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AN INTRODUCTION TO BOOTSTRAP
THEORY IN TIME SERIES

ECONOMETRICS

Giuseppe Cavaliere∗, Heino Bohn Nielsen†, and Anders Rahbek†

Abstract: This article provides an introduction to methods and challenges underlying
application of the bootstrap in econometric modelling of economic and financial time
series. Validity, or asymptotic validity, of the bootstrap is discussed as this is a key ele-
ment in deciding whether the bootstrap is applicable in empirical contexts. That is, as
detailed here, bootstrap validity relies on regularity conditions, which need to be verified
on a case-by-case basis. To fix ideas, asymptotic validity is discussed in terms of the
leading example of bootstrap-based hypothesis testing in the well-known first order au-
toregressive model. In particular, bootstrap versions of classic convergence in probability
and distribution, and hence of laws of large numbers and central limit theorems, are
discussed as crucial ingredients to establish bootstrap validity. Regularity conditions and
their implications for possible improvements in terms of (empirical) size and power for
bootstrap-based testing, when compared to asymptotic testing, are illustrated by sim-
ulations. Following this, an overview of selected recent advances in the application of
bootstrap methods in econometrics is also given.

1 Introduction

Bootstrap in econometrics is frequently applied in the context of estimationa and testing,
see e.g. Berkowitz and Kilian (2000), Cavaliere and Rahbek (2020), Davidson and MacK-
innon (2006), Horowitz (2001, 2003) and MacKinnon (2009). As an example, consider the
case where some test statistic, τn say, is of interest given a sample of (time-series) data
x1, ..., xn with initial values x0, x−1, .., x−p for p ≥ 0, {xt}nt=−p. Under suitable regularity
conditions, including typically (i) stationarity and ergodicity of the xt process, and, (ii)
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finite moments conditions on the form E|x2
t |k < ∞ for some k ≥ 1, it holds that under

the null hypothesis of interest, H0 say,

τn
d→ χ2

q as n→∞,

where q denotes the degrees of freedom and “ d→”denotes convergence in distribution.
Moreover, under the alternative, or when H0 is not true, the statistic τn diverges. In
standard asymptotic testing, the χ2

q distributional approximation of the test statistic τn
is frequently applied using the 1 − α quantile of the χ2

q distribution or, equivalently, by
calculating the p-value at the nominal level α.
A bootstrap-based test is often motivated by noting that the asymptotic approxima-

tion may not be good in finite samples, which may lead, for a finite number of observations
n, to an actual size larger, or smaller, than the nominal level α. This is often corrected by
applying even simple bootstrap schemes. An additional motivation for the bootstrap is
that the underlying model used for estimation —and on which the derivation of τn is based
—may be misspecified. A typical example is the assumption of homoskedasticity of model
innovations, which often in practice is challenged in the modelling of macro and financial
data, where (conditional and unconditional) heteroskedasticity is typically present. In
this case, the so-called wild bootstrap may correct for such heteroskedasticity when doing
inference which would otherwise be affected. Likewise, for other types of misspecification
and model departures, different bootstrap schemes may be applied depending on which
type of misspecification is of concern. In addition, in some cases the limiting distribution
of τn cannot be tabulated, e.g. because it is a function of unknown nuisance parameters.
Furthermore, the limiting distribution may even not exist in certain non-standard testing
problems. The bootstrap may resolve such issues. However, it should be emphasized that
any bootstrap based test is —as for the original asymptotic test —only valid under certain
regularity conditions. These regularity conditions are important to check and understand
as in many cases application of what may be thought of as a “standard bootstrap”may
be invalid and misleading, despite its popularity in many empirical applications. Typ-
ical situations when a standard bootstrap does not work can be found in the context
of non-stationary variables and when data exhibit heavy tailed distributions, as typical
in financial data. When application of existing, or standard, bootstrap schemes fails to
work, these may be corrected by more elaborate bootstrap schemes, as is richly docu-
mented in recent research in econometrics, see inter alia Cavaliere and Rahbek (2020)
and the references therein.
The bootstrap is a simulation-based approach which is typically simple to apply in

the context of inference and testing. Based on some bootstrap scheme, the bootstrap
is based on generating new bootstrap samples of data and the test statistic of interest,
denoted by {x∗t}

n
t=−p and τ

∗
n respectively. The (re-)generation of such bootstrap data is

based on keeping the original sample {xt}nt=−p fixed.
If the limiting distribution (in the bootstrap sense) of the bootstrap test statistic τ ∗n

is identical to the limiting distribution of the original statistic τn under the null of H0,
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such as the χ2
q distribution above, this implies validity under the null of the bootstrap.

If, in addition, under the alternative when H0 is not true, the bootstrap statistic τ ∗n does
not diverge as the sample size n increases (or, at most it diverges at a slower rate than
the original statistic), the bootstrap is asymptotically valid. This is in particular the
case, when under the alternative, the bootstrap limiting distribution of τ ∗n is identical to
the limiting distribution of the original statistic, or when τ ∗n is bounded in (bootstrap)
probability.
As a leading example throughout, and to fix ideas, we consider the first-order au-

toregressive (AR) model. Section 2 provides a summary of standard econometric non-
bootstrap analysis of the AR model before turning to the discussion of the implementation
and (asymptotic) theory of the bootstrap in Section 3. Next, a Monte Carlo study is used
to discuss finite sample behavior of different bootstrap schemes in Section 4, and Section 5
contains selected recent advances in econometric time series bootstrap analysis. Section
6 provides an overview of some important further topics and approaches to bootstrap
inference. The appendix contains some technical details.

2 The autoregressive model

In order to present bootstrap theory and arguments, we present here a brief summary of
results and arguments for the (non-bootstrap) AR model of order one. The results and
asymptotic arguments presented here are well-known, and details can be found several
places, see e.g. Hamilton (1994) and Hayashi (2000).
Thus, consider the AR model of order one

xt = ρxt−1 + εt, t = 1, 2, ..., n, (2.1)

with the initial value x0 fixed in the statistical analysis and εt i.i.d. N(0, σ2), see also
Remark 2.1 regarding relaxing the assumption of Gaussianity. The parameter of the
model is θ = (ρ, σ2)

′ with θ0 = (ρ0, σ
2
0)
′ denoting the true value. For estimation, the

parameter space is given by
θ ∈ Θ = R× (0,∞) .

For the true parameter θ0 we assume θ0 ∈ Θ0 ⊂ Θ, with Θ0 = {θ ∈ Θ | |ρ0| < 1}, such
that xt in (2.1) for θ0 ∈ Θ0 has a stationary and geometrically ergodic solution given by

xt =

∞∑
i=0

ρi0εt−i.

With ρ̄ some fixed value, consider testing the hypothesis H0 given by

H0 : ρ = ρ̄.

The test is based on the likelihood ratio test statistic, τn, defined in terms of the Gaussian
log-likelihood function

`n (θ) = −n
2

(log σ2 + n−1

n∑
t=1

ε2
t (ρ) /σ2), (2.2)
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with x0 fixed, and εt (ρ) = xt − ρxt−1. Standard optimization gives the unrestricted
maximum likelihood estimator (MLE), θ̂n = (ρ̂n, σ̂

2
n)′, where

ρ̂n = n−1

n∑
t=1

xtxt−1(n−1

n∑
t=1

x2
t−1)−1 and σ̂2

n = n−1

n∑
t=1

ε2
t (ρ̂n) . (2.3)

The restricted estimator θ̃n = (ρ̃n, σ̃
2
n)
′ is obtained by maximization under H0, and is

given by

ρ̃n = ρ̄ and σ̃2
n = n−1

n∑
t=1

ε2
t (ρ̄) .

It follows that the likelihood ratio (LR) test statistic is given by

τn = LRn (ρ = ρ̄) = 2(`n(θ̂n)− `n(θ̃n)) = n log
(
σ̃2
n/σ̂

2
n

)
. (2.4)

Moreover, under H0 and regularity conditions detailed in Section 2.1, with ρ̄ = ρ0 and
θ0 ∈ Θ0, it holds that τn

d→ χ2
1.

Note in this respect that, as long as the true ρ0 is not “too large” the asymptotic
χ2

1 approximation is a good approximation even for small samples. In contrast, and as
exemplified in Table 1 in Section 4, if either εt is not i.i.d. N(0, σ2), or if ρ0 = 0.9, the
χ2

1 distribution is not a good approximation of the actual distribution of τn for small, or
even moderate, finite samples of size n.

Remark 2.1 (Quasi likelihood) Often the assumption that the εt sequence is assumed
to be i.i.d. Gaussian is relaxed to i.i.d. (0, σ2) for some unknown distribution. When the
Gaussian log-likelihood function in (2.2) in this case is used to obtain estimators and
test statistics, these are referred to as (Gaussian) quasi MLE and quasi LR statistics
respectively. This is also the case when εt is assumed to be mean zero and (conditionally
or unconditionally) heteroskedastic, as for example with some autoregressive conditional
heteroskedastic (ARCH) specification or, as in Section 4, with a structural break in the
variance.

2.1 Asymptotics for the autoregressive model

To ease the presentation of the key arguments for the standard non-bootstrap asymptotic
analysis, assume here without loss of generality that σ2 is fixed at the true value, that
is, σ2 = σ2

0. Accordingly, the parameter is θ = ρ and the likelihood function in (2.2)
simplifies as

`n (θ) = `n (ρ) = −n
2

(log σ2
0 + n−1

n∑
t=1

ε2
t (ρ) /σ2

0).

