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Abstract

This paper studies, theoretically and experimentally, the e¤ects of overcon�dence

and fake news on information aggregation and the quality of democratic choice

in a common interest setting. We theoretically show that overcon�dence exac-

erbates the adverse e¤ects of widespread misinformation (i.e., fake news). We

study extensions that allow for partisan biases, targeted misinformation intended

to move public opinion in a speci�c direction, and correlated news signals (due

to media ownership concentration or censure). In our experiment, voters are

exposed to correct news or misinformation depending on their cognitive ability.

Absent overcon�dence, more cognitively able subjects are predicted to vote while

less able subjects are predicted to abstain, and information is predicted to aggre-

gate well. We provide evidence that overcon�dence induces misinformed subjects

to vote excessively, thereby severely undermining information aggregation.
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1 Introduction

Mass misinformation, now also known as fake news, is at the center stage of political and

academic discourse because it disrupts the veracity of media coverage and may undermine

public opinion.1 ;2 According to a survey study by the Pew Research Center in the US, a

sizable majority of respondents believes that fake news create confusion about basic facts.

However, 84% of these respondents are (somewhat or very) con�dent in their ability to

recognize fake news. According to another survey study (Jang and Lim, 2018), individuals

believe that fake news have a greater e¤ect on others than themselves. These studies suggest

overcon�dence in one�s ability to sort fact from �ction and that voters may be more prone

to vote on the basis of misinformation than they think.

In this paper, we study theoretically and experimentally the joint e¤ect of overcon-

�dence and the dissemination of fake news on public opinion and the quality of democratic

choice. We consider the classic common-interest voting environment with two policy alter-

natives where citizens share the objective to select the better policy but may di¤er in their

information and hence disagree about which policy is better.3 Abstention is allowed as in

Feddersen and Pesendorfer (1996). In contrast to the previous literature, individuals may

be overcon�dent (or undercon�dent) in their competence to obtain accurate news and form

correct opinions. We theoretically analyze the e¤ects of such biased perceptions on voting

behavior and information aggregation, and we also corroborate some theoretical predictions

of our model in the laboratory. Our model shows not only does overcon�dence undermine

information aggregation, but perhaps more importantly it can gravely exacerbate the impact

of pervasive misinformation on democratic decision making. Our framework also relates to

the rationale behind the supply of misinformation as it shows how the interaction between

1We de�ne misinformation and fake news as fabricated news usually with a deliberate intention to

deceive (see also Allcott and Gentzkow (2017) and Lazer et al. (2018)). Thus, misinformation and fake news

represent a signi�cant subset of the broad category of false news, which may be deliberately or unintentionally

misleading.
2While political fake news stories and the media coverage of the fake news phenomenon have gained an

unprecedented level of prominence recently, the concern that the mass media often involves misinformation

and false news goes back to Lippmann and Merz (1920), and Lippmann (1922). See also Hermann and

Chomsky (2003).
3We interpret voting outcome as public opinion since (i) public opinion consists of individual opinions; (ii)

individual opinions are re�ected in political activity; and (iii) we interpret voting as political activity (whether

it be through the ballot, contacting political representatives, lobbying, participation in a demonstration, or

providing an opinion in a poll instead of saying �No opinion�) and abstention the lack thereof.
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overcon�dence and misinformation can bene�t a third party or partisan voters (when we

relax the common-interest assumption).

The electorate decides on a policy by majority vote. Individuals vote for one of

two policies, a and b or abstain. Individual payo¤s depend on the voting outcome and the

underlying state of the world. There are two states of the world, A and B. The ex-ante

probability that the state is A is common knowledge. In the baseline model, individuals have

identical preferences and prefer the chosen policy to match the state. In other words, they

strictly prefer (i) policy a to be chosen if the state is A, and (ii) policy b to be chosen if the

state is B. Individuals do not know the state of the world. Instead, each individual privately

observes a binary news signal. The precision of signals is heterogeneous as individuals di¤er

in their competence. Therefore, as in Feddersen and Pesendorfer (1996) and the pursuant

literature, individuals who are less con�dent in their signal may rationally refrain from voting

for their signal.

Less competent individuals are more vulnerable to misinformation in our model.

Moreover, as discussed above, individuals hold subjective (and possibly in�ated) views about

their competence (e.g., the quality of the news they receive and the accuracy of their opin-

ions). Hence, the rational mechanism in Feddersen and Pesendorfer in which less competent

individuals refrain from following their signal (or, similarly, a rational mechanism which

leads such individuals to acquire more information in an extended model) may not work

with the Dunning-Kruger e¤ect. According to the Dunning-Kruger e¤ect, incompetent indi-

viduals prone to overcon�dence do not recognize their lack of competence. That is, they are

�unskilled and unaware of it.�Thus, our hypothesis is that incompetent individuals are (i)

more likely to be exposed to fake news and less able to discern correct and fake news, but

(ii) many of them are unaware and assess their ability as substantially greater than it is. As

a result, they are more likely to act based on misinformation.4

We theoretically show that information aggregation is undermined in the presence of

Dunning-Kruger e¤ect. Moreover, overcon�dence tends to be more troubling as the veracity

of media coverage declines (e.g., media veracity may decline due to misinformation becoming

more prevalent). To illustrate, consider a simple example with three individuals, where

each individual is equally likely to be competent or incompetent. Each individual privately

4In a more realistic setup, recognizing that one has low competence on an issue may lead to information

acquisition rather abstention. However, in either case, the absence of overcon�dence is essential, and there-

fore, we begin our analysis in a simpler setup and leave the addition of costly information acquisition to the

model to future research (see also Footnote 5).
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observes their type, and this observation is either correct or overcon�dent. Assume that

every competent individual obtains a perfectly informative signal and learns the true state,

and every incompetent individual obtains a noisy signal which matches the true state with

probability 0.7� this is a setting with high media veracity. The e¤ect of overcon�dence is

trivial in such a setting because the average signal precision is quite high at 0.85. Next,

assume that media veracity decreases making it more di¢ cult for both types of individuals

to infer the state correctly: a competent individual obtains a signal which matches the state

with probability 0.9, and an incompetent individual obtains an uninformative signal (i.e.,

the signal matches the state with probability 0.5). Comparing these two scenarios, the e¤ect

of overcon�dence is much more pronounced when the media veracity is low.5 This is also

why our experiment focuses on a setting with a high share of misinformation.

As this example suggests, overcon�dence is typically more harmful at low levels of

media veracity acting as a �multiplier�of misinformation dissemination. Hence, the powerful

impact of the fake news phenomenon relies on the Dunning-Kruger e¤ect in our model� an

abundance of unskilled and unaware voters. More generally, the quality of public opinion and

democratic decision making depends on both the prevalence of misinformation in circulation

and the extent of the Dunning-Kruger e¤ect in the population.

We also analyze the implications of richer models with partisan voters, di¤ering media

veracities in di¤erent states of the world, and correlated news signals. The latter two models

are particularly relevant given the extent of media ownership concentration. Di¤ering media

veracities in di¤erent states of the world may be caused by a third party (e.g., a special

interest, corporate giant, or government) that strictly prefers a speci�c policy regardless of

the state of the world and disseminates self-serving �news.�Dissemination of such news gives

rise to an asymmetry in the veracity of media coverage in di¤erent states of the world as

those news are benign in one state, whereas in the other state they are misleading.6 We

show that the special interest can bene�t from those news but only in the presence of a

high degree of overcon�dence. Also, we are the �rst to analyze a model of information

aggregation with correlated signals (that is, only a few or several media outlets generate

5The same conclusion also holds if incompetent voters can acquire information (i.e., become competent)

at a positive but not too high cost.
6In addition to media concentration and implicit or explicit media censorship, technological progress

seems to have provided third parties and special interests with novel tools to sway public opinion. For

example, �ndings of Marlow, Miller, and Roberts (2020) suggest that online bots have a substantial role

in amplifying denialist messages about climate change as well as support for Trump�s withdrawal from the

Paris Agreement. See also our discussion in Section 2.3.
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independent news signals, and multiple individuals receive the exact same news signal).

The ubiquitous assumption of the information aggregation literature that every individual

observes an independent signal is hardly realistic. According to Bagdikian (2004), there is

substantial concentration in media ownership � for example, the number of corporations

controlling most of the media in the US decreased to 5 from around 50 in 1983. We identify

conditions under which overcon�dence and correlation of news signals jointly undermine

information aggregation. Note that increased media concentration can also facilitate the

third-party interference with media mentioned above.

To illustrate the impact of overcon�dence on information aggregation, we report the

results of an experiment. In light of our discussion above, the experimental design involves a

setting with a high degree of misinformation and is conducive to overcon�dence. We imple-

mented subjective beliefs regarding signal precisions as follows. Subjects take an incentivized

quiz with math and logic puzzles before (they learn about) the voting stage. Subjects are

not informed about their score in the quiz until the end of the experiment. During the voting

phase, participants are explained that the signal they get regarding the state depends on

their quiz score; that is, a participant observes a signal that has the same color as the true

state (i.e., correct news) if and only if the participant�s score places him in the top 1/3 of all

the subjects in the same experimental session. Since subjects do not learn whether or not

they are in the top 1/3 until the end of the experiment, they must form a belief regarding

their likelihood of being in top 1/3 (i.e., they must form a belief about the informativeness

of their signal). We elicit subjects�beliefs regarding their relative score in an incentivized

manner. Our experimental �ndings reveal substantial overcon�dence, which then translates

into excessive turnout and very poor results in group decision-making consistent with our

theoretical prediction. In fact, we �nd that the inferior policy is chosen all the time. We

rule out explanations other than overcon�dence for excessive turnout.7 These results in-

dicate that collective overcon�dence can result in more extreme outcomes than individual

overcon�dence� while collective decision making can theoretically cancel out modest levels

of individual overcon�dence, at high levels (as in our experiment) it can result in drastic

ine¢ ciency.8

7For example, in a control phase in which subjects learn the objectively correct precision of their signals

as in the standard information aggregation experiments, we observe a moderate turnout rate and highly

successful aggregation of information.
8Esponda and Vespa (2015) has shown that experimental subjects have di¢ culty in extracting informa-

tion from hypothetical events such as pivotality consistent with previous theoretical work of Eyster and
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Our theory and experiment suggest that a pervasive Dunning-Kruger e¤ect severely

undermines information aggregation and democratic decision making provided that a suf-

�ciently high fraction of news is false. This is in line with the idea that the resilience of

democratic decision making relies on other institutions. To uphold the democratic ideal, it

is clearly essential to make high quality education widely accessible to the public to limit the

fraction of unskilled and unaware voters who are more vulnerable to manipulative news.9

Furthermore, news media has been dubbed the �fourth estate�because it has an essential

role in maintaining checks and balances and in limiting the power of special interests. For the

media to ful�ll this role, there must be numerous high-quality news sources investigating and

reporting independent of commercial or political interests, which limits on media ownership

concentration and extensive public support for media (e.g., as in Finland and Germany) may

make easier to achieve.

2 Model

An electorate of N citizens must choose one of two policies: policy a and policy b. Each

individual casts a vote for one of the two policies or abstains. The policy that receives a

majority of the votes is the chosen policy, and ties are broken randomly. The utility of each

individual depends on the chosen policy as well as the realization of a stochastic state of the

world S 2 fA;Bg. Citizens have identical preferences and agree that policy a is superior in
state A and policy b is superior in state B. We normalize citizens�utilities without loss of

generality and assume that

u(ajA) = u(bjB) = 1 (1)

u(ajB) = u(bjA) = 0:

Citizens do not know the state of the world, and the common prior is that the state is A

with probability � 2 (0; 1). Moreover, each individual i privately observes a noisy news

signal si 2 f�; �g regarding the state of the world. The term qi represents the precision of

individual i�s signal, and qi = Pr(si = �jS = A) = Pr(si = �jS = B). Thus, the higher the

Rabin (2005) and Esponda (2008). However, in our experiment subjects�possible failure to understand the

pivotality logic is largely irrelevant.
9Martin Luther King (1947) writes that protecting individuals from propaganda is �one of the chief aims

of education. Education must enable one to sift and weigh evidence, to discern the true from the false, the

real from the unreal, and the facts from the �ction.�
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magnitude of qi, the higher the probability that i observes correct news (i.e., a signal that

matches the true state).

For every i, qi is an independent draw from a common distribution denoted by F .

The distribution F has support [q; �q], where q < �q and �q > 0:5, and F has density f , which

is positive on all of its support. The distribution F is common knowledge, whereas qi is i�s

private information. Our underlying hypothesis is that individuals di¤er in their competence

and ability to discern the true state (for example because individuals are heterogenous in

reasoning skills and the ability to tell apart proper news sources from dubious sources).

Thus, we interpret qi as a measure of skill and competence � �xing the veracity of media

coverage. More generally, signal precision qi depends not only on competence but also

on media veracity, which is exogenously �xed for the time being.10 We do not explicitly

model media veracity in this model; however, F [q; �q] and
R �q
q
qdF serve as indicators of media

veracity.

The relevant characteristic of individual i is not only qi, but also a possible bias:

i is either biased or unbiased in their perception of qi.11 More formally, i perceives qi as

pi(qi) 2 [q; �q], and pi(qi) = qi (that is, the perception of i is correct) if i is unbiased, and

pi(qi) 6= qi if i is biased. A biased individual is either overcon�dent or undercon�dent. If

i is overcon�dent, then pi(qi) > qi (that is, i�s perception of qi is in�ated), whereas if i is

undercon�dent, pi(qi) < qi. We assume without loss of generality that pi(q) � po(q) for

every overcon�dent i, and pi(q) � pu(q) for every undercon�dent i, where po(q) and pu(q)

are continuous and increasing in q. Thus, for every i and q, pi(q) takes one of three possible

values: po(q), q, and pu(q).12

An individual with signal accuracy q is overcon�dent with probability �o(q) > 0,

undercon�dent with probability �u(q) � 0, and unbiased with the remaining probability,

10It is possible to model precision qi as a function of competence of i, which is an independent draw from a

common distribution of competence and media veracity, which is the same for every individual. As a result,

the rate of information aggregation in the society depends on both the competence distribution in the society

and the media veracity. We will revisit this point in Section 2.3 when we discuss extensions.
11Many individuals may derive an �ego utility� from positive views about their skills and competence

(K½oszegi, 2006). Therefore, overcon�dence in qi could be explained by ego utility derived from in�ated views

about one�s competence in the domain of politics and policy issues.
12Results extend to settings with various levels of overcon�dence and undercon�dence, for example, settings

in which there exist �nitely many overcon�dence functions pjo(q) 2 (q; �q] and probabilities �jo(q) with j 2
f1; :::; Jg such that pjo(q) < pj+1o (q) for every q and j 2 f1; :::; J � 1g and �jo(q) is the respective probability
that an individual with skill q perceives it as pjo(q). See the proof of Proposition 1 in Online Appendix A.1.
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where �o(q) and �u(q) are continuous. While we do not need to impose more structure on

�o(q) or �u(q) until Section 2.3, the most relevant scenario is the case where �o(q) is high at

low levels of q. In this scenario, overcon�dence is particularly prevalent at low competence

levels representing the Dunning-Kruger e¤ect.

2.1 Equilibrium Analysis

The strategy for individual i, denoted by �i, maps subjective signal accuracy pi(qi) 2
fpo(qi); qi; pu(qi)g and signal si to voting for a, voting for b or abstention; i.e., �i : [q; �q] �
f�; �g ! fa; b; 0g, where 0 represents the decision to abstain.13 A pro�le of strategies

f�igi�N constitutes a Bayesian Nash equilibrium if �i is a best response to others�strategies
��i for every i.

Every i believes that their perception of qi is unbiased. As for the belief regarding

others, we assume in the main text that individuals are unaware of perception biases unless

otherwise stated. Put di¤erently, every i believes that every j perceives qj correctly (i.e.,

pj(qj) = qj) and acts on the basis of correct beliefs as in the standard setting. All of our

main results in this section, and many of our results in the upcoming sections are robust to

awareness of others�perception biases (see also Online Appendix A.2).

For tractability, we focus on symmetric Bayesian Nash Equilibria in which all citizens

who receive the same signal choose the same strategy; that is, we look for a voting strategy

of the form � : [q; �q] � f�; �g ! fa; b; 0g, which is the same for all individuals. We rule
out unresponsive equilibria in the analysis of equilibrium behavior. Such equilibria are

straightforward as strategies do not rely on si. Hereafter, Bayesian Nash equilibrium refers

to symmetric and responsive Bayesian Nash Equilibrium.14

We now show that every Bayesian Nash equilibrium consists of �cuto¤s�(with and

without perception biases). To demonstrate how equilibrium cuto¤s arise, we start by as-

suming that the signal of individual i is �. In that case, i weakly prefers voting for a over

abstention if and only if

1

2
(Pr(piva \ S = Ajsi = �)� Pr(piva \ S = Bjsi = �)) � 0;

where piva denotes the event where i�s vote for policy a is pivotal �xing others�strategies

13Limiting �i to pure strategies is for notational convenience. We allow for randomization in the proofs.
14In a responsive equilibrium, i�s strategy is not independent of si.
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��i � �. It can be checked that the inequality above can be written as

pi(qi) �
(1� �) Pr(pivajS = B)

� Pr(pivajS = A) + (1� �) Pr(pivajS = B)
= Pr(S = Bjpiva)

by Bayes rule and conditional independence (e.g., Pr(si = � \ pivajS = A) = Pr(si =

�jS = A) Pr(pivajS = A)). Hence, in order to choose between voting for a and abstaining,
individual i compares the precision of si = � to Pr(S = Bjpiva). Note that Pr(S = Bjpiva)
depends not only on ��i but also on the presence of perception biases and whether or not

individuals are aware of others�possible biases.

Next, consider the preference of i for voting for policy a over voting for policy b after

receiving an � signal. The respective expected utility from voting for a and b can be written

as
1

2
(Pr(piva \ S = Ajsi = �)� Pr(piva \ S = Bjsi = �))

and
1

2
(Pr(pivb \ S = Bjsi = �)� Pr(pivb \ S = Ajsi = �)) :

Thus, i prefers voting for a over voting for b if the latter term is higher than the former term.

By Bayes rule and conditional independence, it follows that

pi(qi) �
(1� �) (Pr(pivajS = B) + Pr(pivbjS = B))

�(Pr(pivajS = A) + Pr(pivbjS = A)) + (1� �)(Pr(pivajS = B) + Pr(pivbjS = B))

must hold, which gives

pi(qi) �
Pr(S = Bjpiva) Pr(piva) + Pr(S = Bjpivb) Pr(pivb)

Pr(piva) + Pr(pivb)
:

Combining the results above, individual i with si = � weakly prefers voting for a over other

options if and only if

pi(qi) � max fPr(S = Bjpiva); � Pr(S = Bjpiva) + (1� �) Pr(S = Bjpivb)g ;

where � = Pr(piva)
Pr(piva)+Pr(pivb)

. Moreover, individual i with si = � weakly prefers voting for b

over other options if and only if

pi(qi) � min fPr(S = Bjpivb); � Pr(S = Bjpiva) + (1� �) Pr(S = Bjpivb)g

Similarly, it can be shown that if i has a � signal, i weakly prefers voting for b if and only if

pi(qi) � max fPr(S = Ajpivb); (1� �) Pr(S = Ajpivb) + � Pr(S = Ajpiva)g

9



and voting for a if and only if

pi(qi) � min fPr(S = Ajpiva); (1� �) Pr(S = Ajpivb) + � Pr(S = Ajpiva)g :

Lemma 1 characterizes equilibrium voting behavior and formally states that it has a cuto¤

structure based on the analysis above.15

Lemma 1 Every Bayesian Nash equilibrium consists of two cuto¤s qa and qb such that (1)

an individual votes for a if and only if either i�s signal is � and pi(qi) � qa or i�s signal is
� and pi(qi) � 1� qa; and (2) an individual votes for b if and only if either i�s signal is �
and pi(qi) � qb or i�s signal is � and pi(qi) � 1� qb, where

qa = max fPr(S = Bjpiva); � Pr(S = Bjpiva) + (1� �) Pr(S = Bjpivb)g (2)

and

qb = max fPr(S = Ajpivb); � Pr(S = Ajpiva) + (1� �) Pr(S = Ajpivb)g : (3)

In particular, qa = Pr(S = Bjpiva) and qb = Pr(S = Ajpivb) if the correct policy is chosen
with a probability greater than 0.5 in both states. If � = 0:5, then qa = Pr(S = Bjpiva) and
qb = Pr(S = Ajpivb) always hold, and if in addition q = 0:5, then qa = qb.16

We now investigate the e¤ect of perception biases on collective decision making. It is

not possible to show the uniqueness of the responsive equilibrium characterized in Lemma

1. Therefore, our analysis focuses hereafter on the optimal �unbiased� equilibrium as the

comparison benchmark.17 We also take into account unresponsive equilibria from now on

because the optimal equilibrium is an unresponsive one if � is su¢ ciently close to 0 or 1.

In Lemma 2, we characterize su¢ cient conditions under which the optimal equilibrium

involves at least one interior cuto¤� that is, at least one of the cuto¤s qa, qb, 1 � qa, and
15While perception biases and whether or not individuals are aware of the presence of perception biases do

not have an impact on the general characterization of the equilibrium as outlined in Lemma 1, the precise

equilibrium depends on whether or not there are perception biases, and whether or not individuals are aware

of the presence of biases. For instance, the equilibrium of an unbiased electorate is always an equilibrium

with perception biases and unawareness regarding biases, but this is not necessarily true with awareness.
16Note that pi(qi) � qa and 1 � pi(qi) � qb can never be satis�ed at the same time by the same pi(qi)

(except for the indi¤erence case, where pi(qi) = qa = 1 � qa) because qa + qb � 1 must always hold in

equilibrium given the de�nitions of qa and qb).
17The optimal equilibrium is simply the one that maximizes the prior-weighted average probability that

the correct policy is chosen. In case there are multiple optimal equilibria in the unbiased case for �xed �,

this is inconsequential for the upcoming results.
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1 � qb is an element of (q; �q).18 To see why an interior cuto¤ matters regarding the impact
of perception biases, consider the following example. If � = q = 0:5 with N being an odd

number, the case in which every i votes for the policy that matches si (regardless of qi) is

an equilibrium. Thus, in this equilibrium qa = qb = q, and there is no interior cuto¤. If this

equilibrium turns out to be the optimal equilibrium in the unbiased case, then overcon�dence

does not have an impact on e¢ cient decision making because, without an interior equilibrium

cuto¤, it has no e¤ect on equilibrium behavior.19 Nevertheless, Lemma 2 shows that the

case where q = � = 0:5 can be considered a knife-edge situation. Put di¤erently, for every

q � 0, there exists a nontrivial set of � values such that the optimal equilibrium involves at

least one interior cuto¤ in an unbiased electorate.20

Lemma 2 Assume that the electorate is unbiased. (i) If q < 0:5, there exists a �� 2 (0:5; 1)
such that for all � 2 (1���; ��) the optimal Bayesian Nash equilibrium has an interior cuto¤.
(ii) If q = 0:5 and N is even, there exists a �� 2 (0:5; 1) such that for all � 2 (1 � ��; ��)
the optimal Bayesian Nash equilibrium has an interior cuto¤. (iii) If q = 0:5 and N is odd

or if q > 0:5, then there exists a �� 2 (q; 1) such that for all � 2 (1� ��; 1� q)[ (q; ��) the
optimal Bayesian Nash equilibrium has an interior cuto¤.

Proposition 1 shows that under the parameters speci�ed in Lemma 2 deviations from

the optimal equilibrium strategy (e.g., due to overcon�dence) are harmful. The intuition is

as follows. In common interest voting games, the optimal symmetric strategy� if it exists� is

an equilibrium strategy as shown by McLennan (1998). Put di¤erently, what is not a best

response for an individual cannot be optimal for the group as a whole. Under the conditions

spelled out in Lemma 2, the equilibrium behavior of biased individuals is not a best response

as biased individuals deviate from the presumed best-response strategy� for example, if

qa 2 (q; �q), then the actual cuto¤ overcon�dent individuals implement is p�1o (qa) < qa. As a
result, information aggregates at a lower rate in the presence of perception biases (relative to

the optimal unbiased equilibrium). While Proposition 1 substantially owes to the insight in

McLennan (1998), the quali�cation is that showing the existence of the optimal strategy and

18We prove the existence of a responsive equilibrium under the conditions stated in Lemma 2 in Corollary

1 in Online Appendix A.1.
19We mostly consider the impact of overcon�dence in the main text. Undercon�dence does not change

our main results and can only make the impact of overcon�dence worse. For example, highly competent

individuals who are su¢ ciently undercon�dent will not vote for their signal whereas they should in order to

improve information aggregation.
20We explicitly characterize (a subset of) these � values in the proof of Lemma 2.
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characterizing when overcon�dence results in a true deviation from it is extremely di¢ cult

in our setup.

