other set.

In particular, we show that sets of types in the support of two different actions have to necessarily overlap

(not in the sense of having common elements, but in the sense of upper and lower bounds).

Lemma 3. Suppose (MON) holds and dt is small enough. Fix any equilibrium and any history ht ∈ H.
Then for any a′, a′′ ∈ A(ht) we have S̄(ht ∪ a′) ≥ S(ht ∪ a′′), with equality only if S(ht ∪ a′) is a singleton.20

Proof. Assume by contradiction that S̄(ht ∪ a′) < S(ht ∪ a′′) for some a′, a′′ ∈ A(ht). Pick any type

θ ∈ S(ht ∪ a′) and any strategy a′ on path for θ at ht. Then deviating to a′′ at ht and following a′ after t is

strictly better for θ than following a′ throughout. To see this, recall that uθ is increasing in pt by (MON) –

and reputation ps ≥ δS(ht∪a′′) generated by the deviation for all s > t is strictly higher than any reputation

on equilibrium path, since S(ht ∪ a′′) > S̄(ht ∪ a′). This contradicts a′ being optimal for θ as long as dt

(period length and, hence, utility weight on the current period) is small enough.

20This Lemma and the remainder of the Appendix uses the notation S(ht ∪ a) ≡ S(ht ∪ (a, x)) for all x ∈ X in
the support. This object is well defined in equilibrium for on-path histories and actions because the support of x is
type-independent and equilibrium beliefs must be consistent. We are adopting the simplifying assumption that the
same holds off the equilibrium path, but this is not necessary for the arguments to go through as long as (NDOC)
holds.
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Now suppose S̄(ht ∪ a′) = S(ht ∪ a′′). Suppose by way of contradiction that |S(ht ∪ a′)| > 1, meaning

S(ht ∪ a′) < S(ht ∪ a′′). Then among all types in S(ht ∪ a′) there exists such θ that receives reputation

ps < δS̄(ht∪a′) with positive probability for all s > t (this follows from belief consistency). Such θ would

strictly benefit from the deviation described in the first part of this proof, yielding a contradiction.

Lemma 4 puts the (SC) property to use, establishing a form of monotonicity of optimal strategies w.r.t.

type (“higher types play higher strategies”). The main problem in the dynamic setting is the lack of any nice

complete order over strategies a, so given two arbitrary strategies, we generally cannot say which one of them

is “higher”. Therefore, we rephrase monotonicity to say instead that if a given strategy (or its equivalent)

is optimal for two agent types, then it must also be optimal for all types in between. We cannot say with

certainty that the given strategy is chosen on equilibrium path by any of these types in between, but we can

claim that any strategy they play must be payoff-equivalent to the one under consideration.

Lemma 4. Suppose (SC) holds. Fix any equilibrium and history ht ∈ H. If there exists a pair of strategies

a, ā ⊃ ht that are payoff-equivalent at ht and are on path at ht for some types θ and θ̄ > θ respectively, then

any strategy â ⊃ ht on path at ht for any θ̂ ∈ (θ, θ̄) must be payoff-equivalent at ht to ā,a.

Proof. Fix any such â. Strategy ā has to be optimal for type θ̄. In particular, when evaluated at ht, it has

to be better than â:

U θ̄(ā|ht) ≥ U θ̄(â|ht).

The same holds for type θ, since ā and a are payoff-equivalent:

Uθ(ā|ht) = Uθ(a|ht) ≥ Uθ(â|ht).

At the same time, θ̂ at least weakly prefers â to ā, meaning that the converse holds for θ̂:

U θ̂(ā|ht) ≤ U θ̂(â|ht).

If this inequality is strict, then this is a direct contradiction with (SC), which requires that Uθ(ā|ht)−Uθ(â|ht)
as a function of θ either crosses zero at most once, or is exactly zero.

Lemma 5 below is the final step before we can move on to the proofs of main results. It can be seen as

a weaker version of Proposition 1, claiming that the highest and lowest types at any history have a strategy

in common.

Lemma 5. Suppose (MON) and (SC) hold and dt is small enough. Fix any equilibrium and any ht ∈ H.
There exist ht-payoff-equivalent strategies ā,a ⊃ ht, on path at ht for S̄(ht) and S(ht) respectively.

Proof. We will proceed by induction on the support size |S(ht)|. The claim of the lemma holds trivially for

|S(ht)| = 1, and by Theorem 1 it also holds for |S(ht)| = 2. The remainder of the proof shows that if the

claim holds when |S(ht)| = k−1 then it also holds when |S(ht)| = k ≥ 3. Let x : H → X denote an outcome

profile which prescribes some outcome for every history. Fix some x. Coupled with some pure strategy and

the equilibrium belief system p, it fully determines the path of play and the agent’s payoffs.

