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Abstract

This paper proposes a new test for a class of conditional moment restrictions

whose parameterization involves unknown, unrestricted conditional expectation

functions. Examples of such conditional moment restrictions are conditional

mean independence (leading to a nonparametric significance test) and condi-

tional homoskedasticity (with an otherwise unrestricted conditional mean) and

also arise from models of single-agent discrete choice under uncertainty and

static games of incomplete information. The proposed test may be viewed as

a semi-/nonparametric extension of the Bierens (1982) goodness-of-fit test of

a parametric model for the conditional mean. Estimating conditional expecta-

tions using series methods and employing a Gaussian multiplier bootstrap to

obtain critical values, the resulting test is shown to be asymptotically correctly

sized and consistent. A simulation study applies the procedure to test the spec-

ification of a two-player, binary-action static game of incomplete information,

treating equilibrium beliefs as nonparametric conditional expectations.
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1 Introduction

In this paper I propose a general method for constructing omnibus specification tests

for a wide class of semi- or nonparametric conditional moment restriction models.

The paper aims to test the validity of the model assertion that there exists a finite-

dimensional parameter β such that

E [ρ` (Z, β,E [Y`|W`])|X`] = 0 almost surely X` for all ` ∈ {1, . . . , L} , (1.1)

where the ρ`’s are known functions—which may be thought of as model residuals—

each E [Y`|W`] is an unrestricted, possibly vector, conditional expectation, and each

W` is a subvector of the conditioning variables X`. I use Z for all model observables,

i.e., the union of distinct elements of the X`’s and Y`’s. The alternative hypothesis

is that (1.1) is violated. Allowing for unknown, unrestricted conditional expectation

functions (CEFs) as part of the model parameterization constitutes a main novelty

of this paper.

The conditional moment restrictions (CMRs) framework studied in this paper en-

compasses several semi- or nonparametric models encountered in empirical work. An

example of a nonparametric hypothesis leading to an expression of the form in (1.1)

is that of conditional mean independence, which states that the conditional mean

of an outcome variable Y depends only on a subset of the candidate conditioning

variables, i.e., that E [Y |X] = E [Y |W ] , with W being a given strict subvector of

X. Conditional mean independence may be rephrased as E [Y − E [Y |W ]|X] = 0.

Given that irrelevant regressors ought to be dropped from the regression analysis, a

test of conditional mean independence is often referred to as a nonparametric sig-

nificance test. The nonparametric hypothesis of conditional variance independence,

var (Y |X) = var (Y |W ), is similarly nested in the (1.1) framework. An example of

a semiparametric hypothesis is that of conditional homoskedasticity. This hypoth-

esis states that var (Y |X) = σ2 for some constant σ2, which may be expressed as

E[Y 2 − (E [Y |X])2 − σ2 |X ] = 0 for some σ2. More structural examples of semi-

parametric models leading to expressions of the form (1.1) are (single-agent) discrete

choice under uncertainty [as in Manski (1991); Ahn and Manski (1993)] and static

games of incomplete information (see, e.g., Bajari, Hong, Krainer, and Nekipelov,

2010). In a model of discrete choice under uncertainty, CEFs may be introduced via

the model assumption that the agents’ beliefs are correct in the aggregate—a ratio-
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nal expectations hypothesis. In static games of incomplete information, CEFs appear

under the model assumption that beliefs are correct in a Bayesian Nash equilibrium.

The test I propose is an extension of the one given by Bierens (1982) in the

context of parametric mean regression. The idea of Bierens’ method is to recast

a conditional moment restriction as a collection of testable unconditional moment

restrictions, which are then suitably integrated (or otherwise aggregated). Within

the context of parametric mean regression, a test of correct specification may be

obtained by checking whether the least-squares residuals correlate with any member

of a suitably rich family of transformations of the regressors. Bierens’ idea carries

over to any setting where one may speak of model residuals, including (1.1).

An alternative approach estimates the model under both the null and alternative

and contrasts the estimates according to some notion of distance [see, e.g., Härdle

and Mammen (1993) and Zheng (1996)]. The Bierens approach is convenient in

that it only requires estimation of the (potentially substantially) simpler null model.

However, the two approaches have different (local) power properties and should be

viewed as complementary.1

The suggested test statistic is a Cramér-von Mises-type measure of distance be-

tween the collection of residual-to-transformation correlations and zero. One rejects

the null hypothesis that the semi-/nonparametric model in (1.1) is correctly speci-

fied whenever said distance is “unreasonably” large. Under the null hypothesis, the

proposed test statistic has a nonpivotal limiting distribution and can therefore not

be tabulated. I propose and formally justify the use of a multiplier bootstrap proce-

dure for obtaining critical values. Calculation of the test statistic and critical values

requires estimation of CEFs. These are here estimated using series methods and

therefore boil down to linear regressions.

The resulting test is shown to have attractive theoretical properties: it is both

asymptotically of correct size and consistent against any fixed alternative. To il-

lustrate these properties, I implement my procedure in a comprehensive simulation

study testing the specification of a static discrete game of incomplete information.

The simulations by and large reproduce the asymptotic properties in small samples.

Static discrete-choice models with social or strategic interactions have been applied

in numerous contexts including firm entry (Seim, 2006), the timing of radio commer-

cials (Sweeting, 2009), labor force participation (Bjorn and Vuong, 1984), and teen

1For a formal comparison of their power properties, see Fan and Li (2000).
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sex (Card and Giuliano, 2013). These models may be conveniently estimated in two

steps. In the first step, the conditional choice probabilities (CCPs) are estimated in

a nonparametric manner. The estimated CCPs are then employed in a second step

to estimate the structural parameters of the model (see, e.g., Bajari, Hong, Krainer,

and Nekipelov, 2010). Construction of my test follows along the same lines.2

There exists a vast literature on omnibus (i.e., consistent against any model vio-

lating the null hypothesis) specification testing3 of parametric models of i.i.d. data for

the conditional mean [see, e.g., Bierens (1982; 1990); Härdle and Mammen (1993);

de Jong and Bierens (1994); Hong and White (1995); Zheng (1996); Bierens and

Ploberger (1997); Stute (1997); Whang (2000); Horowitz and Spokoiny (2001); Sten-

gos and Sun (2001); Guerre and Lavergne (2005); Stute and Zhu (2005); Escanciano

(2006); Sun and Li (2006): Hsiao, Li, and Racine (2007)] as well as for a (single)

conditional quantile [see, e.g., Zheng (1998); Bierens and Ginther (2001); Horowitz

and Spokoiny (2002); He and Zhu (2003); Whang (2006)]. Whang (2001), Donald,

Imbens, and Newey (2003), Tripathi and Kitamura (2003) and Delgado, Domı́nguez,

and Lavergne (2006) propose tests for a class of parametric CMRs nesting parametric

specifications of the conditional mean as a special case. There also exists a sizeable

literature on the topic of consistent nonparametric significance testing [see, e.g., Fan

and Li (1996); Lavergne and Vuong (2000); Aı̈t-Sahalia, Bickel, and Stoker (2001);

Delgado and Manteiga (2001); Racine, Hart, and Li (2006); Lavergne, Maistre, and

Patilea (2015)].

The results of this paper complement those obtained by Song (2010) and Bravo

(2012), both of whom develop test statistics for a class of semiparametric CMRs

similar to (1.1). Song (2010) confines interest to the case where the nonparametric

part of the parameterization takes a composite-index form. His treatment of the

nonparametric part rules out unrestricted CEFs but does allow for single-index models

not nested in (1.1). Song’s framework is thus neither more nor less general. Unlike

the nonpivotal test statistic proposed in this paper, Song (2010) uses a conditional

martingale transform to obtain an asymptotically distribution-free test statistic, thus

2Implicit in this two-step estimation strategy is an assumption of equilibrium uniqueness. See
Hahn, Moon, and Snider (2017) for a test aiming at detecting neglected heterogeneity, which may
be used to test for equilibrium multiplicity.

3Given the extraordinary number of papers that have appeared over the past three decades or so,
my referencing will necessarily be incomplete. For a fairly recent review of methods for specification
testing, see Davidson and Zinde-Walsh (2017).
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allowing for tabulation of critical values. However, since the martingale transform is

generally unknown, pivotality comes at the cost of additional steps of nonparametric

estimation. In addition, as indicated by Song’s simulation studies (and remarked

by Song himself), the martingale transform approach appears more sensitive to the

choice of tuning parametes than the bootstrap—the latter approach being the one

taken in this paper.

Bravo (2012) uses a generalized empirical likelihood approach to obtain specifi-

cation tests similar in spirit to classical Kolmogorov-Sminov and Cramér-von Mises

goodness-of-fit statistics. As in this paper, Bravo’s tests statistic has a nonpivotal

limit distribution and a multiplier bootstrap procedure is used to obtain critical val-

ues. His framework is broader than (1.1) in that his residual function may depend

on arbitrary nonparametric components. Morover, this dependence is allowed to be

functional. Naturally, Bravo’s greater generality comes at the cost of relatively “high

level” (i.e., abstract) conditions. Specifically, his level of generality makes it difficult

to analytically derive the adjustments terms necessary to account for nonparametric

estimation. These adjustments must be estimated in order to obtain valid critical

values and therefore constitute crucial elements of the implementation of the test. In

contrast, by restricting attention to the nonparametric CEFs (a type of mean-square

projection), I may obtain these necessary adjustments in closed form under fairly

primitive conditions, such as (ordinary) differentiability. The added CEF structure

also allows me to tailor my assumptions to the nonparametric method of estimation,

here chosen to be series estimation [see, e.g., Newey (1994; 1995; 1997); Belloni,

Chernozhukov, Chetverikov, and Kato (2015)].

The problem studied in this paper also relates to the task of testing the validity of

a model for the entire conditional distribution [see, e.g., Andrews (1997); Delgado and

Stute (2008); Escanciano and Velasco (2010); Bierens and Wang (2012); Rothe and

Wied (2013); Escanciano and Goh (2014)], which corresponds to testing infinitely

many CMRs (in fact, a continuum) of a particular form. In addition, Fan and Li

(1996), Aı̈t-Sahalia, Bickel, and Stoker (2001), Li, Hsiao, and Zinn (2003) and Korolev

(2018) also develop tests for particular semi - or nonparametric specifications of the

conditional mean, not all of which are nested in (1.1). This paper should therefore

also be viewed as complementary to the work of these authors.4

4Given that I take W` in (1.1) to be a subvector of X`, settings with “outside” exogenous (or
instrumental) variables are not subsumed by the CMR framework of this paper. Breunig (2015)
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The remainder of this paper is organized as follows. I define the testing problem

and test statistic in Section 2. Section 3.1 analyzes the limiting behavior of the test

statistic. Motivated by this limiting behavior, in Section 3.2 I construct critical values

based on a bootstrap procedure and establishes their asymptotic validity. The limiting

properties of the resulting test are given in Section 3.3. I investigate the small-sample

properties of the test in a simulation study in Section 4. Section 5 concludes and

discusses possible directions for future research. Proofs of formal statements can be

found in the appendices.

Notation

I use ‖f‖D := supx∈D |f (x)| to denote the supremum norm of f : D → R, and

write L∞ (D) = {f : D → R; ‖f‖D < ∞} for the collection of bounded real-valued

functions on D.

2 Testing Semi-/Nonparametric CMRs

2.1 Testing Problem

Let {Zi}n1 be n independent copies of Z, such that Zi is random element of Rdz

composed by the distinct elements elements of X`i, thus subsuming W`i,
5 and Y`i, ` ∈

{1, . . . , L}. The support of Z is denoted by Z and that of X` by X` ⊆ Rdx,` . Let

B ⊆ Rd be a parameter space. The null hypothesis we wish to test is

H0 : For some β ∈ B, E [ρ` (Z, β, h∗` (W`))|X`] = 0 a.s. X` for all ` ∈ {1, . . . , L} ,
(2.1)

where, for notational convenience, I have abbreviated the CEFs by

h∗` (W`) := E [Y`|W`] , ` ∈ {1, . . . , L} .

develops goodness-of-fit tests (also based on series estimators) for the nonparametric instrumental-
variables (NPIV) model. For inference in NPIV more broadly, see Santos (2012), who also allows
partial identification.

5Here W` need not be a literal subvector of X`; only X`-measurability is required.
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(Henceforth “a.s.” connotes “almost surely.”) The null is tested against the general

alternative hypothesis

H1 : For all β ∈ B, P (E [ρ` (Z, β, h∗` (W`))|X`] = 0) < 1 for some ` ∈ {1, . . . , L}
(2.2)

under a collection of regularity conditions presented below. In this paper, I propose

a procedure for testing (2.1) versus (2.2) assuming the existence of some β0 ∈ B such

that (a) β0 may be consistently estimated (irrespective of the null or alternative being

true), and (b) Equation (1.1) is satisfied at β0 under the null. Due to property (b),

β0 will be referred to as pseudo true.

Example 1 (Pseudo Truths Defined via Moment Conditions). Given the CMR

setting of this paper, a natural definition of a pseudo true parameter is as the assumed

unique solution to

E [m (Z, β, h∗ (W ))] = 0, (2.3)

where h∗ (W ) denotes the vector of all unique elements of the h∗` (W`) , ` ∈ {1, . . . , L} ,
and m (Z, β, h∗ (W )) denotes a vector of moment functions arising from interacting

one or more of the residuals ρ` (Z, β, h∗` (W`)) with transformations of the correspond-

ing conditioning variables X` and stacking the results. Via iterated expectations, this

implicit product form in m (Z, β, h∗ (W )) ensures that any parameter satisfying (2.1)

must also satisfy (2.3). Hence, the solution of (2.3) must be pseudo true.

Example 2 (Pseudo Truth in Testing Conditional Homoskedasticity). Con-

sider the conditional homoskedasticity hypothesis mentioned in the introduction.

Then, under the null, one has E
[
Y 2 − h∗ (X)2

∣∣X] = σ2 for some constant σ2 and

h∗ (X) = E [Y |X] . Irrespective of the null or alternative being true, one may define

σ2
0 := E

[
Y 2 − h∗ (X)2

]
. It follows by iterated expectations that E

[
Y 2 − h∗ (X)2

∣∣X] =

σ2 implies σ2 = σ2
0, so σ2

0 is pseudo true. Given an estimator ĥ of h∗, a natural esti-

mator of σ2
0 solves the sample moment condition n−1

∑n
i=1{Y 2

i − ĥ (Xi)
2−σ2} = 0. In

this example, the estimator σ̂2 := n−1
∑n

i=1{Y 2
i − ĥ (Xi)

2} is available in closed form

and is one example of a two-step generalized method of moments (two-step GMM)

estimator based on a nonparametric first step.

The simulation design of Section 4 gives an example of (2.3) in the context of a two-

player, binary-action static game of incomplete information for which the parameters

may be estimated using two-step (pseudo) maximum likelihood. While defining a
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pseudo truth via a moment condition may seem natural in the present context, in

order to allow other methods of estimation, I do not force the pseudo truth to satisfy

a moment condition of the form (2.3).

2.2 Recasting the Problem

To motivate a test statistic for testing (2.1) against (2.2), note that the presence of a

pseudo truth β0 ∈ B implies that the null hypothesis may be equivalently stated as

H0 : E [ρ` (Z, β0, h
∗
` (W`))|X`] = 0 a.s. X` for all ` ∈ {1, . . . , L} . (2.4)

Suppose for the moment that there is only one CMR to be tested and let U :=

ρ1 (Z, β0, h
∗
1 (W1)), X = X1 and dx = dx,1 abbreviate the model residual and the

conditioning variables, respectively. Then we may write the null hypothesis as,

E [U |X] = 0 a.s. (2.5)

Note that E [U |X] = 0 a.s. if and only if E [Ug (X)] = 0 for all bounded “test

functions” g : X → R. Following Bierens and Ploberger (1997), Stinchcombe and

White (1998) and Stute (1997), among others, I construct a test of the conditional

moment restriction in (2.4) by testing the unconditional moment restrictions (UMRs)

E [Uω (t,X)] = 0 for almost every t ∈ X , (2.6)

where X := X1 and ω denotes a proper weight function chosen so as to make (2.5)

and (2.6) equivalent even though (2.6) only employs the subset {g; g = ω (t, ·) , t ∈ X}
of possible test functions. (See Assumption 2 below for formal requirements of this

choice.)

Bierens and Ploberger (1997) [with its addendum in Bierens (2017)] and Stinch-

combe and White (1998) give detailed discussions on how to choose weight func-

tions ensuring the equivalence between a CMR and a family of UMRs. Example

weight functions from these references are the exponential ω (t, x) = exp
(
t>x
)
, logis-

tic ω (t, x) = 1/[1 + exp(c − t>x)] with c 6= 0, and cosine-sine ω (t, x) = cos
(
t>x
)

+

sin
(
t>x
)
.6

6Strictly speaking, exponential weighting requires X bounded in order to ensure ω (t, ·) bounded.
However, for unbounded X, one may replace X with any bounded, one-to-one transformation thereof.
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In general, L > 1 and one must choose a proper weight function for each CMR.

Having settled on such proper weight functions {ω`}L1 , the null hypothesis (2.1) may

be rephrased as

H0 : E [ρ` (Z, β0, h
∗
` (W`))ω` (t`, X`)] = 0 almost every t` ∈ X` and all ` ∈ {1, . . . , L} .

(2.7)

To further motivate the test statistic, define functionsM` : X` → R, ` ∈ {1, . . . , L} ,
by

M` (t`) := E [ρ` (Z, β0, h
∗
` (W`))ω` (t`, X`)] ,

and let FX` denote the distribution of the conditioning variables X` from the `th

CMR.7 Then squaring and integrating the collection of UMRs in (2.7), we may equiv-

alently express the testing problem as

H0 :
L∑
`=1

∫
X`
M` (t`)

2 dFX` (t`) = 0 (2.8)

versus

H1 :
L∑
`=1

∫
X`
M` (t`)

2 dFX` (t`) > 0. (2.9)

The left-hand side expresses the null hypothesis as the sum of mean-square deviations

of each M` from the zero function (on X`). Based on this representation of the testing

problem, I propose to construct a test of the CMRs in (1.1) using a Cramér-von

Mises-type (CM-type) measure of distance. Concretely, I define my test statistic as

Tn := n
L∑
`=1

∫
X`
M̂` (t`)

2 dF̂X` (t`) =
L∑
`=1

n∑
i=1

M̂` (X`i)
2 , (2.10)

where F̂X` is the empirical distribution,

F̂X` (t`) :=
1

n

n∑
i=1

1 (X`i 6 t`) , ` ∈ {1, . . . , L} , (2.11)

See also the discussion following Assumption 2.
7Throughout this paper, for a random variable U , I use FU to denote both its distribution and

CDF.
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and I have estimated each M` by the plug-in method

M̂` (t`) :=
1

n

n∑
i=1

ρ`(Zi, β̂, ĥ` (W`i))ω` (t`, X`i) , ` ∈ {1, . . . , L} , (2.12)

with β̂ being an estimate of β0 and each ĥ` a nonparametric estimate of the corre-

sponding h∗` . The formal requirements of the β̂ estimates are given in Assumption 1

below. I estimate the h`’s using series methods (see Section 2.3).

Under general conditions presented in Section 3, the stochastic processes {M̂`}L1
all converge to the zero function in probability under the null hypothesis, while at

least one of them converges to a nonzero probability limit under the alternative. A

“large” realization of Tn thus telegraphs a violation of the null.

As shown in Section 3.1 (see Theorem 3), the asymptotic distribution of Tn under

the null is generally nonpivotal and its dependence on the data-generating process

involved. In Section 3.2, I propose to obtain critical values via a multiplier bootstrap

procedure and establish its asymptotic validity.

Remark 1 (Conditional vs. Unconditional). An advantage of recasting one or more

CMRs as a collection of unconditional ones is that one avoids estimating the model

under the alternative, thus partially circumventing the “curse of dimensionality” as-

sociated with nonparametric estimation. The potential gain may be illustrated in

the nonparametric significance test described in the introduction. A direct test of

E [Y |X] = E [Y |W ] a.s. may be construed by estimating both sides of the equal-

ity and calculating the distance between the two. However, when the list of can-

didate regressors X is moderately long, nonparametric estimation of E [Y |X] may

be imprecise. In contrast, testing E [Y |X] = E [Y |W ] a.s. indirectly via a test of

E [(Y − E [Y |W ])ω (t,X)] = 0 for almost every t ∈ X only involves nonparametric

estimation of the CEF of Y as a function of the regressors W relevant under the null,

which is an easier problem.

2.3 Series Estimation

In constructing the test statistic (2.10), I take a series approach to estimating the

h∗` ’s.
8 To keep notation at a minimum, suppose for the moment that the CMRs

8Detailed accounts of the properties of least-squares series estimators may be found in Newey
(1995; 1997), Chen (2007), and Belloni, Chernozhukov, Chetverikov, and Kato (2015).
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involve only a single CEF and denote it h∗ (W ) = E [Y |W ] . For any nonnegative

integer k, let

w 7→ pk (w) := (p1 (w) , . . . , pk (w))>

be a k-vector of known approximating functions {pj}k1 .
9 Then a series estimator of

h∗ (w) is given by

ĥ (w) := ĥkn (w) := pkn (w)> π̂, (2.13)

π̂ := π̂kn :=

(
1

n

n∑
i=1

pkn (Wi) p
kn (Wi)

>

)−
1

n

n∑
i=1

pkn (Wi)Yi. (2.14)

Here π̂ denotes the vector of regression coefficients from a regression of Yi on pkn (Wi)

using observations i ∈ {1, . . . , n}, with kn being a sequence of positive integers growing

without bound as n→∞, and (·)− is short for the Moore-Penrose generalized inverse

of a matrix.10

In the event that more than one CEF is at play, I construct a series estimate of

the form (2.13) for each distinct element of the h∗` (W`)’s. Given that the subvectors

W` may differ in both content and dimension, the approximating functions pk` must

be indexed by `, in general. However, to avoid further cluttering notation, I assume

the same approximating functions are used for each entry of h∗` (W`).
11

3 Theoretical Properties

3.1 Limiting Behavior of Test Statistic

Some regularity is required to derive the limiting behavior of the test statistic. To

control the influence of estimation of β0 I assume that:

Assumption 1 (Parametric Estimation). The pseudo truth β0 is interior to B ⊆
Rdβ . For each n ∈ N, β̂ is a random element of B. Moreover, there exists s : Z → Rdβ

9These approximating functions may in principle change with k, which is not reflected in my
notation.

10Under the conditions stated below, the matrix n−1
∑n
i=1 p

k (Wi) p
k (Wi)

>
is asymptotically non-

singular. The particular choice of a generalized inverse is therefore asymptotically irrelevant.
11Use of different approximating functions for different entries is in principle allowed, provided

Assumptions 5–8 are suitably modified.
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such that

√
n(β̂ − β0) =

1√
n

n∑
i=1

s (Zi) + oP(1), (3.1)

where s (Z) is centered and square integrable.