Proposition 1 Under the conditions on q and � stated in Lemma 2, the decision mak-

ing accuracy of the optimal Bayesian Nash Equilibrium of an unbiased electorate cannot be

attained in an electorate with biased citizens.

Thus, overcon�dence may have a harmful impact on information aggregation even if

q > 0:5, but comparing the condition on � for q > 0:5 with that for q < 0:5 in Lemma 2

suggests that the negative e¤ect of overcon�dence is likely limited if q > 0:5. In fact, this

e¤ect will certainly vanish in large elections as we discuss in the next section. Therefore, we

are especially interested in the case where q < 0:5, which we associate with the widespread

presence of misinformation and fake news (we also implement this case in our experimental

study). Empirically, q < 0:5 may hold for a large fraction of people: a recent analysis of

126,000 stories spread in social media found that fake news reached more people than the

truth (Vosoughi, Roy, and Aral, 2018). In a model with rational and unbiased individuals,

observing a signal with q < 0:5 is nothing special. However, overcon�dence may prevent

individuals them from perceiving the misleading nature of their news signal. Put di¤erently,

overcon�dent individuals who are also susceptible to fake news may easily take misleading

or �ctitious news at their face value and act upon them. Thus, the impact of overcon�dence

is much more likely to be pronounced when many individuals are more likely to receive

misinformation than correct information.

2.2 An alternative interpretation and model

In a slightly di¤erent formulation of the model with q < 0:5, we can interpret F [q; �q] as

the distribution of the accuracy of individuals opinions. Then, the case where qi < 0:5

is directly linked to not only misinformation but also the presence of overcon�dence bias

with p(qi) � 0:5, as otherwise an individual cannot rationally hold on to a belief or opinion
that they objectively understand is more likely to be false than correct. In this model with

q < 0:5, not only does pi(qi) di¤er from qi for some individuals, but also the distribution of

qi di¤ers between the biased electorate and its unbiased version (in an unbiased electorate,

qi must not fall below 0:5). As a result, this is a more intricate model with two di¤erent

qi distributions. However, equilibrium characterization in Lemma 1 and other main results

hold in this type of model under mild assumptions. For example, one possible assumption is

that the distribution of qi is identical in the biased electorate and its unbiased version with
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the exception that qi = 0:5 in the unbiased case for every i in the biased electorate such that

qi < 0:5.

2.3 Large Elections and Extensions

While �� spelled out in Lemma 2 goes to one as N goes to in�nity, and thus, the negative

impact of overcon�dence extends to almost all � values in large elections, this negative

impact also becomes vanishingly small provided that q � 0:5. More generally, information
will aggregate (that is, the electorate will make the correct decision in both states with a

probability that goes to one as N goes to in�nity) despite perception biases provided that

q � 0:5 because in our framework so far,

(i) citizens have identical preferences (e.g., there are no partisans),

(ii) veracity of media coverage is identical in both states (i.e., Pr(si = �jS = A) = Pr(si =
�jS = B) � 0:5 if q � 0:5),
(iii) realizations of signals (si) are conditionally independent, and

(iv) the voting rule is majority.

In fact, the limiting impact of overcon�dence on information aggregation as N goes

to in�nity depends not only on q but also on E(q) and the extent of overcon�dence in the
population. In particular, the share of misinformation in news circulation must be su¢ ciently

high so that E(q) is further below 0:5, and the Dunning-Kruger e¤ect must be su¢ ciently
pervasive for the negative impact of overcon�dence to be bounded away from zero in large

elections� this forms the basis of our experimental design.21 These conditions are admittedly

very strong. However, as mentioned above misinformation may indeed have a wider reach

than correct information (Vosoughi, Roy, and Aral, 2018). Moreover, if these conditions hold,

the result is severe: the incorrect policy is certainly chosen in the limit in at least one state

of the world (see Online Appendix A.4 for the formal result and proof). This relates to the

concern in many countries over reported meddling by outsiders using misinformation. For

instance, in 2017 the then Prime Minister of UK Theresa May has publicly accused Russia of

�planting fake stories�in order to �sow discord in the West�(The Economist, November 23,

2017). According to an analysis by the European Commission, Russian groups carried out a

widespread misinformation campaign aimed at in�uencing the European Parliament election

in May 2019 (Politico, June 14, 2019). A report prepared for the European Parliament

21As mentioned before, undercon�dence can only make the impact of overcon�dence worse.
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during the COVID-19 crisis alleged that Russia and China are �driving parallel information

campaigns, conveying the overall message that democratic state actors are failing and that

European citizens cannot trust their health systems.�(Nature, May 27, 2020)

Before relaxing conditions (i)-(iii) mentioned above, note that we interpret the voting

rule in (iv) as the mapping of public opinion to policy outcomes, which then determines

social welfare. Depending on the issue, even a minority public opinion may have a nontrivial

impact on social welfare if for example the policy implementation cannot be stringent for

various reasons (or requires a supermajority). One example is the growing anti-vaccination

movement and public health problems this has caused. Some diseases, such as measles,

require 95 percent of the population to be vaccinated in order to achieve the so-called herd

immunity, and only very recently, some countries started imposing penalties for unvaccinated

children. This situation can be interpreted as a mapping of public opinion into policy

outcomes that depends on the margin of majority (unlike the majority rule). We conjecture

that sometimes the limiting e¤ect of overcon�dence will be strictly negative when the margin

of majority matters, while it is zero under simple majority rule. However, a formal analysis

of di¤erent rules with perception biases is beyond the scope of this text.22

We now relax conditions (i)-(iii) and analyze richer variations of our model to charac-

terize conditions under which overcon�dence has a strictly negative impact on information

aggregation in the limit as N goes to in�nity. We impose no assumption on q other than

q < �q unless otherwise stated. Note that characterization of equilibrium behavior in Lemma

1 extends to �rst two variations with minor modi�cations.

(i) In this model, every individual�s utility function involves not only a common interest

component but also an idiosyncratic preference bias. That is, the utility function of every

individual is given by

u(ajA) = 1 = u(bjB) = 1 � u(ajB) =  � u(bjA) = 0

with probability pa, by

u(ajA) = 1 = u(bjB) = 1 � u(bjA) =  � u(ajB) = 0
22More formally, the margin of majority matters under a supermajority rule or a rule in which the policy

outcome is a weighted average of policies a and b with the weights being increasing functions of the vote

shares for a and b as in Kartal (2015), and Herrera et al. (2019a, 2019b). Herrera et al. (2019a, 2019b)

analyze information aggregation under di¤erent rules in a Poisson voting framework but without perception

biases.
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with probability pb, and by (1) with the remaining probability (i.e.,  = 0). For every

individual who has a preference bias for a or b,  is an i.i.d. draw from a common distribution

G with support � � [0; 1] (an asymmetry in such preferences can then be generated by the
di¤erence between pa and pb). We assume that F and G are independent.

Equilibrium characterization is analogous to that in Lemma 1 but involves a rational

motivated reasoning mechanism (Kunda, 1990; Taber and Lodge, 2006). For brevity in

notation we assume that p(qi) = qi. Let qa and qb be as de�ned in (2) and (3) respectively.

Equilibrium strategies are as follows.

� Individual i with preference bias for policy a votes for a if and only if either si = �

and qi
qi+(1�)(1�qi) � q

a or si = � and
1�qi

(1�)qi+1�qi � q
a. Also, i votes for b if and only if

either si = � and
(1�)qi

(1�)qi+1�qi � q
b or i�s signal is si = � and

(1�)(1�qi)
qi+(1�)(1�qi) � q

b.

� Individual i with preference bias for policy b votes for a if and only if either si = �

and (1�)qi
(1�)qi+1�qi � q

a or si = � and
(1�)(1�qi)

qi+(1�)(1�qi) � q
a. Also, i votes for b if and only if

either si = � and
qi

qi+(1�)(1�qi) � q
b or si = � and

1�qi
(1�)qi+1�qi � q

b.

Thus, compared to the equilibrium strategy in the baseline model with  = 0, the magnitude

of qi is diluted or strengthened depending on the realization of si to the extent that the

individual has a preference bias for a or b (hence, the rational motivated reasoning).

We now focus on aggregation of information. Example 1 below shows how information

aggregation may be harmed by the joint e¤ect of preference biases and the Dunning-Kruger

e¤ect.

Example 1: Assume that � = 0:6 and pa = 0 < pb (that is, there is no preference bias

for policy a). There are three possible -types: L = 0, M = 0:5, and H = 1 with

cumulative probabilities G(0) = 2
5
, G(0:5) = 3

5
, and G(1) = 1. We assume that all H-type

individuals vote for policy b regardless of their signal (e.g., they are partisans). There are

two types of individuals in terms of competence: low type individuals with qi = 0:5 and

high type individuals with qi = 1 where F (0:5) = 2
3
. In this setting, any equilibrium in

which the correct policy is chosen in both states with a probability that goes to one as N

goes to in�nity requires many low type individuals with i 2 fL; Mg to vote for policy
a due to the presence of partisans. If however su¢ ciently many of those individuals (for

example, 50 percent of them) are overcon�dent so that pi(qi) = 1, then they vote for the

policy that matches their signal and render information aggregation in state A impossible.

This is because the expected relative turnout rate for policy a is lower than 50 percent, and
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as a result, the probability that policy a is chosen in state A goes to zero as N goes to

in�nity. This holds regardless of whether or not individuals are aware of others�biases. In

this example, the failure of information aggregation in state A stems from the joint e¤ect of

preference biases and overcon�dence: in the absence of partisans, information will aggregate

even if all low type individuals are overcon�dent and vote for their signal.

We now provide a more formal result concerning information aggregation with prefer-

ence biases and overcon�dence. For tractability, we simplify the setting above assuming that

u(ajB) = 1 with probability pa, u(bjA) = 1 with probability pb, and u(ajB) = u(bjA) = 0
with the remaining probability, where pb � pa without loss of generality. We also assume

that pb < 0:5 so that information aggregation is essential for e¢ ciency.23

Proposition 2 �A partisan voter group may bene�t from low media veracity

and high voter overcon�dence� Assume that � is bounded away from 0 and 1, and

pa � pb < 0:5. Then, an unbiased electorate always makes the correct decision with a

probability that goes to one in both states as N grows without bound. Next, let media veracity

be such that

pb > pa + (1� pa � pb)
�R �q

q
qdF �

R �q
q
(1� q)dF

�
> pa:

If �q = 1, then a highly overcon�dent electorate will choose policy b with a probability that

goes to one in both states. If �q < 1, the same result obtains if in addition �q � 1 � q and
pa + (1� pa � pb)

R �q
0:5
(1� q)dF > pb holds.

(ii) In this model, we relax the assumption that the distribution of signal precisions is

identical in the two states. That is, the distribution of qi may depend on the state of the

world, and thus it is also subject to aggregate uncertainty. This is in fact a special case

of the setting where not only the state of the world but also the state of media veracity is

stochastic determining the distribution of signal precisions in the two states. The two types

of states may or may not be independent. Example 2 below assumes that the two types

of states are independent and shows that even if every individual is on average more likely

to be correctly informed than misinformed in both states of the world, overcon�dence may

prevent information aggregation with a strictly positive probability that does not vanish in

large elections.

23Equilibrium analysis is very cumbersome if individuals are aware of others�overcon�dence, but we prove

a result in the case where the type space is �nite and �q = 1 at the end of the proof of Proposition 2 in Online

Appendix A.3.
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Example 2: Let � = 0:5, and assume that there are three types of individuals in terms

of competence: high type (H), medium type (M), and low type (L), where Pr(H) = 1
6
,

Pr(M) = 1
3
, and Pr(L) = 1

2
. Let v 2 fl; hg denote the state of media veracity. The signal

precision for each type in each state of the world and each state of media is given in the

table below:

H M L

Pr(si = �jS = A \ v = h) 1 0:9 0:8

Pr(si = �jS = A \ v = l) 0:6 0:5 0:4

Pr(si = �jS = B \ v = h) 1 0:9 0:8

Pr(si = �jS = B \ v = l) 0:6 0:5 0:4

In this example, S and v are independent, and Pr(S = A) = Pr(v = h) = 0:5. In the

unbiased electorate, information will aggregate; that is, the correct policy will be chosen

with a probability that goes to one as N goes to in�nity in both states. However, if v = l,

and su¢ ciently many (for example, more than 2/3 of) low type individuals are overcon�dent

and perceive themselves as high type, then in at least one state of the world the wrong policy

will be chosen with a probability that goes to one because the expected relative turnout rate

for the correct policy will certainly be lower than 50 percent due to overcon�dence (see the

proof in Online Appendix A.5). This holds regardless of whether or not individuals are aware

of others�overcon�dence, and despite the fact that every individual is on average more likely

to be correctly informed than misinformed in both states of the world.

We now focus on the special case where the state of the world and the state of

media veracity are perfectly correlated. In particular, one state is associated with high

media veracity and the other with low media veracity; that is, Pr(S = A \ v = l) = 0

and Pr(S = B \ v = h) = 0 using the notation of Example 3. One justi�cation for this

scenario is that it may be more di¢ cult to aggregate information in one state of the world

due to reasons particular to that state. For example, Krishna and Morgan (2011) argues

that such asymmetries arise naturally in circumstances where one candidate is the incumbent

(of unknown type) because while most policy failures are often immediately evident, policy

successes are only evident with the fullness of time, and thus, signals in the case where the

incumbent is a good type are less precise (in Krishna and Morgan (2011) individuals are not

overcon�dent, and signal precision q does not di¤er across individuals).

Another argument that relates more to the motivation behind misinformation dis-

semination is some form of media capture or public opinion manipulation by a political,
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corporate or other special interest using sponsored news, paid articles, and hidden adver-

tisements. For example, propaganda is routinely used by politicians to sway opinions and

behavior. As another example, a third party (e.g., a special interest, lobby, or industry)

that strictly prefers one of the two policies regardless of the state of the world may try to

in�uence public opinion and policy makers using scientists, experts, NGOs, and news me-

dia in order to facilitate the implementation of their preferred policy. Indeed, the tobacco

industry, oil and energy lobby, and the military industrial complex have extensively used

these channels to disseminate �self-serving news�(see Kartal and Tremewan (2018) and the

references therein for detailed examples). Since such news are innocuous in one state of

the world and false in the other, the end result is increased obfuscation and reduced media

veracity in one state of the world (but not in the other). We provide a simple example to

illustrate how overcon�dence may harm information aggregation in this scenario.

Example 3: Assume that there are two types: high type (H) and low type (L). The signal

precision for each type in each state is as follows.

H L

Pr(si = �jS = A) 1 p

Pr(si = �jS = B) 1 1� p

where p 2 f1; 0:5g. First, assume that p = 0:5. In this case, information will always aggregate
(unless all high types are undercon�dent and abstain). But what if a special interest group

that strictly prefers policy a regardless of the state of the world can increase p from 0:5 to

1? We will now show that the special interest group can bene�t from increasing p to 1 but

only in su¢ ciently overcon�dent electorates. Note that a low type individual is essentially

uninformed in either case whether p = 1 or p = 0:5. However, these are two distinct forms

of �uninformedness,�and their consequences may starkly di¤er in overcon�dent electorates

unlike in unbiased electorates. If p = 0:5, then roughly equal numbers of low type individuals

observe � and � signals in large elections, whereas if p = 1, then all low type individuals

observe an � signal (for example because the special interest group inundates media outlets

targeted to low type individuals with sponsored news and experts promoting policy a). In

particular, if p = 1, and there are su¢ ciently many low type individuals su¢ ciently many of

whom are overcon�dent, then policy a is chosen in both states with a probability that goes

to one, as desired by the interest group. This holds regardless of whether individuals are

aware or unaware of others�overcon�dence.
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This setup does not require the interest group to know the state of the world but

simply to disseminate as many favorable news for its preferred policy as possible. As a

result, the share of misinformation increases and the average signal precision decreases in

only one state of the world (the average signal precision may even increase in the other state,

which does not a¤ect any of the results below).

In order to characterize equilibria in a more formal yet still tractable setting, we model

signal precision of each individual as a function of media veracity vS in state S 2 fA;Bg and
individual skill q, which is an i.i.d. draw from a common skill distribution F [q; �q] (by abuse of

notation). The respective signal precision for individual i in state A and state B is given by

g(qi; vA) = qi and g(qi; vB) = m(qi), where m(q) is increasing in q. We assume that m(q) � q
for every q and m(q) < q for some q representing the media in�uence of an interest group

that strictly prefers policy b.24 The function m(q) is common knowledge. While individual i

observes qi (or rather perceives it as pi(qi)), i does not know with certainty whether the true

precision is qi orm(qi) as i does not know the state of the world. Equilibrium characterization

in this setting closely resembles that in Lemma 1. Let qa and qb be as de�ned in (2) and (3)

respectively. For brevity in notation we assume that pi(qi) = qi. Equilibrium strategies are

as follows.

� Individual i votes for a if and only if either i�s signal is � and qi
qi+1�m(qi) � qa or i�s

signal is � and m(qi)
m(qi)+1�qi � 1� q

a.

� Individual i votes for b if and only if either i�s signal is � and m(qi)
m(qi)+1�qi � qb or i�s

signal is � and qi
qi+1�m(qi) � 1� q

b.

As q
q+1�m(q) and

m(q)
m(q)+1�q are monotone increasing in q, equilibrium voting behavior is once

again characterized by cuto¤s.25 Consider as an example the case where m(q) = qx and

x > 1. As x increases, average signal precision drastically falls in state B, and eventuallyR �q
q
m(q)dF < 0:5 will hold. Note that

R �q
q
m(q)dF < 0:5 can hold even if �q+(1��)m(q) � 0:5

(that is, on average across the two states every individual is more likely to be correctly

informed than misinformed). This represents the generalization of the simple setting in

Example 3 above. If
R �q
q
m(q)dF < 0:5, then a majority will observe an � signal in state B,

and thus, making the correct group decision in state B requires many people with low q to

24The preference of the interest group for policy b is without loss of generality. If the interest group prefers

policy a, then we set g(qi; vA) = m(qi) and g(qi; vB) = qi.
25The prior � is accounted for in qa and qb as before.
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refrain from following their � signal. However, if too many people are overcon�dent, then

too many of those will simply vote according to their signals, and policy a will be chosen in

both states with a probability that goes to one, as desired by the �source�of the low media

veracity in state B. As mentioned above, this setup does not require the interest group to

know the state of the world but simply to sponsor as many self-serving news as possible.

One caveat is that for the case where �q = 1 in Proposition 3, we assume that every i is an

a-partisan with probability p
2
and a b-partisan with probability p

2
where p > 0 (but possibly

small). We need this assumption for tractability.

Proposition 3 �A third party (e.g., a special interest, lobby, industry, or political

party) may bene�t from low media veracity and high voter overcon�dence.�

Assume that � is bounded away from 0 and 1, and that m(�q) > 1�m(q). If media veracity
in state B is low enough so that

R �q
q
m(q)dF < 0:5 <

R �q
q
qdF holds, and the electorate is

su¢ ciently overcon�dent, then the probability that policy a is chosen goes to one in both

states as N grows without bound, whereas in an unbiased electorate the correct policy is

chosen with a probability that goes to one in both states.26

(iii) This model relaxes the assumption that individuals observe statistically independent

signals. Instead, there are �nitely many news sources generating statistically independent

news signals, and each individual obtains one signal from one news source. As a result, in

large elections numerous individuals will receive an identical news signal from the same news

source. News sources di¤er in their quality. More speci�cally, there are n > 0 reliable high

quality news sources and m > 0 unreliable low quality news sources. A reliable news sources

provides one independent high quality signal sh 2 f�; �g with a precision of qH > 0:5 such
that Pr(�jA) = Pr(�jB) = qH . An unreliable source provides one independent low quality
signal sl 2 f�; �g with a precision of qL � 0:5 such that Pr(�jA) = Pr(�jB) = qL. The

term qi (1� qi) denotes the probability with which individual i�s signal si comes from one of
the high-quality (low-quality) news outlets, with each high-quality (low-quality) outlet being

equally likely to provide si in that case. Hence, as before, the higher the magnitude of qi, the

higher the probability of observing correct news. As before, qi is an independent draw from

a common distribution F [q; �q]. Possible interpretations of this variation are various forms of

media censure or capture as well as increased media ownership concentration as these are

26Equilibrium analysis is once again very cumbersome if individuals are aware of others�overcon�dence,

but we prove a result in the case where the type space is �nite and �q = 1 at the end of the proof of Proposition

3.
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likely to be associated with a decrease in the number of news sources generating statistically

independent reports.27 We now provide a simple example to illustrate how overcon�dence

may harm information aggregation in this scenario.

Example 4: Assume that n = 5 and m = 5, with qH = 0:8 and qL = 0:5. There are

two types of individuals in terms of competence: low type individuals with qi = 0 and high

type individuals with qi = 1 where F (0) = 0:7. The equilibrium in which only high type

individuals vote and the rest abstain is optimal in the limit. If for example 50 percent of low

type individuals believe that they are high type, then the rate of information aggregation in

large elections is about 16 percentage points lower relative to that in an unbiased electorate

because overcon�dent low type voters reduce the rate of information aggregation (see the

proof in Online Appendix A.5).

The Bayesian Nash equilibrium consists of cuto¤s also in this model, but the char-

acterization of equilibrium behavior is much more involved than in the previous variations

due to the correlated nature of signals and therefore relegated to the proof of Proposition 4

in Online Appendix A.3. For tractability, we assume that qL = 0:5, and that n and m are

odd numbers.

Note that even when q < 0:5, every individual is more likely to be correctly informed

than misinformed in either state in this model because qiqH+(1�qi)qL > 0:5 for every qi > q.
In the independent-signal model, this is a su¢ cient condition to ensure that the correct

policy is chosen in both states in large elections regardless of the extent of overcon�dence.

However, correlation among signals results in correlated and thus possibly large mistakes

due to overcon�dence. Therefore, the negative impact of overcon�dence on information

aggregation may not vanish in the limit even though every individual is more likely to be

correctly informed than misinformed in both states. While we can characterize the optimal

equilibrium of this model with a continuous type space, in order to prove the ine¢ ciency

result we need to switch to a discrete type space as the analysis is too cumbersome otherwise.

Proposition 4 (Impact of media concentration/censure with high voter overcon-

�dence) Assume that qL = 0:5 and that � 2 (1 � qH ; qH) but bounded away from qH and

1 � qH . (i) If qH = 1 and E(q) < 0:5, an unbiased electorate makes the correct decision

with a probability that goes to one in both states as N grows without bound, whereas in a

27Bagdikian (2004) wrote that the number of corporations controlling most of the media in the US de-

creased to 5 from around 50 in 1983 and noted that �this gives each of the �ve corporations and their leaders

more communications power than was exercised by any despot or dictatorship in history.�
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su¢ ciently overcon�dent electorate the limiting probability is strictly lower than one. (ii)

If qH < 1, an unbiased electorate makes the correct decision with a probability that goes toPn
i=n+1

2

�
n
i

�
qiH(1� qH)n�i in both states as N grows without bound, whereas in a su¢ ciently

overcon�dent electorate the limiting probability is strictly lower than that if �q > n
n+1

and

E(q) < n
n+1

hold.

To reiterate, even if q < 0:5 and E(q) < 0:5 every individual is more likely to be

correctly informed than misinformed in either state since qL = 0:5. However, unlike in a

model with independent signals, this is not enough to suppress the e¤ect of overcon�dence

in large elections. We can also show that all else equal the negative e¤ect of overcon�dence

is maximized at m = 1. Thus, even the concentration of media ownership among low quality

media outlets (i.e. low m) can be highly problematic in the presence of overcon�dence. In

unbiased electorates, however, m has no impact on information aggregation in arbitrarily

large elections as implied by Proposition 4.28

Finally, note that it is possible to combine the last two models with correlated news

reports and a third party that disseminates self-serving news. The third party may either

own a number of (low-quality) outlets or have a close relationship to them. Thus, especially

qL may depend on the state of the world (assuming high quality outlets are more di¢ cult to

in�uence). For example, if the third party strictly prefers policy a, then news reports pro-

moting a could make qL high in state A and low in state B making overcon�dent individuals�

votes highly tilted towards policy a as in Example 3. As a result, the joint impact of me-

dia concentration, third-party interference, and voter overcon�dence can be highly harmful.