The MLE ρ̂n is given by (2.3), while the LRn (ρ = ρ̄) statistic in (2.4) in this case is
identical to the Wald statistic (Wn)

τn = Wn (ρ = ρ̄) = (ρ̂n − ρ̄)2
n∑
t=1

x2
t−1/σ

2
0. (2.5)
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By construction, τn is a simple function of n1/2 (ρ̂n − ρ̄) and n−1
∑n

t=1 x
2
t−1, and the

limiting distribution is found by applying a law of large numbers (LLN) to the average
n−1

∑n
t=1 x

2
t−1, as well as a central limit theorem (CLT) to n1/2 (ρ̂n − ρ̄).

With ρ̄ = ρ0 ∈ Θ0, the AR process xt is stationary and ergodic, and has finite
variance, V (xt) = ω0 = σ2

0/ (1− ρ2
0). In particular, it follows by the LLN for stationary

and ergodic processes that

n−1

n∑
t=1

x2
t−1

p→ V (xt) = ω0.

Next, by definition of the MLE,

n1/2 (ρ̂n − ρ0) = n−1/2

n∑
t=1

εtxt−1(n−1

n∑
t=1

x2
t−1)−1.

Here mt = εtxt−1 is a martingale difference sequence (mds) with respect to the filtration
Ft, where Ft = σ (xt, xt−1...), as E |mt| < ∞, and E (mt|Ft−1) = 0. Moreover, the
conditional second order moment converges in probability,

n−1

n∑
t=1

E
(
m2
t |Ft−1

)
= σ2

0n
−1

n∑
t=1

x2
t−1

p→ σ2
0ω0.

This implies by the CLT for mds that n−1/2
∑n

t=1mt
d→ N (0, σ2

0ω0), see e.g. Hamilton
(1994) and Hall and Heyde (1980), such that

n1/2 (ρ̂n − ρ0)
d→ N

(
0, σ2

0/ω0

) d
= N

(
0, 1− ρ2

0

)
.

Remark 2.2 (Lindeberg condition) Note that for a CLT for mds in general to
hold, see e.g. Hall and Heyde (1980), also a Lindeberg-type condition of the form, γn =

n−1
∑n

t=1E
(
m2
t I
(
|mt| > δn1/2

))
→ 0 for any δ > 0, must hold, where I(·) is the indicator

function. This holds here as, by stationarity,

γn = n−1

n∑
t=1

E
(
m2
t I
(
|mt| > δn1/2

))
= E

(
m2
t I
(
|mt| > δn1/2

))
,

which tends to zero as n → ∞ by dominated convergence under the moment condition
E (m2

t ) <∞ as implied by E (ε2
t ) <∞ and independence of εt and xt−1.

Collecting terms it follows that we have the following result.

Lemma 2.1 For the AR(1) model in (2.1) with θ0 ∈ Θ0 and εt i.i.d. (0, σ2
0), it follows

that with τn given by (2.5), under the null τn
d→ χ2

1 as n→∞.

Note that in Lemma 2.1, it is not assumed that the εt sequence is Gaussian, but
instead the lemma is formulated in terms of the milder suffi cient condition that εt is an
i.i.d. (0, σ2) sequence, see also Remark 2.1. Thus the essential regularity conditions for
the lemma to hold are that |ρ0| < 1 and εt i.i.d. (0, σ2).
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Remark 2.3 (Heteroskedasticity) Note that if εt = σtzt, with zt i.i.d.N (0, 1) and
σ2
t given by an ARCH process with E (σ2

t ) = σ2
ε < ∞, it follows that τn

d→ cχ2
1, with

c = σ2
ε/σ

2
0. This reflects in general that if εt are (conditionally, or unconditionally)

heteroskedastic, the limiting distribution of the test statistic τn is not χ2
1. In the context

of regression models this is well-known, and corrections of the test statistic, see e.g. White
(1980), are typically applied to ensure valid asymptotic inference; the bootstrap, or more
precisely, the wild bootstrap discussed later, may correct for such misspecification without
the need to correct the original test statistic, cf. Gonçalves and Kilian (2004).

Remark 2.4 (Test statistic) For σ2 an unknown parameter to be estimated, such
that θ = (σ2, ρ)

′, note that the LR statistic in (2.4) can be written as

τn = LRn (ρ = ρ̄) = −n log(1− n−1Wn (ρ = ρ̄)
σ2

0

σ̃2
n

),

with σ̃2
n = n−1

∑n
t=1 ε

2
t (ρ̄). By Lemma 2.1, wn = n−1Wn (ρ = ρ̄)

p→ 0, and by a Taylor
expansion, − log (1− w) = w + o (w), with o (w) a term which tends to zero as w → 0.
Hence,

τn = Wn (ρ = ρ̄) + op (1) ,

where op (1) denotes a term which converges to zero in probability as n → ∞; see e.g.
van der Vaart (2000, Lemma 2.12) for further details on op (·) (and Op (·)) notation, and
the stochastic (Taylor) expansion as applied here.

3 Bootstrap in the autoregressive model

The general idea behind a bootstrap algorithm as implemented in the context of likelihood-
based testing in the first order AR model can be summarized as follows:

Step A With the original data {xt}nt=0 fixed, generate a sample of bootstrap data {x∗t}
n
t=0

using some bootstrap scheme with bootstrap true parameter, θ∗n = (ρ∗n, σ
∗2
n )
′. Speci-

fically, for the AR model, set x∗0 = x0 and generate x∗t recursively by

x∗t = ρ∗nzt + ε∗t , (3.1)

with zt = x∗t−1 for a recursive bootstrap scheme, while zt = xt−1 for a fixed design
bootstrap scheme. As to the choice of bootstrap innovations ε∗t in terms of the
original data {xt}nt=0 and a bootstrap sampling distribution, this is detailed below.

Step B Compute the bootstrap (quasi) MLE ρ̂∗n and the bootstrap LR statistic τ ∗n =

LR∗n (ρ = ρ∗n), where the bootstrap log-likelihood function `∗n (θ) as a function of θ
is given by

`∗n (θ) = −n
2

(log σ2 + n−1

n∑
t=1

ε∗2t (ρ) /σ2), with ε∗t (ρ) = x∗t − ρzt. (3.2)
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Step C Generate
{
x∗t,b
}n
t=0
, θ̂∗n,b and τ ∗n,b for b = 1, 2, ..., B by repeating Steps A and

B, and use the empirical distribution of
{
τ ∗n,b
}B
b=1

for testing based on the original
statistic τn = LRn (ρ = ρ0). Precisely, with the bootstrap p-value set to p∗n,B =

B−1
∑B

b=1 I(τn ≥ τ ∗n,b), H0 is rejected when p∗n,B < α, with α the nominal level. For
the choice of bootstrap repetitions B, see Remark 3.3.

As to the definition in Step A of the bootstrap innovations ε∗t , usually these are
obtained by i.i.d. draws with replacement from re-centered estimated model residuals;
henceforth referred to as iid bootstrap, or iid resampling. The model residuals can be
either estimated under the null (H0 imposed), or without imposing the null. That is, the
ε∗t are in the first case resampled from centered residuals, {ε̃ct}

n
t=1, where

ε̃ct = εt (ρ̄)− n−1

n∑
t=1

εt (ρ̄) , with εt (ρ̄) = xt − ρ̄xt−1. (3.3)

Using unrestricted residuals, the bootstrap ε∗t innovations are resampled from {ε̂ct}
n
t=1,

where

ε̂ct = εt(ρ̂n)− n−1

n∑
t=1t

εt(ρ̂n), with εt(ρ̂n) = xt − ρ̂nxt−1. (3.4)

Centering is required because by doing so, both of the residual series ε̂ct and ε̃ct have
empirical mean zero, n−1

∑n
t=1 ε̂

c
t = 0 and n−1

∑n
t=1 ε̃

c
t = 0, and ideally “mimic”the true

εt. In particular, under H0, εt (ρ̄) = εt (ρ0) = εt, and, moreover, ρ̂n
p→ ρ0. In contrast,

under the alternative, whenH0 does not hold, while εt (ρ̄) 6= εt, it still holds that ρ̂n
p→ ρ0.

Hence, while one may expect that the unrestricted residuals ε̂ct perform better under the
alternative, at least asymptotically, in practice little difference is found between the two.
An alternative to iid resampling is the so-called wild bootstrap, where either ε∗t = ε̃ctw

∗
t ,

or ε∗t = ε̂ctw
∗
t , with w

∗
t an auxiliary i.i.d. sequence, independent of the original data, with

E (w∗t ) = 0 and V (w∗t ) = 1. A simple example is w∗t i.i.d. N (0, 1), see Remark 3.4
below for alternative specifications. The wild bootstrap is typically motivated by the its
potential ability to allow for possible model misspecification in the sense that it allows
for (conditional and unconditional) heteroskedasticity in the innovations εt. To see this
for e.g. ε∗t = ε̃ctw

∗
t , it follows that (conditionally on the data {xt}

n
t=0), the ε

∗
t are i.i.d.

distributed with mean zero, and with time-varying variance,

V (ε∗t | {xt}
n
t=0) = (ε̃ct)

2 .