Begin the second layer of induction, iterating forwards on time periods from t. At ht and any subsequent

history hs ⊃ ht, one of the following must apply:
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1. There is an action a on path for both types S̄(ht) and S(ht) at hs. If this is the case, call hs a

non-splitting history and continue to hs+dt = hs ∪ (a,x(hs)).

2. There is no action a on path for both S̄(ht) and S(ht) at hs. If this is the case, call hs a splitting

history.

Proceed along the non-splitting path (according to the chosen x) until the first splitting history hs. Pick

arbitrary actions ā and a that are on path for S̄(ht) and S(ht) at hs respectively, and consider two

continuation histories h̄s+dt ≡ hs ∪ (ā,x(hs)) and hs+dt ≡ hs ∪ (a,x(hs)). Then we have that |S(hs+dt)| <
|S(hs)| = k for both continuation histories, because S(h̄s+dt) ⊆ S(hs)\S(hs) and S(hs+dt) ⊆ S(hs)\S̄(hs).

Therefore, by the induction assumption, the statement of the lemma holds at both h̄s+dt and hs+dt.

In particular, statement of the lemma for h̄s+dt states that there exist two h̄s+dt-payoff-equivalent

strategies on path at h̄s+dt for S̄(hs) and S(h̄s+dt) respectively. Playing ā at hs is on path for both of

these types, hence there also exists a pair of strategies on path at hs for the two types respectively, which

grant the same payoff conditional on x.21 However, the argument above applies to any outcome profile x

and, in particular, to any outcome x(hs), hence there also exists a pair of strategies ā′, ā′′ on path at hs for

the two types S̄(hs) and S(h̄s+dt) respectively, which are payoff-equivalent at hs (unconditionally).

By a mirror argument, there also exists a pair of hs-payoff-equivalent strategies a′,a′′ on path at hs for

S(hs) and S̄(hs+dt) respectively. Note further that by Lemma 3 we have that S̄(hs+dt) > S(h̄s+dt). Lemma

4 hence applies: a′′ must be payoff-equivalent to ā′, ā′′, thus so is a′. We have shown that the statement of

the lemma holds at ht if |S(ht)| = k and ht is a splitting history.

We are left to cover non-splitting histories. Suppose ht is non-splitting. Fix x. Then we know that the

statement of the lemma holds at the first splitting history hs following ht along the path of pooling actions

and fixed outcomes x. Therefore, there exists a pair of strategies on path at ht for S̄(ht) and S(ht), which

grant the same payoff at ht conditional on x. This applies to any outcome profile x, hence there exists a

pair of strategies ā,a on path at ht for S̄(ht) and S(ht), which are payoff-equivalent at ht. This concludes

the induction argument and the proof of the lemma.

Proof of Proposition 1. Let θ̄ ≡ S̄(ht). Note that the statement of the proposition holds trivially if

|S(ht)| = 1, so for the remainder of this proof we assume that this is not the case (i.e., θ̄ 6= θ). From

Lemma 5 we know there exist ht-payoff-equivalent ā,a ⊃ ht on path at ht for θ̄ and θ respectively. Then by

Lemma 4, any pure strategy a ⊃ ht on path at ht for any θ ∈ S(ht)\{θ̄, θ} is payoff-equivalent at ht to ā,a.

Suppose now there exists a pure strategy ā′ ⊃ ht on path at ht for θ̄, which is payoff-distinct at ht from

ā. By (SC), all types θ ∈ S(ht)\θ̄ must have a strict preference at ht between ā and ā′. The former is optimal

for these types, hence ā′ is only on path for θ̄. The two strategies cannot prescribe different actions at ht
in equilibrium – ā(ht) 6= ā′(ht) – since this is in violation of Lemma 3. The same, however, applies to any

subsequent history, hence ā(hs) = ā′(hs) for all hs ⊃ ht.22 This contradicts ā and ā′ being payoff-distinct,

hence such ā′ does not exist. Therefore, any pure strategy a on path at ht that is ht-payoff-distinct from ā

is only on path for θ. This concludes the proof.

Proof of Theorem 2. From Proposition 1, all actions a ∈ A(ht) are on path for θ, which proves the first

statement of the theorem.

From the fact that payoff-relevant signaling happens at ht we know that there exist two pure strategies

a, ā that are payoff-distinct at ht and prescribe different actions at ht: a ≡ at 6= ā ≡ āt. From Proposition 1

21It does not matter for our argument if all types assign probability zero to outcome x(hs) conditional on ā.
22To be slightly more precise, the argument applies to any hs such that |S(hs)| > 1. Otherwise Lemma 2 kicks in

and implies that all pure strategies on path at hs are hs-payoff-equivalent.