For instance, the ine¢ ciency caused by overcon�dence in Example 4 increases if we assume

that low quality outlets are such that qL = 0:8 in state A and qL = 0:2 in state B due to

the interference of a special interest that strictly prefers policy a. Then, all else equal the

negative e¤ect of overcon�dence is 28 percentage points instead of 16 with qL = 0:5 in both

states (in particular, decision making accuracy falls by 59.9 percentage points in state B

while increasing by 3.8 in state A relative to the unbiased case).

28The condition in part (ii) of Proposition 4 may seem to suggest that overcon�dence is more likely to

be a problem as n (i.e., the number of reliable news sources) increases, but there are two countervailing

forces. While it is true that the su¢ cient condition becomes easier to satisfy as n increases, the information

aggregation bene�t of increased n will likely mitigate the impact of overcon�dence.
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3 Experiment

The objective of our experiment is to test some of the implications of our theory in envi-

ronments with high levels of misinformation and overcon�dence. Our study and results also

relate to the experimental literature on individual overcon�dence by showing that collective

decision making with overcon�dence can result in outcomes that are much more extreme than

the aggregate of individual decisions with overcon�dence. While collective decision making

can mitigate or even fully correct for the e¤ect of overcon�dence in many settings, it may

also generate strongly ine¢ cient outcomes in settings with high levels of false information

and overcon�dence as our theory indicates.

3.1 Experimental Design and Predictions

The experiment consists of several parts and two within-subject treatments. We �rst explain

the details of our main treatment, which is largely based on the voting game analyzed in

Section 2.1 with q < 0:5 and perception biases. Subjects make choices in groups of 24 (that

is, N = 24). The state of the world is either Red or Blue (described as �group color� in

the experimental instructions), and either state is ex-ante equally likely. After privately

observing a signal, which is red or blue, subjects vote for either red or blue, or abstain. The

group decision is determined by majority voting, and group members receive a monetary

reward if the group decision matches the group�s color (i.e. the state of the world).

We implement individual signal accuracy qi, correct news, fake news, and the sub-

jective perception of accuracy pi(qi) as follows. In the experiment, subjects take a quiz on

math and logic puzzles before learning about the voting phase. The quiz is incentivized as

each correct answer in the quiz is rewarded. Subjects are not informed about their perfor-

mance in the quiz until the end of the experiment. During the voting phase, subjects are

explained that the signal they receive regarding the state depends on their quiz score; that

is, a group member observes a signal that matches the true state (correct news) if and only

if the member�s quiz score places him/her in the top 1/3 of all the subjects in the same

experimental session. So, signal accuracy q and the subjective perception of accuracy p(q)

depend on the (perceived) ability to perform well in the quiz. To be more precise, q equals

the ex-ante probability of being in the top 1/3 of all the subjects in the same experimental

session. Since subjects do not learn whether or not they are in the top 1/3 until the end

of the experiment, they must form a belief about it, which is precisely p(q). The quiz is

followed by an incentivized belief elicitation task regarding the likelihood of placing in the
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top 1/3 of all the subjects in the same session.29

In the design, we chose to use relative performance to determine the signal of a subject

due to following reasons. First, it enables us to use the techniques developed in Benoit and

Dubra (2011) and Benoit, Dubra, and Moore (2015) in order to test for true overcon�dence.

Second, it enables us to fully control the fraction of correct news in a large laboratory election

setting. If q was based on absolute performance, it would be more di¢ cult to �netune the quiz

in a way that many of our sessions have a su¢ ciently large number of subjects who observe an

incorrect signal. This is important for our design because we would like to implement q < 0:5.

Third, the theoretical mechanism of the swing voter model concerns relative competence,

not absolute competence: for example, given qi = 0:6, i should de�nitely vote if qj = 0:5 for

every j 6= i, whereas i should likely abstain if qj = 1 for j 6= i.30

In the experimental design, we impose informative voting; that is, we do not allow

a subject to vote for red if the subject�s signal is blue, and vice versa. Our theoretical

predictions take this restriction into account. We impose informative voting in order to

reduce noise in the data. As will become clearer in the next section, we have an elaborate

experimental design with multiple phases and multiple belief elicitation tasks. In order to

be able to attribute an ine¢ ciency in decision making to the correct source (overcon�dence

versus not understanding the incentives in the game), we wanted to make the signal structure

and the voting choice as simple as possible so that subjects have a very clear understanding

of the voting game and belief elicitation tasks.

Under the assumption of informative voting, a Bayesian Nash equilibrium consists of

a cuto¤ belief regarding one�s success in the quiz: those who are su¢ ciently con�dent that

their quiz score places them in the top 1/3 should vote for the color of their signal, and

the rest should abstain and delegate the voting decision. With subjective beliefs, we cannot

provide point predictions for the equilibrium cuto¤and the probability that the group makes

the correct decision as we do not know the true distribution of q. However, the cuto¤ belief

has to be higher than 50 percent in the optimal equilibrium. This forms the basis of the �rst

part of Hypothesis 1. More generally, the best response of subject i for some �xed strategy

of others is always characterized by a cuto¤ belief such that i votes for the color of i�s signal

if i�s belief is above the cuto¤ and abstains otherwise (recall that voting for the color that

29Subjects learn about the belief elicitation task only after completing the quiz.
30Also, we chose 1/3 as the fraction of correct news, because once the fraction of correct news exceeds 1/2,

then strategic abstention is not necessary to make the correct group decision, and overcon�dence should not

have a harmful e¤ect on information aggregation.
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does not match one�s signal is not allowed). We can compute a best-response cuto¤ for

each subject as we elicit subjects�beliefs regarding the probability that a randomly selected

group member chooses to vote and the probability that a randomly selected �voter� is in

the top 1/3 of all the subjects in the same session.31 (It was made clear to subjects that

the randomly selected group member or voter was always someone else in the room.) These

elicited beliefs are enough to estimate a best-response cuto¤ for each subject. This forms

the basis of the second part of Hypothesis 1.

Hypothesis 1 (i) Weak test for voter rationality: Subjects who choose to vote state

a belief greater than 50% regarding the likelihood of being in the top 1/3. (ii) Strong test

for voter rationality: Subjects who choose to vote state a belief which is greater than their

respective (computed) cuto¤ beliefs.

While Hypothesis 1 relates to rationality of observed turnout (however allowing for

biased beliefs), Hypothesis 2 concerns the e¢ ciency of turnout when subjects�beliefs are

biased, assuming that subjects are otherwise rational. As discussed in our theoretical model,

biased beliefs result in a deviation from the best response behavior, and this deviation results

in an ine¢ ciency (relative to the optimal unbiased equilibrium outcome). As mentioned

above, we cannot provide a point prediction for the probability that the group makes the

correct decision as we do not know the true distribution of q. However, the probability that

the group decision is correct must exceed 50 percent in every equilibrium if the group consists

of rational and unbiased agents.

Hypothesis 2 (Ine¢ ciency of Overcon�dence) If the electorate is highly overcon�dent

(but rational otherwise), the probability of a correct group decision is lower than 50 percent.

Hypothesis 2 is a very stringent test regarding the negative e¤ect of biased beliefs

because 50 percent is a distribution-free lower bound for the probability of a correct group

decision with unbiased and rational subjects.32 As an example, if individuals who are in

the top 10% of the belief distribution in an unbiased population (regarding the probability

of being in the top 1/3) has an expected probability y > 0:5 for being in the top 1/3,

31For the cuto¤ computation, we assume that strategies of other members are symmetric with respect to

signals, which implies that the best response of every subject is also symmetric. This assumption is arguably

not very restrictive given that the environment is symmetric. Moreover, relaxing the assumption would

require us to elicit beliefs based on each possible state separately, which would be too cumbersome.
32On a side note, if we removed the informative voting restriction in theory and in the experimental design,

the data we obtained would be compared to an accuracy lower bound of 94.5%, because in that case it is

possible to show that the theoretical accuracy of the optimal equilibrium must be higher than 94.5%.
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then the theoretical probability of a correct group decision will be very close to or exceed

y in the optimal equilibrium (e.g., if y = 0:6; 0:7, and 0:8, then the probability of a correct

group decision in the optimal equilibrium can be shown to be greater than 0:6, 0:7, and 0:8

respectively).

Importantly, Hypothesis 2 is robust to assuming that instead of the equilibrium cuto¤

subjects use a heuristic cuto¤ such as 50 percent (e.g., a subject votes if the subject�s

con�dence level for being in the top 1/3 is greater than 50 percent and abstains otherwise).

The probability that the group decision is correct must also exceed 50 percent under this

cuto¤ heuristic if the group consists of unbiased individuals. Therefore, Hypothesis 2 is

immune to the �ndings in Esponda and Vespa (2015) that subjects have di¢ culties with

understanding the logic of pivotality and therefore make suboptimal voting decisions.

3.2 Experimental Protocol

The experiment was conducted at the experimental laboratory of the Vienna Center for

Experimental Economics (VCEE) at the University of Vienna. Subjects were recruited from

the general undergraduate population. The experiment consists of several parts. Every

session began with instructions on a belief elicitation task using quadratic scoring rule,

followed by incentivized belief elicitation exercises (unrelated to the voting game) because we

use belief elicitation tasks in various parts of the experiment, and we wanted the participants

to be familiar with the task in order to reduce noise in the data.

After this part, participants take the quiz on math and logic puzzles. The quiz

consists of 20 questions, subjects are informed that each correct answer is rewarded (by 30

Eurocents), and they have 10 minutes to work on the quiz. We asked simple questions as

prior experimental research suggests that easy tasks are conducive to overcon�dence (i.e.,

overplacement), and thus the negative e¤ect of overcon�dence on information aggregation

is more likely to be borne out with an easy quiz.33 The average number of correct answers

in the quiz is 16.8 and the 33rd percentile is at 18. One relevant question is the following:

are policy issues simple for the average voter? Arguably, many of them are not � however,

it su¢ ces if the average voter �perceives� them to be so, and there is evidence for this

from the literature showing that people have strong policy opinions while being somewhat

33Prior work suggests that populations tend to exhibit overcon�dence on easy tasks and undercon�dence

on di¢ cult tasks (see, e.g., Moore and Cain, 2007; Moore and Healy, 2008; and Benoit, Dubra, and Moore,

2015).
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informed, uninformed or misinformed (see, for example, Kuklinski et al. (2000) and Flynn

et al. (2017))

After the quiz is over, the �rst incentivized belief elicitation task related to our main

treatment is given: we ask subjects to report a percentage (between 0 and 100) regarding

the likelihood that their quiz score places them in the top 1/3 of all the subjects in the same

session. This is followed by the voting phase. The voting phase starts with an initial pseudo-

control/teaching treatment, which consists of 15 rounds. The main aim of this treatment

is to teach the voting game using an objective information structure and analyze whether

participants understand that they should abstain when their signal precision is low. In each

round, each participant observes a private signal that is either red or blue as in the main

treatment, but participants are informed about the �true�precision of their signal for that

round. Put di¤erently, signal precision q is an objective value in this treatment. Participants

also know that the signal precision of every other group member is an iid uniform draw. After

every round, participants receive detailed feedback about the round�s outcome including

the accuracy of the group decision and whether or not their signal was correct. We refer

to this treatment as the OBJ treatment. After this part, the main treatment starts. In

this treatment, participants learn that whether or not their signal matches the true state

depends on their performance in the quiz. Thus, the signal precision of each participant has

a subjective value, which we elicited using an incentivized belief elicitation task after the

quiz as mentioned above. We refer to this treatment as the SUBJ treatment.

SUBJ treatment involves two belief elicitation tasks related to other group members

as mentioned above. The elicited beliefs are about the probability that a randomly selected

group member chooses to vote and the probability that a randomly selected voter is in the top

1/3 of all the subjects in the same session; in both cases, it was made clear to subjects that

the randomly selected member (or voter) was someone else in the room. SUBJ treatment

consists of 6 rounds, and these 6 rounds were divided into two parts. In the �rst part

consisting of 5 rounds, participants were only asked about the probability that a randomly

selected group member chose to vote after making their voting decision.34 From those rounds,

one round was randomly selected for payment. In the second part which consisted of only

one round, we elicited both beliefs regarding the probability that a randomly selected group

member chooses to vote and the probability that a randomly selected voter is in the top 1/3

of all the participants in the same session. This round was fully paid including the belief

34This belief elicitation task was also given in the OBJ treatment.
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elicitation tasks� so it was a high-stake �nal round. Subjects did not receive any feedback

after making their choices in the SUBJ treatment (except at the end of the experiment).

We had a total of 6 sessions (i.e., 6 laboratory electorates) with 144 subjects. As

mentioned above, subjects did not receive any feedback after making their choices in the

SUBJ treatment. In a follow-up treatment, which also had 6 sessions and 144 subjects,

subjects received aggregated feedback after each round regarding the accuracy of the group

decision (but not regarding the true state as this would fully reveal their placement in the

quiz) and the total number of group members who voted. We refer to this treatment as

the SUBJ+ treatment. These sessions with the SUBJ+ treatment had exactly the same

protocol as before (e.g., they included the OBJ treatment) with the exception that there

was aggregate feedback after every round in the SUBJ+ treatment.

A total of 288 undergraduates participated in 12 experimental sessions. All sessions

were conducted through computer terminals, using a program written in Z-Tree (Fischbacher,

2007). In each phase of a session, the experiment only started when all subjects had correctly

answered a set of control questions that tested whether they understood the instructions.

The average payo¤ per subject was about e18, and each session lasted between 100 minutes

and 2 hours. The instructions for the treatments can be found in the Online Appendix.

4 Experimental Results

The presentation of experimental results are organized as follows. We start with a discussion

of aggregate results on turnout and e¢ ciency (i.e., the fraction of correct group decisions).

Statistical tests are based on nonparametric statistics, and these tests are two-sided and

conducted at the session (electorate) level. In addition, we use random e¤ects probit estima-

tions to analyze turnout behavior at the individual level (see Online Appendix B). Finally,

we discuss the results of the follow-up treatments with feedback in Section 4.3.

4.1 E¢ ciency of Group Decisions, Turnout, and Elicited Beliefs

Figure 1 shows the percentage of correct group decisions (referred to as e¢ ciency in the

�gure) and the average turnout rate across treatments. Out of 36 group decisions made in

6 sessions over 6 rounds in the SUBJ treatment, not a single group decision was correct as

indicated in Figure 1.

Result 1: The percentage of correct group decisions in the SUBJ treatment is 0%, which is
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Figure 1: Average Turnout and E¢ ciency by Treatment

Notes: The long dashed red line at 0.5 represents the theoretical e¢ ciency benchmark against

which the percentage of correct group decisions is compared in SUBJ and SUBJ+ and the short

dashed blue line at 0.667 represents the rate above which turnout rate is excessive and certainly

results in incorrect group decisions. OBJ>10 refers to OBJ data after dropping �rst 10 rounds.

signi�cantly lower than the 50% threshold according to both Wilcoxon signed-rank test and

sign test with respective p-values of 0:0277 and 0:0313.35

We explore the reason for this drastic failure of information aggregation analyzing

turnout behavior and elicited beliefs of subjects. We �rst consider aggregate turnout. Figure

1 shows that the average turnout rate is slightly lower than 80% in the SUBJ treatment.

Note that by design a turnout rate that exceeds 66.7% immediately implies that the group

decision is wrong because only one third of group members observes correct news. Thus,

group decisions are wrong because voter turnout in SUBJ is consistently very high in all

six sessions with an average turnout rate of 80.6% in the �nal round (which is a high-stake

round) and an average turnout rate of 79.4% across all rounds. Moreover, in every session,

the average turnout rate across rounds is 75% or higher. Figure 2 plots the turnout rate over

time in every session.

35Since we have six (independent) pairs of observations, the two-sided Wilcoxon signed-rank test and the

two-sided sign test can never reject a hypothesis with p-values lower than 0:0277 and 0:0313, respectively.
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A substantial fraction of turnout can be rationalized analyzing the elicited beliefs.

Applying the weaker test in Hypothesis 1, we �nd that across all rounds less than 6.3% of

voters have stated beliefs lower than 50% regarding their chances of placing in the top 1/3 of

all the subjects in the same session. As discussed above and stated in Hypothesis 1, we can

also apply a highly stringent rationality criterion deriving the best response of every subject

using the subject�s elicited beliefs regarding (i) the probability that a randomly selected

group member chooses to vote, and (ii) the probability that a randomly selected voter is

in the top 1/3. We then compare each voter�s behavior to the theoretical best response of

the voter given the computed best-response cuto¤ belief and the belief we elicit from each

subject regarding their likelihood of placing in the top 1/3 of their session. In the �nal

round, only 10 percent of voters behave in a way that is inconsistent with the best response

behavior we predict for them.36 These suggest that turnout behavior in the SUBJ treatment

is to a considerable extent consistent with rational behavior as predicted in Hypothesis 1.

We provide additional support for rationality of voter behavior using random e¤ects probit

estimations in Online Appendix B.

Result 2: Voter behavior in the SUBJ treatment is to a large extent consistent with ratio-

nality on the basis of elicited beliefs.

Figure 1 shows that the turnout rate in the OBJ treatment is moderate: it is only

48.1% and much lower than that in SUBJ although the expected fraction of correct news

is also higher in OBJ than in SUBJ (50% in OBJ versus 33.3% in SUBJ). There is also

learning towards abstention in the OBJ treatment as turnout rate falls in every session if,

for example, we compare the turnout rate in the �rst �ve rounds to that in the last �ve

rounds. In particular, the average turnout in the �rst �ve rounds is 51.3%, and this falls

to 45.4% in the last �ve rounds (the decline in turnout is statistically signi�cant according

to both Wilcoxon signed-rank test and sign test at p < 0:05). Also, voting is very rare

36For 25 voters (out of a total of 116 voters in the �nal round), it was not possible to estimate a cuto¤ as

each of these voters indicated that a randomly selected group member would choose to vote with 100 percent

probability. A voter cannot be pivotal in such a case by experimental design (because only 8 individuals

observe a correct signal, and it is not possible to vote against one�s signal), and thus, it is mathematically not

possible to �nd a cuto¤. However, of those 25 voters, 19 indicated that they are 100 percent con�dent that

they are in the top 1/3, and thus it is a dominant strategy to vote for them regardless of a cuto¤. Therefore,

we subtract only 6 subjects from a total of 116 voters due to not being able to compute a cuto¤. Since 11

voters indicated beliefs regarding their quiz performance lower than the cuto¤ belief which we estimated for

them, we arrive at 10 percent=11/110.

30



Figure 2: Turnout in SUBJ Treatment by Session

Note: The solid blue line represents the turnout rate and the shaded area above the horizontal dashed

line at 0.667 represents excessive turnout rates which result in incorrect group decisions with certainty.

in OBJ (similar to that in SUBJ) once the signal precision falls below 50%. Finally, the

percentage of correct group decisions is on average 93.33% across all rounds and increases

to 100% in the last 5 rounds as shown in Figure 1. While we cannot directly compare SUBJ

and OBJ treatments as the distributions of signal precisions are not identical (in particular,

the expected fraction of correct news di¤er), OBJ treatment is still a useful benchmark to

show that if subjects have objective information about the quality of their signals, then they

delegate the voting decision frequently (even more so when they are experienced), average

turnout is far from excessive, and group decision making is e¢ cient.

Result 3: Voter behavior in the OBJ treatment is to a large extent consistent with rationality.

4.2 The E¤ect of Overcon�dence on Group Decisions

To document the e¤ect of subjective beliefs on turnout and e¢ ciency, we use the following

test based on the work by Benoit and Dubra (2011) and Benoit, Dubra and Moore (2015).

We disregard abstainers and compare at the session level the percentage of voters who end

up being in the top 1/3 to the average elicited belief among voters regarding their chances

of being in the top 1/3 of all the subjects in the same session. If there is a systematic
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Table 1: Voters�elicited beliefs about placement in the top 1/3 vs voters�actual placement

Session
Average probability voters assign

to own placement in top 1/3

Percentage of voters

placed in top 1/3

1 83:9% 33:3%

2 85:05% 36:8%

3 88:6% 40%

4 92:5% 37:5%

5 82:7% 34:8%

6 80:8% 30%

(statistically signi�cant) upward bias in elicited beliefs relative to the actual placements,

then there is evidence for overcon�dence among voters, which explains the high turnout.

For this part, we focus on the last round of the SUBJ treatment, which was a high

stake round� however, the conclusion does not change if we analyze separately every other

round in that treatment. Table 1 shows the average probability voters assigned to being

in the top 1/3 of their session and the actual fraction of voters who are in the top 1/3 in

every session. In every session, there is a substantial discrepancy between elicited beliefs and

actual placements, and the di¤erence is signi�cant according to both Wilcoxon signed-rank

test and sign test at 5% level with respective p-values of 0:0277 and 0:0313.37 On average

the elicited belief among voters regarding the likelihood of being in top 1/3 is 85% but the

percentage of voters eventually placed in top 1/3 is only 35%. As previous section has shown

that voter behavior can be rationalized to a substantial extent on the basis of elicited beliefs,

we conclude that overcon�dence is responsible for a large share of the excessive turnout we

observe, which in turn prevents groups from making the correct decision (recall that only

one third of the session observes correct news, and thus, a turnout rate that exceeds 66.7%

surely results in a wrong decision). Finally, note that in every session, those who are placed

in top 1/3 state higher beliefs (93%) than those who are not (75.8%), which is signi�cant at

5% level according to both Wilcoxon signed-rank test and sign test. Thus, despite prevalent

overcon�dence, higher placement is still associated with higher beliefs. Put di¤erently, those

who state higher beliefs are more likely to observe the correct signal.

Combining all the �ndings discussed above regarding turnout, elicited beliefs and the

37Some experimental studies have found that men are more (likely to be) overcon�dent than women. We

do not observe this in our experiment.
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accuracy of group decisions, we conclude that we �nd support for Hypothesis 2.38

Result 4: Subjects who choose to vote are statistically and economically signi�cantly over-

con�dent, which in�ates turnout. In turn, excessive turnout generates 0% accuracy in group

decisions.

4.3 Follow-up Treatment: The E¤ect of Aggregate Feedback on

Turnout and Group Decisions

Out of 36 group decisions made in 6 sessions in the SUBJ+ treatment, only 5 decisions were

correct. Even though e¢ ciency increased from 0% to 13.9% with feedback, we again �nd

support for Hypothesis 2 according to a Wilcoxon signed-rank test at 5% level (p > 0:1 with

sign test).

It turns out that aggregate feedback resulted in a sizeable reduction in turnout in

comparison to SUBJ: the average turnout rate across all rounds is 66.1%. (see Figure 1).

Turnout also fell across rounds (see Figure 3 for the turnout rate across rounds in all sessions).

For example, comparing the �rst and the �nal rounds with subjective signals, turnout rate

fell by a quarter from 83.33% in the �rst round to 62.5% in the sixth round (this is signi�cant

according to both Wilcoxon signed-rank test and sign test at 5% level).

However, reduction in turnout failed to signi�cantly improve e¢ ciency because the

increase in the share of voters in top 1/3 due to aggregate feedback was very limited (e.g., it

increased from 36.66% in the �rst round to 41.11% in the �nal round). This is because some

of the voters in top 1/3 also reduced their turnout rate with feedback, and overcon�dence

among those who vote proved once again rampant. More speci�cally, comparing the �rst

and the �nal rounds, turnout of voters in top 1/3 and turnout of voters placed below top

1/3 fell by 15.9% and 30.3% respectively. Moreover, as in the previous treatment without

feedback, there is a consistently high discrepancy between the average elicited belief among

voters regarding the likelihood of being in top 1/3 and the percentage of voters eventually

placed in top 1/3 (85.3% versus 39.8%), which does not change over time and is signi�cant at

5% level. Thus, despite aggregate feedback resulting in a sizeable decline in turnout, group

decision making failed to signi�cantly improve due to aggregate feedback making some voters

in the top 1/3 less con�dent, and due to rampant overcon�dence among voters.