This way, the variation in ε∗t from the wild bootstrap “in essence reflects the heteroskedas-
ticity of the original data”(Liu, 1988, p.1704) as is also illustrated in the Monte Carlo
simulations in Section 4. This differs from the iid bootstrap, where the bootstrap in-
novations ε∗t (conditionally on the data) are i.i.d., with a discrete distribution given by
P
(
ε∗t = ε̃cj | {xt}

n
t=0

)
= n−1, for j = 1, 2, ..., n. Specifically, as mentioned earlier, the

(empirical, or conditional) mean is zero, E (ε∗t | {xt}
n
t=0) = 0, and the variance is given

by

V (ε∗t | {xt}
n
t=0) = n−1

n∑
t=1

(ε̃ct)
2 .
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That is, for fixed n, the variance for the iid bootstrap innovations ε∗t is constant (and,
equal to the empirical variance of the estimated residuals), while depending on time t for
the wild bootstrap.
In short, the bootstrap scheme in (3.1), x∗t = ρ∗nzt + ε∗t , with zt = xt−1 or zt = x∗t−1,

depends on two types of randomness: (i) the variation of the original data {xt}nt=0; and,
(ii) the bootstrap re-sampling for {ε∗t}

n
t=1 (wild or iid resampling). This is important for

the application of the LLN and the CLT to establish bootstrap validity as demonstrated
in the next.
Some further remarks are in order.

Remark 3.1 ((Un-)restricted bootstrap) As to the choice in Step A of the boot-
strap true value θ∗n = (ρ∗n, σ

∗2
n )
′ (or simply, ρ∗n for the AR model), one may set θ∗n to

the value of the unrestricted estimator θ̂n, θ∗n = θ̂∗n, which is referred to as unrestricted
bootstrap. If θ∗n = θ̃n, the restricted estimator, the bootstrap is referred to as restricted.
It should be emphasized that for the unrestricted bootstrap, the bootstrap likelihood ratio
statistic τ ∗n is derived for the hypothesis ρ = ρ̂n, while for the restricted bootstrap, the
original hypothesis H0 : ρ = ρ̄ is considered. While both choices are widely applied in
existing literature, the restricted bootstrap in the context of testing is more popular in
econometrics, see for example Davidson and MacKinnon (2000).

Remark 3.2 (Recursive and fixed design bootstrap) In Step B of the algorithm
in equation (3.1), with zt = x∗t−1, this is an example of a recursive bootstrap. That is,
the original autoregressive structure for xt is replicated for the bootstrap process x∗t . On
the other hand, with zt = xt−1, the original data xt−1 are used as lagged value of x∗t , such
that x∗t is not an autoregressive process even conditionally on the data. The fixed design
bootstrap typically simplifies (some of) the asymptotic arguments, and is often found to
behave as well as the recursive bootstrap, see for example Gonçalves and Kilian (2004,
2007) for general AR models, and Cavaliere, Pedersen and Rahbek (2018) for ARCH
models. Section 3.1 below provides a detailed analysis of the recursive bootstrap.

Remark 3.3 (Bootstrap p -value) In Step C, the bootstrap p-value p∗n,B is defined as
p∗n,B = B−1

∑B
b=1 I(τn ≥ τ ∗n,b) with B the number of bootstrap repetitions, see also Remark

3.8. Typical choices are B = 199, 399 or 999, see also Andrews and Buchinsky (2000)
and Davidson and MacKinnon (2000) for details on the choice of B.

Remark 3.4 (Choice of w∗t ) With respect to the choice of distribution of the i.i.d.
sequence w∗t for the wild bootstrap, Liu (1988) provides a detailed discussion of various
choices based on so-called Edgeworth expansions (see, e.g. Hall, 1992, and van der Vaart,
2000, for an introduction) of test statistics similar to τn. In particular, Liu (1988), with
ξk = E(wkt ), k ≥ 1, emphasizes ξ1 = 0, ξ2 = 1 as well as ξ3 = 1 as important. For the
case of ξ3 = 1, emphasis is on possible skewness of the test statistic, while ξ3 = 0 works
well in the case of symmetry. In applications, standard choices for w∗t , all with ξ1 = 0
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and ξ2 = 1, include the Gaussian, Rademacher and Mammen distributions.1 It follows
that ξ3 = 0 for the first two (with ξ4 = 3 and 1, respectively), while ξ3 = 1 (and ξ4 = 2)
for the Mammen distribution.

Remark 3.5 (Parametric bootstrap) In Step A of the bootstrap scheme, one may
also use a so-called parametric bootstrap, where the bootstrap innovations ε∗t are generated
as i.i.d. N (0, σ∗2n ). While this parametric bootstrap performs well in the case where the
true innovations εt are Gaussian, this may not be the case when the distribution of εt is
non-Gaussian, see also Horowitz (2001).

3.1 Asymptotic theory for the recursive bootstrap

In order to discuss regularity conditions under which bootstrap-based testing holds, we
consider here the details of verification of the asymptotic validity of the recursive boot-
strap for the AR model.
Thus, with the AR model given in (2.1), consider here the recursive restricted boot-

strap scheme as defined by setting zt = x∗t−1 and ρ
∗
n = ρ̄ in Step A of the bootstrap

algorithm. In short, the x∗t bootstrap sequence is here generated as

x∗t = ρ̄x∗t−1 + ε∗t , (3.5)

with x∗0 = x0 and ρ̄ = ρ∗ as the bootstrap true value. Moreover, we consider the classic
case of iid resampling from the autoregressive residuals obtained under H0, that is, from
{ε̃ct}

n
t=1 defined in (3.3). The statistic of interest is τn = Wn (ρ = ρ̄) in (2.5) which is

computed using the bootstrap sample {x∗t}
n
t=0 as

τ ∗n = W ∗
n (ρ = ρ̄) = (ρ̂∗n − ρ̄)2

n∑
t=1

(
x∗t−1

)2
/σ2

0 and ρ̂∗n =
n∑
t=1

x∗tx
∗
t−1(

n∑
t=1

x∗2t−1)−1. (3.6)

While x∗t clearly has some features similar to xt, one cannot apply standard concepts such
as stationarity and ergodicity when analyzing the asymptotic behavior of τ ∗n, as we as have
two types of randomness: the bootstrap resampling distribution, and the distribution of
the original data, {xt}nt=0 . We therefore introduce the bootstrap equivalent concepts of
convergence in probability and distribution, which reflects the fact that inference is based
on conditioning on the original data, which are themselves random.

Bootstrap probability, expectation and convergence

With P∗ (·) denoting the bootstrap probability, that is, the probability conditional on the
data, the iid bootstrap innovations ε∗t are by definition i.i.d. distributed with

P∗(ε∗t = ε̃cj) = P(ε∗t = ε̃cj| {xt}
n
t=0) = n−1 for j = 1, 2, ..., n.

1The Rademacher distribution is a two-point distribution on ±1, each with probability a half, while
the Mammen distribution is a two-point distribution on 1+

√
5

2 and 1−
√
5

2 , with probabilities given by
√
5−1
2
√
5
and

√
5+1
2
√
5
respectively.
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Similarly, the expectation E∗ (·) is defined by E∗ (·) = E(·| {xt}nt=0). As an example,
consider the expectation of ε∗t conditionally on the data. It follows that, as already
discussed, E∗(ε∗t ) = 0 as

E∗ (ε∗t ) =

n∑
j=1

P∗(ε∗t = ε̃cj)ε̃
c
j = n−1

n∑
j=1

ε̃cj = 0,

by the definition in (3.3). Next, consider the variance of ε∗t conditionally on the data,
V∗ (ε∗t ). Again, by definition, V∗ (ε∗t ) = E∗(ε∗2t ) − (E∗ (ε∗t ))

2 and hence as E∗ (ε∗t ) = 0, it
follows that

V∗ (ε∗t ) =
n∑
j=1

P∗(ε∗t = ε̃cj)
(
ε̃cj
)2

= n−1

n∑
j=1

(
ε̃cj
)2
.

That is, the variance conditional on the data is equal to the sample variance of the original
estimated residuals under H0. In particular, V∗ (ε∗t ) is a random variable (in terms of
the original probability measure) and moreover, by the LLN for i.i.d. variables, under
H0 with ρ̄ = ρ0,

V∗ (ε∗t ) = E∗
(
ε∗2t
) p→ V (εt) = σ2

0. (3.7)

Note that for the wild bootstrap, V∗ (ε∗t ) = V∗ (ε̃ctw
∗
t ) = (ε̃ct)

2, emphasizing that the wild
bootstrap indeed “mimics”heteroskedasticity, while the iid bootstrap does not.
Similar to the definition of P∗ (·) and E∗ (·) this motivates the definition of the boot-

strap equivalent of convergence in probability. Formally, a sequence of stochastic vari-
ables X∗n is said to converge in probability conditional on the data (or, to converge in
P∗-probability, in probability) to c (possibly random), if P∗ (|X∗n − c| > δ) converge in
probability to zero. This can be stated as

X∗n − c
p∗→p 0 if P∗ (|X∗n − c| > δ)

p→ 0 for any δ > 0.

As an example it follows that X∗n = n−1
∑n

t=1 ε
∗
t

p∗→p 0 as by the bootstrap equivalent of
Markov’s inequality2 one has,

P∗ (|X∗n| > δ) ≤ E∗ (X∗n)2 /δ2.