Assumption 1 requires that the centered and scaled parametric estimator is asymp-

totically linear with influence function s. Asymptotic linearity is admittedly a “high-

level” condition.12 That being said, Example 3 illustrates that for certain classes of

two-step GMM estimators it is possible to obtain asymptotic linearity through more

primitive assumptions.

Example 3 (Asymptotic Linearity in Two-Step GMM). Similar to Example

1, let β0 be the unique solution to

E [m (Z, β, h∗ (W ))] = 0dm×1,

with number of moments dm > dβ. For now, take h∗ (W ) = E [Y |W ] to be scalar,

and define β̂ as the minimizer of

β 7→ m̂ (β)> Ŵ m̂ (β) where m̂ (β) :=
1

n

n∑
i=1

m(Zi, β, ĥ (Wi)), Ŵ
P→ W,

where ĥ is some nonparametric estimator of h∗, and W is a positive definite, non-

stochastic dm×dm matrix. Then β̂ is a two-step GMM estimator based on a nonpara-

metric first step. Newey (1994, Lemma 5.3) provides conditions under which such a

two-step GMM estimator based on a nonparametric first step is
√
n-asymptotically

normal and provide tools for calculating its asymptotic variance.13 Inspection of

Newey’s argument reveals that the same set of conditions actually yields the slightly

12Assumption 1 also implies that the pseudo-truth β0 is root-n estimable, which is not an innocuous
requirement in conditional moment models. (see, for instance, Chen and Pouzo, 2015). It may be
possible to this assumption 1 to allow for slower-than-root-n estimability by rescaling appropriate
quantities by the relevant rate of convergence.

13Newey’s (1994) framework is more general than presented here. Specifically, in his setup, non-
parametric component(s) h∗ need not be CEF(s) and moment functions may depend on the entire
function h∗ rather than just their values h∗ (w) .
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stronger result of asymptotic linearity. Specifically, under Newey’s conditions,

√
n(β̂ − β0) = −

(
M>WM

)−1
M>W

1√
n

n∑
i=1

{m (Zi, β0, h
∗ (Wi)) + α (Zi)}+ oP (1) ,

(3.2)

where M := E
[(
∂/∂β>

)
m (Z, β0, h

∗ (W ))
]

is a Jacobian term, and α is an adjustment

to the moment function due to estimation of h∗. Because h∗ is a CEF, Newey (1994,

Proposition 4) shows that, irrespective of the choice of nonparametric estimator, under

some conditions, the adjustment is of the form

α (z) = δ (w) {y − h∗ (w)} , δ (W ) := E

[
∂

∂h
m (Z, β0, h

∗ (W ))

∣∣∣∣W] , (3.3)

where (∂/∂h)m (z, β0, h
∗ (w)) denotes the (ordinary) derivative (∂/∂h)m(z, β0, h)

with respect to the third argument evaluated at h = h∗ (w). The influence func-

tion is therefore given by

s (z) = −
(
M>WM

)−1
M>W (m (z, β0, h

∗ (w)) + δ (w) {y − h (w)}) ,

with δ defined in (3.3).14

When the moment function m (z, β, h∗ (w)) depends on a vector h∗ (W ) [abbre-

viating the distinct elements of the h∗` (W`)’s], the total adjustment to the moment

function is given by adding up the individual adjustment terms (Newey, 1994, p.

1357) . That is, the adjustment in (3.2) becomes

α (z) =
L∑
`=1

α` (z) =
L∑
`=1

δ` (w`) {y` − h∗` (w`)} ,

δ` (W`) := E

[
∂

∂h>`
m (Z, β0, h

∗ (W ))

∣∣∣∣W`

]
, ` ∈ {1, . . . , L} , (3.4)

where ∂/∂h>` denotes (ordinary) differentiation with respect to the arguments corre-

sponding to h∗` (W`).

While primitive, easy-to-verify conditions are desirable, Assumption 1 leaves free-

14See also Chen, Linton, and Van Keilegom (2003), who extend Newey’s (1994) more general results
on two-step GMM estimation to more general Z-estimation with a possibly nonsmooth criterion
function.
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dom in choice beyond the two-step GMM estimation outlined in Example 3. For

example, (3.1) allows for other or more general two- or multi-step estimation proce-

dures, such as two-step extremum estimation. Such procedures typically estimate the

nonparametric components in a first step, use their estimates to contruct a criterion

function, and maximize or minimize over β in order to produce a second-step estima-

tor β̂. For example, one may let β̂ be a sieve minimum distance (SMD) estimator (Ai

and Chen, 2003) or a penalized sieve minimum distance (PSMD) estimator (Chen

and Pouzo, 2009; 2012).

The calculations outlined in Example 3 needed to verify Assumption 1 can be

made explicit in the case of testing conditional homoskedasticity.

Example 4 (Asymptotic Linearity in Testing Conditional Homoskedas-

ticity). Recall that σ2
0 is identified by E

[
Y 2 − h∗ (X)2 − σ2

]
= 0 with h∗ (X) =

E [Y |X] , and may be estimated by σ̂2 = n−1
∑n

i=1{Y 2
i − ĥ (Xi)

2} with ĥ being

a nonparametric estimator of h∗. Differentiation of the moment function given by

m (z, σ2, h) := y2 − h2 − σ2 shows that M := E [(∂/∂σ2)m (Z, σ2
0, h

∗ (X))] = −1

and δ (X) := E [(∂/∂h)m (Z, σ2
0, h

∗ (X))|X] = −2h∗ (X). It follows that α (z) =

δ (x) {y − h∗ (x)} = −2h∗ (x) {y − h∗ (x)} and thus from (3.2) that (under some con-

ditions),

√
n(σ̂2 − σ2

0) =
1√
n

n∑
i=1

({
Y 2
i − h∗ (Xi)

2 − σ2
0

}
− 2h∗ (Xi) {Yi − h∗ (Xi)}

)
+ oP (1) .

Hence, in this example s (z) =
{
y2 − h∗ (x)2 − σ2

0

}
− 2h∗ (x) {y − h∗ (x)} .

I impose the following conditions on the choice of weight functions used in con-

verting CMRs into an equivalent collection of UMRs.

Assumption 2 (Weight Function). Each X` ⊂ Rdx,` is compact. Each weight

function ω` : X` × X` → R is continuous, has the property that (2.5) if and only

if (2.6), and satisfies the Lipschitz condition: for all t1, t2, x` ∈ X` and some finite

constant C`, |ω` (t1, x`)− ω` (t2, x`)| 6 C` ‖t1 − t2‖ .

Examples of weight functions satisfying Assumption 2 and references giving de-

tailed discussion of the equivalence between (2.5) and (2.6) were provided in Section

2.2.
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At first glance, the compactness of each X` appears to rule out unbounded condi-

tioning variables. However, if X` is not bounded, one may replace it with X̃` := Φ (X`)

for any Φ : Rdx,` → Rdx,` bounded. Provided Φ is also one-to-one, such a transforma-

tion entails no loss in generality in the sense that E [U |X] = E [U |Φ (X)] a.s. The

compactness “assumption” thus only acts as a reminder to conduct such a preliminary

transformation, if necessary. In the simulation study (Section 4) I use an elementwise

arctan transform to reduce otherwise unbounded conditioning variables to a bounded

set prior to calculating weights.

I next impose conditions on the residual functions. For this purpose, let d` be

the number of elements in Y` [hence h∗` (W`)], and let W` be the support of W`, ` ∈
{1, . . . , L} .

Assumption 3 (Residual). For each ` ∈ {1, . . . , L} , the following holds:

1. For each z ∈ Z, v` ∈ Rd` , β 7→ ρ` (z, β, v) is continuous on B and continuously

differentiable on an open neighborhood N` of β0. Moreover, there exist c` ∈ (0, 1]

and a` : Z → R+ integrable such that for each z ∈ Z, β ∈ N`, v` ∈ Rd` ,∥∥∥∥ ∂∂βρ` (z, β, v`)−
∂

∂β
ρ` (z, β, h∗` (w`))

∥∥∥∥ 6 a` (z) ‖v` − h∗` (w`)‖c` .

2. For each z ∈ Z, v` 7→ ρ` (z, β0, v`) is continuously differentiable on Rd`. More-

over, there exists γ` ∈ (0, 1] and R` : Z → R+, such that for each z ∈ Z, v` ∈
Rd` ,∥∥∥∥ ∂

∂h`
ρ` (z, β0, v`)−

∂

∂h`
ρ` (z, β0, h

∗
` (w`))

∥∥∥∥ 6 R` (z) ‖v` − h∗` (w`)‖γ` , (3.5)

and E [R` (Z)]
√
nmax16m6d`‖ĥ`m − h∗`m‖

1+γ`
W`
→P 0.

3. The following are integrable: |ρ` (Z, β0, h
∗
` (W`))|, ‖(∂/∂h)ρ`(Z, β0, h

∗
` (W`))‖2

and supβ∈N` ‖ (∂/∂β) ρ`(Z, β, h
∗
` (W`))‖.

Assumptions 3.1 and 3.2 are smoothness conditions facilitating a linearization

around (β0, h
∗) in order to extract the dominant component of the processes {M̂`}L1

used in constructing the test statistic. The differentiability assumptions may likely

be relaxed at the expense of longer proofs. I leave such extensions for future research.
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Assumption 3.2 generally requires each element of ĥ` to converge to the corre-

sponding element of h∗` uniformly over W` at a sufficiently fast rate.15 Such a rate

requirement often boils down to assuming that the estimand is sufficiently smooth

relative to its number of arguments.

While the previous assumptions in principle allow for general nonparametric esti-

mation methods, the following three conditions are tailored to series estimators. The

first assumption is prevalent in the series estimation literature [see, e.g., Stone (1985);

Newey (1994; 1997); and Belloni et al. (2015)].

Assumption 4 (Variance). var(Y`m|W`) is bounded for all m ∈ {1, . . . , d`} , ` ∈
{1, . . . , L} .

The second assumption imposes regularity conditions on the approximating func-

tions.

Assumption 5 (Eigenvalues). The eigenvalues of E[pk` (W`) p
k
` (W`)

>] are bounded

from above and away from zero uniformly over k ∈ N for all ` ∈ {1, . . . , L} .

Loosely speaking, Assumption 5 requires that the technical regressors pk` (W`) are

not too co-linear. See, e.g., Belloni et al. (2015, Proposition 2.1) for more primitive

sufficient conditions.

Assumptions 4 and 5 are used to control the variance of the series estimators, but

do not provide control over the bias arising from approximating the estimands by a

linear form. The following assumption restricts the bias—or, approximation error—

provided by the approximating functions w` 7→ pk` (w`) = (p`1(w`), . . . , p`k(w`))
>, ` ∈

{1, . . . , L} , relative to the supremum metric.

Assumption 6 (Approximation). h∗`m is bounded, m ∈ {1, . . . , d`} , ` ∈ {1, . . . , L}.
Moreover, for each ` ∈ {1, . . . , L} ,m ∈ {1, . . . , d`} and each k ∈ N, there exists

constants α`m ∈ (0, 1) , C`m ∈ (0,∞), and π̃`m ∈ Rk such that ‖pk`>π̃`m − h∗`m‖W`
6

C`mk
−α`m .

Assumption 6 is a high-level asssumption, but it is satisfied in many cases. The

exponent α`m usually depends on the smoothness of the estimand h∗`m and its number

15A notable exception occurs when the residual is linear in h∗` (w). In this case, R` may be taken

as the zero function, and the requirement E [R` (Z)]
√
nmax16m6d`‖ĥ`m − h∗`m‖

1+γ`
W`

→P 0 becomes
vacuous.
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of arguments d`. When the estimand can be viewed as a member of some smooth

class of functions, this exponent will typically be available from the approximation

theory literature. For example, if h∗`m belongs to a Hölder ball with Hölder exponent

s`m (often referred to as h∗`m being “s`m-smooth”), then Assumption 6 holds with

α`m = s`m/d`, provided pk`m is constructed using either power series [see, e.g., Timan,

1963, Section 5.3.2; Lorentz, 1966, Theorem 8] or splines [see, e.g., Schumaker, 2007;

DeVore and Lorentz, 1993].

Assumption 5 is a normalization that restricts the magnitude of the series terms.

The theory to follow will also require that the size of each pk` does not grow too fast

relative to the sample size, where “size” is quantified by

ζ`,k := sup
w∈W`

∥∥pk` (w`)
∥∥ . (3.6)

For specific choices of approximating functions pk` , bounds on the corresponding ζ`,k

are readily available. For example, for pk` power series ζ`,k 6 Ck, and for regression

splines ζ`,k 6 C
√
k (cf. Newey, 1997). See Belloni et al. (2015, Section 3) for a

comprehensive list.

Remark 2 (Smallest Size of Approximating Functions). Let L = 1, d1 = 1, W =

W1 and pk = pk1. When the eigenvalues of Qk := E[pk(W )pk(W )>] are bounded

away from zero, Q−1k exists and has eigenvalues bounded from above, such that

E[pk (W )>Q−1k pk (W )] 6 CE[‖pk (W )‖2]. Given that

E[pk (W )>Q−1k pk (W )] = tr
(
Q−1k E[pk (W ) pk (W )>]

)
= tr (Ik) = k,

we must have

ζ2k > E[‖pk (W )‖2] > (1/C) E[pk (W )>Q−1k pk (W )] = (1/C) k,

Thus, under Assumption 5, one necessarily has
√
k 6 Cζk, i.e.,

√
k is the smallest

order of size for pk.

The probabilistic behavior of the test statistic Tn defined in (2.10) depends cru-

cially on the probabilistic behavior of the stochastic processes {
√
nM̂`}L1 given in

(2.12). In fact, a linearization argument (cf. Lemma 1) shows that each
√
nM̂` is

asymptotically equivalent to a stochastic process t` 7→ n−1/2
∑n

i=1 [g` (t`, Zi)] , t` ∈ X`,
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defined by

g` (t`, z) := ρ` (z, β0, h
∗
` (w`))ω` (t`, x`) + b` (t`)

> s (z) + δ` (t`, w`)
> {y` − h∗` (w`)} ,

(3.7)

b` (t`) := E

[
ω` (t`, X`)

∂

∂β
ρ` (Z, β0, h

∗
` (W`))

]
, (3.8)

δ` (t`,W`) := E

[
ω` (t`, X`)

∂

∂h`
ρ` (Z, β0, h

∗
` (W`))

∣∣∣∣W`

]
, (3.9)

with s provided by Assumption 1. Here b` (t`)
> s (z) and δ` (t`, w`)

> {y` − h∗` (w`)} are

adjustments to the moment function z 7→ ρ` (z, β0, h
∗
` (w`))ω` (t`, x`) due to estima-

tion of β0 and h∗` , respectively. The form of the β-adjustment follows from a mean-

value expansion with b` (t`) being a Jacobian term. The form of the h-adjustment

is akin to the adjustment to the influence function in two-step GMM estimation

with a nonparametric first step as summarized in Example 3, in particular, (3.2) and

(3.3). The main difference is that, while two-step semiparametric GMM estimation

requires adjustment of a finite number of moments used in defining the GMM crite-

rion function, I here need to adjust a possibly infinite collection of moment functions

{z 7→ ρ` (z, β0, h
∗
` (w`))ω` (t`, x`) ; t` ∈ X`} for estimation of h∗` .

For the purpose of stating the following assumption, define the mean-square pro-

jection coefficients

πh`m,k := argmin
π∈Rk

E

[{
pk` (W`)

> π − h∗`m (W`)
}2
]
, (3.10)

πδ`m,k (t`) := argmin
π∈Rk

E

[{
pk` (W`)

> π − δ`m (t`,W`)
}2
]
, (3.11)

and their induced mean-square errors

r2h`m,k := min
π∈Rk

E

[{
pk` (W`)

> π − h∗`m (W`)
}2
]
, (3.12)

r2δ`m,k (t`) := E

[{
pk` (W`)

> π − δ`m (t`,W`)
}2
]
, (3.13)

R2
δ`m,k

:= E

[
sup
t`∈X`

∣∣∣pk` (W`)
> πδ`m,k (t`)− δ`m (t`,W`)

∣∣∣2] , (3.14)

where ` ∈ {1, . . . , L} , t` ∈ X` and m ∈ {1, . . . , d`}. Assumption 7 contains rate con-

18



ditions sufficient to show that the difference between
√
nM̂` and n−1/2

∑n
i=1 g` (·, Zi)

is asymptotically negligible, ` ∈ {1, . . . , L}.

Assumption 7 (Rate Conditions). For all ` ∈ {1, . . . , L} and m ∈ {1, . . . , d`} and

α`m provided by Assumption 6,

ζk`m,nrh`m,k`m,n → 0,
ζ2`m,k`m,nk`m,n ln (k`m,n)

n
→ 0, nr2h`m,k`m,n‖rδ`m,k`m,n‖

2
X` → 0,

Rδ`m,k`m,n → 0, Rδ`m,k`m,n

√
ln

(
k`m,n

Rδ`m,k`m,n

)
→ 0,

and ( k`m,n∑
j=1

‖p`,j‖2W`

)1/2(√k`m,n
n

+ k−α`m`m,n

)
→ 0.

In discussing the rate conditions, consider the scalar case and drop the ` and

m subscripts. Given that ζk 6 (
∑k

j=1 ‖pjk‖
2
W)1/2, the last rate condition ensures

that ζkn(
√
kn/n + k−αn ) → 0, which I use to argue uniform consistency of the series

estimators. Note that the presence of ζk in the rate conditions formally requires one

to use approximating functions that are bounded on W . However, the simulations

in Section 4—where I construct approximating functions based on power series even

though the conditioning variables have unbounded support—suggest that this formal

requirement can be relaxed.

Observe that the mean-square error rh,kn resulting from approximating h∗ by lin-

ear forms is not required to go to zero at a rate faster than n−1/2. Such a condition

would otherwise require choosing kn larger than what would maximize its rate of con-

vergence (sometimes referred to as“undersmoothing”). Instead Assumption 7 requires

the product of rh,kn and the maximal approximation mean-square error ‖rδ,kn‖X to be

o(n−1/2). This property arises from the orthogonality property of mean-square projec-

tions. Specifically, for the projections hk (·) = pk (·)> πh,k and δk (t, ·) = pk (·)> πδ,k (t)

of h∗ and δ (t, ·), respectively, the bias term E[δ(t,W ){hk(W ) − h∗(W )}] is equal to

E[{δk(t,W )− δ(t,W )}{hk(W )− h∗(W )}] for each t ∈ X . Consequently, if the family

{δ (t, ·) ; t ∈ X} can be sufficiently well approximated by linear forms, there is no need

to “undersmooth.”16 Newey (1994) shows that a similar feature arises in the context

16While undersmoothing may not be necessary to achieve the claimed asymptotic approximation,
it may be “optimal” in the sense of minimizing the remainder resulting from this approximation as
remarked by Donald and Newey (1994) in the context of partially linear regression.
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of two-step GMM estimation with a first step based on series estimation of projection

functionals, such as CEFs.

Remark 3 (On Alternatives to Series Estimation). Alternative nonparametric estima-

tors of the CEFs may not be able to exploit such built-in orthogonality properties

and may therefore require undersmoothing through choice of the tuning parameter(s).

One estimation method, which has recently gained significant attention, is the Lasso

(Tibshirani, 1996), also known as `1-penalized least squares. Due to penalization,

the Lasso does not give rise to an orthogonal projection. However, theoretical guid-

ance for choosing the penalty [see, e.g., Bickel, Ritov, and Tsybakov (2009); Belloni

and Chernozhukov (2011; 2013)] does not allow for undersmoothing. Nonetheless,

building on ideas from the literatures on “double machine learning” (see, e.g., Cher-

nozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2017a) and

high-dimensional central limit theorems [see Chernozhukov, Chetverikov and Kato

(2013; 2017b)], in related work I develop a specification test for moment restrictions

with CEFs estimated by the Lasso (see Sørensen, 2018).

The previous assumptions suffice for the asymptotic equivalence posited above.

Lemma 1 (Asymptotic Equivalence). If Assumptions 1–7 hold, then for {M̂`}L1
in (2.12) and {g`}L1 in (3.7) we have

max
16`6L

∥∥∥∥∥√nM̂` (·)− 1√
n

n∑
i=1

g` (·, Zi)

∥∥∥∥∥
X`

P→ 0.

Lemma 1 implies that the probabilistic behavior of ‖
√
nM̂`‖ may be approximated

by that of ‖n−1/2
∑

i g(·, Zi)‖ for any norm ‖·‖ weaker than the supremum norm, such

as the empirical L2-norm implicit in the definition of Tn.

A class F of real-valued functions is called a Donsker class (van der Vaart and

Wellner, 1996, pp. 81-82), if the sequence of empirical processes {n−1/2
∑n

i=1{f (Zi)−
E [f (Z)]}; f ∈ F} induced by F—viewed as random elements of L∞(F)—converges

weakly17 to a centered Gaussian process {G (f) ; f ∈ F} with covariance function

E [G (f1)G (f2)] = E [f1 (Z) f2 (Z)]− E [f1 (Z)] E [f2 (Z)] , f1, f2 ∈ F .
17A sequence Xn of stochastic processes taking values in a metric space D are said to converge

weakly to X if E[h(Xn)]→ E[h(X)] for all h : D→ R continuous and bounded.
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Define function classes

G` := {g` (t`, ·) : Z → R; t` ∈ X`} , ` ∈ {1, . . . , L} , G := ×L`=1G`.

The same set of assumptions then also shows:

Lemma 2 (Donsker Class). If Assumptions 1–7 hold, then G is Donsker.

Note that, for each t` ∈ X` and ` ∈ {1, . . . , L},

E [g` (t`, Z)] = E [ρ` (Z, β0, h
∗
` (W`))ω` (t`, X`)] = M` (t`) , (3.15)

which follows from Assumption 1 and (3.9). Since we may identify each G` with the

corresponding X`, Lemma 2 states that the sequence of L-variate stochastic processes

Gn (t) :=
1√
n

n∑
i=1

{g (t, Zi)− E [g (t, Z)]} , t ∈ T , T := ×L`=1X`,

converges weakly in ×L`=1L
∞ (X`) to an L-variate zero-mean Gaussian process GM

indexed by T and with (matrix) covariance kernel

CM (t, t′) := E
[
{g (t, Z)−M (t)} {g (t′, Z)−M (t′)}>

]
, t, t′ ∈ T , (3.16)

where M : T → RL denotes the vector function

M (t) = (M1 (t1) , . . . ,ML (tL))> , t ∈ T .

The behavior of the test statistic under the null and alternative follows.

Theorem 1 (Asymptotic Behavior of Test Statistic). If Assumptions 1–7 hold,

then

Tn
d→ T0 :=

L∑
`=1

∫
X`
G0` (t`)

2 dFX` (t`) under the null hypothesis (2.1),

Tn
n

P→
L∑
`=1

∫
X`
M` (t`)

2 dFX` (t`) > 0 under the fixed alternative hypothesis (2.2),

where G0 is an L-variate centered Gaussian process indexed by T and with covariance

kernel C0 := CM |M≡0.
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Remark 4.