38See also Online Appendix B for probit regressions, which provide a more detailed analysis of turnout

behavior and additional support for our claim that individual voter behavior is to a large extent consistent

with rationality.
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Figure 3: Turnout in SUBJ+ Treatment by Session

Note: The solid blue line represents the turnout rate and the shaded area above the horizontal dashed

line at 0.667 represents excessive turnout rates which result in incorrect group decisions with certainty.

5 Related Literature

There is an extensive literature analyzing the impact of overcon�dence on individual decision-

making as well as markets.39 Di¤erent from most of the previous literature, we focus on the

e¤ect of overcon�dence on voting and collective decision making.40 In our setup, individuals

di¤er in their competence and may choose to abstain. Therefore, our model is foremost

related to Feddersen and Pesendorfer (1996). There have been various theoretical extensions

of Feddersen and Pesendorfer (1996), such as Feddersen and Pesendorfer (1999), McMurray

(2011), Herrera, Llorente-Saguer, and McMurray (2019a) as well as several experimental

studies, which analyze among other things whether less-informed/uninformed individuals

strategically abstain (e.g., Battaglini, Morton, and Palfrey (2010), Morton and Tyran (2011),

Bhattacharya, Du¤y, and Kim (2014), Elbittar et al. (2016), and Herrera, Llorente-Saguer,

39See among others Camerer and Lovallo (1999), Malmendier and Tate (2005), Barber and Odean (2000),

and Benoit, Dubra, and Moore (2015).
40Our results also apply to decision making in committees. Committees typically consist of professionals,

who may be overcon�dent regarding their expertise. According to Daniel Kahneman, �[O]vercon�dent

professionals sincerely believe they have expertise, act as experts and look like experts. You will have to

struggle to remind yourself that they may be in the grip of an illusion.�(New York Times, 23 Oct, 2011)
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and McMurray (2019b)).41 Our study di¤ers from this literature (with the exception of

Elbittar et al. (2016)) in that people hold subjective (rather than objectively correct) beliefs

about the quality of the news they receive. Elbittar et al. (2016) studies information

aggregation under unanimity and majority rules in a common interest setting where each

group member is initially uninformed about which of two alternatives is optimal but may

choose to acquire a noisy information signal at a cost. Uninformed subjects only learn that

each alternative is equally likely to be optimal. In contrast to the equilibrium predictions,

many subjects vote rather than abstain despite being uninformed. Thus, di¤ering from

the �ndings of other experimental studies mentioned above as well as the OBJ treatment

of our experiment, many subjects vote when it is optimal to abstain. The di¤erence in

the experimental �ndings of Elbittar et al. (2016) and the current study is likely because

information acquisition is absent in our simple setup, which together with very detailed

feedback we provide after every round in OBJ treatment may have made it much easier

and quicker for subjects to understand the value of abstention. Elbittar et al. (2016) show

that a biased voting model allowing for noisy priors (i.e., priors that randomly deviate from

the objectively correct equal prior) can account for the observed prevalence of uninformed

voting.

Morton, Piovesan, and Tyran (hereafter MPT, 2019) experimentally study informa-

tion aggregation in a common interest setting without abstentions where voters may have

misleading information. Subjects vote on the answers of various quiz questions some of which

are known to the experimenter to be �misleading�(less than 40 percent of subjects got them

right in a pretest). Results show that voters with higher cognitive ability (as measured by

a cognitive re�ection test) are more likely to vote for the correct answer. In addition, sub-

jects are found to be overcon�dent in their ability to answer misleading questions correctly.

Hence, MPT�s experiment is related to ours in that subjects in both studies receive mislead-

ing information as a function of their cognitive ability, and voters in both cases tend to be

overcon�dent in the sense that they do not recognize their information is inaccurate. How-

ever, there are important di¤erences between the two studies. Concerning the experimental

design, abstentions were not allowed in MPT, and the relation between voter information,

cognitive ability, and overcon�dence is tighter in the current study. Importantly, we provide

a much more extensive theoretical analysis of information aggregation with overcon�dence

41Our paper connects to a larger literature that studies information aggregation in two-alternative decisions

(see, e.g., Austen-Smith and Banks, 1996; Duggan and Martinelli, 2001; Martinelli, 2006; Visser and Swank,

2007; Goeree and Yariv, 2011; Bhattacharya 2013; Bouton, Llorente-Saguer, and Malherbe, 2018).
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than MPT.

Papers by Levy and Razin (2015) and Ortoleva and Snowberg (2015) investigating

political behavior with correlation neglect are also related. Individuals�utilities from di¤erent

policies depend on their (heterogeneous) preference parameters and an unknown state of the

world, which is the same for all individuals. Each individual receives repeated information

signals regarding the state of the world. Unlike in our model, individuals do not di¤er

in their competence per se, but in the degree to which they underestimate the correlation

between their signals.42 Ortoleva and Snowberg (2015) show, theoretically and empirically,

that overcon�dence arising from correlation neglect can lead to stronger partisanship and

ideological extremeness as well as increased voter turnout. However, they do not study

information aggregation and collective decision making outcomes, which is the focus of our

study. Levy and Razin (2015) analyze theoretically information aggregation in elections

with correlation neglect and show that correlation neglect may be bene�cial for information

aggregation by correcting the impact of preference biases on voting behavior. This seemingly

contrasts with our results and especially Proposition 3. However, there are several notable

di¤erences between Levy and Razin (2015) and the current study. The source of the cognitive

bias is di¤erent, and individuals are heterogenous in competence in our study. Levy and

Razin (2015) allow for a more nuanced utility function than what we present in Proposition

3 which allows for only partisans and neutral individuals. However, abstentions are not

allowed in their study. Therefore, our �ndings complement theirs.

6 Concluding Remarks

In this paper, we show that the joint e¤ect of overcon�dence and misinformation can be

drastic under certain conditions even if individuals make otherwise fully rational choices. As

a result, this drastic impact obtains under more relaxed conditions on overcon�dence and

misinformation if we take a boundedly rational approach, such as the cursed equilibrium by

Eyster and Rabin (2005).

Our paper focuses on the cognitive mechanism behind the in�uence of misinformation

42Correlation neglect is absent in our model as every individual receives only one news signal. However,

given that correlation neglect is a cognitive bias, it may be empirically correlated with the Dunning-Kruger

e¤ect. In addition, the impact of correlation neglect in our model depends more on the interaction of

correlation neglect with q and p(q) (e.g., correlation neglect is especially likely to sway elections involving

overcon�dent correlation neglectors with low q values).
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on judgments and opinion formation. Individuals�judgment may also be a¤ected by their

ideology or partisanship even when they desire to arrive at an accurate opinion. As a

result, there are two possible mechanisms that can explain the in�uence of misinformation:

a motivated reasoning mechanism suggesting that the e¤ect of misinformation is associated

with ideology or partisanship, and a cognitive mechanism where it is associated with analytic

reasoning and critical thinking skills, which we denote by �competence�in this paper. While

we focus on the role of competence in opinion formation, our model generates a (rational)

motivated reasoning mechanism in turnout behavior when individuals have di¤erent concerns

for one type of mistake relative to the other as explained in Section 2.3.

Our model can also be extended to characterize equilibrium behavior allowing for

(common knowledge) heterogeneous priors regarding the state of the world due to ideology

or partisanship as well as biased/motivated updating from the prior. We conjecture that

the results of our paper are robust assuming that only one prior is correct based on the

best available evidence and knowledge in the public domain. However, the analysis of this

extension is beyond the scope of this paper and a direction for future research. Analyzing the

e¤ect of overcon�dence on information acquisition and information aggregation is another

important avenue for future research.
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ONLINE APPENDIX

A Proofs and Additional Results

A.1 Proofs of Results in Section 2.1

Proof of Lemma 1. The general statement of Lemma 1 is proved in the main text in the

discussion preceeding Lemma 1. We now show that in an equilibrium where the correct policy

is chosen with a probability (weakly) greater than 0.5 in either state, qa = Pr(S = Bjpiva)
and qb = Pr(S = Ajpivb) must hold. Assume that the correct policy is chosen with a

probability (weakly) greater than 0.5 in either state in equilibrium. This is true if and only

if the relative turnout rate for the correct policy is weakly greater than 0:5. As a result,

Pr(pivbjA) � Pr(pivajA) and Pr(pivajB) � Pr(pivbjB) must hold. Now, suppose towards a
contradiction that qa 6= Pr(S = Bjpiva). This implies that Pr(S = Bjpivb) > Pr(S = Bjpiva)
by (2) in Lemma 1 statement, which in turn implies that Pr(S = Ajpiva) > Pr(S = Ajpivb).
Thus, qb 6= Pr(S = Ajpivb) by (3) in Lemma 1 statement. Rewriting Pr(S = Bjpivb) >
Pr(S = Bjpiva) and using Pr(pivbjA) � Pr(pivajA), we obtain

(1� �) Pr(pivbjB)
(1� �) Pr(pivbjB) + � Pr(pivajA)

>
(1� �) Pr(pivajB)

(1� �) Pr(pivajB) + � Pr(pivajA)
;

which implies that Pr(pivbjB) > Pr(pivajB) in contradiction to the statement above. Finally,
as argued above qb = Pr(S = Ajpivb) if and only if qa = Pr(S = Bjpiva). Hence, the result
is proved.

We next show that if � = 0:5, then qa = Pr(S = Bjpiva) and qb = Pr(S = Ajpivb). It
is enough to show that qa = Pr(S = Bjpiva) given the statement above. Assume towards a
contradiction that Pr(S = Bjpiva) < Pr(S = Bjpivb). Then, given the de�nitions of qa and
qb in (2)-(3), it can be checked that there is full turnout (i.e. no abstention) in equilibrium,

and qa + qb = 1 must hold. Thus, either qa � 0:5 or qb � 0:5 (or qa = qb = 0:5). Due to

symmetry with � = 0:5, it is without loss of generality to only consider the case in which

qa � 0:5 and show that there is a contradiction. In particular, we will show that

qa Pr(pivajA)� (1� qa) Pr(pivajB) = (1� qa) Pr(pivbjB)� qa Pr(pivbjA)

cannot hold, but it is a necessary condition as an individual who obtains an � signal and

has qi = qa must be indi¤erent between voting for policy a and for policy b. There are two
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cases to consider: (i) qa > 0:5 and (ii) qa = 0:5. First, assume that qa > 0:5. There are �ve

cases to consider depending on the values of qa, q and �q.

Case 1: qa � �q, and 1 � qa � q. Note that 1 � qa � q and qa � �q imply that qb � q and

1�qb � �q by qa+qb = 1. Thus, this is analogous to a nonresponsive equilibrium in which no

individual is pivotal since every individual votes for b regardless of their signal and accuracy,

which we rule out.

Case 2: q < qa < �q, and 1 � qa > q.43 In this case, the bene�t from voting for a for an

individual who obtains an � signal with an accuracy of qa equals

qa
�
N � 1
bN�1

2
c

�
�A(a)

bN�1
2
c�A(b)

N�1�bN�1
2
c�(1� qa)

�
N � 1
bN�1

2
c

�
�B(a)

bN�1
2
c�B(b)

N�1�bN�1
2
c (4)

where �S(a) and �S(b) represent the respective turnout rate for policy a and policy b in state

S; i.e.,

�A(a) =
R �q
qa
qdF +

R 1�qa
q

(1� q)dF

�A(b) =
R qa
q
qdF +

R �q
1�qa(1� q)dF

�B(a) =
R �q
qa
(1� q)dF +

R 1�qa
q

qdF

�B(b) =
R qa
q
(1� q)dF +

R �q
1�qaqdF

and the same individual�s bene�t from voting for b equals

(1� qa)
�
N � 1
bN�1

2
c

�
�B(b)

bN�1
2
c�B(a)

N�1�bN�1
2
c � qa

�
N � 1
bN�1

2
c

�
�A(b)

bN�1
2
c�A(a)

N�1�bN�1
2
c: (5)

Recall that since qa+qb = 1, there is no abstention and thus �S(a)+�S(b) = 1 for S 2 fA;Bg.
However, we will show that (4) is strictly greater than (5), which is a contradition. To see

why, note that since qa > 0:5, �S(a) + �S(b) = 1, and �B(b) is the largest turnout term,

�A(a)�A(b) > �B(a)�B(b) must hold, and therefore,

qa
�
N � 1
bN�1

2
c

�
�A(a)

bN�1
2
c�A(b)

bN�1
2
c(�A(a) + �A(b))

is greater than

(1� qa)
�
N � 1
bN�1

2
c

�
�B(b)

bN�1
2
c�B(a)

bN�1
2
c(�B(a) + �B(b))

which ensures that bene�t from voting for a exceeds the bene�t from voting for b with si = �

and qi = qa, regardless of whether N is even or odd. Thus, there cannot be an equilibrium

with qa < �q, and 1� qa > q.
43Note that 1� qa � �q must always hold by the initial hypothesis that qa > 0:5.
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Case 3: q < qa < �q, and 1 � qa � q. The steps in the proof for Case 2 still applies (with

minor modi�cations in �S(a) and �S(b) due to 1� qa � q).
Case 4: qa � �q, and 1 � qa > q. The steps in the proof for Case 2 still applies (with minor
modi�cations in �S(a) and �S(b) due to qa � �q).

Case 5: qa � q. This case is possible only if q > 0:5 since qa > 0:5 by initial hypothesis. It
also follows from qa + qb = 1 that qb < q must hold. In this case, everyone votes and does

so according to their signal. However, since we have a symmetric environment with � = 0:5,

this implies that qa = qb. But then from qa + qb = 1, qa = 0:5 must hold, a contradiction.

Hence, we have shown that Pr(S = Bjpiva) < Pr(S = Bjpivb) cannot hold if qa > 0:5
and � = 0:5. Next, assume that qa = 0:5. From qa+ qb = 1, qb = 0:5 must hold. It is easy to

see that this results in a case in which the correct policy is chosen with a probability greater

than 0:5 in either state, and therefore, Pr(S = Bjpiva) < Pr(S = Bjpivb) cannot hold given
what we proved above.

Finally, we show that if � = 0:5 and q = 0:5, then qa = qb. Suppose towards a

contradiction (and without loss of generality) that qa > qb. There are three possibilities:

either qa > qb � 0:5 or qa > 0:5 > qb or 0:5 � qa > qb.

(i) First, assume that qa > qb � 0:5.44 In that case, voting is informative as no individual
votes against his/her signal. In particular, by Lemma 1 every i with si = � and qi � qa

votes for policy a and every i with si = � and qi � qb votes for policy b. Consider the bene�t
from voting for a for an individual with si = � and qi = qa. This bene�t, which we denote

by �a(qa; �) equals

qa
N�1X
t=0

�
N � 1
t

�
(1� �A)N�1�t

�
t

b t
2
c

��R �q
qa
qdF

�b t
2
c �R �q

qb
(1� q)dF

�t�b t
2
c
�

(1� qa)
N�1X
t=0

�
N � 1
t

�
(1� �B)N�1�t

�
t

b t
2
c

��R �q
qa
(1� q)dF

�b t
2
c �R �q

qb
qdF

�t�b t
2
c

where �S represents the turnout rate in state S; i.e., �A =
R �q
qa
qdF +

R �q
qb
(1 � q)dF and

�B =
R �q
qa
(1� q)dF +

R �q
qb
qdF . Next, consider the bene�t from voting for b for an individual

44Note that qa > qb � �q can never hold as this implies no one votes in equilibrium, a contradiction. Our

proof also works if qa > �q as pivotality conditions below adjust to that.
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with si = � and qi = qb. This bene�t, which we denote by �b(qb; �) equals

qb
N�1X
t=0

�
N � 1
t

�
(1� �B)N�1�t

�
t

b t
2
c

��R �q
qa
(1� q)dF

�t�b t
2
c �R �q

qb
qdF

�b t
2
c
�

(1� qb)
N�1X
t=0

�
N � 1
t

�
(1� �A)N�1�t

�
t

b t
2
c

��R �q
qa
qdF

�t�b t
2
c �R �q

qb
(1� q)dF

�b t
2
c
:

Note that an individual who obtains an � signal with an accuracy of qa is indi¤erent between

voting for a and abstaining, and an individual who obtains a � signal with an accuracy of

qb � 0:5 weakly prefers voting for b over abstaining; i.e., �a(qa; �) = �b(qb; �) = 0 must hold.
However, we will show that �a(qa; �) > �b(qb; �) resulting in a contradiction. To see why,

�rst note that �A < �B and thus, 1��A > 1��B. Then, to show that �a(qa; �) > �b(qb; �),
�rst note that for realized turnout t = 0,45 qa + 1� qb > qb + 1� qa, for t > 0 even,R �q

qa
qdF

R qb
0:5
(1� q)dF >

R �q
qa
(1� q)dF

R �q
qb
qdF (6)

and for t > 0 odd

qa
R �q
qb
(1� q)dF + (1� qb)

R �q
qa
qdF > qb

R �q
qa
(1� q)dF + (1� qa)

R �q
qb
qdF: (7)

It can easily be checked that (6) holds as
R �q
qa
qdF=(1�F (qa)) >

R qb
0:5
qdF=(1�F (qb)). Suppose

towards a contradiction that (7) does not hold. But this implies that

qa(1� F (qb))� qb(1� F (qa)) �
R qa
qb
qdF;

which cannot hold as qa > qb and qa(F (qa)� F (qb)) >
R qa
qb
qdF:

(ii) Next, assume that qa � 0:5 > qb. In that case, voting is informative only for those who
obtain a � signal. In particular, since 0:5 > qb, by Lemma 1 every individual who obtains

a � signal votes for policy b, every i who obtains an � signal but has qi � 1 � qb votes for
policy b and �nally, every i who obtains an � signal and has qi � qa votes for policy a (recall
that from the de�nition of qa and qb, we have qa � 1� qb). Consider the bene�t from voting
for a for an individual with si = � and qi = qa. This bene�t, which we denote by �a(qa; �)

equals

qa
N�1X
t=0

�
N � 1
t

�
(1� �A)N�1�t

�
t

b t
2
c

��R �q
qa
qdF

�b t
2
c �R 1�qb

0:5
qdF +

R �q
0:5
(1� q)dF

�t�b t
2
c
�

(1� qa)
N�1X
t=0

�
N � 1
t

�
(1� �B)N�1�t

�
t

b t
2
c

��R �q
qa
(1� q)dF

�b t
2
c �R 1�qb

0:5
(1� q)dF +

R �q
0:5
qdF

�t�b t
2
c

45Note that if qa > �q, only t = 0 and t = 1 are relevant.
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where �S represents the turnout rate in state S; i.e., �A =
R �q
qa
qdF+

R 1�qb
0:5

qdF+
R �q
0:5
(1�q)dF ,

and �B =
R �q
qa
(1� q)dF +

R 1�qb
0:5

(1� q)dF +
R �q
0:5
qdF . Next, consider the bene�t from voting

for b for an individual with si = � and qi = 1� qb (note that by hypothesis 1� qb > 0:5).46

This bene�t, which we denote by �b(1� qb; �) equals

qb
N�1X
t=0

�
N � 1
t

�
(1� �B)N�1�t

�
t

b t
2
c

��R �q
qa
(1� q)dF

�t�b t
2
c �R 1�qb

0:5
(1� q)dF +

R �q
0:5
qdF

�b t
2
c
�

(1� qb)
N�1X
t=0

�
N � 1
t

�
(1� �A)N�1�t

�
t

b t
2
c

��R �q
qa
qdF

�t�b t
2
c �R 1�qb

0:5
qdF +

R �q
0:5
(1� q)dF

�b t
2
c
:

First, assume that qa > 1�qb. Then, an individual who obtains an � signal with an accuracy
of qa is indi¤erent between voting for a and abstaining, and an individual who obtains an �

signal with an accuracy of 1 � qb > 0:5 is indi¤erent between voting for b and abstaining;

i.e., �a(qa; �) = �b(1 � qb; �) = 0 must hold. Next, assume that qa = 1 � qb. In this case,
there is no abstention in equilibrium and an individual who obtains an � signal with an

accuracy of qa is indi¤erent between voting for a and voting for b (and prefers either one

over abstaining). In equilibrium, �a(qa; �) = �b(1� qb; �) must hold. However, we will now
show that �a(qa; �) > �b(1� qb; �) must hold, which results in a contradiction. To see why,
�rst note that �A < �B and thus, 1 � �A > 1 � �B if qa > 1 � qb and �A = �B = 1 if

qa = 1 � qb. Then, to show �a(qa; �) > �b(1 � qb; �), �rst note that for realized turnout
t = 0, it is enough to see that qa + 1� qb > qb + 1� qa and for t > 0, it is enough to show
that�R �q

qa
qdF

��R 1�qb
0:5

qdF +
R �q
0:5
(1� q)dF

�
>
�R �q

qa
(1� q)dF

��R 1�qb
0:5

(1� q)dF +
R �q
0:5
qdF

�
(8)

and that

qa
�R 1�qb

0:5
qdF +

R �q
0:5
(1� q)dF

�
+
�
1� qb

� R �q
qa
qdF > (9)

qb
R �q
qa
(1� q)dF + (1� qa)

�R 1�qb
0:5

(1� q)dF +
R �q
0:5
qdF

�
Suppose towards a contradiction that (8) does not hold. This implies thatR �q

qa
qdF �

R �q
qa
dF
R 1�qb
0:5

dF �
R �q
qa
qdF

R 1�qb
0:5

dF �
R �q
qa
dF
R 1�qb
0:5

qdF +
R �q
qa
dF
R �q
0:5
qdF

must hold. This inequality implies in turn thatR �q
qa
qdF (1 + F (1� qb)) + (1� F (qa)

R 1�qb
0:5

qdF � (1� F (qa))(F (1� qb) +
R �q
0:5
qdF ):

46We assume that 1� qb � �q which is without loss of generality for the results.
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Dividing both sides by 1�F (qa) and then taking
R 1�qb
0:5

qdF to the right-hand side, we obtainR �q
qa
qdF

1� F (qa)(1 + F (1� q
b)) � F (1� qb) +

R �q
1�qbqdF:

However, writing (1+F (1�qb)) above as (1�F (1�qb)+2F (1�qb)) and noting that
R �q
qa
qdF

1�F (qa) >

qa, it can be checked that the right-hand side of the inequality above is strictly greater thanR �q
qa
qdF

1�F (qa)(1 � F (1 � q
b)) + 2qaF (1 � qb), which in turn is greater than F (1 � qb) +

R �q
1�qbqdF

because 2qa � 1 and by qa � 1�qb,
R �q
qa
qdF

1�F (qa) �
R �q
1�qbqdF

1�F (1�qb) holds, which is a contradiction. Thus,

(8) must hold. Next, suppose towards a contradiction that (9) does not hold. This implies

that qa+
R �q
qa
qdF � qb(1�F (qa))+

R �q
1�qbqdF +(1� q

a)F (1� qb), and so, qa(1+F (1� qb)) �
qb(1 � F (qa)) +

R qa
1�qbqdF + F (1 � q

b). Noting that
R qa
1�qbqdF < q

a(F (qa) � F (1 � qb)), this
implies qa(1 + 2F (1� qb)� F (qa)) < qb(1� F (qa)) + F (1� qb). However, this cannot hold
as qa > qb and 2qa > 1.

(iii) Finally, we rule out the case where 0:5 � qa > qb. As mentioned above, it can be checked
from the de�nition of qa and qb that qa � 1� qb must hold. Thus, it is not possible to have
0:5 � qa > qb.

Proof of Lemma 2. First, consider the case in which q < 0:5. Let q̂ be such that

q̂ =
R 0:5
q
(1 � q)dF +

R �q
0:5
qdF � this is the expected accuracy if i votes for (against) si for

every qi > 0:5 (qi < 0:5). Obviously, q̂ > 0:5. Next, let �� be such that

�� =
NX

t=N
2
+1

�
N

t

�
(q̂)t(1� q̂)N�t + 0:5

�
N
N
2

�
(q̂)

N
2 (1� q̂)N2

for N even, and for N odd, let �� =
PN

t=N+1
2

�
N
t

�
(q̂)t(1� q̂)N�t. Since q̂ > 0:5, �� > 0:5. In

fact, from Lemma 4 below, it follows that �� > q̂ for N � 3 (since �� = q̂ if N = 1 and N =

2). By construction, the optimal symmetric equilibrium must be a responsive equilibrium for

every � 2 (1�����). This is because (i) the e¢ ciency of a nonresponsive equilibrium cannot
be greater than minf1 � �; �g, (ii) there exists an optimal symmetric strategy by Lemma
3 below, which in turn is the optimal symmetric equilibrium, and by construction, (iii) the

expected accuracy in the optimal symmetric equilibrium with � 2 (1�����) must be higher
than ��. Next, we show that the optimal equilibrium must have an interior cuto¤ for every

� 2 (1� ����). Suppose not. We can immediately rule out the case in which no individual
votes. Moreover, the case in which every i who receives an � signal (a � signal) votes for
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a (b) and every i who receives a � signal (an � signal) abstains cannot be an equilibrium.