By definition,

E∗ (X∗n)2 = n−2 E∗(
n∑
t=1

ε∗2t + 2
n∑
t=1

n∑
s=t+1

ε∗t ε
∗
s),

with E∗ (ε∗2t ) = V∗ (ε∗t ), and for s 6= t,

E∗ (ε∗sε
∗
t ) = E∗ (ε∗s) E∗ (ε∗t ) = 0.

Hence, since E∗ (X∗n)2 = n−1 V∗ (ε∗t ), we conclude that

X∗n = n−1

n∑
t=1

ε∗t
p∗→p 0. (3.8)

2Markov’s inequality: P (|X| > δ) ≤ E|X|k/δk for any δ > 0 and κ ≥ 1.
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A key ingredient in the asymptotic analysis of the non-bootstrap ARmodel is the CLT,
and we need a bootstrap equivalent of the CLT, and a bootstrap equivalent of convergence
in distribution. By definition, Xn

d→ X if FXn (x) = P (Xn ≤ x)→ FX (x) = P (X ≤ x),
at all continuity points of FX (·). Likewise, X∗n converge in distribution to X conditional
on the data (or, as sometimes used, X∗n converges “weakly in probability”), that is,
X∗n

d∗→p X, if the bootstrap cumulative distribution function converges in probability.

Specifically, X∗n
d∗→p X if

F ∗X∗
n

(x) = P ∗ (X∗n ≤ x)
p→ FX (x) ,

at all continuity points of FX (·). The next lemma illustrates that, as one might expect,
the sum of bootstrap innovations ε∗t is asymptotically Gaussian (in probability).

Lemma 3.1 (van der Vaart, 2000, Theorem 23.4) With X∗n = n−1/2
∑n

t=1 ε
∗
t , then

X∗n
d∗→p X

d
= N

(
0, σ2

0

)
. (3.9)

The proof, as for most bootstrap CLTs, is based on applying a CLT for triangular
arrays, as {ε∗t}

n
t=1 are sampled from ε̃ct , which depends on n.

To give an idea of the underlying theory, consider here verifying (3.9) using a classic
approach based on the characteristic function, see also Durret (2019, proof of Theorem
3.4.10). For a random variable X, the characteristic function defines uniquely the dis-
tribution of X and is defined by φ (s) = E (exp (isX)). Here i is the complex (unit
imaginary) number which satisfies i2 = −1 and s ∈ R, and for X d

= N (0, σ2
0) it holds

that φ (s) = exp(− s2

2
σ2

0).
With the bootstrap characteristic function of X∗n defined by φ

∗
n (s) = E∗ (exp (isX∗n)),

it follows that (3.9) holds if

φ∗n (s)
p→ exp(− s2

2
σ2

0) = φ (s) .

Note first, as ε∗t are i.i.d. conditionally on the data,

E∗ (exp (isX∗n)) = E∗(
n∏
t=1

exp (isX∗n)) =
n∏
t=1

E∗
(
exp

(
isn−1/2ε∗t

))
=
(
E∗
(
exp

(
isn−1/2ε∗t

)))n
.

Next, see Durret (2019, Lemma 3.3.19), a Taylor expansion of exp (·) at s = 0 gives

E∗
(
exp

(
isn−1/2ε∗t

))
= 1 + isn−1/2 E∗ (ε∗t )− 1

2
s2n−1 E∗

(
ε∗2t
)

+ op
(
n−1
)

= 1− n−1(1
2
s2σ2

0) + op
(
n−1
)
,

using E∗ (ε∗t ) = 0 and E∗ (ε∗2t )
p→ σ2

0, see (3.7). It therefore follows as desired that

E∗ (exp (isX∗n)) =
(
1− n−1(1

2
s2σ2

0) + op
(
n−1
))n p→ φ (s) ,

as for any sequence cn, with cn
p→ c ∈ C as n → ∞, then similar to Durret (2019,

Theorem 3.4.2), (1− n−1cn)
n p→ exp (−c).

11



Remark 3.6 (Lindeberg condition) The CLTs in Durret (2019, Theorem 3.4.10)
and van der Vaart (2000, Theorem 23.4) for triangular arrays follow by verifying

E∗
(
X∗2n

)
= n−1

n∑
t=1

E∗
(
ε∗2t
) p→ σ2

0,

in addition to the bootstrap Lindeberg condition,

γ∗n = n−1

n∑
t=1

E∗
(
ε∗2t I

(
|ε∗t | > δn1/2

))
= n−1

n∑
t=1

(ε̃ct)
2 I
(
|ε̃ct | > δn1/2

) p→ 0.

A simple way to see that γ∗n
p→ 0 is for example to note that if (the rather strong moment

condition) E(ε4
t ) <∞ holds, the LLN applies to n−1

∑n
t=1 (ε̃ct)

4 and hence,

γ∗n = n−1

n∑
t=1

(ε̃ct)
2 I
(
|ε̃ct | > δn1/2

)
≤ 1

nδ2
n−1

n∑
t=1

(ε̃ct)
4 p→ 0.

3.2 Bootstrap validity under H0

As briefly mentioned in the introduction, it is important for the application of the boot-
strap that the limiting distribution (in probability) of the bootstrap test statistic has
the same limiting distribution as the original test statistic when the null is true. Stated
differently, we wish here to establish that under H0 with ρ̄ = ρ0,

τ ∗n = W ∗
n (ρ = ρ0) = (ρ̂∗n − ρ0)2

n∑
t=1

x∗2t−1/σ
2
0
d∗→p χ

2
1.

By definition, the bootstrap estimator ρ̂∗n is given by

ρ̂∗n = n−1

n∑
t=1

x∗tx
∗
t−1(n−1

n∑
t=1

x∗2t−1)−1,

such that by the bootstrap scheme employed, that is x∗t = ρ0x
∗
t−1 + ε∗t , it follows that

n1/2 (ρ̂∗n − ρ0) = n−1/2

n∑
t=1

ε∗tx
∗
t−1︸ ︷︷ ︸

(i)

(n−1

n∑
t=1

x∗2t−1)−1

︸ ︷︷ ︸
(ii)

.

Here a bootstrap CLT should be used for the first term (i), and a bootstrap LLN for the
second term (ii) in order to find the limiting behavior of the bootstrap estimator, and
hence of the test statistic τ ∗n. Consider first (ii), which is an average of lagged x

∗
t squared,

with

x∗t = ρ0x
∗
t−1 + ε∗t =

t−1∑
i=0

ρi0ε
∗
t−i + ρt0x0. (3.10)

As ε∗t depends on n, and the data {xt}
n
t=0, the concepts of stationarity and ergodicity —

while applying to xt —do not to apply for the x∗t . However, the following lemma holds
which establishes that the LLN holds for the average of x∗t and x

∗2
t :

12



Lemma 3.2 Suppose that {xt}nt=0 is given by (2.1) with |ρ0| < 1 and εt i.i.d. (0, σ2
0).

Assume furthermore, with ε∗t are iid sampled with replacement from {ε̃ct}
n
t=1 and x

∗
t given

by (3.5). Then, as n→∞,

n−1

n∑
t=1

x∗t−1

p∗→p 0 and n−1

n∑
t=1

x∗2t−1

p∗→p ω0 = σ2
0

(
1− ρ2

0

)−1
.

The proof of Lemma 3.2 is given in the appendix. Note that for the case of ρ0 = 0

the arguments are similar to the arguments used to establish n−1
∑n

t=1 ε
∗
t

p∗→p 0 in the
previous section.

Remark 3.7 (LLN triangular arrays) Lemma 3.2 is the bootstrap equivalent of the
weak law of large numbers for triangular arrays, see also Durret (2019, Theorem 2.2.6).

Next, consider the CLT candidate term (ii),

n−1/2

n∑
t=1

ε∗tx
∗
t−1.

As for the non-bootstrap case, with F∗t = σ
(
x∗t , x

∗
t−1, ..., x

∗
0

)
, then (conditionally on

the data) a bootstrap CLT for martingale difference arrays (mda) can be applied. In
particular, E∗

(
ε∗tx
∗
t−1|F∗t−1

)
= x∗t−1 E∗ (ε∗t ) = 0, while for the conditional second order

moment (conditional on the data), it follows by application of Lemma 3.2 that

n−1

n∑
t=1

E∗(
(
ε∗tx
∗
t−1

)2 |F∗t−1) = n−1

n∑
t=1

x∗2t−1 E∗
(
ε∗2t
) p∗→p σ

2
0ω0.

It remains to establish the bootstrap Lindeberg condition, γ∗n
p∗→p 0, where

γ∗n = n−1

n∑
t=1

E∗
((
ε∗tx
∗
t−1

)2 I
(
|ε∗tx∗t−1| > δ

√
n
)
|F∗t−1

)
. (3.11)

Similar to Remark 3.6, this follows by using that for some (arbitrarily small) η > 0,

γ∗n ≤
1

n1+η/2δη

n∑
t=1

E∗(|ε∗tx∗t−1|2+η |F∗t−1)

=
1

nη/2δη
n−1

n∑
t=1

|x∗t−1|2+η E∗ |ε∗t |2+η p∗→p 0,

which holds provided E |εt|2+η < ∞, using arguments as in Lemma 3.2. Note that in
Remark 3.6 the same argument is used for η = 2.
Hence, with ε∗t iid resampled from {ε̃ct}

n
t=1, εt i.i.d.(0, σ

2
0) with E |εt|2+η <∞, it follows

that the limiting distribution (in probability) of the bootstrap MLE is given by

n1/2 (ρ̂∗n − ρ0)
d∗→p N

(
0, σ2

0ω
−1
0

)
. (3.12)

This immediately leads to the desired result:
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Theorem 3.1 Under H0 with |ρ0| < 1, and with ε∗t iid resampled from {ε̃ct}
n
t=1, with εt

being i.i.d. (0, σ2
0) with E |εt|2+η <∞ for some η > 0, it holds that

τ ∗n = W ∗
n (ρ = ρ0)

d∗→p χ
2
1. (3.13)

Remark 3.8 (Bootstrap p-value) The bootstrap p-value p∗n,B in Step C of the boot-
strap algorithm is an approximation to the “true” bootstrap p-value p∗n, where p

∗
n =

P∗ (τ ∗n > τn), in the sense that p∗n,B
p→ p∗n as B tends to infinity. See e.g. Cavaliere,

Nielsen and Rahbek (2015, Rem.2) for details in terms of the stronger concept of “almost
sure”convergence.