1. The proof of Theorem invokes a (second-order) delta method argument to show

that, under the null, Tn = n
∑L

`=1

∫
X`
M̂` (t`)

2 dFX` (t`) + oP (1). That is, the

limiting null distribution is unaffected by the use of empirical distributions in

place of their (unknown) population counterparts.

2. The second claim of Theorem 1 implies that Tn →P ∞ (at the rate n) under

the alternative, which plays a key role in establishing consistency in Theorem

2.

3.2 Bootstrap Critical Values

The limit results in Theorem 1 cannot be implemented for inference without a con-

sistent estimator for the appropriate critical values. For this purpose, I employ a

Gaussian multiplier bootstrap procedure.

By Theorem 1, the limiting law of Tn under the null hypothesis is given by that

of T0 =
∑L

`=1

∫
X`
G0` (t`)

2 dFX` (t`). To obtain a consistent bootstrap, it is therefore

necessary to estimate the law of the Gaussian process G0. Toward this end, let {ξi}∞1
be a sequence of i.i.d. standard normal random variables independent of the stream

of data {Zi}∞1 and let ξ := n−1
∑n

i=1 ξi abbreviate their average.

To fix ideas, consider first the multiplier process G∗n := (G∗1n, . . . , G
∗
Ln) defined by

G∗n (t) :=
1√
n

n∑
i=1

(
ξi − ξ

)
g (t, Zi) , t ∈ T . (3.17)

By independence, the summands of G∗n are centered even if one or more of the

g` (t`, Z)’s are not, i.e., even when the null is false. The purpose of including ξ in

(3.17) is to take into account that the g`(t`, Zi) may not be centered with respect to

the empirical distribution even if the null is true.18 The sample centering aims for

less conservative critical values in finite sample by correctly accounting for sample

variation.

18Rearranging, this connection can be made explicit:

G∗n (t) =
1√
n

n∑
i=1

ξi {g (t, Zi)− g (t)} , g (t) :=
1

n

n∑
i=1

g (t, Zi) .
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The following discussion relies on the notion of weak convergence in probabil-

ity. The multiplier process G∗n is said to converge weakly in probability to G∗ in

×L`=1L
∞ (X`), written G∗n  P,ξ G

∗, if G∗n converges weakly to G∗ conditional on the

data, in probability.19 Given that G is Donsker (Lemma 2), Kosorok (2008, Theo-

rem 10.4) shows that G∗n  P,ξ GM in ×L`=1L
∞ (X`). Under the null, M ≡ 0 on T ,

and the covariance function of GM coincides with that of G0. Since both GM and

G0 are Gaussian, under the null the two must therefore be identically distributed.

This observation suggests using the (1− α)-quantile of
∑L

`=1

∫
X`
G∗`n (t`)

2 dFX` (t`)

conditional on {Zi}n1 to approximate

cTM (α) := (1− α) -quantile of TM , TM :=
L∑
`=1

∫
X`
GM,` (t`)

2 dFX` (t`) .

Of course, the g`’s—as well as the FX` ’s—are generally unknown, thus rendering

the above procedure infeasible. However, endowed with an estimator ŝ of the influence

function s from Assumption 1, one may estimate g and define the bootstrap process

Ĝ := (Ĝ1, . . . , ĜL)> as the feasible version of G∗n. Specifically, I define

Ĝ (t) :=
1√
n

n∑
i=1

(
ξi − ξ

)
ĝ (t, Zi) , t ∈ T , (3.18)

ĝ (t, z) := (ĝ1 (t1, z) , . . . , ĝL (tL, z))
> , (3.19)

ĝ` (t`, z) := ρ`(z, β̂, ĥ` (w`))ω` (t`, x`) + b̂` (t`)
> ŝ (z) + δ̂` (t`, w`)

> {y` − ĥ` (w`)},
(3.20)

b̂` (t) :=
1

n

n∑
i=1

ω` (t`, X`i)
∂

∂β
ρ`(Zi, β̂, ĥ` (W`i)), (3.21)

δ̂`m (t`, w`) := p
k`m,n
` (w`)

>

(
1

n

n∑
i=1

p
k`m,n
` (W`i) p

k`m,n
` (W`i)

>

)−

× 1

n

n∑
i=1

p
k`m,n
` (W`i)ω` (t`, X`i)

∂

∂h`m
ρ`(Zi, β̂, ĥ` (W`i)). (3.22)

Replacing the multiplier process G∗n with the bootstrap process Ĝ and the FX` ’s

19That is, if E[h(G∗n)|{Zi}n1 ] →P E[h(X)] for all h : ×L`=1L
∞ (X`) → R continuous and bounded.

An equivalent definition is suph∈BL1(×L
`=1L

∞(X`))|E [h (G∗n)| {Zi}n1 ]−E [h (G∗)]| →P 0, where BL1 (D)

denotes the space of functionals h : D→ R defined on the metric space (D, d) whose Lipschitz norm
is bounded by one, i.e., functionals satisfying ‖h‖D 6 1 and |h (f)− h (g)| 6 d (f, g) for all f, g ∈ D.
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with their empirical analogs, we arrive at a feasible bootstrap test statistic, namely

T̂ :=
L∑
`=1

∫
X`
Ĝ` (t`)

2 dF̂X` (t`) =
1

n

L∑
`=1

n∑
i=1

Ĝ` (X`i)
2 . (3.23)

A feasible critical value is therefore given by

cT̂ (α) := (1− α) -quantile of T̂ conditional on {Zi}n1 . (3.24)

For a given significance level α ∈ (0, 1), the critical value cT̂ (α) may be obtained

through simulation of the Gaussian multipliers {ξi}n1 holding the data constant.20

The test rejects the null hypothesis (2.1) if Tn > cT̂ (α) for some prespecified

significance level α ∈ (0, 1) , where the test statistic is defined in (2.10) and the

critical value in (3.24).

Remark 5 (Additively Separable Residuals). If a residual function is additively sep-

arable in the conditioning variables, in the sense that ρ`(z, β0, h
∗
`(w`)) = φ`(y`, β0) +

ϕ`(x`, β0, h
∗
`(w`)), then (∂/∂h`)ρ`(z, β0, h

∗
`(w`)) = (∂/∂h`)ϕ`(x`, β0, h

∗
`(w`)) depends

on z through x` alone. If, in addition, X` and W` coincide,21 then the term ω`(t`, X`)

(∂/∂h`)ρ`(Z, β0, h
∗
`(W`)) must be conditionally known given W` (up to β0 and h∗`)

and hence equal to δ` (t`,W`). For such models, one may therefore drop the projec-

tion element of the estimator in (3.22) and replace it by the simpler δ̂` (t`,W`i) =

ω` (t`, X`i) (∂/∂h`)ϕ`(X`i, β̂, ĥ` (W`i)). This simplification is utilized in Section 4.

A potentially difficult step in this bootstrap procedure is the construction of

ŝ. If s is a function s (·, β0, h∗) known up to β0 and h∗, a natural estimator ŝ is

ŝ (·) := s(·, β̂, ĥ). This structure is found in testing for conditional homoskedasticity

(see Example 4). For other two-step GMM estimators, ŝ will typically require esti-

mation of a Jacobian (matrix) term (cf. Example 3). In general, one may construct

s estimates by first obtaining an analytic formula for s and then replacing unknown

components by estimates. However, at the level of generality for the parametric

component considered in this paper, it does not appear possible to give primitive

conditions under which ŝ is consistent for s.

Assumption 8 (Bootstrap Conditions). For each ` ∈ {1, . . . , L} , the following

holds:
20In practice, this simulation is terminated after a finite but large number of draws.
21Formally: if X` is measurable with respect to W`.
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1. For each z ∈ Z, β ∈ N`, v` 7→ ρ` (z, β, v`) is continuously differentiable on Rd`.

Moreover, there exists R′` : Z → R+ such that for each z ∈ Z, β ∈ N`, v` ∈ Rd` ,∥∥∥∥ ∂

∂h`
ρ` (z, β, v`)−

∂

∂h`
ρ` (z, β0, h

∗
` (w`))

∥∥∥∥ 6 R′` (z) (‖β − β0‖+ ‖v` − h∗` (w`)‖) ,

where E [R′` (Zi)]
√
nmax16m6d`‖ĥ`m − h∗`m‖2W`

→P 0;

2. n−1
∑n

i=1{ŝ(Zi)− s(Zi)}2 →P 0; and,

3. for all m ∈ {1, . . . , d`} and α`m’s provided by Assumption 6,

ζ`,k`m,n
√
k`m,n(

√
k`m,n/n+ k−α`m`m,n )→ 0,( k`m,n∑

j=1

‖p`j‖2W
)1/2

max
16m′6d`

(
√
k`m′,n/n+ k

−α`m′
`m′,n )→ 0.

With the addition of Assumption 8, we obtain:

Lemma 3 (Bootstrap Equivalence). If Assumptions 1–8 hold, then max16`6L‖Ĝ`−
G∗`n‖X` →P 0.

Lemma 3 establishes that the unknown character of g is asymptotically irrelevant.

Given that G∗n converges weakly in probability to GM , by the lemma, so must its

feasible analog Ĝ.

Now, the limit TM is a nonnegative random variable arising from applying a convex

functional (the sum of squares of L2-type norms) to a Gaussian process GM . It follows

from Davydov, Lifshits, and Smorodina (1998, Theorem 11.1) that its CDF

FTM (u) := P (TM 6 u) , u ∈ R, (3.25)

is everywhere continuous, except possibly at the separation point zero. I explicitly

rule out a mass point at separation by invoking the high-level assumption:

Assumption 9 (Continuity). FTM (0) = 0.

More primitive conditions may be used to satisfy Assumption 9. For example,

using the continuity of sample paths of GM , FTM (0) = 0 may be obtained under the

“nondegeneracy” assumption that var [g` (t`, Z)] > 0 for some t` ∈ X` and some ` ∈
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{1, . . . , L}, when combined with an assumption that the corresponding distribution

FX` is absolutely continuous with density bounded away from zero.

Given the continuous nature of the weak in-probability limit TM of T̂ , convergence

of quantiles essentially follows.

Lemma 4 (Quantile Consistency). If Assumptions 1–9 hold, and FTM is increasing

at its (1− α)-quantile cTM (α), then cT̂ (α)→P cTM (α) ∈ (0,∞).

3.3 Limiting Behavior of Test

Theorem 2 contains the main results of this paper, namely that that the test which

rejects the null hypothesis if and only if Tn > cT̂ (α) is (1) correctly sized and (2)

consistent against any fixed alternative.

Theorem 2 (Asymptotic Properties of Test). If Assumptions 1–9 hold, and FTM
is increasing at its (1− α)-quantile, then

P
(
Tn > cT̂ (α)

)
→

α, under the null hypothesis (2.1),

1, under the fixed alternative hypothesis (2.2).

4 Simulations

To demonstrate the usefulness of the proposed testing procedure and assess its finite-

sample properties, I carry out a simulation experiment.

4.1 Setup: A Two-by-Two Game of Incomplete Information

One potential application of the test lies in testing for correct specification of static

binary choice models with social and strategic interactions. (See the introduction

for references.) I therefore use a two-player, binary-action game of incomplete in-

formation as data-generating process (DGP). The DGP considered here is a slight

modification of the one in Hahn, Moon, and Snider (2017) with the addition of con-

tinuous conditioning variables.22 Two players, indexed j ∈ {1, 2}, simultaneously

22When conditioning variables are discrete, the CEFs may be represented using a finite set of
values and the estimation problem becomes parametric.
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choose one of two alternatives yj ∈ {0, 1}. Utility of the players is parameterized as

u (yj, y−j, xj, εj (0) , εj (1) ; θ) =

Axj + Cx2j + γ0y−j + εj (1) , yj = 1,

Bxj +Dx2j + γ0 (1− y−j) + εj (0) , yj = 0,

where y−j denotes the action of the other player, xj is a player-specific public payoff

shock, and (εj (0) , εj (1)) is a vector of iid (over both players and alternatives) payoff

shocks private to player j drawn from a commonly known distribution. In a Bayesian

Nash equilibrium (BNE), both players maximize their expected utility given their

beliefs, and their beliefs turn out correct, thus leading to the decision rule

Yj = 1
(
α0Xj + δ0X

2
j + γ0 (2E [Y−j|X]− 1) > εj

)
, (4.1)

where I abbreviate α0 := A − B, δ0 := C −D,X := (X1, X2), and εj := εj (0) − εj (1).

The εj (yj)’s are here taken to be Type 1 Extreme Value distributed independent of

the Xj’s. Correctness of beliefs therefore leads to the CCPs

E [Yj|X] = Λ
(
α0Xj + δX2

j + γ0 (2E [Y−j|X]− 1)
)
, j ∈ {1, 2} , (4.2)

with Λ (t) = 1/(1 + e−t) being the logistic CDF.

Let
{
{(Yij, Xij)}2j=1

}n
i=1

denote data from n independent games. We wish to test

the null hypothesis

∃β := (α, γ) s.t. E [Yj − Λ (αXj + γ (2E [Y−j|X]− 1))|X] = 0 a.s. for both j ∈ {1, 2} .

To generate data from the model, I first draw conditioning variables X = (X1, X2),

which are taken to be bivariate normal with unit variances and correlation ρ. I then

solve the two equations

σj = Λ
(
α0Xj + δ0X

2
j + γ0 (2σ−j − 1)

)
, j ∈ {1, 2} , (4.3)

in the unknowns (σ1, σ2) to obtain beliefs consistent with a BNE. Outcomes are

subsequently generated using the decision rules in (4.1).23 Throughout I set α0 =

23Depending on the value of X, the nonlinear system (4.3) may in principle have multiple solutions
resulting in different equilibria. The notation employed in (4.1)–(4.2) implicitly assumes uniqueness
of equilibrium beliefs. The parameter values are here selected to guarantee a unique solution to this
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Figure 1: Equilibrium Beliefs of Player 1 as a Function of Public Information

γ0 = 1. To generate data consistent with the null hypothesis, I set δ0 = 0. To generate

data under the alternative, I set δ0 = −0.5. The resulting equilibrium beliefs from the

perspective of Player 1 as a function of the public signals are depicted in Figure 1.

(The equilibrium beliefs of Player 2 mirror those of Player 1, i.e., they may be found

by swapping the labels of the first and secondary axes.) In both cases, equilibrium

beliefs are smooth functions in public information.

To allow for different parts of the equilibrium belief surface to be likely to be

explored, in generating the public information I allow for different levels of correlation.

4.2 Construction of Test

To construct the test statistic, I first take a series approach to estimating the equilib-

rium beliefs h∗j (·) := E [Yj|X = ·] of both players. For both estimands I employ the

power series approximating functions pk` := pk defined as the tensor-product

pk (x)> := (1, x1, . . . , x
√
k−1

1 )⊗ (1, x2, . . . , x
√
k−1

2 )

of the monomials in each argument up to the same order. The formal results of this

paper are developed under the assumption that the series length k = kn grows with

n at a suitably rate. However, for a given sample size, one must settle on a particular

nonlinear system of equations no matter the realization of X, thus ensuring equilibrium uniqueness.
See Hahn et al. (2017) for a test of neglected heterogeneity, which may be used to detect multiplicity.
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k. In order to investigate the sensitity of the test with respect to this (user) choice, I

carry out my procedure for each series length k ∈ {4, 9, 16}.
Next, based on the logit conditional choice probabilities,

f (yj|x, (α, γ), h) = Λ (αxj + γ(2h−j − 1))yj [1− Λ (αxj + γ(2h−j − 1))]1−yj ,

I formulate a (pseudo) maximum likelihood estimator of β0 = (α0, γ0)
>,

β̂ := argmin
β∈R2

n∑
i=1

2∑
j=1

ln f(Yij|Xi, β, ĥ (Xi)).

Following Bierens (1990), I use exponential weighting ω(t̃, x̃) = exp(x̃>t̃) com-

bined with a preliminary arctan transformation X̃j := tan−1 (Xj) of each (otherwise

unbounded) conditioning variable. I use the same weights for both residuals.24 The

test statistic then follows from (2.10), (2.11) and (2.12) using

ρ` (z, β, h) := y` − Λ (αx` + γ(2h−` − 1)) , ` ∈ {1, 2} ,

as residual functions,25 and integration is understood to be against the empirical

distribution of the transformed conditioning variables.

I obtain a critical value using (3.18)–(3.24). Given that the argument of the

CEFs coincides with the conditioning variables and that (∂/∂h−`)ρ`(z, β0, h
∗(x)) =

−2γ0Λ
′(α0x` + γ0(2h

∗
−`(x)− 1)) depends on z only through x, I construct the δ̂`,−`’s

defined in (3.22) without projections, i.e.,

δ̂`,−`(t̃, Xi) := −2γ̂ω(t̃, X̃i)Λ
′(α̂Xi` + γ̂[2ĥ−`(Xi)− 1]).

(See also Remark 8.) The δ̂`,`’s are zero. To obtain the ŝ(Zi) estimates needed in

(3.20) to adjust for estimation of β0, I first derive the influence function of
√
n(β̂−β0)

as outlined in Example 3 for general two-step GMM estimation with a nonparametric

24Given that the arctan function is close to constant for values of its argument far away from zero,
prior to applying a bounded one-to-one transformation, Bierens (1990) advocates centering and
scaling the conditioning variables by their sample means and variances, respectively. This centering
and scaling is strictly speaking not allowed for in my notation, which treats the weight function as
known.

25To simplify derivations, the test thus constructed only makes use of the CMRs arising from the
marginal distributions of the Yj ’s (conditional on X). Three additional CMRs may be deduced from
their joint (conditional) distribution.
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Figure 2: Size Estimates (±2 Monte Carlo Standard Errors)
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first step, using the (pseudo) scores
∑2

j=1(∂/∂β) ln f(yj|x, β, h) as moment functions

m(z, β, h). I then replace unknowns (including the moment Jacobian) with sample

analogs.

I consider sample sizes n ∈ {100, 200, 400} and levels of correlation ρ = corr (X1, X2) ∈
{0, .1, . . . , .5}. The number of Monte Carlo replications is 10,000. I implement the

test at a 5 percent nominal level and approximate the critical value cT̂ (.05) in (3.24)

using 1, 000 draws of the Gaussian multipliers within each replication.

4.3 Results

Figure 2 shows the size estimates of the test for each each sample size and series

length as a function of the correlation level. The test is oversized by 1–2 percentage

points for n = 100. For this (limited) sample size, the amount of overrejection may

depend on the choice of series length by about half a percentage point. However, as

the sample size increases, the size estimates appear to converge towards the nominal

level across all series lengths and all correlation levels, except perhaps ρ = 0.5.

Figure 3 plots the power of the test when δ0 = −0.5. The power may depend

on the choice of series length by upwards of 10 percentage points. As the sample

size increases, the power appears to converge to one for all series lengths and all

correlations. This convergence is expected, since the test is consistent against all

deviations from the null.

To further investigate the size and power properties of the test, I carry out the

test as if β0 is known. For this “β-oracle” version of the test, only the equilibrium
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Figure 3: Global Power Estimates (±2 Monte Carlo Standard Errors)
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Figure 4: Size Estimates for β-Oracle (±2 Monte Carlo Standard Errors)
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belief functions are estimated. The size and global power of the β-oracle test are

given in Figures 4 and 5, respectively. These figures illustrate that the test delivers

on its promises of asymptotic size control and consistency upon removing the need

for adjustment due to (two-step) estimation of β0.

Lastly, I briefly explore the local power of the (non-oracle) test developed in this

paper. While the proposed test is not formally proven to exhibit nontrivial local

power, in Figure 6 I depict estimates of its local power for the sequence of alternatives

resulting from δn = −5/
√
n. The test does have nontrivial local power, at least against

this particular sequence of alternatives. Moreover, its local power appears stable

across series lengths as well as correlations (at least for n = 400).
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Figure 5: Global Power Estimates for β-Oracle (±2 Monte Carlo Standard Errors)
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Figure 6: Local Power Estimates (±2 Monte Carlo Standard Errors)
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5 Conclusion

I this paper, I develop an omnibus specification test for a class of semi- or nonparamet-

ric conditional moment restrictions in part parameterized by conditional expectation

functions. The test is a suitable semi-/nonparametric extension of the Bierens (1982)

goodness-of-fit test of a parametric model for the conditional mean. Estimating con-

ditional expectations using series methods, I construct a bootstrap-based test which

is proven both asymptotically correctly sized and consistent against any fixed alter-

native.

I implement my procedure in a comprehensive simulation study testing the spec-

ification of a static game of incomplete information. The simulations by and large

reproduce the asymptotic properties in small samples. A possible application of my

test therefore lies in testing functional form assumptions used in specifying static

discrete-choice models with social and strategic interactions (for references, see the

introduction). These models may be conveniently estimated in two steps. In the first

step, the conditional choice probabilities (CCPs) are estimated in a nonparametric

manner. The estimated CCPs are then employed in a second step to estimate the

structural parameters of the model. Construction of my test follows along the same

lines.

My simulations also indicate that the test has nontrivial power versus root-n-local

alternatives, although further effort is needed to investigate the local power proper-

ties of the test in a formal manner. Future research might also consider relaxing the

assumption of root-n estimability of the parametric component, relaxing the require-

ment of differentiability to allow for nonsmooth residual functions, and developing

formally justified data-driven methods for choosing the series length(s).
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A Appendix

Appendix Abbreviations and Notation

To conserve space I use the abbreviations CS, H, J, M and T for the Cauchy-Schwarz,

Hölder, Jensen, Markov and triangle inequalities, respectively. CMT, LOIE, MVE

and MVT are short for the “continuous mapping theorem,” “law of iterated ex-

pectations” and “mean-value expansion” and “mean-value theorem,” respectively. I

also abbreviate “with probability approaching one” by wp → 1. I employ empirical

process notation and write En [f ] := En [f (Zi)] for the average n−1
∑n

i=1 f (Zi) and

Gn (f) for the centered-and-scaled average Gn (f) := Gn [f (Zi)] =
√
n(En − E) [f ].

If need be, I subscript the expectation operator E to highlight over which variables

are integrated out (e.g., EZ). ‖f‖n,2 is short for the empirical norm L2-norm (i.e.,

‖f‖2n,2 = En[f 2]). ‖A‖op is the operator norm of a matrix A induced by the `2-norm

for vectors. C,C1, C2, ... denote positive and finite constants, the meaning of which

may change between appearances. For nonrandom sequences, the notation an . bn

means that |an| 6 Cbn for C not depending on n. For potentially random sequences,

the relation Xn .P bn means Xn/bn = OP (1), where OP (1) denotes stochastic bound-

edness.

A.1 Proofs for Section 3.1

Lemma A1. If Assumption 3 holds, then for any z ∈ Z and any h` :W` → Rd`∣∣∣∣ρ` (z, h` (w`))− ρ` (z, h∗` (w`))−
∂

∂h`
ρ` (z, h∗` (w`)) [h` (w`)− h∗` (w`)]

∣∣∣∣
6 R` (z) d

(1+γ`)/2
` max

16m6d`
‖h`m − h∗`m‖

1+γ`
W`

,

where ρ` (z, v`) := ρ` (z, β0, v`).