It is enough to consider the case where every i who receives an � signal votes for a and

every i who receives a � signal abstains. This implies by Lemma 1 that qa � q < 0:5 (this
is necessary for i with � signal and qi � q to prefer voting for a over abstention or voting

for b), and as a result, 1 � qa > 0:5. Thus, every individual with si = � and qi < 1 � qa

must strictly prefer voting for a in contradiction to the strategy. In a similar vein, Lemma

1 implications rule out the case in which every i who receives an � signal (a � signal) votes

for b (a) and every i who receives a � signal (an � signal) abstains cannot be an equilibrium.

Remaining cases are the cases in which every i votes either always for or always against si

regardless of qi. Consider the former case. Again, by Lemma 1, this cannot be an equilibrium

because if qa � q < 0:5 then 1� qa > 0:5, and every individual with si = � and qi < 1� qa

must strictly prefer voting for a over abstention or voting for b, a contradiction. The latter

strategy can also not be part of an equilibrium as by Lemma 1, �q � 1 � qb must hold (this
is necessary for every i with � signal to prefer voting for b over abstention or voting for a),

but this implies that qb < 0:5, and therefore, an individual with a � signal and qi > qb (for

example qi = 0:5) must strictly prefer voting for b over abstention or voting for a as well,

which is a contradiction. Hence, the optimal equilibrium must have an interior cuto¤ for

every � 2 (1� ����).
Next, consider the case in which q = 0:5. Let �� be such that

�� =
NX

t=N
2
+1

�
N

t

�
(E(q))t(1� E(q))N�t + 0:5

�
N
N
2

�
(E(q))

N
2 (1� E(q))N2

for N even, and for N odd, let �� =
PN

t=N+1
2

�
N
t

�
(E(q))t(1�E(q))N�t, where E(q) =

R �q
0:5
qdF .

By Lemma 4 proved later, �� > E(q) if N � 3 (and �� � E(q) if N = 2) First, consider the

case in which N is even. As discussed above, for every � 2 (1� ��; ��), the optimal equilib-
rium must be a responsive equilibrium. Next, we show that the optimal equilibrium must

have an interior cuto¤for � 2 (1���; ��). Suppose not. We can immediately rule out the case
where no individual votes. Next, it can be shown that the case in which every i who receives

an � signal (a � signal) votes for a (b) and every i who receives a � signal (an � signal) abstains

cannot be an equilibrium (except possibly in one knife-edge case). It is enough to consider

the case where every i who receives an � signal votes for a and every i who receives a � signal

abstains. Note that in this case 0:5 = (1��) Pr(pivajS=B)
�Pr(pivajS=A)+(1��) Pr(pivajS=B) and �q < 1 must hold by

Lemma 1. This equality requires � to be exactly equal to

�R �q
0:5
qdF

�N�1
�R �q
0:5
qdF

�N�1
+

�R �q
0:5
(1�q)dF

�N�1 as
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well as � > �q, which is a nongeneric case we rule out. In a similar vein, Lemma 1 implica-

tions rule out the case where every i who receives an � signal (a � signal) votes for b (a)

and every i who receives a � signal (an � signal) abstains. Remaining cases are the cases

in which every i votes either always for or always against si regardless of qi. Consider the

former case. This cannot be an equilibrium because it can easily be shown that given the

described strategy, qa = qb > 0:5 if � = 0:5 (recall that N is even), qa > 0:5 if � < 0:5 and

qb > 0:5 if � > 0:5, but this is a contradiction with the strategy since q = 0:5. Now, consider

the latter case. In this case, �q � 1� qb must hold by Lemma 1 (this is necessary for i with
� signal and qi � �q to prefer voting for b over voting for a), but this implies that qb < 0:5,

and therefore, an individual with a � signal and qi > qb (for example, qi = 0:5) must strictly

prefer voting for b over abstention or voting for a, which is a contradiction. The proof for

the case in which N is odd is analogous except that with � = 1
2
the optimal equilibrium need

not involve interior cuto¤s.

Finally, consider the case in which q > 0:5. First, let �̂ be analogous to �� as

de�ned in the case with q = 0:5 above. As shown in Lemma 4, �̂ > E(q) if N � 3 and

�̂ = E(q) otherwise. We now de�ne �� = minf�q; �̂g. First, consider the case in which N is

even. Similar to our discussion above with q � 0:5, for every � 2 (1 � ��; ��), the optimal
equilibrium must be a responsive equilibrium (note that q < E(q) < ��). We will now show
that the optimal equilibrium must have an interior cuto¤ if � 2 (1 � ��; 1 � q] [ [q; ��).
Suppose not. We can immediately rule out the case in which no individual votes. Moreover,

by construction, the case in which every i who receives an � signal (a � signal) votes for a

(b) and every i who receives a � signal (an � signal) abstains cannot be an equilibrium. It

is enough to consider the case where every i who receives an � signal votes for a and every i

who receives a � signal abstains. Since �q � ��, and since Pr(pivbjS = B) < Pr(pivbjS = A)
given the prescribed strategy, qb = �Pr(pivbjS=A)

�Pr(pivbjS=A)+(1��) Pr(pivbjS=B) < � < �q holds for every

� 2 (1���; 1�q][ [q; ��). Thus, abstention is not optimal for i if si = � and qi is su¢ ciently
high. As in the previous cases above with q � 0:5, Lemma 1 implications rule out the case
where every i who receives an � signal (a � signal) votes for b (a) and every i who receives a

� signal (an � signal) abstains. Remaining cases are the cases in which every i votes either

always for or always against si regardless of qi. Consider the former case. This cannot be

an equilibrium because given the described strategy, qa > q must hold if � � 1� q (because
Pr(pivajS = A) < Pr(pivajS = B) and qa = (1��) Pr(pivajS=B)

�Pr(pivajS=A)+(1��) Pr(pivajS=B) > 1 � � � q) and
similarly qb > q must hold if � � q, which contradicts the voting strategy described. Now,
consider the latter case. In this case, �q � 1 � qb must hold by Lemma 1, but this implies
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that qb < 0:5, and therefore, an individual with a � signal and qi > qb (for example, qi = 0:5)

must strictly prefer voting for b over abstention or voting for a, which is a contradiction.

The proof for the case where N is odd and � 2 (1� ��; 1� q) [ (q; ��) is analogous.

Proof of Proposition 1. We �rst prove the existence of the optimal symmetric strategy

in Lemma 3. To do that, we �rst de�ne a �cuto¤ strategy�: a cuto¤ strategy consists of four

cuto¤s qj 2 [q; �q] and �qj 2 [q; �q], j 2 fa; bg such that individual i votes for policy a if si = �
and qi � �qa or if si = � and qi � qa, and i votes for policy b if si = � and qi � �qb or if si = �

and qi � qb.

Lemma 3: For every symmetric (measurable-)strategy that is not a cuto¤ strategy, there

exists a cuto¤ strategy that strictly dominates it. As a result, by the Weierstrass theorem,

there exists an optimal strategy among all symmetric measurable strategies.

Proof: Let � : [q; �q]� f�; �g ! [0; 1]� [0; 1] represent a strategy that maps every qi and si
to a probability of voting for the policy that matches si and to a probability of voting for

the opposite policy (i abstains with the remaining probability). Next, let Tj(S) denote the

expected turnout rate for policy j 2 fa; bg in state S 2 fA;Bg. Fix an arbitrary symmetric
strategy that doesn�t have the cuto¤ form. In particular, abusing notation let �js(q) represent

the probability with which i votes for j 2 fa; bg given si = s and qi = q, and consider a

strategy such that �js(q) does not have a cuto¤ form for at least one (j; s) pair. Assuming

that s is the signal consistent with state S (i.e., � for A and � for B) and s 6= s0,

Tj(S) =
R �q
q

�
�js(q)q + �

j
s0(q)(1� q)

�
dF

for policy j 2 fa; bg in state S 2 fA;Bg. We �rst look for qa 2 [q; �q] and �qa 2 [q; �q]

such that Ta(B) remains constant as follows:
R qa
q
qdF =

R �q
q
�a�(q)qdF and

R �q
�qa
(1 � q)dF =R �q

q
�a�(q)(1� q)dF . Note that the former implies thatR qa

q
(1� q)dF �

R �q
q
�a�(q)(1� q)dF

(with strict inequality unless �a�(q) = 1q�x for some x 2 [q; �q]) and the latter implies thatR �q
�qa
qdF �

R �q
q
�a�(q)qdF;

(with strict inequality unless �a�(q) = 1q�x for some x 2 [q; �q]). We �rst prove the former.
Let

R qa
q
qdF =

R �q
q
�a�(q)qdF . The result is trivial if �

a
�(q) = 1q�x for some x 2 [q; �q], so assume

that �a�(q) 6= 1q�x for any x 2 [q; �q]. Thus, qa 2 (q; �q). Suppose towards a contradiction that
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R qa
q
(1� q)dF �

R �q
q
�a�(q)(1� q)dF . This implies thatR qa

q
dF �

R �q
q
�a�(q)dF =

R qa
q
�a�(q)dF +

R �q
qa
�a�(q)dF;

and thus
R qa
q
(1 � �a�(q))dF �

R �q
qa
�a�(q)dF . Multiplying both sides of the last inequality by

qa 2 (q; �q), the right hand side is strictly lower than
R �q
qa
�a�(q)qdF (since q

a < �q)), and the left

hand side is strictly greater than
R qa
q
(1��a�(q))qdF (since qa > q)) resulting in a contradiction

to the equality
R qa
q
qdF =

R �q
q
�a�(q)qdF . Next, let

R �q
�qa
(1 � q)dF =

R �q
q
�a�(q)(1 � q)dF , and

suppose towards a contradiction that
R �q
�qa
qdF �

R �q
q
�a�(q)qdF where �a�(q) 6= 1q�x for any

x 2 [q; �q]. These imply thatR �q
�qa
dF �

R �q
q
�a�(q)dF =

R �qa
q
�a�(q)dF +

R �q
�qa
�a�(q)dF;

and thus
R �q
�qa
(1��a�(q))dF �

R �qa
q
�a�(q)dF . Multiplying both sides of the inequality by 1� �qa,

and rearranging we obtain a contradiction to the equality
R �q
�qa
(1� q)dF =

R �q
q
�a�(q)(1� q)dF .

As a result, in our construction Ta(A) strictly increases if �
a
�(q) 6= 1q�x for any x 2 [q; �q] or

if �a�(q) 6= 1q�x for any x 2 [q; �q], and remains constant otherwise.
Next, we look for qb 2 [q; �qa) such that

R qb
q
qdF =

R �q
q
�b�(q)qdF . If this equality cannot

be satis�ed for any qb 2 [q; �qa), then we set qb = �qa (in that case, there is no abstention after
an � signal). Similarly, we look for �qb 2 (qa; �q] such that

R �q
�qb
(1� q)dF =

R �q
q
�b�(q)(1� q)dF ,

and if there exists no �qb 2 (qa; �q] that satis�es the equality, then we set qa = �qb (in that

case, there is no abstention after a � signal). Thus, Tb(B) increases in our construction

(strictly if �b�(q) 6= 1q�x for any x 2 [q; �q] or if �b�(q) 6= 1q�x for any x 2 [q; �q]). While
Tb(A) may decrease due to having to set qb = �qa or qa = �qb, Ta(A) + Tb(A) cannot decrease

in our construction since qb = �qa implies that there is no abstention after an � signal and

qa = �qb implies that there is no abstention after a � signal. Thus, given these four cuto¤s

we construct from the initial strategy, expected turnout rate Ta(S) +Tb(S) weakly increases

in either state, and it can be checked that the �relative turnout rate�for the correct policy

weakly increases in both states; i.e., both Ta(A)
Ta(A)+Tb(A)

and Tb(B)
Tb(B)+Ta(B)

increase. In fact, at

least one of these relative turnout rates must strictly increase by construction since �js(q)

does not have a cuto¤ form for at least one (j; s) pair.

To see why, �rst assume that Ta(A) remains constant in our construction because the

initial strategy is such that �a�(q) = 1q�qa for q
a 2 [q; �q] and if �a�(q) = 1q��qa for �qa 2 [q; �q]

(recall that Ta(B) is always constant by construction). Then, it can be checked that Tb(A)

must be constant as well given our construction: there must exist qb 2 [q; �qa] such that
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R qb
q
qdF =

R �q
q
�b�(q)qdF , and �q

b 2 [qa; �q] such that
R �q
�qb
(1�q)dF =

R �q
q
�b�(q)(1�q)dF (otherwise,

Ta(A) + Tb(A) > 1, a contradiction). If qb < �qa or if �qb > qa, then Tb(B) and
Tb(B)

Tb(B)+Ta(B)

strictly increase as desired. Indeed one of the two (qb < �qa or �qb > qa) must hold as otherwise

�js(q) must be a cuto¤ strategy in contrast to our initial hypothesis. As a result, if Ta(A)

remains constant in our construction, then expected turnout rate Ta(A)+Tb(A) is constant,

but Tb(B)
Tb(B)+Ta(B)

and Ta(B) + Tb(B) are strictly higher. Next, assume that Ta(A) strictly

increases because �a�(q) 6= 1q�x for any x 2 [q; �q] and/or �a�(q) 6= 1q�x for any x 2 [q; �q]. As
discussed above, by construction, Ta(A)+Tb(A) cannot decrease, and Tb(A) weakly decreases.

As a result, and given that Ta(A) is strictly higher,
Ta(A)

Ta(A)+Tb(A)
strictly increases. Moreover,

as discussed above, Tb(B) and Ta(B) + Tb(B) weakly increase by construction.

To complete the proof for showing that the cuto¤ strategy we constructed is strictly

better than the non-cuto¤ strategy �js(q), Lemma 4 and Lemma 5 are su¢ cient.

Lemma 4: Let Wt(q) be such that

Wt(q) =

8>>>>><>>>>>:

tX
i= t+1

2

�
t
i

�
qi(1� q)t�i if t is odd

tX
i= t

2
+1

�
t
i

�
qi(1� q)t�i + 1

2

�
t
t
2

�
q
t
2 (1� q) t2 if t is even

where q > 1=2. Then, Wt(q) is monotonic in t. In particular, Wt(q) = Wt+1(q) < Wt+2(q)

for every odd t > 0. Moreover, W1(q) =W2(q) = q and, thus, Wt(q) > q for every t > 2.

Proof: First, we show that Wt(q) = Wt+1(q) if t is odd. Let Pr(X � k; t; q) denote the

cumulative Binomial distribution function with t trials, X successes and success probability

q; i.e.,

Pr(X � k; t; q) = (t� k)
�
t

k

�
1�qR
0

xt�k�1(1� x)kdx

Using this formula, it can be checked that Pr(X � t+1
2
; t + 1; q)� 1

2
Pr(X = t+1

2
; t + 1; q) =

Pr(X � t�1
2
; t; q) must hold.

Next, we show thatWt(q) < Wt+2(q) if t is odd. First, we prove thatWt+2(q) > Wt(q)

for every q � q� > 1
2
, where q� is given by q�(1 � q�) = 1

4
t+1
t+2
. Then, for t > 0 odd,

Wt+2(q)�Wt(q) equals

t+ 1

2

�
t
t�1
2

�
1�qR
0

x
t�1
2 (1� x) t�12 dt� t+ 3

2

�
t+ 2
t+1
2

�
1�qR
0

x
t+1
2 (1� x) t+12 dx

which equals
1�qR
0

x
t�1
2 (1� x) t�12

�
t+ 1

2

�
t
t�1
2

�
� t+ 3

2

�
t+ 2
t+1
2

�
x(1� x)

�
dx:
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It can be checked that this term is strictly greater than 0 for all q � q� > 1
2
, where

q� > 1
2
is given by q�(1 � q�) = 1

4
t+1
t+2
. We now show that Wt(

1
2
) = Wt+2(

1
2
) and that

d
dq
(Wt+2(q)�Wt(q)) > 0 for every q 2 [12 ; q

�), where q� is given by q�(1� q�) = 1
4
t+1
t+2
, which

will imply that Wt+2(q) > Wt(q) for every q 2 (12 ; q
�) and complete the proof. It can be

checked that d
dq
(Wt+2(q)�Wt(q)) is equal to q

t�1
2 (1 � q) t�12

�
t+3
2

�
t+2
t+1
2

�
q(1� q)� t+1

2

�
t

t�1
2

��
,

which is strictly positive for all q 2 [1
2
; q�). Moreover, Wt(

1
2
) = Wt+2(

1
2
) because it can be

checked that
tX

i= t+1
2

�
t
i

� �
1
2

�t
=

t+2X
i= t+3

2

�
t+2
i

� �
1
2

�t+2
using the fact that

tX
i=0

�
t
i

�
= 2

tX
i= t+1

2

�
t
i

�
= 2t.

Lemma 5: If p and q increase to p0 � p and q0 � q respectively (with at least one strict

inequality), then

NX
t=0

�
N

t

�
pt(1� p)N�tWt(q) <

NX
t=0

�
N

t

�
(p0)t(1� p0)N�tWt(q

0):

Proof: First, we prove that Wt(q) is strictly increasing in q for t � 1. To see why, �rst

assume that t is odd, and note that Wt(q
0)�Wt(q) equals

(t� k)
�
t

k

�
1�qR
1�q0

xt�k�1(1� x)kdx;

which is strictly positive if q0 > q. Next, assume that t � 2 is even. By Lemma 4, Wt�1(q) =

Wt(q), and it follows that Wt(q
0)�Wt(q) =Wt�1(q

0)�Wt�1(q) > 0 for q0 > q. To complete

the proof, it is enough to show that

NX
t=0

�
N

t

�
pt(1� p)N�tWt(q

0) <
NX
t=0

�
N

t

�
(p0)t(1� p0)N�tWt(q

0)

for p < p0. But this is true because an increase in p results in a new distribution of t that �rst

order stochatically dominates the previous one, and by Lemma 4, Wt(q
0) is monotonically

increasing in t such that Wt(q
0) � Wt+1(q

0).

Since our strategy construction strictly increases p and q in the notation of Lemmas

4 and 5 in at least one state of the world, we have a strict improvement over the non-cuto¤

strategy �js(q) and Lemma 3 is proved.

We can now prove Proposition 1. First, note that by what McLennan (1998) has

shown the optimal symmetric strategy, if it exists, must be an equilibrium strategy. In

Lemma 3, we have shown the existence of the optimal strategy and that it cannot have a

non-cuto¤ form. Next, consider the optimal equilibrium outcome in a biased electorate under
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unawareness regarding perception biases. First, assume that the outcome is not consistent

with a cuto¤outcome; i.e., a positive measure of individuals with identical q and s will behave

in di¤erent ways due to perceptions biases. But this is inconsistent with the optimal strategy

outcome, and thus worse than the optimal equilibrium outcome in an unbiased electorate.

Second, assume that the outcome is consistent with a cuto¤ behavior outcome due to the

particular form of overcon�dence and undercon�dence biases. If the outcome involves no

interior cuto¤, then this is surely suboptimal under the conditions stated in Lemma 2. If

there is an interior cuto¤ involved, this is a nondegenerate case as not only the outcome

should be consistent with another optimal equilibrium (to rule out the harm of perception

biases) but also the form of �o(q) must be very speci�c; for example, �o(q) = 1 must hold

in a non-singleton interval, thereby ruling out undercon�dence and unbiased perceptions in

that interval as well as the possibility of di¤erent levels of overcon�dence. Thus, a small

perturbation in �o(q) (or a small perturbation in � and po(q)47) is enough to rule out this

last case. As a result, behavior with biased perceptions is generically inconsistent with the

optimal equilibrium outcome in the unbiased case and thus suboptimal under the conditions

stated in Lemma 2.

As mentioned in the main text all of our results and proofs are robust to assuming

that there are several overcon�dence functions pjo(q) 2 (q; �q] and respective probabilities

�jo(q) where p
j
o(q) < p

j+1
o (q) for every q and j 2 f1; :::; J � 1g.

Corollary 1: Under conditions stated in Lemma 2, a responsive equilibrium always exists

and has at least one interior cuto¤.

Proof: Given Lemma 3, an optimal symmetric equilibrium always exists, and under the

conditions stated in Lemma 2, the optimal symmetric equilibrium involves an interior cuto¤

(i.e., it is a resposive equilibrium). Thus, there exists a responsive equilibrium under the

conditions stated in Lemma 2.

A.2 Results in Section 2.1 under awareness of others�perception

biases

Here, we assume that every i knows that for every j and qj, pj(qj) takes one of three possible

values: po(qj), pu(qj), and qj with respective probabilities �o(q), �u(q), and 1��o(q)��u(q).
47For every � value except possibly those with a Lebesque measure of zero, there can exist only countably

many equilibria (and only a subset will be optimal). Thus, perturbing � and po(q) also su¢ ce to rule out

nongeneric cases.

53



Under this assumption, the �rst part of Lemma 1 naturally holds. Also, our proof for showing

that qa = Pr(S = Bjpiva) and qb = Pr(S = Ajpivb) if the correct policy is chosen with a
probability (weakly) greater than 0.5 in either state in equilibrium is una¤ected. However,

it may no longer be true that if � = q = 0:5, then qa = qb in every equilibrium or if � = 0:5,

then qa = Pr(S = Bjpiva). Lemmas 2 and 3 hold with awareness, and under the conditions
stated in Lemma 2, the optimal equilibrium strategy with perception biases and awareness

must involve at least one interior cuto¤, since the steps used in the proof of Lemma 2

to show equilibria without interior cuto¤s are suboptimal still apply. Thus, Proposition 1

holds, and all the main results are robust to awareness regarding others�overcon�dence and

undercon�dence biases.

A.3 Proofs of Results in Section 2.3

We will invoke the following Lemma in our proofs.

Lemma 6: In a symmetric equilibrium of every model discussed in the main text with in-

dependent signals, qa = Pr(S = Bjpiva) and qb = Pr(S = Ajpivb) must hold if the correct
policy is chosen in either state with a probability (weakly) greater than 0:5.

Proof: We proved the same statement in the proof of Lemma 1, and it can be seen that no

argument depends on the distribution of signal precisions being identical or the absence of

partisans. In particular, the di¤erence in the distributions of signal precisions across states

or the presence of partisans are accounted for in the probabilities of piva and pivb events.

Thus the proof presented in Lemma 1 applies to both extensions.

Proof of Proposition 2 First, we show that the sequence of optimal equilibria in the

unbiased equilibrium is such that the correct policy is chosen with a probability that goes

to one as N ! 1. To show this, �rst note that the proof in Lemma 3 applies to show

the existence of an optimal symmetric strategy and this strategy has a cuto¤ form. Then,

it is enough to show that there exists a symmetric strategy which results in the correct

policy being chosen with a probability that goes to 1 as N !1 in either state (the optimal

equilibrium exists by Lemma 3 and can never do worse). To show the existence of such a

strategy, we assume without loss of generality that the (�rst) condition in the Proposition

statement for overcon�dent electorates holds. Then, there exists a q� 2 (q; �q) such that

every non-partisan with si = � or with si = � and qi < q� votes for a, and every non-

partisan with si = � and qi > q� votes for b such that the following holds: pa + (1 �
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pa � pb)
�R �q

q
qdF +

R q�
q
(1� q)dF

�
> pb + (1 � pa � pb)

R �q
q�(1 � q)dF , and pa + (1 � pa �

pb)
�R �q

q
(1� q)dF +

R q�
q
qdF

�
< pb+(1�pa�pb)

R �q
q�qdF . The existence of this q

� follows from

the fact that there exists a q̂ 2 (q; �q) such that pa + (1� pa� pb)
�R �q

q
qdF +

R q̂
q
(1� q)dF

�
=

pb+(1�pa�pb)
R �q
q̂
(1�q)dF and as a result, both inequalities are satis�ed setting q� = q̂+ �,

where is � > 0 arbitrarily small. The equality above is due to continuity and the condition in

the statement of the proposition: the left hand side of the equality is strictly greater (smaller)

than the right hand side if (q̂ = �q) q̂ = q. If q� = q̂, the latter inequality is automatically

satis�ed because
R �q
q
q > 0:5 (as implied by the condition spelled out in the proposition). This

strategy implies that the relative turnout share for the correct policy is strictly greater than

0.5 in either state ensuring that the correct policy is chosen with a probability that goes to

one in either state.