Remark 3.9 (Validity under H0) Note that by Cavaliere, Nielsen and Rahbek (2015,
Corollary 1) for the bootstrap p-value p∗n (see Remark 3.8), it follows that as the limiting
χ2

1 distribution has a continuous distribution function, under the conditions of Theorem
3.1, p∗n

d→ U, with U uniformly distributed on [0, 1], see e.g. Hansen (1996, 2000).

Remark 3.10 (Moments of εt) Note that E |εt|2+η <∞ for some η, or E (ε4
t ) <∞ as

is often used, is required. This reflects the fact, as typically found for the bootstrap, that to
prove bootstrap validity further moment restrictions are used when compared to the non-
bootstrap case. This is, as illustrated above, due to the complexities arising when applying
bootstrap LLNs and arguments in connection to establishing bootstrap Lindeberg-type con-
ditions, see also Cavaliere and Rahbek (2020). However, notably, as also discussed in the
Monte Carlo Section 4, while the higher order moment conditions are suffi cient for the
mathematical arguments, their necessity is often not reflected in bootstrap simulations.

Remark 3.11 (Introducing σ2) As for the non-bootstrap case, the result in Theorem
3.1 also holds for the case where σ2 is treated as a parameter.

3.3 Bootstrap validity under the alternative

We consider here the convergence of the bootstrap statistic τ ∗n in (3.6) when the alter-
native holds. That is, assume here that the original data are generated with true value
θ0 = (ρ0, σ

2
0)′, but the hypothesis tested is as before H0 : ρ = ρ̄ with ρ̄ 6= ρ0. As argued

below it holds that Theorem 3.1 hold under the alternative as well, such that

τ ∗n
d∗→p χ

2
1. (3.14)

For the application of bootstrap-based testing, this implies that under the alternative,
as Wn (ρ = ρ̄) diverges, while W ∗

n (ρ = ρ̄) converges in distribution, the bootstrap-based
test will reject with probability tending to one. That is, asymptotic bootstrap validity
holds since by Cavaliere, Nielsen and Rahbek (2015, Corollary 1) the bootstrap p-value
p∗n, defined in Remark 3.9, tends to zero in probability under the alternative, p

∗
n

p→ 0.
A key argument for (3.14) to hold is to note that the identity,

ε∗t = x∗t − ρ̄x∗t−1,

14



holds independently of whether ρ̄ is the data true value ρ0 or not. That is, ρ̄ is by con-
struction the bootstrap true value, such that under the null and also under the alternative,
the bootstrap estimator can be rewritten as

n1/2 (ρ̂∗n − ρ̄) = n−1/2

n∑
t=1

ε∗tx
∗
t−1(n−1

n∑
t=1

x∗2t−1)−1.

What differs is that ε∗t under the alternative is resampled from recentered residuals ε̃ct
with

ε̃t = εt (ρ̄) = xt − ρ̄xt−1 = εt + (ρ̄− ρ0)xt−1 6= εt.

That is, while under the null hypothesis when ρ̄ = ρ0, the identity ε̃t = εt holds, this is
not the case under the alternative. Hence to establish (3.14) a repeated application of
the bootstrap LLN (applied to

∑n
t=1 x

∗2
t−1) and CLT (applied to

∑n
t=1 ε

∗
tx
∗
t−1) are needed

under the alternative. For the AR process of order one considered here, the arguments
are based on simple modifications of the theory under H0.

Remark 3.12 (Theory for the wild bootstrap) The same results can be shown
to apply for the wild bootstrap in the case of conditional heteroskedasticity, see e.g.
Gonçalves and Kilian (2004, 2007).

4 Finite sample behavior

Throughout, the focus has been on establishing asymptotic validity. This was done by
verifying that the bootstrap statistic τ ∗n has the same limiting distribution (in probability)
as the original statistic τn under the null hypothesis. Moreover, the same was argued to
hold under the alternative. To illustrate the finite sample performance of the iid and wild
bootstraps for the AR model, we highlight in this section some selected typical findings
for the bootstrap based on a small and simple (to replicate) Monte Carlo study. Thus the
Monte Carlo study here is not meant to be elaborate; exhaustive and detailed bootstrap
Monte Carlo-based investigations are given in several papers, see for example Gonçalves
and Kilian (2004) with special attention higher order AR models, as well as the references
in Cavaliere and Rahbek (2020).
The Monte Carlo results reported here highlight the importance of the assumptions

for the established validity of the bootstrap based test of H0 : ρ = ρ̄ in the autoregressive
model. Specifically, it was argued that the true value of the autoregressive root ρ0 for xt
should satisfy |ρ0| < 1, and it was emphasized that εt is an i.i.d. (0, σ2

0) sequence, such
that E |εt|2+η <∞, or rather, E (ε4

t ) <∞.
With details of the Monte Carlo designs and consideration given below, we initially

mention the following findings for bootstrap simulations in the AR model with a constant
term. The findings are typical for existing applications of the bootstrap and are standard
in time series contexts.
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(i) With εt i.i.d. N (0, σ2
0) the χ2

1-based asymptotic test performs well for even small
samples of size n in terms of empirical rejection frequencies, or empirical size, for
ρ0 = 0.5, while for ρ0 = 0.9 the asymptotic test fails as its empirical size is not close
to the nominal level α. In comparison, the iid (and wild) bootstrap-based test has
empirical size close the nominal level in both cases, see Table 1, columns (A) and
(B) for ρ0 ∈ {0.5, 0.9}, σ2

0 = 1 and n ∈ {15, 25, ..., 1000} with α = 0.05.

(ii) With εt independently N (0, σ2
t ) distributed with σ

2
t time-varying (heteroskedastic-

ity), neither the χ2
1-based asymptotic nor the iid bootstrap-based tests have em-

pirical size close to the nominal level α, which contrasts the wild bootstrap-based
test. This is illustrated in Table 1, columns (C)-(F) for a time-changed volatility,
σ2
t = σ2

0,1 +σ2
0,2I (t ≥ [n/2]), with σ2

0,1 = 1 < σ2
0,2 = 15, and as before ρ0 = {0.5, 0.9}

and n ∈ {15, 25, ..., 1000} with α = 0.05.

(iii) In terms of empirical rejection frequencies under the alternative, bootstrap based
tests and the asymptotic test are comparable. This is illustrated in Table 2, with
εt i.i.d.N (0, σ2

0) for n = 250 and ρ0 = 0.9, and the test of H0 : ρ = ρ̄ is considered
for values of ρ̄ ranging from 0.70 to 0.875 (with ρ̄ = ρ0 included as a benchmark).

(iv) As mentioned in the discussion of the wild bootstrap in Section 3, see also Remark
3.4, the wild bootstrap is often motivated by its ability to replicate underlying het-
eroskedasticity. This is illustrated in Figure 1, where panel (A) shows the empirical
residuals ε̃t from one of the draws in Table 1 with σ2

t = σ2
0,1 + σ2

0,2I (t ≥ [n/2]), see
above. Figure 1, in panels (B), (C) and (D), illustrates that, while ε∗t replicates the
heteroskedasticity for the wild bootstrap, this is not the case for the iid bootstrap.

(v) In terms of requirements for finite moments of the i.i.d. sequence εt, Section 3.2
discussed suffi ciency and necessity of the condition E |εt|2+η < ∞ for some η > 0,
and it was conjectured that E (ε2

t ) < ∞ was suffi cient. This is illustrated in Table
2, which shows that when εt does not have a finite variance, then the asymptotic
test, as well as the wild and iid bootstrap based tests, fail to have correct empirical
size. On the other hand, when εt has a finite variance, while the asymptotic test
has empirical size far from the nominal, the bootstraps work despite the lack of e.g.
fourth order moments. Also Table 2 shows results from a so-called permutation
bootstrap, see Section 4.5 below.