Proof. Let z ∈ Z, h` :W` → Rd` be arbitrary. Then h` (w) ∈ Rd` , so by Assumption
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3 and a MVE of v` 7→ ρ`(z, v`) at h`(w) around h∗` (w`) yields

|ρ` (z, h` (w`))− ρ` (z, h∗` (w`))− (∂/∂h`) ρ` (z, h∗` (w`)) [h` (w`)− h∗` (w`)]|

=

∣∣∣∣[ ∂

∂h`
ρ`(z, h̃` (w`))−

∂

∂h`
ρ` (z, h∗` (w`))

]
[h` (w`)− h∗` (w`)]

∣∣∣∣
6 R` (z) ‖h̃` (w`)− h∗` (w`)‖γ‖h` (w`)− h∗` (w`)‖ 6 R` (z) ‖h` (w`)− h∗` (w`)‖1+γ

6 R` (z) d
(1+γ`)/2
` max

16m6d`
‖h`m − h∗`m‖

1+γ`
W`

,

where h̃`(w`) lies on the line segment connecting h`(w`) and h∗`(w`), thus satisfying

‖h̃` (w`)− h∗` (w`)‖ 6 ‖h` (w`)− h∗` (w`)‖.

The following result is the crucial step in proving Lemma 1.

Lemma A2. If Assumptions 1–7 hold, then for each ` ∈ {1, . . . , L} ,

‖
√
nM̂` −

√
nEn [g` (·, Zi)]‖X`

.P max
16m6d`

{
E [R` (Z)]

√
n‖ĥ`m − h∗`m‖

1+γ`
W`

+
( k`m,n∑

j=1

‖p`,j‖2W`

)1/2(√
k`m,n/n+ k−α`m`m,n

)
+
√
nrh`m,k`m,n sup

t`∈X`
rδ`m,k`m,n (t`) +

√
ζ2`,k`m,nk`m,n ln (k`m,n) /n

+Rδ`m,k`m,n

√
ln
(
k`m,n/Rδ`m,k`m,n

)
+ ζ`,k`m,nrh`m,k`m,n

}
+ oP(1).

The proof of Lemma A2 is long and technical in nature and has therefore been

relegated to the online appendix (see Section A2).

Proof of Lemma 1. The claim follows from Lemma A2 and Assumption 7.

Proof of Lemma 2. A multivariate CLT shows joint convergence of all marginals

of the sequences of processes {n−1/2
∑n

i=1 g` (t`, Zi) ; t` ∈ X`}, n ∈ N, ` ∈ {1, . . . , L} .
To show G is Donsker, it therefore suffices to show that each

G` := {z 7→ g` (t`, z) ; t` ∈ X`} , ` ∈ {1, . . . , L} ,

is Donsker [cf. van der Vaart and Wellner (1996, Problem 1.5.3)]. In what follows I

therefore omit the subscript `. Moreover, given that β0 and h∗ are held fixed through-
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out the argument, I write ρ (z) := ρ(z, β0, h
∗ (w)), (∂/∂β) ρ (z) := (∂/∂β) ρ(z, β0, h

∗ (w))

and (∂/∂h) ρ (z) := (∂/∂h) ρ (z, β0, h
∗ (w)). By Assumption 2 and J we have both

‖b (t)‖ 6 E[|ω (t,X) ‖ (∂/∂β) ρ (Z) ‖] . E[‖ (∂/∂β) ρ (Z) ‖] and ‖δ (t, w)‖ 6 E[|ω (t,X) |
‖(∂/∂h) ρ (Z)‖||W = w] . E[‖(∂/∂h) ρ (Z)‖|W = w], where b and δ are defined in

(3.8) and (3.9), respectively. Letting g(t, ·) ∈ G be arbitrary, T and CS therefore

imply

|g (t, z)| 6 |ω (t, x)| |ρ (z)|+ ‖b (t)‖ ‖s (z)‖+ ‖δ (t, w)‖‖y − h∗ (w)‖

6 C1 |ρ (z)|+ E [‖(∂/∂β) ρ (Z)‖] ‖s (z)‖

+ E[‖(∂/∂h) ρ (Z)‖|W = w]‖y − h∗ (w)‖

=: G1 (z) ,

with s stemming from Assumption 1. Taking the expectation and using the inequality

(a + b)2 6 2a2 + 2b2 repeatedly alongside the integrability and boundedness parts of

Assumptions 1 and 3, we see that G1 (Z)2 is integrable. Hence, G1 is a square-

integrable envelope for G. Let g1 = g (t1, ·) , g2 = g (t2, ·) ∈ F be arbitrary. Then by

T and CS, followed by J, CS and Assumption 2,

|g (t1, z)− g (t2, z)| 6 |ω (t1, x)− ω (t2, x)| |ρ (z)|+ ‖b (t1)− b (t2)‖ ‖s (z)‖

+ ‖y − h∗ (w)‖‖δ∗ (t1, w)− δ∗ (t2, w)‖

6 C2

(
|ρ (z)|+ E [‖(∂/∂β) ρ (Z)‖] ‖s (z)‖

+ ‖y − h∗ (w)‖E[‖(∂/∂h) ρ (Z)‖|W = w]
)
‖t1 − t2‖

=: G2 (z) ‖t1 − t2‖

Defining G := G1 ∨G2, we see that G is a square-integrable envelope for G satisfying

|g (t1, z)− g (t2, z)| 6 G (z) ‖t1 − t2‖ .

Given that T = ×L`=1X` is compact [Assumption 2 and Tychonoff’s theorem (cf.

Aliprantis and Border, 2006, Theorem 2.61)], we thus have

N[ ](ε ‖G‖P,2 ,G, L
2 (P )) 6 N (ε, T , ‖·‖) 6 (diam (T ) /ε)d 6 (C/ε)d , ε ∈ (0, diam (T )],
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so using ‖G‖P,2 <∞,

N[ ](ε,G, L2 (P )) 6 (C/ε)d , ε > 0.

The previous display implies∫ ∞
0

√
ln(N[ ](ε,G, L2 (P )))dε 6

√
d

∫ ∞
0

√
ln (C/ε)dε <∞.

The desired conclusion now follows from van der Vaart (2000, Theorem 19.5), which

uses the Ossiander (1987) sufficient condition for G to be Donsker.

Proof of Theorem 1. Given that E [g (·, Z)] = M, G being Donsker (Lemma 2)

means that Gn =
√
n (En [g (·, Zi)]−M0)  GM in ×L`=1L

∞ (X`) to an L-variate

centered Gaussian process with covariance kernel CM given in (3.16). Donsker’s

theorem shows that
√
n(F̂X − FX) GFX in D([−∞,∞]dx) where dx is the number

of distinct elements of the X`’s. A multivariate CLT establishes joint convergence of

the marginals of the above processes from which we may deduce joint convergence in

their product space [cf. van der Vaart and Wellner (1996, Problem 1.5.3)]. A CMT

therefore shows weak convergence of (
√
n (En [g (·, Zi)]−M) , {

√
n(F̂X` − FX`)}L1 ) in

[×L`=1L
∞ (X`)]× [×L`=1D([−∞,∞]dx,`)] to an 2L-variate centered Gaussian process.

Under the null, M ≡ 0 and asymptotic equivalence (Lemma 1) yields

(
√
nM̂, {

√
n(F̂X`−FX`)}L1 ) (G0, {GFX`

}L1 ) in [×L`=1L
∞ (X`)]×[×L`=1D([−∞,∞]dx,`)]

with G0 centered Gaussian and covariance kernel C0 given by (3.16) with M ≡ 0.

Let BVK (A) be the set of real-valued functions on A which are nondecreasing in

each variable (holding the other arguments fixed) and of variation no more than

K ∈ R++. Then the functional φ : [×L`=1C (X`)]× [×L`=1BV1 (X`)] ⊆ [×L`=1L
∞ (X`)]×

[×L`=1D([−∞,∞]dx,`)]→ R defined by φ
(
{m`}L1 , {f`}L1

)
:=
∑L

`=1

∫
X`
m2
`df` is second-

order Hadamard differentiable at (0, {FX`}L1 ) ∈ [×L`=1C (X`)] × [×L`=1BV1 (X`)] with

vanishing first-order Hadamard derivative and second-order Hadamard derivative

φ′′
(0,{FX`}

L
1 )

: [×L`=1C (X`)]× [×L`=1BV1 (X`)]→ R given by

φ′′(0,{FX`}
L
1 )

(h1, h2) := 2
L∑
`=1

∫
X`
h21`dFX` .
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The functional (second-order) delta method therefore produces

Tn = n

L∑
`=1

∫
X`
M̂2

` dF̂X` = n[φ(M̂, {F̂X`}L1 )− φ(0, {FX`}L1 )]

=
1

2
φ′′(0,{FX`}

L
1 )

(
√
nM̂, {

√
n(F̂X` − FX`)}L1 )) + oP (1)

=
L∑
`=1

∫
X`

(
√
nM̂`)

2dFX` + oP (1) ,

i.e., use of the empirical distribution has no impact on the asymptotic distribution.

Again appealing to Lemmas 1 and 2, the previous display and CMT combine to yield

Tn →d

∑L
`=1

∫
X`
G2

0`dFX` .

To establish the second claim, note that asymptotic equivalence and the reverse

triangle inequality imply∣∣∣∣∣∣
√√√√ L∑

`=1

‖M̂`n‖2F̂X` ,2
−

√√√√ L∑
`=1

‖En [g (·, Zi)]‖2F̂X` ,2

∣∣∣∣∣∣ P→ 0.

Given that
√
n (En [g (·, Zi)]−M0) GM0 in ×L`=1L

∞ (X`), the CMT yields

max
16`6L

‖En [g (·, Zi)]−M0`‖X` =
1√
n

max
16`6L

∥∥√n(En [g (·, Zi)]−M0`)
∥∥
X`

= o (1)OP (1) = oP (1) .

Another application of the reverse triangle inequality therefore shows∣∣∣∣∣∣
√√√√ L∑

`=1

‖En [g (·, Zi)]‖2F̂X` ,2 −

√√√√ L∑
`=1

‖M0`‖2F̂X` ,2

∣∣∣∣∣∣
6
√
L max

16`6L
‖En [g (·, Zi)]−M0`‖X`

P→ 0,

so by the the triangle inequality and the CMT, we see that

Tn
n

=
L∑
`=1

‖M0`‖2F̂X` ,2 + oP (1) =
1

n

n∑
i=1

L∑
`=1

M0` (X`i)
2 + oP (1) .

38



The LLN now yields Tn/n→P

∑L
`=1 ‖M0`‖2FX` ,2 , which is positive under the alterna-

tive (2.2) by the choice of weights (Assumption 2).

A.2 Proofs for Section 3.2

Proof of Lemma 3 (Sketch). The proof parallels that of Lemma A2 (see Section

B.1) with some added complexity due to the presence of multipliers and the error

introduced from estimating the g`’s and recentering at the sample values. Due to space

constraints and to avoid repetition, I relegate the argument to the online supplement

not intended for publication (see Section C.1).

Proof of Lemma 4. Given that G is Donsker (Lemma 2), Kosorok (2008, Theorem

10.4(iv)) implies that G′′n  P,ξ G∗ in×L`=1L
∗ (G`), where G′′n (g) := n−1/2

∑n
i=1 ξi{g (Zi)−

E [g (Z)]} and G∗ is an L-variate zero-mean Gaussian process with covariance kernel

E[g (Z) g′ (Z)>] − E[g (Z)]E[g′ (Z)>], g, g′ ∈ ×L`=1G`. Since we may identify each G`
with X`, this result is equivalent to G∗n  P,ξ GM in ×L`=1L

∞ (X`), where GM is a

zero-mean Gaussian process with covariance kernel CM given in (3.16). Lemma B6

now implies Ĝn  P,ξ GM in ×L`=1L
∞ (X`). An application of the (second-order) delta

method for the bootstrap now establishes that T̂ converges weakly in probability to

TM . Invoking continuity (Assumption 9) Kosorok (2008, Lemma 10.11) therefore

shows that the FT̂ converges in probability to FTM pointwise on [0,∞). Fix ε > 0

and α ∈ (0, 1). Since FTM is continuous, by the hypothesis that it is also increasing at

cTM (α), there exists r1 ∈ R such that cTM (α)−ε < r1 < cTM (α) and FTM (r1) < 1−α.

Then FT̂ (r1) < 1 − α wp → 1, which implies cTM (α) − ε < r1 6 cT̂ (α) wp → 1. In

particular, P(cT̂ (α) > cTM (α) − ε) → 1. Similarly, there exists r2 ∈ R be such that

cTM (α) < r2 < cTM (α)+ε and 1−α < FTM (r2). Then 1−α < FT̂ (r2) wp→ 1, which

implies cT̂ (α) 6 r2 < cTM (α)+ε wp→ 1. In particular, P(cT̂ (α) < cTM (α)+ε)→ 1.

It follows that

lim
n→∞

P(|cT̂ (α)− cTM (α)| > ε)

6 lim
n→∞

P(cT̂ (α) > cTM (α) + ε) + lim
n→∞

P(cT̂ (α) 6 cTM (α)− ε) = 0.

Since ε > 0 was arbitrary, the lemma follows.

39



A.3 Proofs for Section 3.3

Proof of Theorem 2. Fix α ∈ (0, 1). Under the null, Tn →d T0 (Theorem 1).

Letting FT0 denote the CDF of T0, by FT0 is continuous on R (using Assumption 9)

and increasing at cT0 (α) (by hypothesis). It therefore follows from Lemma 4 that

cT̂ (α) →P cT0 (α) ∈ (0,∞). Slutsky’s theorem shows Tn − cT̂ (α) →d T0 − cT0 (α),

which establishes the first claim. Under the alternative, Tn/n→P

∑L
`=1

∫
X`
M2

` dFX` ∈
(0,∞) . Since FTM is increasing at its cTM (α) , Lemma 4 yields cT̂ (α) →P cTM (α) ∈
(0,∞) . In particular, cT̂ (α) = OP (1), so for any ε ∈ (0, 1) , there exists Kε ∈ (0,∞)

such that limn→∞ P
(
cT̂ (α) > Kε

)
6 ε. Letting ε ∈ (0, 1) be arbitrary, we see that

P
(
Tn 6 cT̂ (α)

)
= P

(
Tn 6 cT̂ (α) ∩ cT̂ (α) 6 Kε

)
+ P

(
Tn 6 cT̂ (α) ∩ cT̂ (α) > Kε

)
6 P (Tn 6 Kε) + P

(
cT̂ (α) > Kε

)
= P (Tn/n 6 Kε/n) + P

(
cT̂ (α) > Kε

)
,

which—by the preceding remarks—implies limn→∞ P
(
Tn 6 cT̂ (α)

)
6 ε. The second

claim now follows from taking ε→ 0+.
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B Online Appendix (Intended for Publication)

This appendix contains a proof of Lemma A2 (which is key to establishing the asymp-

totic equivalence in Lemma 1) and some supporting lemmas.

B.1 Proof of Lemma A2

Proof of Lemma A2. The proof proceeds in a number of steps. Since the lemma

is stated for a given `, for notational convenience I drop the ` subscripts throughout

and refer to the (`th) index set X` as T itself.

Step 0 (Main)

Let t ∈ T be arbitrary. Assumption 1 and M implies that ‖β̂ − β0‖ .P n
−1/2 → 0.

LettingN0 be any open neighborhood of β0, β̂ ∈ N0 wp→ 1. To simplify notation and

ensure that objects are globally well defined, in what follows I will—without loss of

generality—assume that β̂ ∈ N0 with probability one for all n. Then by Assumption

3, for any z, v, we may conduct a mean value expansion of β 7→ ρ(z, β, v) at β̂ around

β0 to get

M̂ (t) =
√
nEn[ω (t,Xi) ρ(Zi, β0, ĥ (Wi))] + In (t)>

√
n(β̂ − β0),

In (t) := En
[
ω (t,Xi) (∂/∂β) ρ(Zi, βn, ĥ (Wi))

]
,

where β lies on the line segment connecting β̂ and β0, thus satisfying ‖β − β0‖ 6
‖β̂−β0‖ →P 0. Recall the definition of b(t) in (3.8), which is well defined on T since β0

is interior to B (Assumption 3). Step B.1 below shows that supt∈T ‖In (t)−b (t)‖ →P 0,

and that b is bounded on T , so Assumption 1 and the previous display combine to

yield

√
nM̂ (t) =

√
nEn[ω (t,Xi) ρ(Zi, β0, ĥ (Wi))] + b (t)>

√
nEn [s (Zi)] + oP (1) , (B.1)

uniformly on T .

The remainder of the proof is about adjusting for estimation of h∗. Given that

β0 is held fixed throughout this argument, I will suppress the β argument and write

ρ (z, v) := ρ (z, β0, v). For the purpose of the adjustment, denote the first term on the

1



right-hand side of (B.1)

√
nM̂∗ (t) :=

√
nEn[ω (t,Xi) ρ(Zi, ĥ (Wi))], (B.2)

and conduct a MVE of v 7→ ρ(Zi, v) at ĥ (Wi) around h∗ (Wi) to arrive at

√
nM̂∗ (t) =

√
nEn

[
ω (t,Xi)

{
ρ(Zi, h

∗ (Wi)) +
∂

∂h>
ρ(Zi, hn (Wi))[ĥ (Wi)− h∗ (Wi)]

}]
,

where h (Wi) lies on the line segment connecting ĥ (Wi) and h∗ (Wi). Such an ex-

pansion is justified by Assumption 3. Further decomposition of the right-hand side

yields

√
nM̂∗ (t)

=
√
nEn

[
ω (t,Xi) ρ(Zi, h

∗ (Wi)) + δ (t,Wi)
> {Yi − h∗ (Wi)}

]
+
√
nEn

[
ω (t,Xi)

{
∂

∂h>
ρ(Zi, h (W`i))−

∂

∂h>
ρ(Zi, h

∗ (Wi))

}
{ĥ (Wi)− h∗ (Wi)}

]
+ Gn

[
ω (t,Xi)

∂

∂h>
ρ (Zi, h

∗ (Wi))

]
[ĥ (Wi)− h∗ (Wi)]

+
√
n
(

EZ

[
ω (t,X)

∂

∂h>
ρ (Z, h∗ (W )) [ĥ (W )− h∗ (W )]

]
− En[δ (t,Wi)

> {Yi − h∗ (Wi)}]
)

=:
√
nEn

[
ω (t,Xi) ρ(Zi, h

∗ (Wi)) + δ (t,Wi)
> {Yi − h∗ (Wi)}

]
+ IIn (t) + IIIn (t) + IVn (t) , (B.3)

where EZ [·] denotes integration with respect to the distribution of Z, and δ (t, Z) is

defined as in (3.9). The k × k design matrix Qk = E[pk (W ) pk (W )>] is invertible

by Assumption 5. Let hk and δk(t, ·) denote the mean-square projections of h∗ and

δ(t, ·), respectively, onto the span of pk, i.e.,

hk,m (·) := pk (·)>Q−1k E[pk (W )h∗m (W )] = pk (·)> πhm,k, (B.4)

δk,m (t, ·) := pk (·)>Q−1k E[pk (W ) δm (t,W )] = pk (·)> πδm,k (t) , (B.5)

2



where πhm,k and πδm,k are defined in (3.10) and (3.11), respectively. Consequently,

E[{hm,k (W )− h∗m (W )}2] = r2hm,k,

E[{δm,k (t,W )− δm (t,W )}2] = r2δm,k (t) ,

E{‖δm,k (·,W )− δm (·,W )‖2T } = R2
δm,k,

for r2hm,k, r
2
δm,k

and R2
δm,k

defined in (3.12), (3.13) and (3.14), respectively. Steps 2–4

below show that the three remainder terms in the decomposition (B.3) satisfy:

‖IIn‖T .P E [R (Z)]
√
n max

16m6d
‖ĥm − h∗m‖

1+γ
W ,

‖IIIn‖T .P max
16m6d

( km,n∑
j=1

‖pj‖2W
)1/2(√

km,n/n+ k−αmm,n

)
,

and ‖IVn‖T .P max
16m6d

{√
nrhm,km,n sup

t∈T
rδm,km,n (t) +

√
ζ2km,nkm,n ln (km,n) /n

+Rδm,km,n

√
ln
(
km,n/Rδm,km,n

)
+ ζkm,nrhm,km,n

}
Plug (B.3) into (B.1), apply T and use the definition of M̂∗ in (B.2) to get the claimed

in-probability bound.

Step 1: In and b∗

In this step I show that In defined in (B.1) and b defined (3.8) satisfy

(a) sup
t∈T
‖In (t)− b (t)‖ P→ 0 and (b) sup

t∈T
‖b (t)‖ <∞.

Decompose In as

In (t) = En
[
ω (t,Xi) (∂/∂β) ρ(Zi, βn, h∗ (W ))

]
+ En

[
ω (t,Xi)

{
(∂/∂β) ρ(Zi, βn, ĥn (Wi))− (∂/∂β) ρ(Zi, βn, h∗ (Wi))

}]
=: Ia,n (t) + Ib,n (t) .

3



Since ‖β − β0‖ 6 ‖β̂ − β0‖ and β̂ ∈ N0, we must have β ∈ N0 wp → 1, so using T,

Assumptions 2 and 3 and Lemma B5.4, we get

sup
t∈T
‖Ia,n (t)‖ 6 En

[
a (Zi) ‖ĥ (Wi)− h∗ (Wi)‖c

]
6
√
dEn [a (Zi)] max

16m6d
‖ĥm − h∗m‖cW

P→ 0

Given that β0 ∈ N0 open, there is an r > 0 such that the open ball Br(β0) in Rdβ

centered at β0 with radius r is contained in N0. Let B := Br/2(β0) denote the closed

ball in Rdβ with the same center but half the radius. Given that B is a closed and

bounded subset of a finite-dimensional Euclidean space, by the Heine–Borel theorem

it is compact. Assumptions 2 and 3 imply that (t, β) 7→ ω (t, x) (∂/∂β) ρ (z, β, h∗ (w))

is continuous on T × N0 for each z ∈ Z, hence on the subset T × B, and this

function is is dominated by an integrable function depending on z only. Moreover,

via Tychonoff’s theorem, T and B compact imply that is T ×B compact. Combining

these observations with the fact that the data are i.i.d., Newey and McFadden (1994,

Lemma 2.4) tells us that

(i) (t, β) 7→ E [ω (t,X) (∂/∂β) ρ (Z, β, h∗ (W ))] is continuous on T ×B,

(ii) sup
(t,β)∈T ×B

‖(En − E) [ω (t,Xi) (∂/∂β) ρ(Zi, β, h
∗ (Wi))]‖

P→ 0.

Given (i) and T ×B compact, we must have (cf. Rudin, 1976, Theorem 4.19) that

(iii) (t, β) 7→ E [ω(t,X) (∂/∂β) ρ (Z, β, h∗ (W ))] is uniformly continuous on T ×B.