Next, we characterize those equilibria in which the correct policy is chosen with a

probability that goes to one as asN !1 in both states. We initially assume away perception

biases for ease of notation, but this is without loss of generality for the characterization under

unawareness. Let qaN and q
b
N denote the respective equilibrium cuto¤s for electorate size N .

We will use the following claim.

Claim 1: Assume that �q � 1 � q and consider those equilibria in which the correct policy
is chosen with a probability that goes to one in both states. Then, qbN < �q in large elections

and lim supN!1 q
b
N < �q.

Proof: First, consider the case in which �q < 1 and assume towards a contradiction that

lim supN!1 q
b
N � �q. By Lemma 6, this implies that lim supN!1

�Pr(pivbjA;N)
(1��) Pr(pivbjB;N) �

�q
1��q .

Then, (with an abuse of notation) there exists an electorate size N and equilibrium sequence

(qaN ; q
b
N) such that

(1��) Pr(pivbjB;N)
�Pr(pivbjA;N) goes to a number weakly smaller than 1��q

�q
. Moreover,

(1��) Pr(pivajB;N)
�Pr(pivajA;N) ! qa

1�qa , where q
a = limN!1 q

a
N � 0 (taking a convergent subsequence of

the subsequence if necessary). Note that qa = limN!1 q
a
N < �q as otherwise policy b would

win in both states with a probability that goes to one as N ! 1, which is suboptimal.
Pr(pivajB;N) and Pr(pivbjB;N) have a common term (representing the tie events) and the

other term di¤ers by only a multiplicative term. That is, Pr(pivajB;N) can be written as
Pr(pivajB;N) = xN + yN , and thus, Pr(pivbjB;N) is equal to xN + yNN where

N =
pa + (1� pa � pb)

�R �q
qaN
(1� q)dF +

R 1�qaN
q

qdF
�

pb + (1� pa � pb)
�R �q

qbN
qdF +

R 1�qbN
q

(1� q)dF
� :

We assume without loss of generality that 1 � qaN > q and qbN < �q for large N (the proof
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is virtually una¤ected if 1 � qaN � q or qbN � �q). However, since qbN ! �q and �q > 1 � q,
1� qbN < q must hold for all large N . Pr(pivajA;N) and Pr(pivbjA;N) also have a common
term, and the other term di¤ers by a multiplicative term. Thus, Pr(pivajA;N) can be written
as Pr(pivajA;N) = wN + zN , and Pr(pivbjA;N) is equal to wN + zN�N where

�N =
pa + (1� pa � pb)

�R �q
qaN
qdF +

R 1�qaN
q

(1� q)dF
�

pb + (1� pa � pb)
�R �q

qbN
(1� q)dF +

R 1�qbN
q

qdF
� :

As the correct policy must be chosen with a probability that goes to one in both states,

�N > 1 and N < 1 must hold. Moreover, if �q < 1, then qaN > 0:5 must hold because

otherwise qbN ! �q and pa + (1 � pa � pb)
R �q
0:5
(1 � q)dF > pb imply that policy a is chosen

in both states with a probability that goes to one. Thus, qa = limN!1 q
a
N 2 (0:5; �q). As a

result,

�q

1� �q
qa

1� qa = lim
N!1

1��
�

xN+yN
wN+zN

1��
�

xN+NyN
wN+�NzN

= lim
N!1

xN + yN
xN + NyN

wN + �NzN
wN + zN

� lim sup
N!1

�N
N

=
pa + (1� pa � pb)

�R �q
qa
qdF +

R 1�qa
q

(1� q)dF
�

pa + (1� pa � pb)
�R �q

qa
(1� q)dF +

R 1�qa
q

qdF
� :

However, the very last term is strictly smaller than
R �q
qa qdF+

R 1�qa
q (1�q)dFR �q

qa (1�q)dF+
R 1�qa
q qdF

, which in turn is

strictly smaller than �q
1��q , resulting in a contradiction. Thus, lim supN!1 q

b
N < �q < 1. We

now analyze the case in which �q = 1. Assume towards a contradiction that lim supN!1 q
b
N �

1. This implies that lim supN!1
�Pr(pivbjA;N)

(1��) Pr(pivbjB;N) = 1. Abusing notation, we have that
Pr(pivbjB;N)
Pr(pivbjA;N) ! 0. However, if Pr(pivbjB;N)

Pr(pivbjA;N) ! 0, then Pr(pivajB;N)
Pr(pivajA;N) ! 0 must also hold. This

is because lim infN!1 N > 0 and lim supN!1 �N < 1, and Pr(pivbjB;N)
Pr(pivbjA;N) =

xN+NyN
wN+�NzN

�
N
�N

xN+yN
wN+zN

= N
�N

Pr(pivajB;N)
Pr(pivajA;N) . In turn, q

a
N ! 0. As a result, almost everyone but the b-partisans

votes for policy a in large elections, and a is chosen in both states with a probability that

goes to one, a contradiction.

Without awareness: We now show that a high enough degree of overcon�dence is harmful

in this setting. In large elections, a su¢ ciently high level of Dunning-Kruger e¤ect implies

that

pa+(1�pa�pb)
�R �q

qa
qdF +

R qa
p�1o (qa)

�o(q)qdF +
R p�1o (1�qa)
q

(1� q)dF +
R 1�qa
p�1o (1�qa)(1� �o(q))(1� q)dF

�
is strictly lower than

pb+(1�pa�pb)
�R �q

qb
(1� q)dF +

R qb
p�1o (qb)

�o(q)(1� q)dF +
R 1�qb
p�1o (1�qb)qdF +

R 1�qb
p�1o (1�qb)�o(q)qdF

�
:
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To see why, note that if in the optimal equilibrium 1 � qa > q and/or 1 � qb > q, then a

high level of Dunning Kruger e¤ect makes these cuto¤s trivial. Moreover, a su¢ ciently high

level of Dunning Kruger e¤ect makes p�1o (q
b) closer and closer to q substantially increasing

turnout from low skill people in accordance with their (low quality) news signal, and as a

result, the condition in the statement of the Proposition ensures that policy b is chosen in

both states with a probability that goes to one as N !1 (e.g., if po(q) is close to or greater

than lim supN!1 q
b
N , and �o(q) is su¢ ciently high at every q 2 (q; lim supN!1 qbN), then

policy b is chosen in both states with a probability that goes to one).

With awareness: We consider a �nite type space with fq1; q2; :::; qTg where qT = 1. Obviously
qbN < qT = 1 for every N in any responsive equilibrium. As a result, a su¢ ciently high

and widespread level of Dunning Kruger e¤ect in the population will prevent information

aggregation despite awareness: if for example po(q1) = qT , then the su¢ cient condition

ensures that there exist high enough f�o(qt)gt2f1;2;:::;T�1g such that

pb � pa
1� pa � pb

�
TX
t=1

qt + (1� �o(qt))(1� qt) Pr(qt)�
TX
t=1

�o(qt)(1� qt) Pr(qt);

and thus, expected turnout for b exceeds expected turnout for a in state A (i.e., even if we

assume every unbiased i with qi < qT votes against b regardless of signal ).

Proof of Proposition 3 Let qa and qb be as de�ned in (2) and (3) respectively. In every

Bayesian Nash equilibrium, individual i votes for a if either i�s signal is � and qi
qi+1�m(qi) � q

a

or i�s signal is � and m(qi)
m(qi)+1�qi � 1� q

a. In a similar vein, i votes for b if either i�s signal is �

and m(qi)
m(qi)+1�qi � q

b or i�s signal is � and qi
qi+1�m(qi) � 1� q

b. One issue is the existence of an

optimal strategy. We will either assume that one exists or assume that there is a �nite set

of types, in which case an optimal symmetric strategy always exists and must coincide with

the optimal symmetric equilibrium. The equilibrium characterization and arguments below

are virtually una¤ected if there is a �nite set of q types.48 We now construct a strategy that

fully aggregates information in the limit in the absence of perception biases. The strategy is

such that i votes for the policy that matches si if qi � q� and abstains otherwise. If we select
cuto¤ q� such that

R �q
q�m(q)dF >

R �q
q�(1�m(q))dF (such q

� surely exists as m(�q) > 0:5) and

48To be more precise, if there is a type q (or rather p(q)) that exactly equals one of the equilibrium cuto¤s,

that type may be randomizing in equilibrium. For example, if i�s signal is � and it turns out that qi = qa,

then i may randomize in equilibrium. However, such randomization will be accounted for in the pivotality

calculus, and the formal equilibrium characterization is una¤ected.
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R �q
q�qdF >

R �q
q�(1� q)dF hold, then this implies that the relative turnout share for the correct

policy is strictly greater than 0.5 in either state ensuring that the correct policy is chosen in

both states with a probability that goes to one as N ! 1. Thus, the optimal equilibrium
will result in the same in the limit.

Next, we characterize those equilibria in which the correct policy is chosen with a

probability that goes to one as asN !1 in both states. We initially assume away perception

biases for ease of notation, but this is without loss of generality for the characterization under

unawareness of perception biases. The case with awareness is considered at the end of the

proof. Let qaN and qbN denote the respective equilibrium cuto¤s for electorate size N . We

�rst assume that �q < 1. By the assumption that m(�q) > 1�m(q), we have that m(�q)
m(�q)+1��q >

1�m(q)
q+1�m(q) and that �q > 1 � q. Furthermore, �q > 1 � q and m(�q) > 1 � m(q) imply that

�q
�q+1�m(�q) >

1�q
m(q)+1�q . We now show that lim supN!1 q

a
N <

�q
�q+1�m(�q) and lim supN!1 q

b
N <

m(�q)
m(�q)+1��q must hold. Assume towards a contradiction that lim supN!1 q

b
N �

m(�q)
m(�q)+1��q . Then,

by the condition m(�q)
m(�q)+1��q >

1�m(q)
q+1�m(q) , turnout rate for policy b goes to zero as N ! 1.

This implies that lim supN!1 q
a
N � �q

�q+1�m(�q) must hold because, otherwise, relative turnout

rate for policy b (hence, the probability that b is chosen) goes to zero in state B, which

contradicts our initial hypothesis. More generally, lim supN!1 q
b
N �

m(�q)
m(�q)+1��q if and only if

lim supN!1 q
a
N � �q

�q+1�m(�q) . Strict inequalities can however not hold, as that would mean at

least one policy receives zero votes in both states as N ! 1, which contradicts our initial
hypothesis that the correct policy is chosen in both states with a probability that goes to

one. Hence, lim supN!1
(1��) Pr(pivajB;N)
�Pr(pivajA;N) = �q

1�m(�q) and lim supN!1
(1��) Pr(pivbjB;N)
�Pr(pivbjA;N) = 1��q

m(�q)
.

Thus, (with an abuse of notation) there exists an electorate size N and equilibrium sequence

fqaN ; qbNg such that
(1��) Pr(pivajB;N)
�Pr(pivajA;N) ! �q

1�m(�q) and
(1��) Pr(pivbjB;N)
�Pr(pivbjA;N) ! 1��q

m(�q)
. We will now

show that these limits result in a contradiction. To see why, note that Pr(pivajB;N) and
Pr(pivbjB;N) have a common term (representing the tie events) and the other term di¤ers by
only a multiplicative term. That is, Pr(pivajB;N) can be written as Pr(pivajB;N) = xN+yN ,

and thus, Pr(pivbjB;N) is equal to xN + yNN where N =
R �q
q̂aN
(1�m(q))dFR �q
q̂bN
m(q)dF

, and q̂aN and q̂
b
N

the respective values that solve for qaN =
q̂aN

q̂aN+1�m(q̂aN )
and qbN =

m(q̂bN )

m(q̂bN )+1�q̂bN
.49 In a similar

vein, Pr(pivajA;N) and Pr(pivbjA;N) have a common term, and the other term di¤ers by a
49By the inequalities we have shown above, if q̂aN and q̂bN are very close to �q

�q+1�m(�q) and
m(�q)

m(�q)+1��q respec-

tively, then 1 � q̂aN and 1 � q̂bN cuto¤s are irrelevant and voting against signal will not take place because

1� q̂aN <
m(q)

m(q)+1�q .and 1� q̂
b
N <

q

q+1�m(q) will hold.
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multiplicative term. Thus, Pr(pivajA;N) can be written as Pr(pivajA;N) = wN + zN , and

Pr(pivbjA;N) is equal to wN + zN�N where �N =
R �q
q̂aN
qdFR �q

q̂bN
(1�q)dF

.

Note that �N > 1 and N < 1 must hold as we focus on those equilibria in which

the correct policy is chosen in both states with a probability that goes to one as N !
1. Moreover, the term �N is bounded above because �N � �q

1��q
1�F (q̂aN )
1�F (q̂bN )

and 1 > N �
1�m(�q)
m(�q)

1�F (q̂aN )
1�F (q̂bN )

imply that �N � �q
1��q

m(�q)
1�m(�q) < 1 as �q < 1. Therefore, lim supN!1 �N = �

� =

�q
1��q lim supN!1

1�F (q̂aN )
1�F (q̂bN )

<1. Moreover, lim infN!1 N = � =
1�m(�q)
m(�q)

lim infN!1
1�F (q̂aN )
1�F (q̂bN )

>

0 because 1�F (q̂aN )
1�F (q̂bN )

> 1��q
�q
> 0 from �N > 1 and �q < 1. Since (1��) Pr(pivajB;N)

�Pr(pivajA;N) ! �q
1�m(�q) by

hypothesis, limN!1
(1��)(xN+yN )
�(wN+zN )

= �q
1�m(�q) . We need the following claim.

Claim 2: Assume that �q < 1 and consider a sequence of N such that �N > 1 > N and

equilibrium abstention rate is bounded away from 0 (i.e., it is not necessary that q̂aN ! �q

and q̂bN ! �q). Under these conditions lim infN!1 xN=yN > 0 and lim supN!1 xN=yN <1.
Similarly, lim infN!1wN=zN > 0 and lim supN!1wN=zN <1 must hold.

Proof: It is enough to prove that lim infN!1 xN=yN > 0 and lim supN!1 xN=yN < 1 as

the proof of the other statement is analogous. First, we prove that lim infN!1 xN=yN > 0.

Suppose towards a contradiction that there exists a sequence which we again denote by

N such that xN=yN goes to 0. Thus, xN=NyN goes to 0 as well because � > 0 as

we showed above. Let Pr(ta; tbjB;N) denote the probability that there are ta votes for
policy a and tb votes for policy b in state B with electorate size N . It can be checked

that Pr(t + 1; tjB;N) = Pr(t; tjB;N)N�2t
t+1

Ta(B;N)
1�(Ta(B;N)+Tb(B;N)) , where Tj(S;N) denotes the

expected turnout rate for policy j 2 fa; bg in state S 2 fA;Bg with electorate size N
(thus, N = Ta(B;N)

Tb(B;N)
). If NTb(B;N) goes to a �nite number as N ! 1, then obviously

xN=NyN cannot go to 0 because it is greater than 1�(Ta(B;N)+Tb(B;N))
NTa(B;N)

, which is bounded

below by a number strictly larger than zero for any N because by hypothesis N < 1 and

thus, Ta(B;N) < Tb(B;N). Next, assume that NTb(B;N) goes to in�nity as N !1. Note
that Pr(t; tjB) = Pr(t; t � 1jB)N�2t+1

t
Tb(B;N)

1�(Ta(B;N)+Tb(B;N)) , and that since NTb(B;N) goes to

in�nity as N ! 1 ,there must exist t�(N) > 0 such that N�2t�(N)+1
t�(N)

Tb(B;N)
1�(Ta(B;N)+Tb(B;N)) >

1 � N�2t�(N)�1
t�(N)+1

Tb(B;N)
1�(Ta(B;N)+Tb(B;N)) . In particular, for every t � t

�(N), N�2t
t+1

Ta(B;N)
1�(Ta(B;N)+Tb(B;N))

is bounded above by 1 + 1
t�(N)+1

Ta(B;N)
1�(Ta(B;N)+Tb(B;N)) , which is a �nite number because ab-

stention rate is bounded away from 0 by hypothesis. Recalling that Pr(t + 1; tjB;N) =
Pr(t; tjB;N)N�2t

t+1
Ta(B;N)

1�(Ta(B;N)+Tb(B;N)) , xN=yN cannot go to 0, a contradiction.

We now show that lim supN!1 xN=yN < 1. Suppose towards a contradiction that
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there exists a sequence which we again denote by N such that yN=xN goes to 0. Note that

Pr(t; t+1jB;N) = Pr(t; tjB;N)N�2t
t+1

Tb(B;N)
1�(Ta(B;N)+Tb(B;N)) , and Pr(t+1; t+1jB;N) = Pr(t; t+

1jB;N)N�2t�1
t+1

Ta(B;N)
1�(Ta(B;N)+Tb(B;N)) . If NTb(B;N) goes to a �nite number as N ! 1, then

yN=xN cannot go to 0 because yN
xN

> 1
2
minf1�(Ta(B;N)+Tb(B;N))

(N�1)Ta(B;N) ; NTb(B;N)
1�(Ta(B;N)+Tb(B;N))g, which

converges to a number strictly larger than zero (NTb(B;N) cannot go to 0 as N ! 1).
Next, assume that NTb(B;N) goes to in�nity as N ! 1. Then, for large N there must

exist t�(N) � 1 such that N�2t�(N)
t�(N)+1

Tb(B;N)
1�(Ta(B;N)+Tb(B;N)) > 1 and N�2t

t+1
Tb(B;N)

1�(Ta(B;N)+Tb(B;N)) � 1

for t > t�(N). Thus, N�2t�1
t+1

Ta(B;N)
1�(Ta(B;N)+Tb(B;N)) < 1 for t > t

�(N). This proves that yN=xN

cannot go to 0, a contradiction. Hence, Claim 2 is proved.

We now prove that (1��) Pr(pivajB;N)
�Pr(pivajA;N) ! �q

1�m(�q) and
(1��) Pr(pivbjB;N)
�Pr(pivbjA;N) ! 1��q

m(�q)
result in

a contradiction. Taking a convergent subsequence of xN=yN �rst and then a convergent

subsequence of wN=zN if necessary, we can write

lim
N!1

(1� �)(xN + yN)
�(wN + zN)

= lim
N!1

(1� �)(xN=yN + 1)
�(wN=zN + 1)

lim
N!1

yN
zN

=
(1� �)(c+ 1)
�(d+ 1)

lim
N!1

yN
zN
;

where, abusing notation, c = limN!1
xN
yN
2 (0;1) and d = limN!1

wN
zN
2 (0;1) by Claim

2. Thus, limN!1 yN=zN exists and limN!1 yN=zN 2 (0;1) since limN!1
(1��)(xN=yN+1)
�(wN=zN+1)

=
(1��)(c+1)
�(d+1)

2 (0;1) and limN!1
(1��)(xN+yN )
�(wN+zN )

= �q
1�m(�q) 2 (0;1). Thus, we have that

�q

1�m(�q) =
(1� �)(c+ 1)
�(d+ 1)

lim
N!1

yN
zN
;

and from limN!1
(1��)(xN+NyN )
�(wN+�NzN )

= 1��q
m(�q)

, we have that

1� �q
m(�q)

=
(1� �)(c+ limN!1 N)

�(d+ limN!1 �N)
lim
N!1

yN
zN
:

taking convergent subsequences of N and �N subsequences if necessary. Note that limN!1
�N
N
=

�q
1��q

m(�q)
1�m(�q) and limN!1 N � 1 � limN!1 �N (with at least one inequality being strict).

Thus, the two equalities above cannot be satis�ed at the same time. As a result, there must

exist a q̂ < �q such that q̂aN and q̂
b
N are smaller than q̂ for all N .

For the case in which �q = 1, we assume that every i is an a-partisan with probability
p
2
and a b-partisan with probability p

2
where p > 0 is possibly small. (The assumption that

every i is an a-partisan with probability p
2
and a b-partisan with probability p

2
also works

with �q < 1 as in this case lim supN!1
�N
N
< �q

1��q
m(�q)
1�m(�q) :) Assume towards a contradiction that

lim supN!1 q
b
N �

m(�q)
m(�q)+1��q = 1. As in the case with �q < 1, lim supN!1 q

b
N � 1 if and only if

lim supN!1 q
a
N � �q

�q+1�m(�q) . In particular, lim supN!1 q
a
N =

�q
�q+1�m(�q) and lim supN!1 q

b
N = 1
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as strict inequalities cannot hold. These imply that lim supN!1
(1��) Pr(pivajB;N)
�Pr(pivajA;N) = 1

1�m(�q) and

lim supN!1
(1��) Pr(pivbjB;N)
�Pr(pivbjA;N) = 0. Thus, (with an abuse of notation) there exists an equilib-

rium sequence qaN and q
b
N giving rise to

(1��) Pr(pivajB;N)
�Pr(pivajA;N) ! 1

1�m(�q) and
(1��) Pr(pivbjB;N)
�Pr(pivbjA;N) ! 0

with q̂aN ! 1 and q̂bN ! 1. Using the previous notation introduced above, these lim-

its translate to limN!1
(1��)(xN+yN )
�(wN+zN )

= 1
1�m(�q) and limN!1

(1��)(xN+NyN )
�(wN+�NzN )

= 0. Thus,

limN!1
xN+yN
xN+NyN

wN+�NzN
wN+zN

=1. However, this is impossible because limN!1
xN+yN
xN+NyN

wN+�NzN
wN+zN

�
limN!1

�N
N
= 1 as q̂aN ! 1 and q̂bN ! 1,

N =

p
2
+ (1� p)

R 1
q̂aN
(1�m(q))dF

p
2
+ (1� p)

R 1
q̂bN
m(q)dF

;

and

�N =

p
2
+ (1� p)

R 1
q̂aN
qdF

p
2
+ (1� p)

R 1
q̂bN
(1� q)dF

:

Without awareness: We have shown above that q̂aN is bounded above away from �q for �q � 1
for any equilibrium sequence such that the correct policy is chosen with a probability that

goes to one as as N !1 in both states. Given the bound on the equilibrium cuto¤ q̂aN , we

can construct an overcon�dence function (as we did in the proof of Proposition 2) such that

the probability that policy b is chosen in state B goes to zero because too many people vote,

and too many people vote for their signal (i.e. policy a) due to the fact that
R �q
q
m(q)dF < 0:5.

With awareness: We consider a �nite type space with fq1; q2; :::; qTg where qT = 1 = m(qT ).
Obviously qbN < qT = 1 for every N in any responsive equilibrium. As a result, a su¢ ciently

high and widespread level of Dunning Kruger e¤ect in the population will prevent information

aggregation despite awareness: if for example po(q1) = qT , then the su¢ cient condition

ensures that there exist high enough f�o(qt)gt2f1;2;:::;T�1g such that
TX
t=1

m(qt) + (1� �o(qt))(1�m(qt)) Pr(qt) <
TX
t=1

�o(qt)(1�m(qt)) Pr(qt);

and thus, expected turnout for a exceeds expected turnout for b in state B (even if we assume

every unbiased i with qi < qT votes against a regardless of si).