4.1 Asymptotic test

We consider xt as given by the AR model of order one, with a constant term δ included,

xt = δ + ρxt−1 + εt, t = 1, 2, ..., n, (4.1)

with εt i.i.d. N(0, σ2) and x0 fixed. The parameters are given by θ = (δ, ρ, σ2)′ ∈ Θ =

R2 × (0,∞), with θ0 = (δ0, ρ0, σ
2
0)′ the true value, where θ0 ∈ Θ0 = {θ ∈ Θ | |ρ0| < 1},

and the hypothesis of interest is given by H0 : ρ = ρ̄.
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The unrestricted and restricted (Gaussian likelihood based) estimators which maxi-
mizes

`n (θ) = −n
2

(log σ2 + n−1

n∑
t=1

ε2
t (ρ, δ) /σ2),

with x0 fixed, and εt (ρ, δ) = xt − ρxt−1 − δ, are given by

θ̂n = (δ̂n, ρ̂n, σ̂
2
n)′ and θ̃n = (δ̃n, ρ0, σ̃

2
n)′,

respectively. The theory from the case of no constant term immediately carries over, such
that for ρ̄ = ρ0, |ρ0| < 1 and εt i.i.d. (0, σ2

0), as n→∞,

τn = 2(`n(θ̂n)− `n(θ̃n))
d→ χ2

1.

In the implementations of the asymptotic test, we use the p-value, pn, calculated as the
tail probability of τn in the limiting χ2

1−distribution, and reject if pn is smaller than the
nominal level α.
Column (A) in Table 1 illustrates this for xt in (4.1) generated with δ0 = 0, ρ0 =

{0.5, 0.9} , and σ2
0 = 1. Moreover, εt is simulated as an i.i.d. N (0, σ2

0) sequence, and
x0 = 0. The empirical rejection frequencies are reported based onN = 10, 000 repetitions,
with nominal level, α = 0.05. Results for n ∈ {15, 25, ..., 1000} are given in column (A)
of Table 1. Observe, as noted, that quite a large sample is required for the limiting χ2

1

distribution to be a good approximation, in particular with ρ0 = 0.9, see e.g. Duffee and
Stanton (2008) and references therein.

Remark 4.1 (Empirical rejection probabilities) At the chosen (nominal) level
α, with qα the corresponding 1−α quantile of the limiting distribution, the true rejection
probability at sample length n is αn = P (τn > qα). The Monte Carlo estimator is
the empirical rejection frequency computed as αn,N = 1

N

∑N
i=1 I(pn,i < α), where pn,i

is the p-value in Monte Carlo replication i, i = 1, 2, ..., N . It follows that the simulation
uncertainty of αn,N is given by

V(αn,N) = αn(1− αn)/N,

see e.g. Hendry (1984), and for a correctly sized test, with αn = 0.05, and N = 104,
the 95% confidence bound for αn,N is [0.0456, 0.0544]. Similar considerations hold for the
bootstrap simulations of the test, with pn,i replaced by p∗n,B,i, see also Remark 3.8.

[Table 1 around here]

4.2 The iid bootstrap test

To illustrate bootstrap based testing, we apply a restricted recursive bootstrap in terms
of residuals estimated under H0, see Section 3.2.
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Specifically, for StepsA and B in Section 3, the bootstrap samples {x∗t}nt=0 are sampled
from

x∗t = δ̃n + ρ̄x∗t−1 + ε∗t , t = 1, 2, ..., n, (4.2)

with x∗0 = x0 and ε∗t drawn with replacement (for wild, see below) from {ε̃ct}nt=1, where ε̃
c
t

are defined as in3 (3.3) in terms of,

ε̃t = εt(ρ̄, δ̃n) = xt − ρ̄xt−1 − δ̃n. (4.3)

For the bootstrap sample, {x∗t}nt=0, we estimate the unrestricted and restricted models
and calculate the bootstrap statistic τ ∗n, given by

τ ∗n = 2(`∗n(θ̂∗n)− `∗n(θ̃∗n)).

Here θ̂∗n = (δ̂∗n, ρ̂
∗
n, σ̂

∗2
n )′ and θ̃∗n = (δ̃∗n, ρ̄, σ̃

∗2
n )′ denote the unrestricted and restricted

bootstrap estimators, respectively, in terms of the bootstrap log-likelihood function,

`∗n (θ) = −n
2

(log σ2 + n−1

n∑
t=1

ε∗2t (ρ, δ) /σ2), ε∗t (ρ, δ) = x∗t − ρx∗t−1 − δ.

For Step C, the bootstrap test is based on replicating the above to obtain
{
τ ∗n,b
}B
b=1
with

B denoting the number of bootstrap repetitions. As discussed in Remark 3.3, the empir-
ical bootstrap p-value is computed as the tail probability,

p∗n,B =
1

B

B∑
b=1

I
(
τ ∗n,b ≥ τn

)
. (4.4)

With B = 399 bootstrap repetitions, the empirical rejection frequencies for the N =

10, 000 Monte Carlo repetitions are presented in column (B) in Table 1.

4.3 The wild bootstrap test

The wild bootstrap design is as in Section 4.2, except that ε∗t for the wild bootstrap is
resampled by,

ε∗t = w∗t ε̃t,

with w∗t i.i.d. (0, 1) distributed and ε̃t defined in (4.3). In the simulations w∗t is chosen as
N(0, 1) and Rademacher distributed, respectively, see also Remark 3.4.
For the simulations reported in Table 1, εt are assumed not to be i.i.d. N (0, σ2

0)

distributed in order to illustrate the impacts of heteroskedasticity. Specifically, we set
εt

d
= N(0, σ2

t ) with σ
2
t = 1 for t = 1, 2, ..., [n/2] and σ2

t = 15 for t = [n/2] + 1, ..., n. That
is,

σ2
t = σ2

0,1 + σ2
0,2I (t > [n/2]) , (4.5)

3Note that as the model here includes a constant term, strictly speaking the re-centering of ε̃t is not
needed.

18



with σ2
0,1 = 1 and σ2

0,2 = 15. In this case the asymptotic test is not consistent as
demonstrated in column (A) of Table 1, which reports the empirical rejection probabilities
for the asymptotic test. The asymptotic test is severely over-sized —and even for n = 500

the empirical size is not close to α = 0.05. Also the iid bootstrap is not asymptotically
valid. With the iid bootstrap as in Section 4.2, the results are reported in column (D), and
we observe that the results are similar to the asymptotic test. Intuitively, this reflects
that the bootstrap series, {x∗t}nt=0, does not mimic the properties of the original data
series {xt}nt=0. This can be illustrated by Figure 1, where panel (A) shows pronounced
heteroskedasticity of the estimated residuals, ε̃t, for one sample. Panel (B) shows a
single iid resampled sample {ε∗t}nt=1 from {ε̃t}nt=1, and as, by definition, in particular
the ordering change, the ε∗t series does not mimic the heteroskedasticity as seen in the
estimated residuals in panel (A).
For the wild bootstrap, columns (E)-(F) in Table 1 report the empirical rejection

frequencies for the wild bootstrap test with, as mentioned, w∗t N (0, 1) and Rademacher
distributed respectively. The empirical size for the wild bootstrap is quite close to the
nominal level, with the Rademacher distribution performing slightly better. Likewise,
panels (C) and (D) in Figure 1, illustrate that the wild bootstrap ε∗t series more closely
mimic the properties of the original ε̃t series.

[Figure 1 around here]

4.4 Bootstrap under the alternative

To establish asymptotic validity, it was shown that τ ∗n is also asymptotically χ
2-distributed

under the alternative, leading to a consistent bootstrap test. To illustrate this, we consider
the empirical probability of rejecting a false hypothesis.
Specifically for the iid bootstrap test in Section 4.2, let the data xt be generated with

true value θ0 = (ρ0, σ
2
0, δ0)′ as before. The hypothesis of interest is H0 : ρ = ρ̄ and we let

ρ̄ ∈ {0.875, ..., 0.70} to illustrate the empirical power of the bootstrap test and asymptotic
test. From Table 2 it follows that the bootstrap is comparable to the asymptotic test in
terms of empirical power.

[Table 2 around here]

4.5 Moment condition, E |εt|k <∞ for k ≥ 2

When establishing asymptotic validity of the bootstrap the moment condition, E(ε4
t ) <

∞, was discussed and it was mentioned that while it is a suffi cient condition, it may
not be necessary. On the other hand E(ε2

t ) < ∞ seems necessary, unless the bootstrap
algorithm is based on permutation, see below.
To illustrate this, we consider here the data xt as generated with true value θ0 =

(ρ0, σ
2
0, δ0)′ as before for samples of size n, n ∈ {15, ..., 1000}. The i.i.d. innovations

εt are simulated from the Student’s tv-distribution, where the degrees of freedom v,
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v ∈ {3/2, 3, 5}. Specifically, for v = 3/2, E |εt|k is finite, only for k < 3/2, thus allowing
first order, but not second order, moments of εt. For v = 3 and v = 5, the second and
finite fourth order moments are finite respectively. Also note that the Gaussian case
is included as a reference. Table 3 shows that the asymptotic test (based on the χ2

1

approximation) for all the four cases has empirical rejection rates far from the nominal
level of α = 0.05, even for large samples n, where n ∈ {15, ..., 1000}.
As to the bootstrap design, Table 3 reports bootstrap simulations based on iid sam-

pling and the wild (Rademacher). For v = 3/2, as expected, neither the wild nor the iid
bootstraps have empirical rejection rates close the nominal level. For v ≥ 3, both the
wild and iid bootstrap works surprisingly well, even when v = 3.
Additionally, Table 3 reports bootstrap based testing where ε∗t are iid sampled, but

without replacement. This, which is referred to as the permutation bootstrap, works well
in terms of empirical rejection frequencies even for v = 3/2. In general, the permutation
bootstrap works well in the context of heavy-tailed i.i.d. εt (see Cavaliere, Nielsen and
Rahbek, 2020, and also the discussion in Section 5.4 for AR models with heavy-tailed
innovations).