Let β̃ be an arbitrary consistent estimator of β0. Then β̃ ∈ B wp → 1, and, on this

4



event,

sup
t∈T

∥∥∥En [ω (t,Xi) (∂/∂β) ρ(Zi, β̃, h
∗ (Wi))

]
− b (t)

∥∥∥
6 sup

t∈T

∥∥∥(En − EZ)
[
ω (t,Xi) (∂/∂β) ρ(Zi, β̃, h

∗ (Wi))
]∥∥∥

+ sup
t∈T

∥∥∥EZ

[
ω (t,X) (∂/∂β) ρ(Z, β̃, h∗ (W ))

]
− b (t)

∥∥∥
6 sup

(t,β)∈T ×B
‖(En − E) [ω (t,Xi) (∂/∂β) ρ(Zi, β, h

∗ (Wi))]‖

+ sup
t∈T

∥∥∥EZ

[
ω (t,X) (∂/∂β) ρ(Z, β̃, h∗ (W ))

]
− b (t)

∥∥∥ P→ 0,

where the first inequality is due to T, the second uses {β̃ ∈ N}, and we have used

(ii) uniform convergence and (iii) uniform continuity. Invoking the conclusion of the

previous display for the mean value β̃ := β we see that supt∈T ‖Ia,n (t) − b (t)‖ →P 0,

which combined with supt∈T ‖Ib,n (t)‖ →P 0 and T establishes Part (a).

Continuity and T ×B compact also imply (t, β) 7→ E[ω (t,X) (∂/∂β) ρ(Z, β, h∗ (W ))]

is bounded on T × B (cf. Rudin, 1976, Theorem 4.15). Part (b) then follows from

β0 ∈ B.

Step 2: ‖IIn‖T

In this step I show that IIn defined in (B.3) satisfies

‖IIn‖T .P E [R (Z)]
√
n max

16m6d
‖ĥm − h∗m‖

1+γ
W

for R and γ given by Assumption 3. Using T and CS, Assumptions 2 and 3 imply

that

‖IIn‖T 6 ‖ω‖T ×T
√
nEn

[
‖ ∂

∂h>
ρ(Zi, h (Wi))−

∂

∂h>
ρ(Zi, h

∗ (Wi))‖‖ĥ (Wi)− h (Wi)‖
]

.
√
nEn[R (Zi) ‖h (Wi)− h∗ (Wi)‖γ‖ĥ (Wi)− h∗ (Wi)‖]

6
√
nEn[R (Zi) ‖ĥ (Wi)− h∗ (Wi)‖1+γ]

6 d(1+γ)/2En [R (Zi)]
√
n max

16m6d
‖ĥm − h∗m‖

1+γ
W

.P E [R (Z)]
√
n max

16m6d
‖ĥm − h∗m‖

1+γ
W ,

5



where h(Wi) is on the line segment connecting ĥ(Wi) and h (Wi), thus satisfying

‖h (Wi) − h∗ (Wi)‖ 6 ‖ĥ (Wi) − h∗ (Wi)‖, and En [R (Zi)] .P E [R (Z)] follows from

M.

Step 3: ‖IIIn‖T

In this step I show that IIIn defined in (B.3) satisfies

‖IIIn‖T .P max
16m6d

( km,n∑
j=1

‖pj‖2W
)1/2(√

km,n/n+ k−αm,n

)
for α given by Assumption 6. For h :W → Rd composed by maps {hm}d1 in L2 (W ) ,

define the map D

D (t, z, h) := ω (t, x) (∂/∂h>)ρ (z, h∗ (w))h (w) (B.6)

such that h 7→ D (t, z, h) is a linear functional for given (t, z) ∈ T ×Z. Let ∆ denote

the centered version of D, i.e.,

∆ (t, z, h) := ω (t, x) (∂/∂h>)ρ (z, h∗ (w))h (w)

− EZ

[
ω (t,X) (∂/∂h>)ρ (Z, h∗ (W ))h (W )

]
(B.7)

which is also linear in h. Letting h̃ = pk>π̃ be as in Assumption 6, by linearity we

may write

IIIn (t) =
√
nEn

[
∆(t, Zi, ĥ− h∗)

]
=
√
nEn

[
∆(t, Zi, ĥ− h̃)

]
+
√
nEn

[
∆(t, Zi, h̃− h∗)

]
=: IIIa,n (t) + IIIb,n (t) . (B.8)

Given that ζk = supw∈W [
∑k

j=1 pj (w)2]1/2 and ζkn →∞ (see Remark 2), we must have∑kn
j=1‖pj‖2W →∞. In particular,

∑kn
j=1‖pj‖2W is bounded away from zero as n→∞.

6



By T, the desired conclusion will therefore follow from showing

‖IIIa,n‖T .P max
16m6d

( km,n∑
j=1

‖pj‖2W
)1/2(√

km,n/n+ k−αmm,n

)
,

‖IIIb,n‖T .P k
−α
n .

Step 3a: ‖IIIa,n‖T In this step I show that IIIa,n defined in (B.8) satisfies

‖IIIa,n‖T .P max
16m6d

( km,n∑
j=1

‖pj‖2W
)1/2(√

km,n/n+ k−αmm,n

)
for αm given by Assumption 6. Given that

IIIa,n (t) =
√
nEn

[
∆(t, Zi, ĥ− h̃)

]
=

d∑
m=1

√
nEn

[
∆m(t, Zi, ĥm − h̃m)

]
,

∆m(t, Zi, hm) := ω (t, x) (∂/∂hm)ρ (z, h∗ (w))hm (w)

− E [ω (t,X) (∂/∂hm)ρ (Z, h∗ (W ))hm (W )] ,

by T, we may focus on bounding a single supt∈T |
√
nEn[∆m(t, Zi, ĥm − h̃m)]| in prob-

ability. For the remainder of this section I therefore drop the m subscript and write

(∂/∂h) ρ (Z, h∗ (Z)) for the scalar (∂/∂hm) ρ (Z, h∗ (Z)). Let

∆k
i (t) := (∆ (t, Zi, p1) , . . . ,∆ (t, Zi, pk))

>.

Then CS implies

‖IIIa,n‖T = sup
t∈T

∣∣√nEn [∆(t, Zi, p
kn>(π̂ − π̃)

]∣∣ = sup
t∈T

∣∣∣√n{En[∆kn
i (t)]

} >(π̂ − π̃)
∣∣∣

6 ‖π̂ − π̃‖ sup
t∈T

∥∥√nEn[∆kn
i (t)]

∥∥ .
Lemma B5 tells us that ‖π̂ − π̃‖ .P

√
kn/n+ k−αn , so it remains to show that

sup
t∈T

∥∥√nEn[∆kn
i (t)]

∥∥ .P

( kn∑
j=1

‖pj‖2W
)1/2

.
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By M it suffices to show the finite-sample moment bound, for any k ∈ N,

E

[
sup
t∈T

∥∥√nEn[∆k
i (t)]

∥∥2] . k∑
j=1

‖pj‖2W .

Given that

E

[
sup
t∈T

∥∥√nEn[∆k
i (t)]

∥∥2] 6 k∑
j=1

E

[
sup
t∈T

[√
nEn[∆ (t, Zi, pj)

]2]
,

it suffices to show that

E

[
sup
t∈T

[√
nEn[∆ (t, Zi, pj)

]2]
. ‖pj‖2W , j ∈ {1, . . . , k} .

To this end, fix j ∈ {1, . . . , k} , and consider the function class Fj := Fj (T ) := {f :

z 7→ ∆ (t, z, pj) ; t ∈ T }. For f1 := f(·; t1), f2 := f(·; t2) ∈ Fj arbitrary, by T, J and

Assumptions 2 and 3,

|f1 (z)− f2 (z) |

= | [ω (t1, x)− ω (t2, x)]
∂

∂h
ρ (z, h∗ (w)) pj (w)

− E

[
{ω (t1, X)− ω (t2, X)} ∂

∂h
ρ (Z, h∗ (W )) pj (W )

]
|

6 |ω (t1, x)− ω (t2, x)|
∣∣∣ ∂
∂h
ρ (z, h∗ (w))

∣∣∣|pj (w)|

+ E

[
|ω (t1, X)− ω (t2, X)|

∣∣∣ ∂
∂h
ρ (Z, h∗ (W ))

∣∣∣|pj (W )|
]

.

(∣∣∣ ∂
∂h
ρ (z, h∗ (w))

∣∣∣|pj (w)|+ E
[∣∣∣ ∂
∂h
ρ (Z, h∗ (W ))

∣∣∣|pj (W )|
])
‖t1 − t2‖

6

(∣∣∣ ∂
∂h
ρ (z, h∗ (w))

∣∣∣+ E

[∣∣∣ ∂
∂h
ρ (Z, h∗ (W ))

∣∣∣]) ‖pj‖W‖t1 − t2‖
= L1 (z) ‖pj‖W‖t1 − t2‖,

such that we may write

|f1 (z)− f2 (z) | 6 F1j (z) ‖t1 − t2‖ , F1j (z) := C1L1 (z) ‖pj‖W ,

8



for some constant C1 ∈ R++. Similarly, for f := f(·; t) ∈ Fj arbitrary, by T, J and

Assumptions 2 and 3,

|f (z)| =
∣∣∣∣ω (t, x)

∂

∂h
ρ (z, h∗ (w)) pj (w)− EZ

[
ω (t,X)

∂

∂h
ρ (Z, h∗ (W )) pj (W )

]∣∣∣∣
. L1 (z) ‖pj‖W ,

such that we may write

|f (z)| 6 F2j (z) , F2j (z) := C2L1 (z) ‖pj‖W ,

for some constant C2 ∈ (0,∞). Let C3 := C1 ∨ C2 and

Fj (z) := C3L1 (z) ‖pj‖W .

Then ‖Fj‖P,2 . ‖pj‖W , so Fj is an square-integrable envelope for Fj satisfying

|f1 (z)− f2 (z) | 6 Fj (z) ‖t1 − t2‖ .

Given that T is compact (Assumption 2), we must have diam (T ) <∞. Pollard (1990,

Lemma 4.1) and the fact that covering numbers are bounded by packing numbers (cf.

van der Vaart and Wellner, 1996, p. 98) therefore combine to yield N (ε, T , ‖·‖) 6
(3diam (T ) /ε)dt for ε ∈ (0, diam (T )]. Hence, by van der Vaart and Wellner (1996,

Theorem 2.7.11) and the previous display,

N[ ](ε‖Fj‖P,2,Fj, L2 (P )) 6 N (ε/2, T , ‖·‖) 6 (6diam (T ) /ε)d 6 (C/ε)d

for ε ∈ (0, diam (T )] (and = 1 otherwise). The bracketing integral of Fj therefore

satisfies the bound

J[ ]
(
δ,Fj, L2 (P )

)
6
∫ δ

0

√
1 + C ln (1/ε)dε.

Note that the right-hand side depends on neither j nor k. In particular, the integral

J[ ] (1,Fj, L2 (P )) is bounded uniformly in j ∈ {1, . . . , k} , k ∈ N. By construction,

E[f(Z)] = E[∆(t, Z, pj)] = 0 for any f ∈ Fj, so we may view the stochastic process

{
√
nEn[∆ (t, Zi, pj)]; t ∈ T } as an empirical process {Gn(f); f ∈ Fj}. van der Vaart
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and Wellner (1996, Theorem 2.14.2) therefore implies the finite-sample bound

E
[
‖Gn‖Fj

]
. J[ ]

(
1,Fj, L2 (P )

)
‖Fj‖P,2 . ‖Fj‖P,2 . ‖pj‖W .

van der Vaart and Wellner (1996, Theorem 2.14.5) now shows(
E[‖Gn‖2Fj ]

)1/2
. E

[
‖Gn‖Fj

]
+ ‖Fj‖P,2 . ‖pj‖W ,

which is the desired bound.

Step 3b: ‖IIIb,n‖T In this step I show that IIIb,n defined in (B.8) satisfies

‖IIIb,n‖T .P max
16m6d

k−αmm,n ,

for αm given by Assumption 6. Given that

IIIb,n (t) =
√
nEn

[
∆(t, Zi, h̃− h∗)

]
=

d∑
m=1

√
nEn

[
∆m(t, Zi, h̃m − h∗m)

]
,

as was the case for ‖IIIa,n‖T , by T we may focus on bounding each right-hand side

term in probability and therefore drop the m subscript. For this purpose, fix k ∈ N

and consider the function class Fk := Fk (T ) := {f : z 7→ ∆(t, z, h̃ − h∗); t ∈ T }. For

f := f(·, t), f1 := f(·, t1), f2 := f(·, t2) ∈ Fk arbitrary, arguments analogous to the ones

applied to handle ‖IIIa,n‖T establish that

|f1 (z)− f2 (z) | 6 C1L1 (z) ‖h̃− h∗‖W ‖t1 − t2‖ ,

|f (z)| 6 C2L1 (z) ‖h̃− h∗‖W .

Define C3 := C1 ∨ C2 and Fk (z) := C3L1 (z) ‖h̃ − h∗‖W . Then ‖Fk‖P,2 = C4‖h̃ −
h∗‖W . k−α by Assumption 6. Hence Fk is an square-integrable envelope for Fk, and

arguments analogous to the ones used for ‖IIIa,n‖T show that the resulting bracketing

integral J[ ] (δ,Fk, L2 (P )) is bounded by a constant independent of k. van der Vaart

and Wellner (1996, Theorem 2.14.2) therefore implies

E [‖Gn‖Fk ] . J[ ]
(
1,Fk, L2 (P )

)
‖Fk‖P,2 . ‖Fk‖P,2 . k−α.
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and the claim follows from M.

Step 4: ‖IVn‖T

In this step I show that IVn defined in (B.3) satisfies

‖IVn‖T .P max
16m6d

{√
nrhm,km,n sup

t∈T
rδm,km,n (t) +

√
ζ2km,nkm,n ln (km,n) /n

+Rδm,km,n

√
ln
(
km,n/Rδm,km,n

)
+ ζkm,nrhm,km,n

}
,

where ζk, rhm,k, rδm,k and Rδm,k are defined in (3.6), (3.12), (3.13) and (3.14), respec-

tively. Given the decomposition

IVn (t) =
√
n
(

EZ

[
ω (t,X) (∂/∂h>)ρ (Z, h∗ (W )) {ĥ (W )− h∗ (W )}

]
− En[δ (t,Wi)

> {Yi − h∗ (Wi)}]
)

=
d∑

m=1

√
n
(

EZ

[
ω (t,X) (∂/∂hm)ρ (Z, h∗ (W )) {ĥm (W )− h∗m (W )}

]
− En[δm (t,Wi) {Ymi − h∗m (Wi)}]

)
,

by T we may drop the m subscript and focus on bounding a single summand uniformly

over T in probability. For this purpose, recall that hk and δk (t, ·) are the mean-square

projections of h∗and δ (t, ·), respectively, onto the linear span of pk and r2h,k and r2δ,k (t)

are the mean-square errors resulting from these projections. Define

ψk (t) := E
[
δ (t,W ) pk (W )

]
(B.9)

By Assumption 5, the population least-square coefficients πk = Q−1k E[pk (W )Y ] are

well defined for all k ∈ N. Applying Lemma B1, we see that the inverse of Q̂kn

exists wp→ 1. As a consequence, the sample least-squares coefficients take the form

π̂ = Q̂−1knEn[pkn (Wi)Yi] wp → 1. Assuming—without loss of generality—that Q̂−1kn

11



exists with probability one for all n,

√
nEW{δ (t,W ) [ĥ (W )− hkn (W )]} =

√
nEW{δ (t,W ) pkn (W )> (π̂ − πkn)}

= ψkn (t)>
√
n(π̂ − πkn)

= ψkn (t)>
√
n
(
Q̂−1knEn

[
pkn(Wi)Yi

]
− πkn

)
= ψkn (t)> Q̂−1kn

√
n
(
En
[
pkn(Wi)Yi

]
− Q̂knπkn

)
= ψkn (t)> Q̂−1kn

√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]
,

where EW [·] denotes integration with respect to the distribution of W . By definition

of δ (t,W ) [see (3.9)] and iterated of expectations, for any measurable function h of

W alone,

E [ω (t,X) (∂/∂h)ρ (Z, h∗ (W ))h (W )] = E [δ (t,W )h (W )] .

Using the previous two displays and adding and subtracting

√
nEn [δkn (t,Wi) {Yi − hkn (Wi)}]

=
√
nEn

[
pkn (Wi)

>Q−1kn E[pkn (W ) δ (t,W )] {Yi − hkn (Wi)}
]

= ψkn (t)>Q−1kn
√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]
,

we may decompose IVn(t) as

IVn (t) =
√
nEW [δ (t,W ) {ĥ (W )− h∗ (W )}]−

√
nEn [δ (t,Wi) {Yi − h∗ (Wi)}]

=
√
nEW{δ (t,W ) [hkn (W )− h∗ (W )]}+

√
nEW [δ (t,W ) {ĥ (W )− hkn (W )}]

+
√
nEn [δ (t,Wi) {Yi − h∗(Wi)}]

=
√
nEW [δ (t,W ) {hkn (W )− h∗ (W )}]

+ ψkn (t)> (Q̂−1kn −Q
−1
kn

)
√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]
+
√
nEn [δkn (t,Wi) {Yi − hkn (Wi)} − δ∗ (t,Wi) {Yi − h∗ (Wi)}]

=: IVa,n (t) + IVb,n (t) + IVc,n (t) .

12



By T it therefore suffices to show that

‖IVa,n‖T 6
√
nrh,kn sup

t∈T
rδ,kn (t) ,

‖IVb,n‖T .P

√
ζ2knkn ln (kn) /n,

and ‖IVc,n‖T .P Rδ,kn

√
ln (kn/Rδ,kn) + ζknrh,kn .

Step 4a: ‖IVa,n‖T In order to establish the inequality

‖IVa,n‖T 6
√
nrh,kn sup

t∈T
rδ,kn (t) ,

recall that hk defined in (B.4) is the mean-square projection of h∗ onto the span of

pk, so by orthogonality of projections we have E [δk (t,W ) {hk (W )− h∗ (W )}] = 0 for

each t ∈ T . Now J followed by CS yield

‖IVa,n‖T =
√
n sup
t∈T
|E [δ (t,W ) {hkn (W )− h∗ (W )}]|

=
√
n sup
t∈T
|E [{δkn (t,W )− δ (t,W )} {hkn (W )− h∗ (W )}]|

6
√
n ‖hkn − h∗‖P,2 sup

t∈T
‖δkn (t, ·)− δ (t, ·)‖P,2 =

√
nrh,kn sup

t∈T
rδ,kn (t) .

Step 4b: ‖IVb,n‖T In this step I show that

‖IVb,n‖T .P

√
ζ2knkn ln (kn) /n.

Using the fact that mean-square projections are L2 (P )-contractions followed by As-

sumptions 2 and 3, we see that

ψk (t)>Q−1k ψk (t) = {Q−1k E[pk (W ) δ (t,W )]}>Qk{Q−1k E[pk (W ) δ (t,W )]}

= E[δk (t,W )] 6 E[δ (t,W )2] = E[ω (t,W )2 (∂/∂h) ρ (Z, h∗ (W ))2]

. E[(∂/∂h) ρ (Z, h∗ (W ))2] <∞,

13



with an upper bound that depends on neither t nor k. By the Min-Max Theorem,

Assumption 5, and the previous display, it follows that

‖ψk (t)Q−1k ‖
2 = [ψk (t)Q

−1/2
k ]>Q−1k [Q

−1/2
k ψK (t)] . ‖ψk (t)Q

−1/2
k ‖2

6 sup
k∈N,t∈T

|ψk (t)>Q−1k ψk (t)| <∞,

thus implying supk∈N,t∈T ‖ψk (t)Q−1k ‖ <∞. By Lemma B4 we have ‖Q̂kn−Qkn‖op .P

[ζ2kn ln (kn) /n]1/2 → 0 under Assumption 7. Moreover, Lemma B1 shows that ‖Q̂−1kn ‖op .P

1. Using these observations and the previous display,

sup
t∈T
‖ψkn (t)> Q̂−1kn − ψkn (t)>Q−1k ‖ = sup

t∈T
‖ψkn (t)>Q−1kn (Qkn − Q̂kn)Q̂−1kn ‖

6 ‖(Qkn − Q̂kn)Q̂−1kn ‖op sup
t∈T
‖ψkn (t)>Q−1kn ‖

6 ‖Q̂kn −Qkn‖op‖Q̂−1kn ‖op sup
t∈T
‖ψkn (t)>Q−1kn ‖

.P

√
ζ2kn ln (kn) /n→ 0.

From the previous display and supk∈N,t∈T ‖ψk (t)Q−1k ‖ <∞ it follows that

sup
t∈T
‖ψkn (t)> Q̂−1kn ‖ .P 1.

Observe also that, by the Assumption 5, the Min-Max theorem, and the fact that

E[pk(W ){Y − hk(W )}] = 0 (which follows from hk being the mean-square projection

of h∗),

E
[
‖Q−1k

√
nEn

[
pk (Wi) {Yi − hk (Wi)}

]
‖2
]

. E
[
‖Q−1/2k

√
nEn

[
pk (Wi) {Yi − hk (Wi)}

]
‖2
]

= E
[
pk (W )>Q−1k pk (W ) {Y − hk (W )}2

]
= E

[
U2pk (W )>Q−1k pk (W )

]
+ E

[
pk (W )>Q−1k pk (W ) {hk (W )− h∗ (W )}2

]
,

where I have used U = Y − h∗(W ). By Assumption 4, E [U2|W ] is bounded, so

E[U2pk (W )>Q−1k pk (W )] = E[E
[
U2|W

]
pk (W )>Q−1k pk (W )]

. E[pk (W )>Q−1k pk (W )] = k.

14



Moreover,

E
[
pk (W )>Q−1k pk (W ) {hk (W )− h∗ (W )}2

]
. E

[
‖pk (W )‖2{hk (W )− h∗ (W )}2

]
6 ζ2kr

2
h,k.

Given Assumption 7, ζ2kr
2
h,k = (ζkrh,k)

2 → 0 as k →∞, so

E
[
‖Q−1k

√
nEn

[
pk (Wi) {Yi − hk (Wi)}

]
‖2
]
. k.

M now implies

‖Q−1k
√
nEn

{
pkn (Wi) [Yi − hkn (Wi)]

}
‖ .P

√
kn.

Using CS we therefore arrive at

‖IVb,n‖T

= sup
t∈T

∣∣∣ψkn (t)> Q̂−1kn (Qkn − Q̂kn)Q−1kn
√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]∣∣∣
6
∥∥Q−1kn√nEn [pkn (Wi) {Yi − hkn (Wi)}

]∥∥ sup
t∈T
‖ψkn (t)> Q̂−1kn (Qkn − Q̂kn)‖

6
∥∥Q−1kn√nEn [pkn (Wi) {Yi − hkn (Wi)}

]∥∥ ‖Q̂kn −Qkn‖op sup
t∈T
‖ψkn (t)> Q̂−1kn ‖

.P

√
kn

√
ζ2kn ln (kn) /n.