Proof of Proposition 4 We will �rst show that every responsive equilibrium consists of

cuto¤s qa, �qa, qb and �qb and derive Lemma 8 for the general case below. We start by assuming

that the signal of individual i is �. In that case, i prefers voting for a over abstention if and

only if
1

2
(Pr(piva \ S = Ajsi = �)� Pr(piva \ S = Bjsi = �)) � 0

61



as in the independent signal case. Di¤erent from the independent signal case, we must

di¤erentiate between the case where si comes from a high quality source and the case where

it comes from a low quality source. Let Qi = H (Qi = L) denote the case where si comes

from a high quality (low quality) source. It can be checked that Pr(piva \ S = Ajsi = �)

equals

Pr(piva \ S = Aj (si = � \Qi = H) [ (si = � \Qi = L));

and thus, Pr(piva \ S = Ajsi = �) equals

Pr(piva \ S = A \ si = � \Qi = H) + Pr(piva \ S = A \ si = � \Qi = L)
Pr(si = �)

;

where Pr(piva \ S = A \ si = � \Qi = H) equals

qi� Pr(piva \ si = �jS = A \Qi = H):

Thus, we have that i weakly prefers voting for a over abstention with si = � if and only if

pi(qi) �
x

x+ y
;

where

x = (1� �) Pr(piva \ si = �jS = B \Qi = L)� � Pr(piva \ si = �jS = A \Qi = L)

y = � Pr(piva \ si = �jS = A \Qi = H)� (1� �) Pr(piva \ si = �jS = B \Qi = H):

Next, consider the (weak) preference of i for voting for a over voting for b after observing an

� signal. This will be the case if and only if given si = � and (perceived) signal precision

pi(qi), pi(qi) � x+w
x+w+y+z

, where x and y are as de�ned above and

w = (1� �) Pr(pivb \ si = �jS = B \Qi = L)� � Pr(pivb \ si = �jS = A \Qi = L)

z = � Pr(pivb \ si = �jS = A \Qi = H)� (1� �) Pr(pivb \ si = �jS = B \Qi = H):

Hence, we derive the cuto¤ �qa for voting for policy a conditional on si = �: �qa = maxf x
x+y
; x+w
x+w+y+z

g.
Next, we derive the cuto¤ qb for voting for b conditional on si = �. Note that i prefers voting

for b over abstention and voting for a if and only if pi(qi) � minf w
w+z

; x+w
x+w+y+z

g. Hence, we
derive the cuto¤ qb for voting for b conditional on si = �: qb = minf w

w+z
; x+w
x+w+y+z

g. The
derivation of qa and �qb are analogous and therefore omitted. Thus, we obtain Lemma 8.

Lemma 8 In the correlated signal model, every responsive and symmetric Bayesian Nash

equilibrium consists of four cuto¤s qa, �qa, qb and �qb such that (1) an individual votes for a
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if and only if either i�s signal is � and pi(qi) � �qa (provided that �qa < �q) or i�s signal is

� and pi(qi) � qa (provided that qa > q) and (2) an individual votes for b if and only if

either i�s signal is � and pi(qi) � �qb (provided that �qb < �q) or i�s signal is � and pi(qi) � qb

(provided that qb > q).

In the optimal equilibrium with an unbiased electorate, (i) the probability of selecting

the correct policy must go to one in both states as N goes to in�nity if qH = 1, and (ii)

the probability goes to a number weakly larger than
Pn

k=n+1
2

�
n
k

�
qkH(1 � qH)n�k as N goes

to in�nity if qH < 1. To show why this is the case, we will either assume that an optimal

equilibrium exists or assume that there is a �nite set of types, in which case an optimal

symmetric strategy always exists and must coincide with the optimal symmetric equilibrium.

The equilibrium characterization and arguments below are virtually una¤ected if there is a

�nite set of q types.50

We now construct a simple symmetric strategy for the case with qH = 1. It is enough

to note that even though
R �q
q
qdF <

R �q
q
(1�q)dF holds, there always exists q̂ 2 (q; �q) such thatR �q

q̂
qdF >

R �q
q̂
(1�q)dF since �q > 0:5. This strategy ensures that the relative turnout share for

the correct policy is strictly greater than 0.5 in either state ensuring that the correct policy

is chosen in both states with a probability that goes to one as N ! 1. Thus, the optimal
equilibrium will result in the same in the limit. Next, we construct a symmetric strategy for

the case in which qH < 1 and �q > n
n+1
. Even though 1

n

R �q
q
qdF <

R �q
q
(1 � q)dF holds, there

always exists q̂ 2 (q; �q) such that 1
n

R �q
q̂
qdF >

R �q
q̂
(1 � q)dF since �q > n

n+1
. This condition

ensures that it is the majority among the signals of high quality news outlets that determine

the voting outcome; for example, whenever a majority of high quality sources provide an �

signal, then the relative turnout rate for policy a is strictly greater than 0:5. As a result, the

probability of selecting the correct policy goes to
Pn

k=n+1
2

�
n
k

�
qkH(1� qH)n�k in both states as

N goes to in�nity, and thus the probability in the optimal equilibrium is weakly larger thanPn
k=n+1

2

�
n
k

�
qkH(1� qH)n�k in the limit.

We will now characterize equilibria in large elections with qH < 1 such that the prob-

ability of selecting the correct policy goes to a number weakly larger than
Pn

k=n+1
2

�
n
k

�
qkH(1�

qH)
n�k as N goes to in�nity. Let x denote the realized number of high quality news outlets

(out of a total of n) such that sh = �. In a similar vein, let y denote the realized number of

50To be more precise, if there is a type q (or rather p(q)) that exactly equals one of the equilibrium cuto¤s,

that type may be randomizing in equilibrium. For example, if i�s signal is � and it turns out that qi = �qa,

then i may randomize in equilibrium. However, such randomization will be accounted for in the pivotality

calculus, and the formal equilibrium characterization is una¤ected.
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low quality news outlets (out of a total of m) such that sl = �. One thing to note is that

given the realized x and y values, the conditional turnout rate is exactly the same in the two

states. Moreover, the conditional relative turnout rates are exactly the same. To see why,

let P jx;y;A and P
j
x;y;B denote the respective turnout rate for policy j 2 fa; bg conditional on x

and y realizations in state A and state B. Given equilibrium cuto¤s qa, �qa, qb and �qb, P ax;y;A
equals

x

n

R �q
�qa
qdF +

y

m

R �q
�qa
(1� q)dF + n� x

n

R qa
q
qdF +

m� y
m

R qa
q
(1� q)dF:

It can be checked that P ax;y;B is exactly the same; that is, P
a
x;y;A = P

a
x;y;B. This is true also

with perception biases (with and without awareness). Therefore, hereafter P ax;y denotes the

turnout rate for policy a conditional on x and y realizations in either state. In a similar

vein, it can be checked that P bx;y;A = P
b
x;y;B. Thus, hereafter P

b
x;y denotes the turnout rate for

policy b conditional on x and y realizations in either state. Finally let Px;y denote the total

turnout rate conditional on x and y realizations in either state; that is, Px;y = P ax;y + P
b
x;y.

Note that the probability of selecting the correct policy equals

nX
x=0

mX
y=0

NX
T=0

�
N

T

�
P Tx;y(1� Px;y)N�T (�MA(x; y)P (ajx; y; T ) + (1� �)MB(x; y)P (bjx; y; T ))

where MS(x; y) denotes the probability of (x; y) realizations in state S 2 fA;Bg, and
P (jjx; y; T ) denotes the probability that policy j 2 fa; bg wins given x and y realizations
and realized turnout being equal to T . For example, for odd T , P (ajx; y; T ) is equal toPT

i=T+1
2

�
T
i

� �Pax;y
Px;y

�i �P bx;y
Px;y

�T�i
.

We can now prove the result below for unbiased electorates.

Lemma 9 Let � be bounded above away from qH and below away from 1 � qH . In large
elections with qH < 1, optimal equilibria are such that the realization of x determines whether
Pax;y
Px;y

> 1
2
or

Pax;y
Px;y

< 1
2
. More precisely, in every su¢ ciently large election, if x � n+1

2
, then

Pax;y
Px;y

> 1
2
, and if x < n+1

2
, then

Pax;y
Px;y

< 1
2
(regardless of y). As a result, the probability of

selecting the correct policy converges to
Pn

i=n+1
2

�
n
i

�
qiH(1 � qH)n�i as N ! 1. If qH = 1,

the probability converges to 1 as N !1.

Proof: The proof with qH = 1 is straightforward given the strategy we constructed above.

So, assume that qH < 1. The probability of selecting the correct policy which we denote by

C equals

nX
x=0

mX
y=0

NX
T=0

�
N

T

�
P Tx;y(1�Px;y)N�T (�MA(x; y)P (ajx; y; T )+(1��)MB(x; y)(1�P (ajx; y; T ))
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by what we have shown above. Note that for any T � 0 this term above reaches its highest

possible value at P (ajx; y; T ) = 1 if �MA(x; y) > (1 � �)MB(x; y) and at P (ajx; y; T ) = 0
if �MA(x; y) < (1 � �)MB(x; y). Given that � is bounded away from qH and 1 � qH , we
have that �MA(x; y) > (1 � �)MB(x; y) if and only if x � n+1

2
, and �MA(x; y) < (1 �

�)MB(x; y) if and only if x < n+1
2
(recall than n is odd). As a result, C is bounded above byPn

i=n+1
2

�
n
i

�
qiH(1� qH)n�i. However, since the strategy that we constructed before generates

a probability of selecting the correct policy which converges to
Pn

i=n+1
2

�
n
i

�
qiH(1 � qH)n�i

as N goes to in�nity, the probability in the optimal equilibrium must also converge toPn
i=n+1

2

�
n
i

�
qiH(1 � qH)n�i. We can now prove the lemma. Suppose towards a contradiction

that there exists an electorate size sequence for which the claim does not hold in the optimal

equilibrium; e.g., there exists some x � n+1
2
such that

Pax;y
Px;y

� 1
2
for every element in that

sequence. Then, it can be checked that the limiting probability of selecting the correct policy

is bounded above away from
Pn

i=n+1
2

�
n
i

�
qiH(1� qH)n�i, contradicting optimality. Hence, the

lemma is proved.

We now consider a �nite type space with fq1; q2; :::; qTg where q1 = q and qT =

�q � 1 (note that none of the results we proved above rely on a continuum type space).

We assume qH < 1 to show the ine¢ ciency caused by a high level of overcon�dence. The

proof with qH = 1 is similar and much simpler (therefore, omitted). First, assume that

lim supN!1 �q
a
N � lim supN!1 �qbN without loss of generality. If there exists a type ~q � �q, such

that lim supN!1 �q
a
N < ~q, then (abusing notation) there exists an electorate size sequence and

cuto¤ sequence (�qaN ; q
a
N
; �qbN ; q

b
N
) such that �qaN < ~q, �qbN � �qaN and qb

N
< ~q for all N . Thus,

p�1o (�q
b
N) � p�1o (�qaN).51 As a result, high enough levels of overcon�dence implies that

P
p�1o (�qaN )�q<�qaN

�(q)(1� q)f(q) +
P
q>�qaN

(1� q)f(q) + n� 1
2n

 P
p�1o (�qaN )�q<�qaN

�(q)qf(q) +
P
q>�qaN

qf(q)

!

�
P

q<p�1o (qb
N
)

�
1� q + n� 1

2n
q

�
f(q) +

P
p�1o (qb

N
)�q<qb

N

(1� �(q))
�
(1� q) + n� 1

2n
q

�
f(q) +

n+ 1

2n

 P
p�1o (�qbN )�q<�qbN

�(q)qf(q) +
P
q>�qbN

qf(q)

!

provided that the su¢ cient condition holds (we simplify notation by assuming qa
N
� q; if

qa
N
> q, this only makes the inequality easier to obtain).52 For example, with p�1o (~q) = q

51For the discrete case, p�1o (�qaN ) = minfqtjpo(qt) � �qaNg.
52We assume without loss of generality that no type coincides with �qaN , �q

b
N , or q

b
N
. This is only to reduce

notation and has no e¤ect on the result.
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(i.e., p�1o (�q
a
N) = q � p�1o (�qbN)), and f�(q)gq�q su¢ ciently high for every q � ~q, the latter term

will be weakly smaller than the former term due to the su¢ cient condition. Thus, if x = n�1
2
,

and y = m, then the inequality will imply that
P bx;y
Px;y

� 1
2
, which is ine¢ cient.53 Next, assume

that lim supN!1 �q
a
N � �q. This holds if and only if lim supN!1 �q

b
N � �q. In fact, these should

be equalities as otherwise a violation of Lemma 9 follows (for example, lim supN!1 �q
a
N > �q

violates Lemma 9 if x = n and y = m). Thus, lim supN!1 �q
a
N = lim supN!1 �q

b
N = �q. Let

�N(�q; s) denote the probability that an individual i with precision qi = �q and signal s votes for

the policy that matches s with electorate size N and assume without loss of generality that

�N(�q; �) � �N(�q; �) for all large N .54 There are two possibilities to consider. First, consider
the case where lim supN!1 �N(�q; �) = 0. This implies that lim supN!1 �N(�q; �) = 0. Thus,

(abusing notation) there exists an electorate size and cuto¤ sequence (�qaN ; q
a
N
; �qbN ; q

b
N
) such

that �N(�q; �) ! 0 and �N(�q; �) ! 0. This requires qa
N
� q and qb

N
� q for all su¢ ciently

large N . To see why, note that
P bx;y
Px;y

> 1
2
surely fails to hold if qa

N
> q, x = 0, and y = 0 given

that �N(�q; �) ! 0. In fact, by the same argument, �N(q; �) ! 0 and �N(q; �) ! 0, where

�N(q; s) denotes the probability that an individual with qi = q votes against s. In particular,

�N(q; �)f(q) < �N(�q; �)f(�q) must hold due to Lemma 9 and thus,
�N (�q;�)
�N (q;�)

is bounded below

away from 0 (consider x = n and y = m). As a result, with p�1o (�q) = q and f�(q)gq�q
su¢ ciently high, we �nd

�N(�q; �)

0@X
q�q<�q

�(q)(1� q)f(q) + (1� �q)f(�q) + n� 1
2n

0@X
q�q<�q

�(q)qf(q) + �qf(�q)

1A1A+
�N(q; �)(1� �(q))f(q)q

n+ 1

2n

to be weakly strictly greater than

�N(�q; �)
n+ 1

2n

0@X
q�q<�q

�(q)qf(q) + �qf(�q))

1A+ �N(q; �)�1� q + qn� 1
2n

�
(1� �(q))f(q)

provided that the su¢ cient condition holds. This implies that if x = n�1
2
, and y = m, then

P bx;y
Px;y

> 1
2
fails to hold, violating Lemma 9. The proof for the case where lim supN!1 �N(�q; �) >

53The proof is still valid if there exists an electorate size and cuto¤ subsequence (�qaNk
; qa
Nk
; �qbNk

; qb
Nk
) such

that �qbNk
< �qaNk

< ~q for Nk !1. In this case, the electorate is just as or even more prone to the ine�ciency
caused by overcon�dence since lim supNk!1 �qbNk

� lim supN!1 �qaN . In this scenario, the relevant case to

consider is the case where x = n+1
2 and y = 0.

54The proof is similar if there exists an electorate size and cuto¤ subsequence (�qaNk
; qa
Nk
; �qbNk

; qb
Nk
) such

that �qbNk
< �qaNk

< ~q for Nk !1.
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0 is analogous. The case with awareness can be analyzed in a similar way to previous exten-

sions assuming that qH = 1 and �q = 1, and considering the case where either x = n�1
2
, and

y = m or x = n+1
2
, and y = 0.

A.4 Proposition 5

Assume that � is bounded away from 0 and 1, and that �q > 1� q. If media veracity is low
enough so that

R �q
q
qdF < 0:5 holds, and su¢ ciently many individuals with low competence

are highly overcon�dent and vote for their signal, then the probability that the wrong policy

is chosen goes to one in at least one state as N grows without bound, whereas in an unbiased

electorate the correct policy is chosen with a probability that goes to one in the optimal

equilibrium.

Proof: The proof with unawareness is analogous to the proof of Proposition 3 with unaware-

ness since this setting is in a way a special case wherem(q) = q, and not only
R �q
q
m(q)dF < 0:5

but also
R �q
q
qdF < 0:5. The only di¤erence is that we can prove general results even with

awareness. Consider the case in which �q < 1. Consider those equilibria such that the cor-

rect policy is chosen with a probability that goes to one in both states. Let qaN and qbN
denote the respective equilibrium cuto¤ representation for electorate size N as before, and

uppose towards a contradiction that lim supN!1 q
a
N � �q and lim supN!1 q

b
N � �q (as in

the proof of Proposition 3, lim supN!1 q
a
N � �q if and only if lim supN!1 q

b
N � �q).55 As

in the proof of Proposition 3, a strict inequality cannot hold as that would mean that the

probability of winning goes to either 0.5 or 0 for the correct policy in at least one state as

N ! 1. Hence, lim supN!1
(1��) Pr(pivajB;N)
�Pr(pivajA;N) = �q

1��q and lim supN!1
(1��) Pr(pivbjB;N)
�Pr(pivbjA;N) = 1��q

�q
.

Thus, (with an abuse of notation and using the notation introduced above) there exists

an equilibrium sequence qaN ! �q and qbN ! �q giving rise to limN!1
(1��)(xN+yN )
�(wN+zN )

= �q
1��q

and limN!1
(1��)(xN+NyN )
�(wN+�NzN )

= 1��q
�q
. Thus, limN!1

xN+yN
xN+NyN

wN+�NzN
wN+zN

=
�

�q
1��q

�2
. Note that

N < 1 < �N and thus,�
�q

1� �q

�2
= lim

N!1

xN + yN
xN + NyN

wN + �NzN
wN + zN

< lim sup
N!1

�N
N

�
�

�q

1� �q

�2
The strict inequality holds because Claim 2 above still holds in this case. We obviously

get a contradiction with limN!1 �N = 1 = limN!1 N (taking convergent subsequences if

55This holds under awareness of others�perception biases since we assume that po(q) < �q for all q < �q and

po(�q) = �q. Thus, p�1o (q)! �q as q ! �q.
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necessary); therefore, at least one of limN!1 �N > 1 or limN!1 N < 1 must hold. The

weak inequality holds because

N =

R �q
qaN
(1� q)dF +

R qaN
p�1o (qaN )

�(q)(1� q)dFR �q
qbN
qdF +

R qbN
p�1o (qbN )

�(q)qdF
=
1� ~qaN
~qbN

1� F (qaN) +
R qaN
p�1o (qaN )

�(q)dF

1� F (qbN) +
R qbN
p�1o (qbN )

�(q)dF
;

and

�N =

R �q
qaN
qdF +

R qaN
p�1o (qaN )

�(q)qdFR �q
qbN
(1� q)dF +

R qbN
p�1o (qbN )

�(q)(1� q)dF
=

~qaN
1� ~qbN

1� F (qaN) +
R qaN
p�1o (qaN )

�(q)dF

1� F (qbN) +
R qbN
p�1o (qbN )

�(q)dF
;

where ~qaN 2 (p�1o (q
a
N); �q) and ~q

b
N 2 (p�1o (q

b
N); �q) are conditional expectations. Hence, we

have a contradiction, and at least one of lim supN!1 q
a
N < �q or lim supN!1 q

b
N < �q must

hold. In particular, either qaN or qbN is bounded above by a number ~q < �q regardless of

the form of overcon�dence in the population. As a result, in at least one state, a suf-

�ciently high level of overcon�dence will prevent information aggregation and result in

the wrong policy being chosen with a probability that goes to one. If �q = 1, then we

assume for tractability (as we did in Proposition 3) that every i is an a-partisan with

probability p
2
and a b-partisan with probability p

2
. (The assumption that every i is an

a-partisan with probability p
2
and a b-partisan with probability p

2
would not a¤ect the proof

with �q < 1 as it still implies that lim supN!1
�N
N

<
�

�q
1��q

�2
) In this case, qaN ! 1 and

qbN ! 1 give rise to limN!1
xN+yN
xN+NyN

wN+�NzN
wN+zN

= 1. However, this is impossible because
limN!1

xN+yN
xN+NyN

wN+�NzN
wN+zN

� lim supN!1
�N
N

< 1 due to p > 0. Thus, at least one of

lim supN!1 q
a
N < 1 or lim supN!1 q

b
N < 1 must hold. As a result, in at least one state, a

su¢ ciently high level of overcon�dence will prevent information aggregation and result in

the wrong policy being chosen with a probability that goes to one.

A.5 Proofs of Examples in Section 2.3

Proof of Statements in Example 2: We �rst show that the equilibrium consists of cuto¤s

also in this variation. First, consider the case where the signal of individual i is �. In that

case, i prefers voting for a over abstention if and only if

1

2
(Pr(piva \ S = Ajsi = �)� Pr(piva \ S = Bjsi = �)) � 0

holds given as before. Di¤erent from the previous models, we must di¤erentiate between the

case where si comes from the high media veracity state (v = h) and the low media veracity
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state (v = l). It can be checked that Pr(piva \ S = Ajsi = �) equals Pr((piva \ S = A\ v =
h) \ (piva \ S = A \ v = l)jsi = �), and thus, Pr(piva \ S = Ajsi = �) equals

Pr(piva \ S = A \ si = � \ v = h) + Pr(piva \ S = A \ si = � \ v = l)
Pr(si = �)

;

where Pr(piva \ S = A \ si = � \ v = h) equals

Pr(pivajS = A \ v = h) Pr(si = �jS = A \ v = h) Pr(S = Ajv = h) Pr(v = h)

by conditional independence of individual signals. Thus, Pr(piva \ S = A \ si = � \ v = h)
equals �

2
Pr(pivajS = A \ v = h)q where q = Pr(si = �jS = A \ v = h) = Pr(si =

�jS = B \ v = h). Using a similar derivation for the case in which v = l, and letting

m(q) = Pr(si = �jS = A \ v = l) = Pr(si = �jS = B \ v = l), we have that i weakly

prefers voting for a over abstention and voting for b with si = � if and only if the term that

represents the bene�t of voting for a if si = �, which is given by

�

2
[q Pr(pivajS = A \ v = h) +m(q) Pr(pivajS = A \ v = l)]� (10)

(1� �)
2

[(1� q) Pr(pivajS = B \ v = h) + (1�m(q)) Pr(pivajS = B \ v = l)]

is weakly greater than both 0 and the term that represents the bene�t of voting for b if

si = �, which is given by

(1� �)
2

[(1� q) Pr(pivbjS = B \ v = h) + (1�m(q)) Pr(pivbjS = B \ v = l)]� (11)

�

2
[q Pr(pivbjS = A \ v = h) +m(q) Pr(pivbjS = A \ v = l)]:

Analogously, i weakly prefers voting for b over abstention and voting for a with si = � if

and only if (11) is weakly greater than both 0 and (10). Next, consider the preference of i

for voting for b over abstention and voting for a after observing a � signal: i weakly prefers

voting for b over abstention and voting for a with si = � if and only if

(1� �)
2

[q Pr(pivbjS = B \ v = h) +m(q) Pr(pivbjS = B \ v = l)]� (12)

�

2
[(1� q) Pr(pivbjS = A \ v = h) + (1�m(q)) Pr(pivbjS = A \ v = l)]

is weakly greater than 0 as well as the term that represents the bene�t of voting for a if

si = �, which is given by

�

2
[(1� q) Pr(pivajS = A \ v = h) + (1�m(q)) Pr(pivajS = A \ v = l)]� (13)

(1� �)
2

[q Pr(pivajS = B \ v = h) +m(q) Pr(pivajS = B \ v = l)]:
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Analogously, i weakly prefers voting for a over abstention and voting for b with si = � if

and only if (13) is weakly greater than 0 as well as (11). Note that all these conditions give

rise to a cuto¤ equilibrium structure as long as f(q) is increasing in q (as in our example).

This is because (10) and (12) are strictly increasing in q, whereas (11) and (13) are strictly

decreasing in q if m(q) is increasing in q as in our example. We will repeatedly use this

cuto¤ structure in our proofs below. In particular, let �ki (j) denote the turnout rate of type

k 2 fL;M;Hg for policy i 2 fa; bg having observed signal j 2 f�; �g. One can check
that if for example �Ha (�) 2 (0; 1), then �Ma (�) = �La (�) = 0. Moreover, �Ha (�) 2 (0; 1)
implies that �La (�) = �

M
a (�) = 0 given the parameters of Example 2, because if �

L
a (�) > 0 or

�Ma (�) > 0, then �
H
a (�) = 1 must hold, a contradiction. As another example, if �

H
b (�) > 0

then �Mb (�) = �
L
b (�) = 1, whereas if �

L
b (�) < 1, then �

M
b (�) = �

H
b (�) = 0, and if �

L
a (�) < 1,

then �Ma (�) = �
H
a (�) = 0.