26



we know at least one of these strategies – suppose a – is on path for θ but not for any other θ ∈ S(ht)\θ̄ at

ht. Furthermore, it follows from the definition of payoff-relevant signaling that there is no ā′ ⊃ ht ∪ a that

is payoff-equivalent to ā at ht. Therefore, a is only on path for θ, while ā is optimal for all θ ∈ S(ht) at ht.

We now show that a ∈ B
(
δθ|θ

)
. If this is not true then type θ can play some a ∈ B

(
δθ|θ

)
at ht and

every history after it. Compared to following a, this strategy would yield the same payoff at all times s > t

and a strictly higher payoff at t (same as in the proof of Theorem 1), hence a is not optimal for θ at ht – a

contradiction.

To complete the proof of statements 2 and 3 of the theorem, we need to show that ā /∈ B
(
δθ|θ

)
. Assume

not. Consider the strategy of playing ā at ht and all subsequent histories. Compared to following a, this

strategy would yield θ a weakly higher payoff at all times s > t and a strictly higher payoff at t (due to

p(ht ∪ ā) > δθ and the strict part of (MON)), hence a would not be optimal for θ at ht – a contradiction.

This completes the proof of Theorem 2.

Proof of Corollary 1. The statement is proved in the text. The low type must be indifferent between

taking a separating action a at ht and pooling on ā at ht and separating at ht+dt. This indifference

dictates that one period of pooling must be exactly as attractive as one period of being revealed as θ,

i.e., Ex
[
uθ (ā, p(ht ∪ (ā, x))) |θ

]
= uθ

(
a, δθ

)
.

Proof of Corollary 2. Proposition 1 states that all pure strategies a′ on path at ht for any θ ∈ S(ht)\S(ht)

are payoff-equivalent at ht. Since there is no payoff-relevant signaling in equilibrium, the set of such strategies

is a singleton: if there is more than one then there exists ht′ ⊃ ht at which the two prescribe different actions,

but that constitutes payoff-irrelevant signaling at ht′ (the two strategies coincide on [t, t′), hence they are

payoff-equivalent at ht′).

Therefore, at any ht there exists some ā ∈ A such that αθ(ht)(ā) = 1 for all θ ∈ S(ht)\S(ht). Together

with part 1 of Theorem 2, this means that S(ht ∪ ā) = S(ht). By part 3 of the theorem, ā is the

unique element of ā ∈ A(ht)\B
(
δθ|θ

)
. By part 2 of the theorem, for any a ∈ A(ht) ∩ B

(
δθ|θ

)
we have

S(ht ∪ a) = S(ht). Since all on-path histories ht+dt can be written as ht+dt = ht ∪ (a, x) for some a ∈ A(ht)

and x ∈ X, and outcomes x do not change support S, we obtain that for any pair of on-path histories

ht, ht+dt: S(ht+dt) ∈ {S(ht), {S(ht)}}. Applying this observation iteratively from h0 (for which S(h0) = Θ)

completes the proof.

Proof of Proposition 2. Contained in the text.

Appendix B. Application Examples

This appendix presents examples of applied models that fit our framework. These are meant to

demonstrate some instances of models yielding additively and/or multiplicatively separable payoff functions

that allow (SC) to be verified with little effort, complementing Section 5 in this respect.

B.1 Labor Market Signaling

In this section we revisit the classic labor market signaling model (Spence [1973]), which sparked the

original discussion around dynamic signaling (Nöldeke and van Damme [1990a], Swinkels [1999]). In the

dynamic version of this model, a long-lived candidate of privately known ability θ ∈ Θ ⊆ R+ acquires costly
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and, w.l.o.g., unproductive education in an attempt to signal her ability to potential employers. A high-

ability worker is more productive on the job and can thus bargain for a higher wage, while also having lower

cost of education than a low-ability worker.

In every period t ∈ T ≡ {0, dt, 2dt, ...} (where period length dt is “small”) she chooses whether to acquire

education or not, e ∈ {0, 1}. Alternatively, in a more general version of the model the candidate could

select education intensity e ∈ [0, ē]. The flow cost of education is given by c(e|θ) ≡ l(e) ·m(θ), where l(e) is

increasing in e with l(0) = 0, and m(θ) is strictly decreasing in θ.

There is a population of homogeneous competitive employers, who observe the full history of the

candidate’s education choices and grades. In every period they simultaneously offer employment contracts to

the candidate. After observing all contracts, the candidate may accept at most one of them. If a contract is

accepted, in every future period the candidate receives wage w ·dt, where w is as specified in the contract. Let

d ∈ {0, 1} denote the worker’s acceptance decision – whether she chooses to accept an offer in a given period

or not. If the candidate chooses to accept, she would trivially find it optimal to choose the highest-wage

contract.