Step 4c: ‖IVc,n‖T In this section I show that

‖IVc,n‖T .P Rδ,kn

√
ln (kn/Rδ,kn) + ζknrh,kn .

Letting Ui := Yi − h∗ (Wi), we may decompose IVc,n (t) as

IVc,n (t)

=
√
nEn [Ui {δkn (t,Wi)− δ (t,Wi)}]−

√
nEn [δkn (t,Wi) {hkn (Wi)− h∗ (Wi)}]

=: IVd,n (t) + IVe,n (t) .
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By T it therefore suffices to show that

‖IVd,n‖T .P Rδ,kn

√
ln (kn/Rδ,kn) and ‖IVe,n‖T .P ζknrh,kn .

For the purpose of bounding ‖IVd,n‖T , consider the function class Fk := Fk (T ) :=

{f : z 7→ {y − h∗ (w)} {δk (t, w)− δ∗ (t, w)} ; t ∈ T }. Note that E[f(Z)] = 0 for any

f ∈ Fk, so we may view the stochastic process {IVd,n(t); t ∈ T } as an empirical

process {Gn (f) |f ∈ Fk}. For any t1, t2 ∈ T , by J we have

|δ (t, w)− δ (t, w)| = |E [{ω (t1, X)− ω (t2, X)} (∂/∂h) ρ (Z, h∗ (W ))]|

. E [|(∂/∂h) ρ (Z, h∗ (W ))| |W = w] ‖t1 − t2‖ .

Consequently, using Assumption 3 and the fact that conditional expectations are

L2 (P ) contractions,

E[{δ (t1,W )− δ (t2,W )}2] . E[{E [|(∂/∂h) ρ (Z, h∗ (W ))| |W = w]}2] ‖t1 − t2‖2

6 E
[

(∂/∂h) ρ (Z, h∗ (W ))2
]
‖t1 − t2‖2 . ‖t1 − t2‖2 .

Given that mean-square projections are also L2 (P ) contractions,

‖Q−1/2k E
[
pk (W ) {δ (t1,W )− δ (t2,W )}

]
‖2

= E
[(
pk (W )>Q−1k E

[
pk (W ) {δ (t1,W )− δ (t2,W )}

])2]
6 E[{δ (t1,W )− δ (t2,W )}2]

so by CS and the previous two displays,

|δk (t1, w)− δk (t2, w)| = |pk (w)>Q−1k E
[
pk (W ) {δ (t1,W )− δ (t2,W )}

]
|

6 ‖pk (w)>Q
−1/2
k ‖‖Q−1/2k E

[
pk (W ) {δ (t1,W )− δ (t2,W )}

]
‖

. ‖pk (w)>Q
−1/2
k ‖ ‖t1 − t2‖ . (B.10)
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Thus, for any f1 := f(·, t1), f2 := f (·, t2) ∈ Fk, by T,

|f1 (z)− f2 (z)|

6 |y − h∗ (w)| (|δk (t1, w)− δk (t2, w)|+ |δ (t1, w)− δ (t2, w)|)

6 C |y − h∗ (w)|
{
‖pk (w)>Q

−1/2
k ‖+ E [|(∂/∂h) ρ (Z, h∗ (W ))| |W = w]

}
‖t1 − t2‖

=: F1k (z) ‖t1 − t2‖ .

Moreover, for any f := f(·, t) ∈ Fk,

|f (z)| = |y − h∗ (w)| |δk (t, w)− δ (t, w)| 6 |y − h∗ (w)| ‖δk (·, w)− δ (·, w)‖T =: F2k (z) .

Using Assumptions 3 and 4, the inequality (a + b)2 6 2a2 + 2b2, and the fact that

conditional expectations are L2 (P ) contractions, we see that

E[F1k (Z)2] . E

[
U2
{
‖pk (W )>Q

−1/2
k ‖+ E [ |(∂/∂h) ρ (Z, h∗ (W ))||W ]

}2
]

. E[‖pk (W )>Q
−1/2
k ‖2] + E

(
{E [ |(∂/∂h) ρ (Z, h∗ (W ))||W ]}2

)
6 k + E

[
(∂/∂h) ρ (Z, h∗ (W ))2

]
. k as k →∞.

Given Assumptions 4 and 7, we get

E[F2k(Z)2] = E
[
U2‖δk (·,W )− δ (·,W )‖2T

]
. E

[
‖δk (·,W )− δ (·,W )‖2T

]
= R2

δ,k → 0

as k →∞. Thus, defining Fk := F1,k + F2,k we must have

E[Fk (Z)2] . k +R2
δ,k . k as k →∞,

and it follows that Fk is a square-integrable envelope for Fk satisfying

|f1 (z)− f2 (z)| 6 Fk (z) ‖t1 − t2‖ and ‖Fk‖P,2 . k1/2 as k →∞.

Using T compact and the previous display, van der Vaart and Wellner (1996, Theorem

2.7.11) implies that

N[ ](ε‖Fk‖P,2,Fk, L2 (P )) 6 (C/ε)d , ε ∈ (0, 1],
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and thus

J[ ]
(
δ,Fk, L2 (P )

)
6
∫ δ

0

√
1 + d ln (C/ε)dε, δ ∈ (0, 1].

where the right-hand side does not depend on k. In particular, J[ ] (1,Fkn , L2 (P )) . 1

Defining

σ2
n := sup

f∈Fkn
En
[
f (Zi)

2]
we see that

σ2
n = sup

t∈T
En
[
U2
i {δkn (t,Wi)− δ (t,Wi)}2

]
6 En

[
U2
i ‖δkn (·,Wi)− δ (·,Wi)‖2T

]
such that

E
[
σ2
n

]
6 E

[
U2‖δkn (·,W )− δ (·,W )‖2T

]
. E

[
‖δkn (·,W )− δ (·,W )‖2T

]
= R2

δ,kn .

There are two cases: (1) Rδ,kn/‖Fkn‖P,2 → 0 and (2) Rδ,kn/‖Fkn‖P,2 9 0.

Case 1 : Rδ,kn/‖Fkn‖P,2 → 0. Given that
√

E [σ2
n] 6 C1Rδ,kn , by the change of

variables ε′ := ε/C1 we have

J[ ]

(√
E [σ2

n]/‖Fkn‖P,2,Fkn , L2 (P )
)
6 J[ ]

(
C1Rδ,kn/‖Fkn‖P,2,Fkn , L2 (P )

)
= C1

∫ Rδ,kn/‖Fkn‖P,2

0

√
1 + dt ln (C3/ε′)dε

′

=: C1J [ ] (∆kn/‖Fkn‖P,2) (B.11)

van der Vaart and Wellner (2011, p. 196) establishes the maximal inequality

E
[
‖Gn‖Fkn

]
. J[ ]

(√
E [σ2

n]/‖Fkn‖P,2,Fkn , L2 (P )
)
‖Fkn‖P,2.

The previous two displays show that

E
[
‖Gn‖Fkn

]
) . J [ ] (∆kn/‖Fkn‖P,2) ‖Fkn‖P,2

and from van der Vaart and Wellner (1996, p. 239) we know that an integral of the
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form
∫ δ
0

[1+ln(1/u)]1/2du—as in (B.11)—satisfies
∫ δ
0

[1+ln(1/u)]1/2du . δ
√

ln(1/δ) as

δ ↓ 0. Since Rδ,kn/‖Fδ,kn‖P,2 → 0 holds by hypothesis, the previous display combined

with ‖Fkn‖P,2 .
√
kn and M yields

‖Gn‖Fkn .P (Rδ,kn/‖Fkn‖P,2)
√

ln (‖Fkn‖P,2/Rδ,kn)‖Fkn‖P,2

= Rδ,kn

√
ln (‖Fkn‖P,2/Rδ,kn) . Rδ,kn

√
ln (kn/Rδ,kn).

Case 2. Rδ,kn/‖Fkn‖P,2 9 0. Given that Rδ,kn → 0 (Assumption 7), we must

have ‖Fkn‖P,2 . Rδ,k. van der Vaart and Wellner (1996, Theorem 2.14.2) and

J[ ] (1,Fkn , L2 (P )) . 1 yield

E
[
‖Gn‖Fkn

]
. J[ ]

(
1,Fkn , L2 (P )

)
‖Fkn‖P,2 . ‖Fkn‖P,2 . Rδ,kn . Rδ,kn

√
ln

(
kn
Rδ,kn

)
.

M now yields the same rate as in Case 1. In either case, we observe that ‖IVd,n‖T .P

Rδ,kn

√
ln (kn/Rδ,kn).

For the purpose of bounding ‖IVe,n‖T , consider the function class Fk := {f :

z 7→ δk (t, w) {hk (w)− h∗ (w)} ; t ∈ T }. Note that, by orthogonality of mean–square

projections we have E[f(Z)] = 0 for any f ∈ Fk, so we may view the stochastic process

{IVe,n (t) ; t ∈ T } as an empirical process {Gn(f); f ∈ Fkn}. For any t1, t2 ∈ T , using

the bound in (B.10) we have that f1 := f (·; t1) , f2 := f (·; t2) ∈ Fk, satisfy

|f1 (z)− f2 (z)| = |δk (t1, w)− δk (t2, w)| |hk (w)− h∗ (w)|

. ‖pk (w)>Q
−1/2
k ‖ |hk (w)− h∗ (w)| ‖t1 − t2‖

. ζk |hk (w)− h∗ (w)| ‖t1 − t2‖ .

The previous display implies

|f1 (z)− f2 (z)| 6 F1,k (z) ‖t1 − t2‖ ,

for F1k (z) := C1ζk |hk (w)− h∗ (w)| and some C1 ∈ (0,∞). Since conditional expec-
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tations are L2(P ) contractions, by Assumptions 2 and 3,

E[δ (t,W )2] = E
({

E
[
ω(t,X)

∣∣∣ ∂
∂h
ρ (Z, h∗ (W ))

∣∣∣∣∣W]}2)
6 E

[
ω(t,X)2

∂

∂h
ρ (Z, h∗ (W ))2

]
. E

[ ∂
∂h
ρ (Z, h∗ (W ))2

]
<∞,

thus implying supt∈T E[δ (t,W )2] < ∞. By CS and using that mean–square projec-

tions are L2 (P ) contractions as well, we get

|δk (t, w)| = |pk (w)>Q−1k E[pk (W ) δ (t,W )]|

6 ‖pk (w)>Q
−1/2
k ‖‖Q−1/2k E[pk (W ) δ (t,W )]‖

. ‖pk (w)‖E[δ (t,W )2] . ζk,

which implies that for any f := f(·; t) ∈ Fk,

|f (z)| = |δk (t, w)| |hk (w)− h∗ (w)| . ζk |hk (w)− h∗ (w)| .

The previous diplay shows that |f (z)| 6 F2k (z) for F2k (z) := C2ζk |hk (w)− h∗ (w)|
and some C2 ∈ (0,∞). Let C3 := C1 ∨C2, and define Fk (z) := C3ζk |hk (w)− h∗ (w)| .
Then by Assumption 7,

‖Fk‖P,2 = C3ζk‖hk − h∗‖P,2 = C3ζkrh,k → 0 as k →∞,

In particular, ‖Fk‖P,2 . 1. Now, Fk is a square-integrable envelope for Fk satisfying

|f1 (z)− f2 (z)| 6 Fk (z) ‖t1 − t2‖ .

Using T compact and the previous display, by van der Vaart and Wellner (1996,

Theorem 2.7.11) we see that

N[ ](ε‖Fk‖P,2,Fk, L2 (P)) 6 (C/ε)dt , ε ∈ (0, 1],

and thus

J[ ]
(
δ,Fk, L2 (P )

)
6
∫ δ

0

√
1 + d ln (C/ε)dε, δ ∈ (0, 1],
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where the right-hand side does not depend on k. In particular, J[ ] (1,Fk, L2 (P )) . 1.

Using van der Vaart and Wellner (1996, Theorem 2.14.2) J[ ] (1,Fkn , L2 (P )) . 1, we

arrive at

E
[
‖Gn‖Fkn

]
. J[ ]

(
1,Fkn , L2 (P )

)
‖Fkn‖P,2 . ‖Fkn‖P,2 . ζknrh,kn ,

so ‖IVe,n‖T .P ζknrh,kn by M.

B.2 Supporting Lemmas

For now, let Q and Q̂ be symmetric but otherwise arbitrary random matrices of

possibly growing dimension. Also, denote the smallest and largest eigenvalue of a

matrix A by λmin (A) and λmax (A), respectively.

Lemma B1. If λmin (Q) > c wp→ 1 for some constant c ∈ (0,∞) and ‖Q̂−Q‖op →P

0, then Q̂ is invertible wp→ 1 and λmin(Q̂)−1 .P 1.26

Proof. Given that the eigenvalues of a symmetric (hence square) matrixA are bounded

in absolute value by the operator norm, for conformable vectors v,

λmin(Q̂) = min
‖v‖=1

{
v>Q̂v

}
> λmin (A)− λmax(Q̂−Q) > λmin (A)− ‖Q̂−Q‖op.

It follows that

P
(
λmin(Q̂) < c/2

)
6 P

(
λmin (Q)− ‖Q̂−Q‖op < c/2

)
6 P

(
‖Q̂−Q‖op > c/2

)
+ P (λmin (Q) < c)→ 0,

so P(λmin(Q̂) > c/2)→ 1. Hence, Q̂ is invertible wp→ 1. Given that λmin(Q̂−Q) >

c/2 wp→ 1, for any C > 2/c, we have

lim
n→∞

P
(
λmin(Q̂)−1 > C

)
6 lim

n→∞
P
(
λmin(Q̂)−1 < c/2

)
= 0.

In particular, limC→∞ limn→∞ P(λmin(Q̂)−1 > C) = 0.

26This is Newey (1995, Lemma A.4) except that I state convergence in terms of the (weaker)
operator matrix norm instead of the (stronger) Frobenius norm.
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For now, let Y,H ∈ Rn, P ∈ Rn×k be arbitrary and of possibly growing dimensions

n and k and abbreviate U := Y −H, π̂ :=
(
P>P

)−
P>Y and Ĥ := Pπ̂.

Lemma B2. For any π ∈ Rk,

‖Ĥ −H‖2 6 U>P
(
P>P

)−
P>U + ‖Pπ −H‖2 ,

‖Ĥ − Pπ‖2 6 2U>P
(
P>P

)−
P>U + 2‖Pπ −H‖2.

Proof. Generalized inversion preserves symmetry, so PP := P
(
P>P

)−
P> andMP :=

I − PP are symmetric idempotent. Given that also PAP = P [see, e.g., Rao (1973,

1b.5(vi)(a))], for any fixed π ∈ Rk, we must have

‖Ĥ −H‖2 = ‖PPY −H‖2 = ‖PPU −MPH‖2 = U>PPU +H>MPH

= U>PPU + (H − Aπ)>MP (H − Aπ) 6 U>PPU + ‖Pπ −H‖2 ,

where the inequality follows from an idempotent matrix having only zero or one

eigenvalues. Similarly, abbreviating Hπ := Pπ,

‖Ĥ − Pπ‖2 = ‖PPY −Hπ‖2 = ‖PP (U +H −Hπ)‖2

= (U +H −Hπ)>PP (U +H −Hπ)

6 2U>PPU + 2(H −Hπ)>PP (H −Hπ)

6 2U>PPU + 2‖Hπ −H‖2,

where the first inequality follows from (v + w)>A(v + w) 6 2v>Av + 2w>Aw for A

p.s.d.

Next, interpret {(Yi,Wi)}n1 as i.i.d. R1+d-valued random variables with d ∈ N

(fixed),E [Y 2] < ∞,W := supp (W ) , and let pk : Rd → Rk be a nonrandom vector

function of possibly growing length satisfying ζk := supw∈W
∥∥pk (w)

∥∥ < ∞ for all

k ∈ N. Also, define h (w) := E[Y |W = w], σ2 (w) := var(Y |W = w), w ∈ W , and

Ui := Yi − h (Wi) and let U and P be the n× 1 vector and n× k matrix of Ui’s and

pk (Wi)
>’s, respectively.

Lemma B3. E[U>P
(
P>P

)−
P>U] 6 k‖σ2‖W .
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Proof. By the i.i.d. assumption, the positive semidefinite (p.s.d.) matrix

E
[
UU>

∣∣ {Wi}n1
]

= diag
{
σ2 (Wi)

}n
1
.

Given that PP := P
(
P>P

)−
P> is also p.s.d., using tr (AB) 6 λmax (A) tr (B) for

A,B p.s.d., we get

E
[
U>P

(
P>P

)−
P>U

∣∣∣ {Wi}n1
]

= tr
(
E
[
UU>

∣∣ {Wi}n1
]
PP
)

6 max
16i6n

σ2 (Wi) tr (PP ) 6 ‖σ2‖Wtr (PP ) .

The matrix
(
P>P

)−
P>P is idempotent so its trace tr (PP ) = tr((P>P )−P>P ) equals

rank((P>P )−P>P ) = rank(P>P ) [see Rao (1973, 1b(ii)(a))]. Applying also the

bound rank(P>P ) = rank(P ) 6 n ∧ k 6 k, the first claim now follows from the

previous display by taking the expectation over the Wi’s.

Lemma B4. If the eigenvalues of Qk := E[pk (W ) pk (W )>] are bounded from above

uniformly in k, then

E
[
‖P>P/n−Qkn‖op

]
.
ζ2kn ln kn

n
+

√
ζ2kn ln kn

n
.

Proof. The matrix Q̂k = En[pk(Wi)p
k(Wi)] is the average of the n independent p.s.d.

k × k-matrix valued random variables pk (Wi) p
k (Wi)

> with the matrix Qk as their

common mean. Given that

‖pk (Wi) p
k (Wi)

>‖op 6 ‖pk (Wi) p
k (Wi)

>‖F
= [tr(pk (Wi) p

k (Wi)
> pk (Wi) p

k (Wi)
>)]1/2

= ‖pk (Wi)‖2 6 ζ2k ,

these n random matrices are bounded in operator norm by ζ2k . By hypothesis,

‖Qk‖op = [λmax

(
Q>kQk

)
]1/2 = λmax (Qk) . 1.The claim now follows from Belloni,

Chernozhukov, Chetverikov, and Kato (2015, Lemma 6.2), which builds on a funda-

mental result obtained by Rudelson (1999).

Lemma B5. Let σ2 be bounded on W, the eigenvalues of Qk := E[pk (W ) pk (W )>]

bounded from above and below uniformly in k, let π̃ ∈ Rk satisfy
∥∥pkπ̃ − h∥∥W . k−α
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for some α ∈ R++, and define ĥ := pk>π̂ and h̃ := pk>π̃. Then, provided kn/n → 0

and ζ2kn ln (kn) /n→ 0, we have

1. ‖ĥ− h‖n,2 .P

√
kn/n+ k−αn

2. ‖ĥ− h̃‖n,2 .P

√
kn/n+ k−αn

3. ‖π̂ − π̃‖ .P

√
kn/n+ k−αn

4. ‖ĥ− h‖W .P ζkn(
√
kn/n+ k−αn )

Proof. By Lemma B2,

‖ĥ− h‖2n,2 6 U>P
(
P>P

)−
P>U/n+ ‖h̃− h‖2n,2,

‖ĥ− h̃‖2n,2 6 2U>P
(
P>P

)−
P>U/n+ 2‖h̃− h‖2n,2.

By hypothesis ‖h̃ − h‖n,2 6 ‖h̃ − h‖W . k−α. Moreover, via M, Lemma B3 and

‖σ2‖W < ∞ imply U>P
(
P>P

)−
P>U .P kn. The first two claims now follow from

the previous display.

Via M, given that λmax (Qk) . 1, Lemma B2 and ζ2kn ln (kn) /n → 0 imply

‖P>P/n − Qkn‖op →P 0. Given that also λmin (Qk)
−1 . 1, Lemma B2 implies that

then P>P/n is invertible wp→ 1 and λmin(P>P/n)−1 .P 1. Hence

‖π̂ − π̃‖2 6 λmin(P>P/n)−1‖P (π̂ − π̃)‖2/n

= λmin(P>P/n)−1‖ĥ− h̃‖2Pn,2
.P ‖ĥ− h̃‖2Pn,2.

The third claim now follows from the second. Given that ‖ĥ−h̃‖W = supw∈W |pk (w)> (π̂−
π̃)| 6 ζk‖π̂ − π̃‖ and ‖h̃− h‖W . k−α, by T and the third claim,

‖ĥ− h‖W .P ζkn‖π̂ − π̃‖+ k−αn .P ζkn(
√
kn/n+ k−αn ).

Lemma B6. Let Xn and Yn be sequences of stochastic processes defined on a common

probability space (Ω,F , P ) and taking values in a separable metric space (D, d), and

let Fn be a sequence of sub-σ-algebras. If Xn  P,F X in D and d (Xn, Yn)→P 0, then

Yn  P,F X in D.
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Proof. By T,

sup
h∈BL1(D)

|E [h (Yn)| Fn]− E [h (X)]|

6 sup
h∈BL1(D)

|E [h (Yn)− h (Xn)| Fn]|+ sup
h∈BL1(D)

|E [h (Xn)| Fn]− E [h (X)]|

6 d (Xn, Yn) ∧ 2 + oP (1) = oP (1) .
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C Online Supplement (Not Intended For Publica-

tion)

This supplement contains the details of the proof of the bootstrap equivalence claimed

in Lemma 3 (which was omitted from the online appendix intended for publication

due to space constraints and its similarity with the proof of Lemma A2; see Section

B.1) and additional supporting lemmas.

C.1 Omitted Proofs for Section 3.2

Define the stochastic processes Ĝu and G∗un by

Ĝu (t) :=
1√
n

n∑
i=1

ξiĝ (t, Zi) , G∗un (t) :=
1√
n

n∑
i=1

ξig (t, Zi) .

which are the “uncentered” versions of Ĝ and G∗n, respectively, i.e., the displayed

processes are not centered at the sample mean. The following lemma shows that the

uncentered processes are asymptotically equivalent.

Lemma C1. If Assumptions 1–8 hold, then max16`6L‖Ĝu
` −G∗u`n‖X` →P 0.

Proof of Lemma C1. The proof proceeds in a number of steps parallelling the

proof of Lemma A2. It suffices to establish the claimed convergence for given `. I

therefore drop the ` subscripts throughout and refer to the (`th) index set X` as T
itself.
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Step 0 (Main)

For fixed t ∈ T a decomposition yields

Ĝu (t)−G∗un (t) =
√
nEn [ξi{ĝ (t, Zi)− g (t, Zi)}]

=
√
nEn

[
ξiω (t,Xi) {ρ(Zi, β̂, ĥ (Wi))− ρ(Zi, β0, h

∗ (Wi))}
]

− [̂b (t)− b (t)]>
√
nEn [ξis (Zi)]

− b̂ (t)>
√
nEn [ξi{ŝ (Zi)− s (Zi)}]

+
√
nEn

[
ξi(δ̂ (t,Wi)

> {Yi − ĥ (Wi)} − δ (t,Wi)
> Ui)

]
,

=: In (t) + IIn (t) + IIIn (t) + IVn (t) . (C.1)

where Ui = Yi − h∗(Wi). The following steps show that the four remainder terms

→P 0 uniformly over T . The claim therefore follows from T.