[Table 3 around here]

5 A selection of further topics

In the previous sections the simple AR model of order one was used to introduce key
ideas and challenges of the iid and wild bootstrap schemes when applied to testing the
hypothesis, H0 : ρ = ρ̄. In this section, we provide an overview of recent selected results
for the bootstrap when applied to different testing problems in econometric time series
models. The overview is not meant to be exhaustive, see e.g. Cavaliere and Rahbek (2020)
for a review of the bootstrap with more technical details, as well the references therein.

5.1 Non-stationary (vector) autoregressive models

5.1.1 The iid bootstrap

Consider initially the AR model in (2.1) again. The hypothesis of non-stationarity is
given by H0 : ρ = 1, or equivalently, with π = ρ − 1, H0 : π = 0, in the AR model
restated as

∆xt = πxt−1 + εt, (5.1)

where ∆xt = xt − xt−1. It follows that the test-statistic τn in (2.5) can be written as

τn = Wn (π = 0) = π̂2
n

n∑
t=1

x2
t−1/σ

2
0,

and under H0,

τn
d→ τ = (

∫ 1

0

B (u) dB (u))2/

∫ 1

0

B2 (u) du, (5.2)

20



where B (u) is a standard Brownian motion, u ∈ (0, 1), and τ is the (squared) Dickey-
Fuller distribution, see Hamilton (1994). In this case, in terms of the bootstrap in Section
3, the restricted recursive bootstrap is given by ∆x∗t = ε∗t , with ε∗t iid resampled, is
asymptotically valid. This holds as in this case, τ ∗n

d∗→p τ , both under H0 and the
alternative. In contrast, and as discussed in Basawa et al. (1991), the unrestricted
recursive bootstrap based on the recursion ∆x∗t = π̂nx

∗
t−1 + ε∗t , with ε

∗
t iid resampled,

is invalid. This follows as the corresponding bootstrap statistic, τ ∗n, under H0 converges
in distribution to τ̃ , τ̃ 6= τ . Precisely, the bootstrap conditional distribution function
converges weakly rather than in probability; see Basawa et al. (1991), Cavaliere and
Georgiev (2019) and Cavaliere, Nielsen and Rahbek (2015).
The univariate case of testing for non-stationarity is a special case of the more general

hypothesis of non-stationarity in vector ARmodels forXt ∈ Rp with general lag-structure,
as given by

∆Xt = πXt−1 +
k∑
i=1

γi∆Xt−i + εt, (5.3)

where εt are i.i.d. Np (0,Ω) distributed and the initial values (X0,∆X0, ...,∆X1−k) are
fixed in the statistical analysis. Moreover, π and (γi)

k
i=1 are p×pmatrices. The hypothesis

of non-stationarity of Xt is given by the hypothesis of reduced rank r, 0 ≤ r < p, of π,
see Johansen (1996). Specifically, with Hr : rank (π) ≤ r, it follows that this may be
written as

Hr : π = αβ′,

where α and β are (p× r) dimensional matrices. Under the non-stationarity condi-
tions in Johansen (1996, Theorem 4.2), it follows that Xt is a non-stationary process,
with r stationary, or co-integrating, relations β′Xt, and (p− r) common trends given by
δ′
∑t

i=1 εi, with δ (p× (p− r)) dimensional of full rank, and such that δ′α = 0. The
likelihood-ratio statistic τn (r) for co-integration rank r satisfies, under Hr and the men-
tioned non-stationarity conditions, that

τn (r)
d→ τ (r) = tr{(

∫ 1

0

B (u) dB′ (u))′(

∫ 1

0

B (u)B (u)′ du)−1(

∫ 1

0

B (u) dB′ (u))},

which is a multivariate version of (5.2) in terms of the (p− r)-dimensional standard
Brownian motion, B (·). Cavaliere, Rahbek and Taylor (2012) consider the recursive
restricted bootstrap based on

∆X∗t = π∗nX
∗
t−1 +

k∑
i=1

γ∗n,i∆X
∗
t−i + ε∗t ,

with π∗n = α̃nβ̃
′
nand γ∗n,i = γ̃n,i; that is, the bootstrap true values are given by the

estimators under Hr. Asymptotic validity of the iid bootstrap is established in Cavaliere,
Rahbek and Taylor (2012), by showing that τ ∗n (r)

d∗→p τ (r) under Hr and the alternative.
Cavaliere, Nielsen and Rahbek (2015) extend the analysis to hypothesis testing on the

co-integration (matrix) parameter β. Specifically, Cavaliere et al. (2015, Proposition 1
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and Theorem 1), establish that under the hypothesisHr̄ : β = β̄, the bootstrap likelihood
ratio statistic, τ ∗n satisfies τ

∗
n
d∗→p χ

2
(p−r)r. Importantly, it is also established that under the

alternative τ ∗n has a limiting distribution (in distribution) in terms of a diffusion process
with a stochastic diffusion coeffi cient, and hence it is bounded in probability such that
the bootstrap based test is asymptotically valid.

5.1.2 The wild bootstrap

In order to allow for possible heteroskedasticity in the εt sequence in (5.3), also the
application of the wild bootstrap has been studied. Results for application of the wild
bootstrap in general lag univariate AR models in Gonçalves and Kilian (2004), with εt
allowed to have general time-varying volatility structures, such as ARCH and stochastic
volatility, have been generalized to the testing the hypothesis of co-integration Hr in
Cavaliere, Rahbek and Taylor (2010a, 2010b, 2014) and Boswijk et al. (2016).
Moreover, Boswijk, Cavaliere, Rahbek and Taylor (2016) and Boswijk, Cavaliere,

Georgiev and Rahbek (2020) consider general hypothesis testing on the co-integration
parameters α and β, with π = αβ′ in (5.3). They consider the case of stochastic volatility,
where εt = Ω

1/2
t zt, with the p-dimensional zt i.i.d. (0, 1) and the time-varying (p× p)-

dimensional Ωt = Ω (t/n). Moreover, with “ w→”denoting weak convergence, it is assumed
that for u ∈ (0, 1),

n−1/2

[nu]∑
t=1

εt
w→
∫ u

0

Ω1/2 (s) dB (s) , (5.4)

where B is a p-dimensional standard Brownian motion, which generalizes the i.i.d. (0,Ω)

assumption, where n−1/2
∑[nu]

t=1 εt
w→ Ω1/2B (u). Specifically, the limiting process in (5.4)

is a continuous-time martingale, with in general an unknown covariance (kernel). This
implies that the limiting distribution of the test statistic(s) τn, for example for the men-
tioned hypotheses Hr and Hr̄, will depend on unknown nuisance parameters, which again
means asymptotic inference is infeasible in practice. In contrast, for the wild bootstrap,
it is established that n−1/2

∑[nu]
t=1 ε

∗
t has the same limiting distribution (in probability),

and, as a result, the wild bootstrap is asymptotically valid as shown in Boswijk et al.
(2016, 2020), under some additional regularity conditions to be verified.

5.2 Time-varying conditional volatility models

As discussed in Andrews (2000), applying bootstrap based testing in ARCH models is
in general diffi cult, and may be invalid in certain cases, due to general problems arising
when testing hypotheses in time series models, when one or more parameters under the
null may be “on the boundary of the parameter space”.
To illustrate, consider here xt given by a linear ARCH model of order q

xt = σt (θ) zt, t = 1, ..., n,
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with zt i.i.d. (0, 1), and

σ2
t (θ) = ω +

q∑
i=1

αix
2
t−i.

In the statistical analysis, the initial values (x0, ..., x−q+1) are fixed, and the parameter
θ = (ω, α1, ..., αq)

′ ∈ Θ, where

Θ = {θ ∈ Rq+1 : ω2 > 0, and αi ≥ 0 for i = 1, ..., q}.

Thus by definition of the parameter space Θ, if for the true value θ0 = (ω0, α0,1, ..., α0,q)
′,

it holds that α0,j = 0 for some j, the true value θ0 is on the boundary of Θ.
The fact that it is unknown a priory which of the ARCH coeffi cients may, or may

not be zero, leads to non-pivotal limiting distributions of test statistics and estimators.
Consider here the likelihood ratio statistic τn for the nullity of the q-th order ARCH
coeffi cient, that is the hypothesis Hq : αq = 0. With the Gaussian likelihood function
given by

`n (θ) = −1

2

n∑
t=1

(
log σ2

t (θ) + x2
t/σ

2
t (θ)

)
,

by definition, τn = 2(`n(θ̂n) − `n(θ̃n)), where the unrestricted4 Gaussian MLE is given
by θ̂n = arg maxθ∈Θ `n (θ), while θ̃n is the Gaussian MLE under Hq. By Andrews (1999,
2001), it follows that τn has a limiting distribution which is non-standard. In addition,
the limiting distribution of τn is non-pivotal as, crucially, it depends on whether α0,i > 0,
or α0,i = 0 for i = 1, ..., q − 1 under Hq.
While this implies that the unrestricted bootstrap is invalid, see Andrews (2000), it

follows by Cavaliere, Nielsen and Rahbek (2017) that the iid restricted bootstrap is as-
ymptotically valid under mild conditions for the simple case of the first order ARCH with
q = 1. Moreover, Cavaliere, Nielsen, Pedersen and Rahbek (2020) demonstrate validity
of a modified restricted bootstrap, which can be applied for general testing problems in
parametric models with parameters on the boundary under the null. Specifically, for the
case of ARCH of order q, consider the bootstrap process

x∗t = σ∗t (θ∗n) z∗t ,

with z∗t iid resampled from ẑt = xt/σt(θ̂n), after recentering and rescaling these. The
bootstrap conditional volatility process σ∗2t (θ∗n) is given by