W.l.o.g., let θ be equal to the candidate’s on-the-job productivity (so her output is θ · dt per period).

This means that competitive firms will at any history ht all offer the same wage w(ht) = E[θ|ht, d(ht) = 1].

A history here consists of the candidate’s past actions: ht = {ds, es}s∈T ,s<t. The implied timing in the stage

game at any history ht is:

1. if the candidate has accepted an offer with wage w in the past, she receives the contracted wage w ·dt,
and the game proceeds to the next period. Otherwise,

2. firms make wage offers w(ht) to the candidate;

3. the candidate decides d(ht) whether to accept the highest-wage contract. If d(ht) = 1 then the game

continues to the next period. Otherwise,

4. the candidate chooses e(ht), her education effort in the current period, and the game continues to the

next period.

Once a candidate has accepted an offer, at all future histories set d(ht) = e(ht) = 0.

In such a game, the candidate’s payoff from following some given strategy a = {d(h), e(h)}h∈H conditional

on some history ht ∈ H at which she has not yet accepted an offer is given by

Uθ(a|ht) ≡
∑

s∈T ,s≥t

e−r(s−t)
[
d(hs)

w(hs)

r
− (1− d(hs)) · c (e(hs)|θ)

]
,

since accepting an offer at ht is equivalent to receiving a lumpsum payoff of w(ht)/r.

It is easy to see that for any pair of strategies a′,a′′, the function U(θ) ≡ Uθ(a′′|ht)− Uθ(a′|ht) can be

written as

U(θ) =
∑

s∈T ,s≥t

e−r(s−t)
[
(d′(hs)− d′′(hs))

w

r
− [(1− d′(hs)) · l (e′(hs))− (1− d′′(hs)) · l (e′′(hs))]m(θ)

]
,

which is linear in m(θ). Since m(θ) is strictly decreasing in θ, U(θ) is either strictly monotone, or constant,

depending on whether the coefficient at m(θ) is positive, negative, or zero. Since strategies a′,a′′ and history

ht were arbitrary, this means that payoff function Uθ(a|h) satisfies (SC) and our results apply. The candidate

will only be able to signal her ability via attrition: in an informative equilibrium – if it exists – the lowest

type will drop out of education and take up a job at a random date, while all other types will go through

the whole education process prescribed by the equilibrium and only accept the job afterwards. The latter

path will also be taken by some low-ability candidates.

28



B.2 Bargaining

In this section we consider a simple model of bilateral bargaining, in which one party’s valuation is

commonly known, while another party’s valuation is their private information. See Ausubel, Cramton, and

Deneckere [2002] for a survey of the related literature.

Consider two players, a buyer B and a seller S, who interact repeatedly in every period t ∈ T ≡
{0, dt, 2dt, ...}. There is a unit of indivisible good initially possessed by the seller, who values it at θ ∈ Θ ⊆ R+,

which is their private information. The buyer’s valuation is v(θ). In every period one of the players

bt ∈ {B,S} is chosen as the proposer (the choice rule can be random or deterministic, and/or history-

dependent) and can offer a price p ∈ R+. The other player then decides d ∈ {0, 1} whether to accept the

offer. If the offer is accepted, the item is traded at that price and the game ends (which can be emulated

by setting p = d = 0 for both players at all subsequent histories). Otherwise the game continues to the next

period. Both players discount the future at rate r.

History ht = {bs, ps, ds}s∈T ,s<t in this game is given by the players’ past offers and responses, as well as

identities of the proposing player. A player’s strategy is given by ai = {pi(h), di(p, e)}h∈H,e∈[0,1]. Denoting

β(hs) ≡ P (b(hs) = B | hs), the seller’s expected payoff from following some strategy aS conditional on the

buyer’s strategy aB and some history ht ∈ H, by which no offer had been accepted, is given by

Uθ(aS |ht,aB) ≡
∑

s∈T ,s≥t

e−r(s−t) [β(hs)dS(hs) (pB(hs)− θ) + (1− β(hs)) dB(hs) (pS(hs)− θ)] .

It is easy to see that Uθ(aS |ht,aB) is linear in θ, hence so is U(θ) ≡ Uθ(a′′S |ht,aB)− Uθ(a′S |ht,aB) for any

pair of seller’s strategies a′S ,a
′′
S and any given buyer’s strategy aB . Therefore, (SC) holds in this model

and our results apply – independently of v(θ). The exact shape that the equilibria can take does, however,

depend on both v(θ) and b(ht). See Ausubel et al. [2002] for more details.
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