Step 1: ‖In‖T →P 0

Assumption 1 and M implies that ‖β̂ − β0‖ .P n−1/2 → 0. Let N0 be any open

neighborhood of β0 (Assumption 3). Then β̂ ∈ N0 wp → 1. To simplify notation

and ensure that objects are globally well defined, in what follows I will—without

loss of generality—assume that β̂ ∈ N0 with probability one for all n. A MVE of

β 7→ ρ(Zi, β, ĥ (Wi)) at β̂ around β0 and CS show that

‖In‖T 6 sup
t∈T

∣∣∣√nEn [ξiω (t,Xi) {ρ(Zi, β0, ĥ (Wi))− ρ(Zi, β0, h
∗ (Wi))}

]∣∣∣
+
√
n‖β̂ − β0‖ sup

t∈T

∥∥∥En [ξiω (t,Xi) (∂/∂β) (Zi, β, ĥ (Wi))
]∥∥∥

=: ‖Ia,n‖T +
√
n‖β̂ − β0‖‖Ib,n‖T , (C.2)

where β satisfies ‖β− β0‖ 6 ‖β̂− β0‖ such that β ∈ N0 for n sufficiently large. Since
√
n‖β̂ − β0‖ .P 1 it suffices to show that ‖Ia,n‖T and ‖Ib,n‖T →P 0.

Step 1a: ‖Ia,n‖T →P 0. Abbreviate (z, v) 7→ ρ (z, β0, v) by ρ. By a MVE of

s 7→ ρ(Zi, s) at ĥ (Wi) around h∗ (Wi) and T we may be bound ‖Ia,n‖T defined in

2



(C.2) by

sup
t∈T

∣∣∣∣√nEn [ξiω (t,Xi) {
∂

∂h>
ρ(Zi, h (Wi))−

∂

∂h>
ρ(Zi, h

∗ (Wi))}{ĥ (Wi)− h∗ (Wi)}
]∣∣∣∣

+ sup
t∈T

∣∣∣∣√nEn [ξiω (t,Xi)
∂

∂h>
ρ(Zi, h

∗ (Wi)){ĥ (Wi)− h∗ (Wi)}
]∣∣∣∣

=: ‖Ia,1,n‖T + ‖Ia,2,n‖T . (C.3)

Step 1a(1): ‖Ia,1,n‖T →P 0. By T and Assumptions 2 and 8

‖Ia,1,n‖T .
√
nEn

[
|ξi|R′ (Zi) ‖ĥ (Wi)− h∗ (Wi)‖2

]
6 dEn [|ξi|R′ (Zi)]

√
n max

16m6d
‖ĥm − h∗m‖2W

.P E[R′(Z)]
√
n max

16m6d
‖ĥm − h∗m‖2W →P 0,

with R′ from and the →P 0 guaranteed by Assumption 8.

Step 1a(2): ‖Ia,2,n‖T →P 0. Given that

Ia,2,n (t) =
d∑

m=1

√
nEn

[
ξiω (t,Xi)

∂

∂hm
ρ(Zi, h

∗ (Wi)){ĥm (Wi)− h∗m (Wi)}
]

(C.4)

by T, it suffices to bound each summand uniformly over T in probability. I therefore

omit the m subscript for the remainder of this paragraph and interpret (∂/∂h) ρ as

a scalar. (I still evaluate it at values for the vector h∗, though.) Let h̃ := pk>π̃ for π̃

provided by Assumption 6. Then we may bound such a summand uniformly over T
by

sup
t∈T

∣∣∣√nEn [ξiω (t,Xi) (∂/∂h) ρ(Zi, h
∗ (Wi)){ĥ (Wi)− h̃ (Wi)}

]∣∣∣
+ sup

t∈T

∣∣∣√nEn [ξiω (t,Xi) (∂/∂h) ρ(Zi, h
∗ (Wi)){h̃ (Wi)− h∗ (Wi)}

]∣∣∣
=: ‖Ia,2,1,n‖T + ‖Ia,2,2,n‖T .
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I consider ‖Ia,2,1,n‖T and ‖Ia,2,2,n‖T in turn. By CS ‖Ia,2,1,n‖T is bounded by

‖Ia,2,1,n‖T 6 ‖π̂ − π̃‖ sup
t∈T

∥∥√nEn [ξiω (t,Xi) (∂/∂h) ρ(Zi, h
∗ (Wi))p

kn (Wi)
]∥∥

6 ‖π̂ − π̃‖
( kn∑
j=1

sup
t∈T

{√
nEn [ξiω (t,Xi) (∂/∂h) ρ(Zi, h

∗ (Wi))pj (Wi)]
}2 )1/2

.

Fix k and let

F ′j := {f : (v, z) 7→ vω (t, x) (∂/∂h) ρ (z, h∗ (w)) pj (w) ; t ∈ T } .

Note E[f(ξ, Z)] = 0 for every f ∈ F ′j, so {
√
nEn [f (ξi, Zi)] ; f ∈ F ′j} is an empirical

process. For f := f (·, t) , f1 := f (·; t1) , f2 := f (·; t2) ∈ F ′j arbitrary, by Assumption 2

we have

|f (v, z)| 6 C1 |v| |(∂/∂h) ρ (z, h∗ (w))| ‖pj‖W
|f1 (v, z)− f2 (v, z)| 6 C2 |v| |(∂/∂h) ρ (z, h∗ (w))| ‖pj‖W‖t1 − t2‖.

It follows from Assumption 3 and the previous display that

F ′j (v, z) := (C1 ∨ C2) |v| |(∂/∂h) ρ (z, h∗ (w))| ‖pj‖W

is an envelope for F ′j satisfying E[F ′j(ξ, Z)2] ∝ ‖pj‖2W , which is finite for every j by

Assumption 7. Moreover, by compactness of T (Assumption 2) and the previous

display,

N[ ](ε(E[F ′j(ξ, Z)2])1/2,F ′j, L2 (ξ, Z)) 6 N (ε, T , ‖·‖) . ε−dx , ε ∈ (0, 1].

It follows that the bracketing entropy integral J[ ](1,F ′j, L2 (ξ, Z)) is bounded by a

constant independent of j, so by van der Vaart and Wellner (1996, Theorem 2.14.2)

E[‖Gn‖F ′
j
] . J[ ](1,F ′j, L2 (ξ, Z))E[F ′j(ξ, Z)2])1/2 . (E[F ′j(ξ, Z)2])1/2 ∝ ‖pj‖W .

van der Vaart and Wellner (1996, Theorem 2.14.5) and the previous display show that

(E[‖Gn‖2F ′
j
])1/2 . E[‖Gn‖F ′

j
] + (E[F ′j(ξ, Z)2])1/2 . ‖pj‖W ,

4



Allowing k = kn, the previous display, in turn, implies

E
[ kn∑
j=1

‖Gn‖2F ′
j

]
=

kn∑
j=1

E[‖Gn‖2F ′
j
] .

kn∑
j=1

‖pj‖2W ,

so by M we get

kn∑
j=1

‖Gn‖2F ′
j
.P

kn∑
j=1

‖pj‖2W .

From Lemma B5, M and Assumption 7 it now follows that

‖Ia,2,1,n‖T 6 ‖π̂ − π̃‖
( kn∑
j=1

‖Gn‖2F ′
j

)1/2
.P (

√
kn/n+ k−αn )

( kn∑
j=1

‖pj‖2W
)1/2
→ 0.

Similarly, fix k and let

F ′k := {f : (v, z) 7→ vω (t, x) (∂/∂h) ρ (z, h∗ (w)) {h̃ (w)− h∗ (w)}; t ∈ T }.

Note E[f(ξ, Z)] = 0 for every f ∈ F ′k, so {
√
nEn [f (ξi, Zi)] ; f ∈ F ′k} is an empirical

process. For f := f (·; t) , f1 := f (·; t1) , f2 := f (·; t2) ∈ F ′jk arbitrary, by Assumption 2

we have

|f (v, z)| 6 C1|v||(∂/∂h) ρ (z, h∗ (w))|‖h̃− h∗‖W ,

|f1 (v, z)− f2 (v, z)| 6 C2|v||(∂/∂h) ρ (z, h∗ (w))|‖h̃− h∗‖W‖t1 − t2‖.

By Assumption 8, CS and the previous display we see that

F ′k (v, z) := (C1 ∨ C2) |v| |(∂/∂h) ρ (z, h∗ (w))| ‖h̃− h∗‖W

is an envelope for F ′k satisfying E[F ′k(ξ, Z)2] ∝ ‖h̃− h∗‖2W , which by Assumption 6 is

finite for every k. Moreover, by compactness of T (Assumption 2) and the previous

display,

N[ ](ε(E[F ′k(ξ, Z)2])1/2,F ′k, L2 (ξ, Z)) 6 N (ε, T , ‖·‖) . ε−dx , ε ∈ (0, 1].
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which implies that the bracketing entropy integral J[ ](1,F ′k, L2 (ξ, Z)) is bounded by

a constant independent of k. Using van der Vaart and Wellner (1996, Theorem 2.14.2)

and Assumption 6, we therefore get

E[‖Gn‖F ′
k
] . J[ ](1,F ′k, L2 (ξ, Z))E[F ′k(ξ, Z)2])1/2

. E[F ′k(ξ, Z)2])1/2 ∝ ‖h̃− h∗‖W . k−α.

By M it follows that ‖Ia,2,2,n‖T = ‖Gn‖F ′
kn
.P k

−α
n → 0, which completes the proof

that each summand in (C.4) →P 0, which via (C.3), in turn, shows that ‖Ia,n‖T
defined in (C.2) →P 0.

Step 1b: ‖Ib,n‖T →P 0. By T we may bound ‖Ib,n‖T defined in (C.2) by

sup
t∈T

∥∥En [ξiω (t,Xi) (∂/∂β) ρ(Zi, β, h
∗ (Wi))

]∥∥
+ sup

t∈T

∥∥∥En [ξiω (t,Xi) {(∂/∂β) ρ(Zi, β, ĥ (Wi))− (∂/∂β) ρ(Zi, β, h
∗ (Wi))}

]∥∥∥
=: ‖Ib,1,n‖T + ‖Ib,2,n‖T . (C.5)

The second term ‖Ib,2,n‖T satisfies

‖Ib,2,n‖T . En
[
|ξi| a (Zi) ‖ĥ (Wi)− h∗ (Wi)‖c

]
6 En [|ξi| a (Zi)] max

16m′6d
‖ĥm′ − h∗m′‖cW .P max

16m′6d
‖ĥm′ − h∗m′‖cW

P→ 0,

where the . follows from Assumptions 2 and 3, the .P from the ξi’s being i.i.d., zero

mean, unit variance (hence having finite first moment) and independent of the data,

and the →P 0 stems from Lemma B5 and Assumption 7.

To show that ‖Ib,1,n‖T →P 0, observe that the {(ξi, Zi)}n1 are i.i.d., the map

(t, β) 7→ ξω (t,X) (∂/∂β) ρ (Z, β, h∗ (W )) is continuous on T × N0 (Assumptions

2 and 3) and therefore continuous on the product T × B, where B ⊂ N0 is any

closed ball with center β0 and sufficiently small radius (Assumption 1). Moreover,

T × B is compact (Assumption 2), and supT ×B‖ξω (t,X) (∂/∂β) ρ (Z, β, h∗ (W ))‖ .
|ξ| supB‖(∂/∂β) ρ (Z, β, h∗ (W ))‖, where by independence, CS, and Assumption 3,

E
[
|ξ| sup

β∈B
‖(∂/∂β) ρ (Z, β, h∗ (W ))‖

]
6 E

[
sup
β∈B
‖(∂/∂β) ρ (Z, β, h∗ (W ))‖

]
<∞,

6



Given that the ξi’s are centered and independent of the data, Newey and McFadden

(1994, Lemma 2.4) shows that

sup
T ×B
‖En [ξiω (t,Xi) (∂/∂β) ρ (Zi, β, h

∗ (Wi))]‖
P→ 0.

That ‖Ib,1,n‖T defined in (C.5)→P 0 now follows from β ∈ B wp→ 1 and the previous

display. Via (C.2) and (C.5), this →P 0 in turn implies ‖In‖T →P 0.

Step 2: ‖IIn‖T →P 0.

By CS, IIn defined in (C.1) satisfies

‖IIn‖T 6
∥∥√nEn [ξis (Zi)]

∥∥ sup
t∈T
‖b̂ (t)− b (t)‖,

To show ‖IIn‖T →P 0, it therefore suffices to show ‖
√
nEn [ξis (Zi)]‖ .P 1 and

supt∈T ‖b̂ (t)− b (t)‖ →P 0.

Step 2a: ‖
√
nEn [ξis (Zi)]‖ .P 1. Given that the ξi’s are i.i.d., zero-mean, unit

variance and independent of the data we have

E
[∥∥√nEn [ξis (Zi)]

∥∥2∣∣∣ {Zi}n1] = En
[
‖s (Zi)‖2

]
.

The desired ‖
√
nEn [ξis (Zi)]‖ .P 1 now follows from iterated expectations, square

integrability of s (Z) (Assumption 1) and M.

Step 2b: Behavior of b̂. In this step I show that

(a) sup
t∈T
‖b̂ (t)− b (t)‖ P→ 0 and (b) sup

t∈T
‖b̂ (t)‖ .P 1,

with b and b̂ defined in (3.8) and (3.21), respectively. To show (a), note that the

argument used in Step 1 of the proof of Lemma A2 shows that

(t, β) 7→ E [ω (t,X) (∂/∂β) ρ (Z, β, h∗ (W ))] is uniformly continuous on T ×B,

and sup
T ×B
‖(En − E)ω (t,Xi) (∂/∂β) ρ (Zi, β, h

∗ (Wi))‖
P→ 0,

7



where B ⊂ N0 is any closed set containing β0 in its interior (Assumption 1). By T

we have

sup
t∈T
‖b̂ (t)− b (t)‖ 6 sup

t∈T

∥∥∥∥En [ω (t,Xi) {
∂

∂β
ρ(Zi, β̂, ĥ (Wi))−

∂

∂β
ρ(Zi, β̂, h

∗ (Wi))}
]∥∥∥∥

+ sup
t∈T

∥∥∥∥(En − EZ)

[
ω (t,Xi)

∂

∂β
ρ(Zi, β̂, h

∗ (Wi))

]∥∥∥∥
+ sup

t∈T

∥∥∥∥EZ

[
ω (t,X)

∂

∂β
ρ(Z, β̂, h∗ (W ))

]
− b (t)

∥∥∥∥ .
Given that β̂ ∈ B wp → 1, the second and third term on the right →P 0 due to

uniform convergence and uniform continuity, respectively. By T and Assumptions 2

and 3, the first term is bounded by a constant multiple of

En[a (Zi) ‖ĥ (Zi)− h∗ (Zi)‖c] 6 dc/2En [a (Zi)] max
16m6d

‖ĥm − h∗m‖cW

.P max
16m6d

‖ĥm − h∗m‖cW
P→ 0,

where the .P follows from M and the →P 0 from Lemma B5. The previous display

finishes the proof of (a) and therefore the proof of Step 2 (‖IIn‖T →P 0).

To show (b), note that the argument in used in Step 1 of the proof of Lemma A2

also shows that supt∈T ‖b (t)‖ . 1. Two applications of T yield∣∣∣ sup
t∈T
‖b̂ (t)‖ − sup

t∈T
‖b (t)‖

∣∣∣ 6 sup
t∈T
|‖b̂ (t)‖ − ‖b (t)‖| 6 sup

t∈T
‖b̂ (t)− b (t)‖ P→ 0,

which combined with supt∈T ‖b (t)‖ . 1 implies supt∈T ‖b̂ (t)‖ .P 1.

Step 3: ‖IIIn‖T →P 0

By CS,

‖IIIn‖T 6
∥∥√nEn [ξi{ŝ (Zi)− s (Zi)}]

∥∥ sup
t∈T
‖b̂ (t)‖. (C.6)

By Step 2b, supt∈T ‖b̂ (t)‖ .P 1, so to show ‖IIIn‖T →P 0, it suffices to show that

‖
√
nEn [ξi{ŝ (Zi)− s (Zi)}]‖

P→ 0.
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To this end, note that by the ξi’s being i.i.d., zero-mean, unit variance and independent

of the data, and ŝ being {Zi}n1 -measurable (Assumption 8), we have

E
[
‖
√
nEn [ξi{ŝ (Zi)− s (Zi)}]‖

∣∣ {Zi}n1] = En
[
‖ŝ (Zi)− s (Zi)‖2

]
= ‖ŝ− s‖2n,2.

By Assumption 8, the right-hand side →P 0, so ‖
√
nEn [ξi{ŝ (Zi)− s (Zi)}]‖

P→ 0

follows from Lemma C3. Via (C.6), this →P 0 finishes the proof of the claim that

‖IIIn‖T as defined in (C.1) →P 0.

Step 4: ‖IVn‖T →P 0

Given that IVn defined in (C.1) may be written as the sum

IVn (t) =
d∑

m=1

√
nEn

[
ξi{δ̂m (t,Wi) {Ymi − ĥm (Wi)} − δm (t,Wi)Umi}

]
,

it suffices to bound each summand uniformly over T in probability. I therefore omit

the m subscript for the remainder of Step 4 and interpret (∂/∂h) ρ as a scalar deriva-

tive. By T, the (mth) summand satisfies the uniform bound

sup
t∈T
|
√
nEn

(
ξi{δ̂ (t,Wi) [Yi − ĥ (Wi)]− δ (t,Wi)Ui}

)
|

6 sup
t∈T

∣∣∣√nEn [ξiUi{δ̂ (t,Wi)− δ (t,Wi)}
]∣∣∣

+ sup
t∈T

∣∣∣√nEn [ξiδ̂ (t,Wi) {ĥ (Wi)− h∗ (Wi)}
]∣∣∣ =: ‖IVa,n‖T + ‖IVb,n‖T . (C.7)

I consider each term on the right-hand side in turn.
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Step 4a: ‖IVa,n‖T →P 0. Recalling the definitions of δk and ψk in (B.5) and (B.9),

respectively, we may write δk (t, w) = pk (w)>Q−1k ψk (t), such that by T,

‖IVa,n‖T = sup
t∈T

∣∣∣√nEn [ξiUipkn (Wi)
> Q̂−1kn ψ̂kn (t)

]
6 sup

t∈T

∣∣∣ψ̂kn (t)> (Q̂−1kn −Q
−1
kn

)
√
nEn

[
pkn (Wi) ξiUi

] ∣∣∣
+ sup

t∈T

∣∣∣{ψ̂kn (t)− ψkn (t)}>Q−1kn
√
nEn

[
pkn (Wi) ξiUi

] ∣∣∣
+ sup

t∈T

∣∣√nEn [ξiUi{δkn (t,Wi)− δ (t,Wi)}]
∣∣

=: ‖IVa,1,n‖T + ‖IVa,2,n‖T + ‖IVa,3,n‖T (C.8)

where I employ the convenient shorthand

ψ̂k (t) = En[pk (Wi)ω (t,Xi) (∂/∂β) ρ(Zi, β̂, ĥ (Wi))]

as defined in the (auxilliary) Step 4c below.

Step 4a(1): ‖IVa,1,n‖T →P 0. By the ξi’s being i.i.d., zero-mean, unit variance

and independent of the data,

E
[∥∥∥Q−1/2kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥2] = E[ξ2U2pkn (W )>Q−1kn p
kn (W )]

= E[U2pkn (W )>Q−1kn p
kn (W )]

. E[pkn (W )>Q−1kn p
kn (W )] = kn,

so by M we have ∥∥∥Q−1/2kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥ .P

√
kn. (C.9)
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Step 4c shows that supt∈T ‖ψ̂kn (t)> Q̂−1kn ‖ .P 1, so by CS, Assumption 5, Lemma B4,

and the previous display,

‖IVa,1,n‖T = sup
t∈T

∣∣∣ψ̂kn (t)> Q̂−1kn (Qkn − Q̂kn)Q−1kn
√
nEn

[
pkn (Wi) ξiUi

] ∣∣∣
6
∥∥∥Q−1kn√nEn [pkn (Wi) ξiUi

] ∥∥∥ sup
t∈T
‖ψ̂kn (t)> Q̂−1kn (Qkn − Q̂kn)‖

6
∥∥∥Q−1kn√nEn [pkn (Wi) ξiUi

] ∥∥∥‖Q̂kn −Qkn‖op sup
t∈T
‖ψ̂kn (t)> Q̂−1kn ‖

.
∥∥∥Q−1/2kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥‖Q̂kn −Qkn‖op sup
t∈T
‖ψ̂kn (t)> Q̂−1kn ‖

.P

√
kn[ζ2kn ln (kn) /n]1/2 = [ζ2knkn ln (kn) /n]1/2 → 0.

Step 4a(2): ‖IVa,2,n‖T →P 0. By CS, Assumption 5, (C.9), Step 4c and As-

sumption 8,

‖IVa,2,n‖T 6
∥∥∥Q−1kn√nEn [pkn (Wi) ξiUi

] ∥∥∥ sup
t∈T
‖ψ̂kn (t)− ψkn (t)‖

.
∥∥∥Q−1/2kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥ sup
t∈T
‖ψ̂kn (t)− ψkn (t)‖

.P

√
kn

[
ζkn(

√
kn/n+ k−αn ) +

( kn∑
j=1

‖pjkn‖2W
)1/2

/
√
n
]

= ζkn
√
kn(
√
kn/n+ k−αn ) +

( kn∑
j=1

‖pjkn‖2W
)1/2√

kn/n→ 0.

Step 4a(3): ‖IVa,3,n‖T →P 0. Fix k and let

F ′k := {(v, z) 7→ v{y − h∗ (w)}{δk (t, w)− δ (t, w)}; t ∈ T }.

Given that each E[f(ξ, Z)] = 0 for each f ∈ F ′k, the stochastic process IVn may

be viewed as an empirical process Gn indexed by the changing classes F ′kn . For

f = ft, f1 = ft1 , f2 = ft2 ∈ F ′kn arbitrary, by arguments parallel to those used in Step

4c in the proof of Lemma A2, there exists a function z 7→ Fk (z) such that

|f (v, z)| 6 |v|Fk (z) ,

|f1 (v, z)− f2 (v, z)| 6 |v|Fk (z) ‖t1 − t2‖,

11



and ‖Fk‖P,2 .
√
k. The ξi’s being zero mean, unit variance and independent of the

data implies that F ′k : (v, z) 7→ |v|Fk (z) is an envelope for F ′k with (E[F ′k(ξ, Z)2])1/2 =

‖Fk‖P,2 .
√
k as k →∞, satisfying

|f1 (s, z)− f2 (s, z)| 6 F ′k (s, z) ‖t1 − t2‖.