We now characterize equilibria further. Suppose in equilibrium �Ha (�) > 0, meaning

that H type votes against signal with strictly positive probability when s = �. Then,

�Ma (�) = �La (�) = 1 and �Ha (�) = 1 must hold as argued above. Moreover, �Mb (�) =

�Lb (�) = 0 since �
H
b (�) < 1. Next, note that we will assume away the case where �

H
a (�) = 0

or �Hb (�) = 0 in equilibrium as such equilibria are either unresponsive or ine¢ cient and

overcon�dence can never improve the ine¢ ciency.

We now show the negative impact of overcon�dence in large elections when more than

2=3 of low type individuals are overcon�dent and perceive themselves as high type (with and

without awareness). First, consider the case where �Ha (�) 2 (0; 1) in large elections. This
implies that no L or M type votes for policy a regardless of signal. Regarding �Hb (�) there

are two possibilities: either �Hb (�) 2 (0; 1) with �Ha (�) = 0 or �Hb (�) = 1 (recall we already
ruled out the case where �Hb (�) = 0 and by what we showed above, �Ha (�) > 0 requires

�Ha (�) = 1). If �Hb (�) 2 (0; 1), note that no L or M type votes for policy b regardless of

signal; i.e., �Lb (j) = 0 or �
M
b (j) = 0 for j 2 f�; �g. Now, assume without loss of generality

that �Hb (�) � �Ha (�). It can be checked that if v = l and more than 1=3 of low type

individuals are overcon�dent and perceive themselves as high type, policy b will be chosen

in state A with a probability that is very close to one, which is ine¢ cient. Next, assume

that �Ha (�) < �
H
b (�) = 1. This case now allows for the possibility that L and/or M types

vote for policy b (but not for a) in equilibrium (in fact, even �Hb (�) 2 (0; 1) could be a

possibility). But the conclusion is unchanged: if v = l and more than a third of low type

individuals are overcon�dent and perceive themselves as high type, policy b will be chosen

in state A with a probability that is very close to one, which is ine¢ cient. The case where
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�Hb (�) < �
H
a (�) = 1 is analogous. Finally, we consider the case where �

H
a (�) = �

H
b (�) = 1.

In that case, 2/3 (or more) of low type individuals perceiving themselves as high type is

su¢ cient for an ine¢ cient election outcome. First, assume that all low type individuals vote

against their signal with probability one; i.e., �La (�) = 1 and �
L
b (�) = 1. In fact, this may

not be part of an equilibrium, but this is the largest possible barrier against the speci�c

ine¢ ciency that we are showing in at least one state of the world for v = l. Regarding the

strategy of M type individuals, no matter which strategy they employ, if v = l and more

than 2=3 of low type individuals are overcon�dent and perceive themselves as high type, then

the relative vote share for the correct policy is strictly lower than 0.5 in at least one state

of the world given the parameters of the example. All of these statements hold regardless of

whether or not individuals are aware of others�possible biases.

Proof of Statements in Example 4: We �rst show that we have an equilibrium if

competent individuals (with qi = 1) vote for the signal that matches their signal and the

rest abstain. Modifying the equilibrium characterization in the proof of Proposition 4 for

the case where qi 2 f0; 1g, it follows that for qi = 1 and si = �,

� Pr(piva \ si = �jS = A \Qi = H) > (1� �) Pr(piva \ si = �jS = B \Qi = H)

must hold so that i strictly prefers voting for policy a over abstention, and

� Pr(pivb \ si = �jS = A \Qi = H) > (1� �) Pr(pivb \ si = �jS = B \Qi = H)

so that i strictly prefers abstention over voting for policy b. Analogous inequalities must

hold if qi = 1 and si = �. For qi = 0 and si = �, given that � = qL = 0:5, Pr(pivajS = A) <
Pr(pivajS = B), and Pr(pivbjS = A) > Pr(pivbjS = B) must hold so that i strictly prefers
abstention over voting for policy a or b. Analogously, Pr(pivBjS = b) < Pr(pivBjS = a),

and Pr(pivajS = B) > Pr(pivajS = A) if qi = 0 and si = � (that Qi = L and si = �

has no implication for piva since no j with Qj = L is supposed to vote). To show that the

very �rst inequality holds, it is enough to show that Pr(piva\si=�jS=A\Qi=H)
Pr(piva\si=�jS=B\Qi=H) > 1 given that

qH = 0:8 and � = 0:5. Given the notation and results in the proof of Proposition 4 and our

parameters, Pr(piva \ si = �jS = A \Qi = H) equals
5X
x=1

MA(x)
x

5

NX
T=0

�
N

T

�
(0:25)T (0:75)N�T

�
T

bT
2
c

��x
5

�bT
2
c
�
5� x
5

�T�bT
2
c

whereas Pr(piva \ si = �jS = B \Qi = H) equals
5X
x=1

MB(x)
x

5

NX
T=0

�
N

T

�
(0:25)T (0:75)N�T

�
T

bT
2
c

��x
5

�bT
2
c
�
5� x
5

�T�bT
2
c
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where MA(x) =
�
5
x

�
(0:8)x(0:2)5�x and MB(x) =

�
5
x

�
(0:8)5�x(0:2)x. For x = 5 it is immediate

that the former term exceeds the latter term. Next, focusing separately on pairs x 2 f2; 3g
and x 2 f1; 4g shows after some algebra that Pr(piva\si=�jS=A\Qi=H)

Pr(piva\si=�jS=B\Qi=H) > 1 must hold. The

proof of other inequalities are similar.

We now prove that the ine¢ ency caused by overcon�dence of 50 percent of individuals

with qi = 0 is around 16 percent. Assume that state is A. Given the parameters of our

example, if y = 0 and S = A, then overcon�dent individuals�votes will result in the wrong

policy being chosen with a probability that goes to one as N goes to in�nity provided that

x 2 f3; 4; 5g, whereas if x 2 f3; 4; 5g in an unbiased electorate, then policy a is chosen with
a probability that goes to one as N goes to in�nity. This is due to the law of large numbers,

and the fact that in However, if y = 5, then overcon�dent individuals�votes will result in

the correct policy being chosen with a probability that goes to one as N goes to in�nity if

x 2 f0; 1; 2g, whereas if x 2 f0; 1; 2g in an unbiased electorate, policy a is chosen with a
probability that goes to zero as N goes to in�nity. The net negative e¤ect focusing on these

scenarios with y 2 f0; 5g is ex ante equal to Pr(y = 0)Pr(x 2 f3; 4; 5g) � Pr(y = 5)Pr(x 2
f0; 1; 2g) which in turn equals Pr(y = 0)[Pr(x 2 f3; 4; 5g)� Pr(x 2 f0; 1; 2g)] = 0:028 since
qL = 0:5. If y = 1, then overcon�dent individuals�votes will result in the wrong policy b

being chosen with a probability that goes to one as N goes to in�nity if x 2 f4; 5g (whereas
in an unbiased electorate, policy a is chosen with a probability that goes to one as N goes

to in�nity if x 2 f3; 4g). However, if y = 4, then overcon�dent individuals�votes will result
in the correct policy being chosen with a probability that goes to one as N goes to in�nity if

x 2 f1; 2g. The net negative e¤ect in these two scenarios with y 2 f1; 4g is ex ante equal to
Pr(y = 1)[Pr(x 2 f3; 4g) � Pr(x 2 f1; 2g)] = 0:048. Finally, the net negative e¤ect is equal
to Pr(y = 2)[Pr(x = 3)�Pr(x = 2)] = 0:087 if y 2 f2; 3g. Summing up these numbers gives
16:3 percent. As the situation in state B is symmetric, we proved the result.

B Regression Analysis: Turnout at the Individual Level

We estimate a random e¤ects probit regression model for a more detailed analysis of turnout

behavior and to provide additional support for the rationality of voter behavior at the individ-

ual level. Speci�cally, we estimate a panel model explaining the individual decision whether

or not to vote using the independent variables (i) elicited belief regarding own placement in

the top 1/3; (ii) placement in top 1/3 (=1 if the subject is in top 1/3); (iii) elicited belief

regarding other group members�likelihood of voting; and �nally, (iv) time trend. Errors are
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Table 2: Explaining Individual Turnout Decision

(1) (2)

All Rounds Round=6

Placement in top 1/3 0.688 (0.239)��� -0.011 (0.172)

Elicited belief regarding own placement in top 1/3 0.028 (0.008)��� 0.016 (0.006)���

Elicited belief regarding others�likelihood of voting 0.010 (0.005)�� 0.014 (0.006)��

Elicited belief regarding (other) voters�placement in top 1/3 - 0.003 (0.006)

Round# -0.026 (0.034) -

Constant -1.500 (0.631)�� -1.416 (0.778)�

Observations 864 144

Notes: The dependent variable is the subject�s binary choice between voting (= 1) and abstaining

(= 0). Errors are clustered at the session level. ���, ��, and � indicates signi�cance at the 1%, 5%,

and 10% level, respectively.

clustered at the session level. Results are presented in Table 2. Coe¢ cients of the variables

�elicited belief regarding own placement in top 1/3�and �placement in top 1/3�are positive

and highly signi�cant (p < 0:01). These are consistent with the equilibrium prediction (as

placement in top 1/3 is associated with higher elicited beliefs in the data). The coe¢ cient

of the variable �elicited belief regarding others� likelihood of voting� is also positive and

signi�cant (p < 0:05), whereas time trend is not signi�cant. Thus, the regression analysis

suggests that expectation of increased turnout from others encourages turnout. A theoreti-

cal mechanism behind this is as follows. Higher turnout from other members is associated

with a lower cuto¤ used by them, and this implies a reduced expected signal precision for

every other individual voter. If the subject weighs the negative e¤ect of reduced expected

precision of other voters more heavily than the positive e¤ect of increased expected turnout

of other voters, the subject�s best response cuto¤ must decrease.

As we elicit subjects�beliefs regarding the competence of other voters only in the

last round, we also run a regression using only the data of the last round and estimate

a regression explaining the individual decision whether or not to vote in the last round

using the independent variables (i) elicited belief about placement in the top 1/3; (ii) actual
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placement (whether or not the subject is in top 1/3); (iii) elicited belief regarding other group

members�likelihood of voting; and (iv) elicited belief regarding other voters�placement in top

1/3.56 Results and coe¢ cients are largely consistent with the results of the regression above.

However, the coe¢ cient of the new variable and the coe¢ cient of the variable �placement in

top 1/3�are not signi�cant, and their signs are not consistent with what we expect. This

could be because data is very noisy since we use data from only one round in this regression,

and very few people abstain in the last round (there is also correlation between two of our

independent variables, and dropping one of them also does not change the outcome).

C Instructions

Experimental instructions are in English as the experiment was conducted in English. In-

structions consist of �ve parts: four of them are paper based, and one is online. After the

�rst paper-based part, subjects received online instructions for the quiz and the consequent

belief elicitation task regarding quiz performance. We transcribe the online instructions be-

low and present the screenshots of the quiz. In what follows, we reduced the font and the

spacing of the original introductions to conserve space.

56We elicited subjects�beliefs regarding the probability that a randomly selected voter is in the top 1/3

only in the �nal round so as not to overburden them in every round with two belief elicitation tasks.
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PART 1 

Welcome to the experiment! Please turn off your cell phones and do not communicate with other 
subjects during the experiment. You will be paid for your participation in this experiment. The amount 
of money you earn depends on your decisions and decisions of other participants. Your decisions will 
be treated anonymously. The money you earn will be paid to you in cash at the end of the experiment.  

This experiment consists of several parts. We explain the details of Part 1 now, the details of other 
parts will be explained in a short time.  

Part 1 involves a “Guessing Task”. In this task, you will be presented with various statements. Consider 
for example the statement “it snowed in Amsterdam in April 1991”. We know whether or not this 
statement is true but you may not know it for certain. We will ask you to report your “best guess” 
about the chances that such a statement is true.  

You will report your guess by choosing a percentage between 0 and 100. The percentage that you 
choose indicates your “best guess”.  The higher the accuracy of your best guess, the higher the payoff 
you get. In order to maximize your payoff: 

• If you are certain a statement is true then you should choose a percentage of 100, and if you are 
certain a statement is false you should choose 0. 

• In many cases you do not know for certain whether a statement is true or not. If you think the 
statement is equally likely to be true or false, you should choose a percentage of 50.  

• More generally, the more confident you are a statement is “true” the higher the percentage you 
should assign. If for example you are very confident a statement is true, you should choose a 
percentage close to 100. 

• Conversely, the more confident you are a statement is “false” the lower the percentage you 
should assign. If for example you are very confident a statement is false, you should choose a 
percentage close to 0. 

You will make guesses regarding 6 statements in total, and 2 statements will be randomly selected in 
order to determine your payoff in this part. You will earn an amount from €0 to €1 in each selected 
statement depending on the accuracy of your guess. 

You will earn the most if you “honestly report your best guess” about the chances that a statement 
is true because your payoff increases in the accuracy of your guess. (Your exact payoff for each 
selected statement is calculated as follows. Suppose you assign a percentage of P to the statement 
being true. If the statement is true your payoff equals 1-(1-P%)2, and your payoff equals 1-(P%)2 if the 
statement is false.) 

If you have any questions or need assistance of any kind please raise your hand and an experimenter 
will come to you. Please click OK on your screen when you are ready to start the experiment. 

 
[Part 1 was followed by the quiz and the subsequent belief elicitation task regarding quiz performance. 
The instructions for this part were only computerized. We transcribe the instruction screens below and 
present the screenshots of the quiz. 

Screen before the beginning of the quiz] In this part of the experiment, you will be taking a QUIZ on 
math and logic puzzles taken from various tests. The quiz involves 20 questions. You will have 10 
minutes to correctly answer as many questions as you can. You will be paid 30 cents for each correct 
answer. Your quiz score will also be relevant for later parts of the experiment. We will explain soon 
how exactly it will be relevant. Please click OK to continue. 

[Following screen before the beginning of the quiz] You will next see the first page of the quiz. Please 
click the appropriate button to record your answer to a quiz question. When you want to see the 
second page of the quiz, click NEXT to continue. By clicking BACK on the second page you can go back 



to the first page of the quiz. You can go back and forth between the two pages as you wish within the 
time limit of 10 minutes. Answers that you have given will always remain saved when you move 
between the two pages. Please click START when you are ready to start the quiz. 

[Screenshots of the quiz: First screen] 

 

[Second quiz screen] 

 

[Belief elicitation screen after the quiz ends] 

PLEASE READ CAREFULLY 

We have now obtained the quiz scores of the 24 participants in this room, and ranked the participant 
scores from highest to lowest. 



IMPORTANT: The quiz refers to the 20 math and logic puzzles that you have just answered, NOT the 
guessing tasks at the beginning of the experiment! 

Your quiz score ranks in the TOP 1/3 if at most 7 participants scored better than you in the quiz. 
Exactly 8 out of 24 participants are in the top 1/3. For example, if you and another participant have the 
same quiz score and tie for the 8th place, then the tie is broken fairly and each of you is selected to be 
in the top 1/3 with equal chance. 

We will now ask you to indicate your best guess about a statement regarding your score ranking. You 
will earn an amount from €0 to €3 depending on the accuracy of your guess. As before, you will indicate 
your guess choosing a percentage between 0 and 100, and as before, the higher the accuracy of your 
guess the higher the payoff you get; so you earn the most when you honestly report your best guess. 

Please indicate your best guess about the statement below. What are the chances that it is true? 

“My quiz score ranks in the top 1/3.” 

Please enter a percentage from 0 to 100 to indicate your best guess. 

PART 2 

Part 2 and the following parts are on group decision making. From now on, you will be making choices 
in a group. In each round, the computer will randomly pick RED or BLUE as “your group color.” You will 
not learn the color until the end of the round. Your task as a group is to try to guess your group color 
correctly―based on information group members may receive.  

Here is a detailed description of Part 2:  

In each round, you will make choices in a group of 24 (including you). 

In each round, the computer will randomly pick either RED or BLUE as “your group color.” There is a 
50% chance RED will be picked and a 50% chance BLUE will be picked. In other words, RED and BLUE 
are equally likely to be your group color.  

You will not learn your group color until the end of the round. Your task as a group is to try to guess 
the group color correctly. The group decision will be made by voting.  

Before voting, each member of your group will be shown a “card”, which may give information 
regarding your group color.  

You will see only “Your own Card”. Similarly, each group member sees only his/her own card. 

Each card is either red or blue. After you are shown Your Card, you will choose between voting for the 
color of Your Card and abstaining. In other words: 

• If you are shown a red card then you choose between voting for red and abstaining. 
• If you are shown a blue card then you choose between voting for blue and abstaining. 

Cards are of two types: informative and misleading. A card is “informative” if its color is the same as 
your group color and it is “misleading” if it has the opposite color. In each round, Your Card is either 
informative or misleading. 

Since an “informative card” has the same color as your group, voting for the color of an informative 
card will result in a CORRECT VOTE. Since a “misleading card” has the opposite color, voting for the 
color of a misleading card will result in an INCORRECT VOTE.   

To repeat, Your Card is either informative or misleading. However, you will NOT know for certain 
whether Your Card is informative or misleading. This will be determined by CHANCE in each round. To 
be more precise, in each round, Your Card is  



• an informative card with X% chance and a misleading card with (100-X)% chance.  
• You will learn your X value before making your voting decision. 
• At the beginning of every round, you will have a new X value that is randomly drawn from 

{1,2,3,…,99,100} by the computer. All possible values of X are equally likely. 

Notice that:  

• The closer X is to 100, the higher the chances that you have an informative card and observe 
your group’s true color.  

• The closer X is to 0, the higher the chances that you have a misleading card and observe the 
opposite color. 

Here is an example: If your X value is exactly 50, then you are equally likely to get an informative card 
as a misleading card.  

Another example: If your X value is 25, then you are three times more likely to get a misleading card 
than an informative card, and conversely, you are three times more likely to get an informative card 
than a misleading card if your X value is 75. 

What about other members of your group? The rules for other members of your group are exactly 
the same as for you. Every member has his/her own X value that is randomly drawn from 
{1,2,3,…,99,100} by the computer. Every member observes his/her own Card, which is informative or 
misleading depending on the member’s own X value. Note that you will NOT learn the X value or the 
card color of any other group member. 

To summarize so far: After you learn your X value and the color of Your Card, you will choose between 
voting for the color of Your Card and abstaining. The same is true for every member of your group. 

The color that receives a majority of the votes is the “group decision” and ties are broken fairly.1 The 
group decision is “correct” if it is the same as your group color. You will earn €4 if the group decision 
is correct and €0 otherwise.  

Reminder: When you observe Your Card’s color, you will NOT know for certain whether or not Your 
Card is an informative card. However, you will know your X value, representing the chance with which 
Your Card is informative. Therefore, in your decision whether or not to vote, it is important to weigh 
potential gains against potential losses GIVEN YOUR X VALUE. 

i. The more likely you are to have an informative card, the more likely you are to cast a correct vote 
and therefore the group decision is more likely to be correct if you vote. Hence, the higher the X 
value, the higher the potential gains from voting. 

ii. Conversely, the more likely you are to have a misleading card, the more likely you are to cast a 
wrong vote and thus the group decision is more likely to be wrong if you vote. Hence, the lower 
the X value, the higher the potential losses from voting. 
 

Therefore, if your X value is not sufficiently high, then the potential loss due to your voting is higher 
than the potential gain from your vote.  

However, exactly which values of X allow your vote to generate higher potential gains than losses will 
depend on the behavior of other group members. 

Because the precise value of X where the potential gains from your vote start dominating the potential 
losses depends on the voting behavior of other group members, we will also ask you to report your 

                                                           
1 If Red and Blue receive the same number of votes then we will pick Red with 50% chance and Blue with 50% 
chance to determine the “group decision”. 
 



best guess about the chances that a randomly selected group member (other than you) chose to vote 
in each round. 

As in the previous part, you will indicate your guess choosing a percentage between 0 and 100. As 
before, you earn the most if you honestly report your best guess. You will earn an amount from €0 to 
€1 for a guessing task depending on the accuracy of your guess.  

You will play a total of 15 rounds in this part and 2 rounds will be randomly selected for payment.  The 
amount you earn from the group decision and the guessing task in each of the selected rounds will be 
added to determine your payoff in this part. Since these 2 rounds will be randomly selected, you 
should treat each round as a round you could be paid for. 

SUMMARY 

In each round, you will make choices in a group of 24.  

The computer will randomly pick RED or BLUE as your group color. Your task as a group is to try to 
guess your group color correctly. The group decision will be made by voting. 

Each member of your group will be privately shown a “card”. Each card is either red or blue.  

You will only see the color of “Your own Card”. 

Cards are of two types: informative and misleading. An “informative” card has the same color as your 
group, a “misleading” card has the opposite color. 

You will NOT know for certain whether Your Card is informative or misleading. However, you will know 
your X value, representing the chance with which Your Card is informative.  

After you observe the color of Your Card, you will choose between voting for the color of Your Card 
and abstaining. 

The rules for other members of your group are exactly the same as for you.  

The color that receives a majority of the votes is the “group decision.” The group decision is “correct” 
if it is the same as your group color.  

You will play a total of 15 rounds. 2 rounds will be randomly selected and the amount you earn from 
the group decision and the guessing task in the selected rounds will be added to determine your payoff 
in this part. Thus, you should treat each round as a round you could be paid for. 

*** 

Please raise your hand if you have any questions. Please click OK when you are ready to start this part. 

PART 3 

This part is similar to Part 2. In Part 2, you did NOT know whether Your Card is informative or misleading 
with certainty as it was determined by chance. In this part, Your Card will be determined by your quiz 
score from Part 1, instead of being determined by chance.  

You completed a quiz on math and logic puzzles in Part 1. As explained before, we ranked the quiz 
scores of the 24 participants in this room from highest to lowest. We know whether or not your quiz 
score is in the top 1/3 but you do NOT know it for certain.2 In this part, Your Card will depend on your 
score as follows: 

(1) If your quiz score is in the top 1/3 then Your Card is an informative card 

                                                           
2Recall that exactly 8 out of 24 participants are in the top 1/3. If you and another participant tie for the 8th 
place, then each of you is selected to be in top 1/3 with equal chance. 



(2) If your quiz score is below the top 1/3 then Your Card is a misleading card3 

After you took the quiz, we asked you to report your “best guess” about the chances that your quiz 
score ranks in the top 1/3―we will soon remind you of your guess. However, note that Your Card 
depends only on your true ranking, not on your guess. 

What about other members of your group?   

The rules for other members of your group are exactly the same as for you.  

To repeat, whether Your Card is informative or misleading depends on your quiz score. Thus, your belief 
regarding the chances that your quiz score ranks in the top 1/3 is analogous to your X value in Part 2.  

The group-decision making is the same as before. After you observe the color of Your Card, you will 
choose between voting for the color of Your Card and abstaining. The same is true for every member 
of your group. The color that receives a majority of the votes is the “group decision” and ties are broken 
randomly. The group decision is “correct” if it is the same as your group color. You will earn €5 if the 
group decision is correct and €0 otherwise. 

Additionally, you will earn money in a Guessing Task just as in Part 2. In each round, you will report 
your best guess about the chances that a randomly selected member of your group (other than you) 
voted in that round. As before, you will indicate your guess choosing a percentage between 0 and 100. 
You can earn an amount from €0 to €1 in a guessing task depending on the accuracy of your guess.  

You will play a total of 5 rounds in this part. 1 round will be randomly selected and the amount you 
earn from the group decision and the guessing task in that round will determine your payoff in this 
part.  

Please raise your hand if you have any questions. Please click OK when you are ready to start this part. 

PART 4 

This is the final part of the experiment. This part is exactly the same as Part 3 except that you will now 
also make a guess regarding the “competence of the average VOTER” in the room (other than you). 
You will see the following information on your computer screen. 

We have now randomly picked one member (other than you) that chose to VOTE in this round. Please 
indicate your best guess about the statement below: What are the chances it is true? 

“The quiz score of this randomly selected VOTER is in the top 1/3.” 
 
You will indicate your guess choosing a percentage between 0 and 100, as before. As before, you will 
also make a guess about the chances that a randomly selected member of your group (other than you) 
voted. As before, you will earn an amount from €0 to €1 in each guessing task depending on the 
accuracy of your guess.  

You will play 1 round in this part. You will earn €5 if the group decision is correct and €0 otherwise.  
Please raise your hand if you have any questions. Please click OK to start. 

 

 

 

 

                                                           
3 Recall that an informative card has the same color as your group, and a misleading card has the opposite 
color. 
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