Using T compact and the previous display, by van der Vaart and Wellner (1996,

Theorem 2.7.11) we see that

N[ ](ε(E[F ′k(ξ, Z)2])1/2,F ′k, L2 (ξ, Z)) 6 (C/ε)dx , ε ∈ (0, 1].

and thus

J[ ]
(
δ,F ′k, L2 (ξ, Z)

)
6
∫ δ

0

√
1 + d ln (C/ε)dε, δ ∈ (0, 1].

where the right-hand side does not depend on k. In particular, J[ ]
(
1,F ′kn , L

2 (ξ, Z)
)
.

1. Defining

σ2
n := sup

f∈F ′
kn

En[f(ξi, Zi)
2]

we see that

σ2
n = sup

t∈T
En
[
ξ2i U

2
i {δkn (t,Wi)− δ (t,Wi)}2

]
6 En

[
ξ2i U

2
i ‖δkn (·,Wi)− δ (·,Wi)‖2T

]
,

thus implying

E
[
σ2
n

]
6 E

[
ξ2U2‖δkn (·,W )− δ (·,W )‖2T

]
6 CE

[
‖δkn (·,W )− δ (·,W )‖2T

]
= CR2

δ,kn ,

where the . follows from the ξi’s being zero mean, unit variance, and independent

of the data and Assumption 4, and the last equality follow from the definitions of δk

and Rδ,k.

It suffices to consider the two cases (1)Rδ,kn/‖Fkn‖P,2 → 0 and (2)Rδ,kn/‖Fkn‖P,2 9
0 in turn. Case 1 : Rδ,kn/‖Fkn‖P,2 → 0. Given that

√
E [σ2

n] 6 CRδ,kn , by the change

12



of variables ε′ := ε/C we have

J[ ]

(√
E [σ2

n]/‖Fkn‖P,2,F ′k, L2 (ξ, Z)
)
6 J[ ]

(
CRδ,kn/‖Fkn‖P,2,F ′k, L2 (ξ, Z)

)
= C

∫ Rδ,kn/‖Fkn‖P,2

0

√
1 + dt ln (C ′/ε′)dε′

=: CJ [ ] (Rδ,kn/‖Fkn‖P,2) (C.10)

By van der Vaart and Wellner (2011, p. 196) we have the maximal inequality

E[‖Gn‖F ′
kn

] . J[ ]

(√
E [σ2

n]/‖Fkn‖P,2,F ′kn , L
2 (ξ, Z)

)
‖Fkn‖P,2

. J [ ] (Rδ,kn/‖Fkn‖P,2) ‖Fkn‖P,2,

and from van der Vaart and Wellner (1996, p. 239) we know that an entropy in-

tegral (bound) of the form (C.10) satisfies J [ ] (δ) . δ
√

ln(1/δ) as δ ↓ 0. Since

Rδ,kn/‖Fkn‖P,2 → 0 holds by hypothesis, the previous display combined with ‖Fkn‖P,2 .√
kn yields

E[‖Gn‖F ′
kn

] . (Rδ,kn/‖Fkn‖P,2)

√
ln

(
‖Fkn‖P,2
Rδ,kn

)
‖Fkn‖P,2 = Rδ,kn

√
ln

(
‖Fkn‖P,2
Rδ,kn

)
. Rδ,k

√
ln (kn/Rδ,kn).

Case 2. Suppose that Rδ,kn/‖Fkn‖P,2 9 0. Given that Rδ,kn → 0 (Assumption 7),

we must have ‖Fkn‖P,2 . Rk. van der Vaart and Wellner (1996, Theorem 2.14.2) and

J[ ]
(
1,F ′kn , L

2 (ξ, Z)
)
. 1 yield

E[‖Gn‖F ′
kn

] . J[ ]
(
1,Fk′n , L

2 (ξ, Z)
)
‖Fkn‖P,2

. ‖Fkn‖P,2 . Rδ,kn . Rδ,kn

√
ln (kn/Rδ,kn)

as in Case 1. The claim ‖IVa,3,n‖T as defined in (C.8) →P 0 now follows from M and

Rδ,kn

√
ln (kn/Rδ,kn) → 0 (Assumption 7). Via (C.8), this →P 0 in turn shows that

‖IVa,n‖T as defined in (C.7) →P 0.
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Step 4b: ‖IVb,n‖T →P 0. Step 4c shows that supT ‖ψ̂kn (t)> Q̂−1kn ‖ .P 1, so by CS

it follows that

‖IVb,n‖T = sup
t∈T

∣∣∣ψ̂kn (t)> Q̂−1kn
√
nEn

[
pkn (Wi) ξi{ĥ (Wi)− h∗ (Wi)}

] ∣∣∣
6
∥∥∥√nEn [pkn (Wi) ξi{ĥ (Wi)− h∗ (Wi)}

] ∥∥∥ sup
t∈T
‖ψ̂kn (t)> Q̂−1kn ‖

.P

∥∥∥√nEn [pkn (Wi) ξi{ĥ (Wi)− h∗ (Wi)}
] ∥∥∥.

To show that the right-hand side →P 0, note that by the ξi’s being i.i.d., zero-mean,

unit variance and independent of {Zi}n1 , and ĥ being {Zi}n1 -measurable,

E
[∥∥∥√nEn [pkn (Wi) ξi[ĥ (Wi)− h∗ (Wi)]

] ∥∥∥2∣∣∣{Zi}n1]
= En

{
‖pkn (Wi)‖2[ĥ (Wi)− h∗ (Wi)]

2
}
6
( kn∑
j=1

‖pj‖2W
)
‖ĥ− h∗‖2Pn,2

.P

[( kn∑
j=1

‖pjkn‖2W
)1/2

(
√
kn/n+ k−αn )

]2
→ 0,

where the .P follows from Lemma B5 and the → 0 from Assumption 7. It follows

by conditional CS that E[‖
√
nEn{pkn (Wi) ξi[ĥ (Wi) − h∗ (Wi)]}‖|{Zi}n1 ] →P 0, so

‖
√
nEn[pkn (Wi) ξi{ĥ (Wi) − h∗ (Wi)}]‖ →P 0 by Lemma C3. This →P 0 finishes the

proof of the claim that ‖IVb,n‖T as defined in (C.7) →P 0, which in turn shows that

‖IVn‖T as defined in (C.1) →P 0.

Step 4c (auxilliary): Behavior of ψ̂kn and Q̂−kn. Motivated by the LOIE, I

estimate ψk(·) = E[pk (W ) δ (·,W )] as defined in (B.9) by

ψ̂k (·) := En[pk (Wi)ω (·, Xi) (∂/∂h) ρ(Zi, β̂, ĥ (Wi))]. (C.11)

Note that this definition allows us to write δ̂ defined in (3.22) as

(t, w) 7→ δ̂ (t, w) = pkn (w)> Q̂−knψ̂kn (t) .
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This section shows that

(a) sup
t∈T
‖ψ̂kn (t)− ψkn (t)‖

.P ζkn max
16m′6d

(√
km′,n

n
+ k

−αm′
m′,n

)
+

1√
n

( kn∑
j=1

‖pj‖2W
)1/2
→ 0,

(b) sup
t∈T
‖ψ̂kn (t)> Q̂−kn − ψkn (t)>Q−1kn ‖

P→ 0,

(c) sup
t∈T
‖ψ̂kn (t)> Q̂−kn‖ .P 1.

To show (a), recall ∆ (t, z, h) from (B.7) and define

∆k
i (t) := (∆(t, Zi, p1), . . . ,∆(t, Zi, pk))

>.

Then by T we have

sup
t∈T
‖ψ̂kn (t)− ψkn (t)‖

6 sup
t∈T
‖En[ω (t,Xi) {(∂/∂h) ρ(Zi, β̂, ĥ (Wi))− (∂/∂h) ρ(Zi, β0, h

∗ (Wi))}pkn (Wi)]‖

+ sup
t∈T
‖(En − E) ∆kn

i (t)‖.

By Assumptions 1, 2 and 8 and T followed by CS

sup
t∈T
‖En[ω (t,Xi) {(∂/∂h) ρ(Zi, β̂, ĥ (Wi))− (∂/∂h) ρ(Zi, β0, h

∗ (Wi))}pkn (Wi)]‖

. En[‖pkn (Wi)‖R′ (Zi) {‖β̂ − β0‖+ ‖ĥ (Wi)− h∗ (Wi)‖}]

6 ζkn
{
En
[
R′ (Zi)

2]}1/2(‖β̂ − β0‖+ max
16m′6d

‖ĥm′ − h∗m′‖n,2
)

.P ζkn
{
En
[
R′ (Zi)

2]}1/2 (n−1/2 + max
16m′6d

(
√
km′,n/n+ k

−αm′
m′,n ))

.
{
En
[
R′ (Zi)

2]}1/2 ζkn max
16m′6d

(
√
km′,n/n+ k

−αm′
m′,n )→ 0,

where the .P follows from Lemma B5 and the → 0 from Assumption 8.
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Moreover, the argument used in Step 3a of the proof of Lemma A2 shows that

sup
t∈T
‖En{∆kn

i (t)}‖ .P

( kn∑
j=1

‖pj‖2W
)1/2

/
√
n.

Lemmas B1 and B4 and Assumptions 5 and 7 show that Q̂kn is invertible wp → 1

and λmin(Q̂kn)−1 .P 1. To ease notation I will (without loss of generality) assume

that Q̂−1kn exists with probability one for all n, such that Q̂−kn = Q̂−1kn . The argument

used in Step 4 of the proof of Lemma A2 shows that supT ‖ψkn (t)>Q−1kn ‖ . 1, so by

(a) and T,

sup
t∈T
‖ψ̂kn (t)> Q̂−1kn − ψkn (t)>Q−1kn ‖

6 sup
t∈T
‖[ψ̂kn (t)− ψkn (t)]>Q̂−1kn ‖+ sup

t∈T
‖ψkn (t)> (Q̂−1kn −Q

−1
kn

)‖

6 ‖Q̂−1kn ‖op sup
t∈T
‖ψ̂kn (t)− ψkn (t)‖+ sup

t∈T
‖ψkn (t)>Q−1kn (Q̂kn −Qkn)Q̂−1kn ‖

6 ‖Q̂−1kn ‖op
(

sup
t∈T
‖ψ̂kn (t)− ψkn (t)‖+ ‖Q̂kn −Qkn‖op sup

t∈T
‖ψkn (t)>Q−1kn ‖

)
P→ 0,

which shows (b). Part (c) follows from (b) and supt∈T ‖ψkn (t)>Q−1kn ‖ . 1. This

concludes the proof of the claim that ‖IVn‖T as defined in (C.1)→P 0 and hence the

proof of Lemma C1.

Lemma C2. If Assumptions 1–8 hold, then

max
16`6L

‖En[ĝ` (·, Zi)− g` (·, Zi)]‖X`
P→ 0.

Proof of Lemma C2. The proof proceeds in a number of steps. Since the lemma

is stated for a given `, for notational convenience I drop the ` subscripts throughout

and refer to the (`th) index set X` as T itself.
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Step 0 (Main)

For fixed t ∈ T we may write

En[ĝ (t, Zi)− g (t, Zi)] = En
[
ω (t,Xi) {ρ(Zi, β̂, ĥ (Wi))− ρ(Zi, β0, h

∗ (Wi))}
]

− [̂b (t)− b (t)>]>En [s (Zi)]− b̂ (t)> En [ŝ (Zi)− s (Zi)]

+ En[δ̂ (t,Wi)
> {Yi − ĥ (Wi)} − δ (t,Wi)

> Ui]

=: In (t) + IIn (t) + IIIn (t) + IVn (t) .

The following steps show that the four remainder terms→P 0 uniformly over T . The

claim therefore follows from T.

Step 1: ‖In‖T →P 0

Assumption 1 implies that ‖β̂ − β0‖ .P n
−1/2 → 0. Letting N0 be any open neigh-

borhood of β0 (which exists by Assumption 3), we have β̂ ∈ N0 wp→ 1. To simplify

notation and ensure that objects are globally well defined, in what follows I will—

without loss of generality—assume that β̂ ∈ N0 with probability equal to one for all

n. An MVE of β 7→ ρ(Zi, β, ĥ (Wi)) at β̂ around β0 followed by CS show that

‖In‖T 6 sup
t∈T
|En[ω (t,Xi) {ρ(Zi, β0, ĥ (Wi))− ρ(Zi, β0, h

∗ (Wi))}]|

+ ‖β̂ − β0‖ sup
t∈T
‖En[ω (t,Xi) (∂/∂β) ρ(Zi, β, ĥ (Wi))]‖

=: ‖Ia,n‖T + ‖β̂ − β0‖‖Ib,n‖T ,

where β satisfies ‖β− β0‖ 6 ‖β̂− β0‖ such that β ∈ N0 for n sufficiently large. Since

‖β̂ − β0‖ →P 0 it suffices to show that ‖Ia,n‖T →P 0 and ‖Ib,n‖T .P 1. Step 1 in the

proof of Lemma A2 shows that

sup
t∈T
‖Ib,n (t)− EZ [ω (t,X) (∂/∂β) ρ(Z, β0, h

∗ (Wi))]‖
P→ 0,

and sup
t∈T
‖EZ [ω (t,X) (∂/∂β) ρ(Z, β0, h

∗ (Wi))]‖ <∞.

which combine to yield ‖Ib,n‖T .P 1.
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Step 1a: ‖Ia,n‖T →P 0. Abbreviate (z, v) 7→ ρ (z, β0, v) by ρ. By an MVE of

v 7→ ρ(Zi, v) at ĥ (Wi) around h∗ (Wi) and T we may be bound ‖Ia,n‖T by

sup
t∈T
|En[ω (t,Xi) {

(
∂/∂h>

)
ρ(Zi, h (Wi))−

(
∂/∂h>

)
ρ(Zi, h

∗ (Wi))}{ĥ (Wi)− h∗ (Wi)}]|

+ sup
t∈T
|En[ω (t,Xi)

(
∂/∂h>

)
ρ(Zi, h

∗ (Wi)){ĥ (Wi)− h∗ (Wi)}]|

=: ‖Ia,1,n‖T + ‖Ia,2,n‖T ,

where ‖h (Wi)− h∗ (Wi)‖ 6 ‖ĥ (Wi)− h∗ (Wi)‖. By T, CS and Assumptions 2 and 8

‖Ia,1,n‖T . En[R′ (Zi) ‖ĥ (Wi)− h∗ (Wi)‖2] . En [R′ (Zi)] max
16m6d

‖ĥm − h∗m‖2W
P→ 0.

Similarly, by T, CS and Assumptions 2 and 3,

‖Ia,2,n‖T . En[|
(
∂/∂h>

)
ρ(Zi, h

∗ (Wi)){ĥ (Wi)− h∗ (Wi)}|]

. En[‖(∂/∂h) ρ(Zi, h
∗ (Wi))‖] .P max

16m6d
‖ĥm − h∗m‖W

P→ 0,

where the .P follows from ‖(∂/∂h) ρ(Z, h∗ (W ))‖ being square-integrable and the

→P 0 from Lemma B5.

Step 2: ‖IIn‖T →P 0

Step 2b in the proof of Lemma C1 shows that supt∈T ‖b̂ (t) − b (t)‖ →P 0, so by CS,

Assumption 1, and M

‖IIn‖T 6 ‖En [s (Zi)]‖ sup
t∈T
‖b̂ (t)− b (t)‖ P→ 0.

Step 3: ‖IIIn‖T →P 0

Step 2b in the proof of Lemma C1 also shows supt∈T ‖b̂ (t)‖ .P 1, so by CS and

Assumption 8,

‖IIIn‖T 6 ‖En[ŝ (Zi)− s (Zi)]‖ sup
t∈T
‖b̂ (t)‖ 6 ‖ŝ− s‖n,2 sup

t∈T
‖b̂ (t)‖ P→ 0.
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Step 4: ‖IVn‖T →P 0

Given that

En[δ̂ (t,Wi)
> {Yi − ĥ (Wi)} − δ (t,Wi)

> Ui]

=
d∑

m=1

En[δ̂m (t,Wi) {Ymi − ĥm (Wi)} − δm (t,Wi)Umi],

by T, it suffices to bound each right-hand side summand uniformly over T in proba-

bility. I therefore drop the m subscript for the remainder of this step. Now, for fixed

t ∈ T , adding and subtracting pkn (Wi)
>Q−1kn ψ̂kn (t)Ui [with ψ̂k defined in (C.11)],

recalling that δk (t, w) = pk (w)>Q−1k ψk (t) we may decompose (the mth summand)

as follows:

En[Ui{δ̂ (t,Wi)− δ (t,Wi)}]− En[δ̂ (t,Wi) {ĥ (Wi)− h∗ (Wi)}]

= ψ̂kn (t)> (Q̂−1kn −Q
−1
kn

)En[pkn (Wi)Ui] + [ψ̂kn (t)− ψkn (t)]>Q−1knEn[pkn (Wi)Ui]

+ En[Ui{δkn (t,Wi)− δ (t,Wi)}]− ψ̂kn (t)> Q̂−1knEn[pkn (Wi) {ĥ (Wi)− h∗ (Wi)}]

=: IVa,n (t) + IVb,n (t) + IVc,n (t) + IVd,n (t) .

The desired ‖IVn‖T →P 0 will follow by T if we can show that the four remainder

terms →P 0. To this end, note first that by Assumption 5,

E
[
‖Q−1k En[pk (Wi)Ui]‖2

]
. E

[
‖Q−1/2k En[pk (Wi)Ui]‖2

]
= E[U2pk (W )>Q−1k pk (W )]/n

. E[pk (W )>Q−1k pk (W )]/n = k/n,

so by M we have

‖Q−1knEn[pkn (Wi)Ui]‖ .P

√
kn/n→ 0.

Step 4c in the proof of Lemma C1 shows that supt∈T ‖ψ̂kn (t)> Q̂−1kn ‖ .P 1. Moreover,

Lemma B4 show that ‖Q̂kn − Qkn‖op .P [ζ2kn ln(kn)/n]1/2 → 0, so by the previous
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display and CS,

‖IVa,n‖T = ‖ψ̂kn (t)> Q̂−1kn (Qkn − Q̂kn)Q−1knEn[pkn (Wi)Ui]‖T
6 ‖Q−1knEn[pkn (Wi)Ui]‖‖Q̂kn −Qkn‖op sup

t∈T
‖ψ̂kn (t)> Q̂−1kn ‖

.P (kn/n)1/2
{
ζ2kn ln(kn)/n

}1/2 → 0.

Step 4c in the proof of Lemma C1 also shows that supt∈T ‖ψ̂kn (t)−ψkn (t)‖ →P 0, so

by CS,

‖IVb,n‖T 6 ‖Q−1knEn[pkn (Wi)Ui]‖ sup
T
‖ψ̂kn (t)− ψkn (t)‖ P→ 0.

Step 4c in the proof of Lemma A2 shows that

‖IVc,n‖t∈T = sup
t∈T
|En[Ui{δkn (t,Wi)− δ (t,Wi)}]| .P Rδ,kn

√
ln(kn/Rδ,kn)→ 0.

Lastly, by CS, Lemma B5 and supt∈T ‖ψ̂kn (t)> Q̂−1kn ‖ .P 1 we get

‖IVd,n‖T 6 ‖En[pkn (Wi) {ĥ (Wi)− h∗ (Wi)}]‖ sup
t∈T
‖ψ̂kn (t)> Q̂−1kn ‖

6 ‖En[pkn (Wi) {ĥ (Wi)− h∗ (Wi)}]‖ sup
t∈T
‖ψ̂kn (t)> Q̂−1kn ‖

.
( kn∑
j=1

‖pj‖2W
)1/2

max
16m′6d

‖ĥm′ − h∗m′‖n,2 sup
t∈T
‖ψ̂kn (t)> Q̂−1kn ‖

.P

( kn∑
j=1

‖pj‖2W
)1/2

max
16m′6d

(√
km′,n/n+ k

−αm′
m′,n

)
→ 0.

This finishes the proof of ‖En[ĝ (·, Zi)− g (·, Zi)]‖T →P 0.

Proof of Lemma 3. Since the lemma is stated for a given `, I drop the ` subscripts

throughout and refer to the (`th) index set X` as T itself. Then by T,

‖Ĝ−G∗n‖T ≡
∥∥√nEn [(ξi − ξ) ĝ (·, Zi)

]
−
√
nEn

[(
ξi − ξ

)
g (·, Zi)

]∥∥
T

=
∥∥√nEn [ξiĝ (·, Zi)]−

√
nEn [ξig (·, Zi)]−

√
nξ{En[ĝ (·, Zi)− g (·, Zi)]}

∥∥
T

=
∥∥∥Ĝu −G∗un −

√
nξ{En[ĝ (·, Zi)− g (·, Zi)]}

∥∥∥
T

6 ‖Ĝu −G∗un ‖T + |
√
nξ| ‖En[ĝ (·, Zi)]− En [g (·, Zi)]‖T .
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The first term on the right→P 0 by Lemma C1. Given that
√
nξ ∼ N (0, 1) , certainly

|
√
nξ| .P 1. The second term therefore →P 0 by Lemma C2.

C.2 Additional Supporting Lemmas

Lemma C3. If Xn is a sequence of nonnegative random variables defined on a com-

mon probability space (Ω,F ,P), Fn is a sequence of sub-σ-algebras, and E [Xn| Fn]→P

0, then Xn →P 0.

Proof. Fix n ∈ N, let Yn := E [Xn| Fn] and let An := {Yn = 0}. Then Xn = 0 almost

everywhere on An. Indeed, if Xn is not zero almost everywhere on An, then there

exists C ∈ (0,∞) such that Bn,C := {ω ∈ An|Xn (ω) > 1/C} satisfies P (Bn,C) > 0.

By definition of (a version of) the conditional expectation of Xn given Fn, we must

have
∫
A
XndP =

∫
A
YndP for every A ∈ Fn and, in particular, for An. Since Yn = 0

on An and Bn,C ⊂ An, it follows that

0 =

∫
An

YndP =

∫
An

XndP >
∫
Bn,C

XndP > P (Bn,C) /C,

which contradicts P (Bn,C) > 0. Since n ∈ N was arbitrary, we have shown that

Xn = 0 on An for each n ∈ N. Now, fix ε, δ > 0. Then P (Xn > ε ∩ Yn = 0) = 0 by

the previous claim, and it follows that

P (Xn > ε) = P (Xn > ε ∩ Yn = 0) + P (Xn > ε ∩ 0 < Yn 6 δε) + P (Xn > ε ∩ Yn > δε)

6 P
(
Xn > δ−1Yn > 0

)
+ P (Yn > δε) .

Given that Yn is Fn measurable, by conditional M we have

P
(
Xn > δ−1Yn > 0

)
= E

[
1Yn>0P

(
Xn > δ−1Yn

∣∣Fn)] 6 E [1Yn>0δE [Xn| Fn] /Yn]

= δP (Yn > 0) 6 δ.

By Yn →P 0 and the previous two displays we see that for any ε, δ > 0, lim P (Xn > ε) 6

δ, so the claim follows from letting δ → 0.
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