σ∗2t (θ∗n) = ω∗n +

n∑
i=1

α∗n,ix
2
t−1, (5.5)

with ω∗n = ω̃n and α∗n,i = α̃n,iI (α̃n,i > cn), with cn a deterministic sequence which satisfies
(i) cn → 0, and (ii) n1/2cn → ∞, as n → ∞. The bootstrap scheme is referred to as

4A complete discussion of specifications and properties of the parameter space Θ is given in Cavaliere,
Nielsen, Pedersen and Rahbek (2020).
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modified since in (5.5) the bootstrap true values α∗n,i —by “shrinking”—are set to zero
for i = 1, ..., q − 1, provided α̃n,i is small relative to cn. Note that with the time-varying
bootstrap volatility defined by (5.5), this is a case of a fixed design (or, rather fixed
volatility) bootstrap, see Step A in Section 3. The general fixed volatility bootstrap for
ARCH models is considered in Cavaliere, Pedersen and Rahbek (2018), and the modified,
by shrinking, fixed volatility bootstrap is shown in Cavaliere, Nielsen, Pedersen and
Rahbek (2020, Proposition 1) to be asymptotically valid. Simulations there show that
both the fixed volatility, and the recursive with x2

t−i = x∗2t−i in (5.5) bootstrap based tests
have empirical rejection frequencis which are close to the nominal level for small, and
moderate, sample sizes n. Moreover, as for the discussion of the moment requirements
for the AR bootstrap, simulations indicate that while suffi cient, the moment constraints
on the original ARCH process imposed to establish validity are also not necessary.

5.3 Double autoregressive models

The double autoregressive (DAR) model combines the AR and ARCH models, as both
the conditional mean and conditional variance depend on lagged levels of the process, see
Ling (2004, 2007), and for a multivariate “co-integrated”version, Nielsen and Rahbek
(2014).
Consider here the first order DAR model as given by

∆xt = πxt−1 + σt (θ) zt, σ2
t (θ) = σ2 + αx2

t−1, t = 1, 2, ..., n, (5.6)

with zt i.i.d.N (0, 1), x0 is fixed in the statistical analysis, and the parameter given by
θ = (π, σ2, α)

′ ∈ Θ, with Θ = {θ ∈ R3 : σ2 > 0 and α ≥ 0}.
A notable special feature of the DAR process is that for π = 0, the process is strictly

stationary for any 0 < α < 2.42, see Borkovec and Klüppelberg (2001) and Ling (2004,
2007), while the process is non-stationary when π = α = 0. With π = 0, and α ∈ (0, 2.42),
while being strictly stationary, the DAR process xt has infinite variance (and only finite
fractional moments).
From the specification of the parameter space Θ evidently for α0 = 0, the true value

θ0 is on the boundary, raising the issues discussed in Section 5.2 in relation to the ARCH
model. Asymptotic theory for the Gaussian likelihood-based MLE with α0 > 0 is given
by Ling (2004), while Cavaliere and Rahbek (2020) extend the results to allow for the
boundary case. Klüppelberg, Maller, van de Vyver and Wee (2002) derive the asymptotic
distribution of the likelihood ratio statistic τn for the hypothesis of non-stationarity as
given by H0 : π = α = 0, see also Chen, Li and Ling (2013). Different versions of
a bootstrap based test are discussed in Cavaliere and Rahbek (2020). In particular,
validity is established for a restricted bootstrap given by, ∆x∗t = σ̃nz

∗
t , where σ̃

2
n is the

MLE of σ2 under H0, while z∗t is obtained by iid resampling of unrestricted residuals, ẑt
(recentered and rescaled). That is, the unrestricted residuals ẑt are given by

ẑt = (∆xt − π̂nxt−1)/σt(θ̂n),
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with θ̂n = (π̂n, σ̂n, α̂n)′ the unrestricted MLE. In line with the discussion in Section 3
regarding restricted and unrestricted residuals, this choice ensures that ẑt for large n,
is “close” to the true zt, irrespective of whether the null H0 is true or not. While the
validity result is shown for this choice, simulations indicate that in practice the difference
between choosing to resample from ẑt, or from z̃t = ∆xt/σ̃n, is negligible. See Cavaliere
and Rahbek (2020) for a detailed discussion of this as well as asymptotic theory for
different bootstraps.

5.4 Heavy-tailed autoregressive models

So far results for the (vector) AR models have been derived under the assumption that
the innovations εt have mean zero, and a finite variance σ2, or some time-varying, possibly
conditional, variance σ2

t when discussing heteroskedasticity. To allow for more extreme
events, and phenomena such as “bubble” periods with local explosive behavior, this
assumption was relaxed in Davis and Resnick (1985a, 1985b, 1986) and Davis and Song
(2020) where the i.i.d. innovations εt are allowed to have infinite variance. Specifically,
they consider the case of εt i.i.d with a stable distribution such as the Cauchy; that is,
“heavy-tailed”as the tails of the distribution of εt are assumed to decay at a rate which
is slower than the Gaussian (exponential) rate.
Two key examples are given by the classic AR model and the so-called non-causal AR

model of order one in terms of i.i.d. stable distributed εt,

AR : xt = ρxt−1 + εt, and AR+ : xt = ρ+xt+1 + εt. (5.7)

For the standard, and hence causal, AR recall that with t = 1, ..., n, x0 is the initial
value which is fixed in the statistical analysis, while for the non-causal AR+, xn is the
“initial value”due to the forward recursion. Recently non-causal AR+ type models have
become popular as they seem to capture well the dynamics of phenomena such as bubbles
where, after period of exponential type growth, the process “collapses”. Interestingly, and
linking the heavy-tail AR+ models with the DAR model in Section 5.3, the AR+ process
in (5.7) can be shown to have a causal “semi-strong”representation as the DAR process
in (5.6), see Gourieroux and Zakoïan (2017).
Consider testing the hypothesis H+

0 : ρ+ = ρ̄ using the Gaussian likelihood based
statistic τ+

n , given by

τ+
n = (ρ̂+

n − ρ̄)(

n−1∑
t=1

xt+1)1/2/σ̂n,

where ρ̂+
n =

∑n−1
t=1 xtxt+1/

∑n
t=1 x

2
t+1, and σ̂2

n = n−1
∑n−1

t=1 (xt − ρ̂+
nxt−1)

2. While the
test statistic τ+

n is analogous to the (square root of the) previously studied statistic τn
in (2.5), the limiting distribution is non-standard, as the εt are assumed to be i.i.d.
stable distributed. For example, with εt Cauchy distributed, (n/ log n)(ρ̂+

n − ρ̄) is as-
ymptotically distributed as (1 + ρ̄) Cχ2

1, where C is standard Cauchy distributed, and
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τ+
n = OP

(
n−1/2 log n

)
. For general stable distributions, see Cavaliere, Nielsen and Rah-

bek (2020), asymptotic testing is infeasible as the limiting distributions depend on the
“tail index”(which is one for the Cauchy) of εt, and moreover the normalization (which is
n−1/2 log n for the Cauchy case) depend on further, and in practice, unknown quantities.
Cavaliere, Nielsen and Rahbek (2020) discuss validity of the recursive bootstrap

scheme similar to (3.5),
x∗t = ρ̄x∗t+1 + ε∗t ,

initialized with x∗n = xn, and with ε∗t resampled from the restricted residuals
{
ε̃+
t

}n−1

t=1
,

where ε̃+
t = xt − ρ̄xt+1. Crucially the ε∗t are not sampled by iid resampling with replace-

ment, as this would lead to an invalid bootstrap test, see Athreya (1987) and Knight
(1989). Instead, ε∗t are resampled without replacement, that is, by permuting

{
ε̃+
t

}n−1

t=1
,

or in combination with the wild, by permuting
{
ε̃+
t w
∗
t

}n−1

t=1
, where w∗t are i.i.d.Rademacher

distributed, see Remark 3.4. With τ+∗
n the bootstrap statistic based on the permutation,

or the combined permutation-wild bootstrap, Theorem 1 in Cavaliere, Nielsen and Rah-
bek (2020) establish validity of the bootstrap based test under the null hypothesis for
general AR+ models.
Similarly, Cavaliere, Georgiev and Taylor (2016) establish bootstrap validity for the so-

called sieve bootstrap in Bühlmann (1997) for general causal AR models with heavy tails.
Also note that in terms of testing for the presence of bubbles based on one-sided testing
using the supremum of recursively computed Dickey-Fuller type statistics as in Phillips,
Wu, and Yu (2011), Harvey, Leybourne, Sollis and Taylor (2016) establish validity of a
wild bootstrap based test to allow for heteroskedasticity.

6 Conclusions and further readings

In this article we have provided an introduction to key steps required for a successful
implementation of bootstrap hypothesis testing to time series models. In the framework
of a simple autoregressive model, we have discussed the (large-sample) validity of recur-
sive bootstrap algorithms, where the bootstrap sample is constructed by mimicking the
dependence structure of the original data, as implied by the econometric model at hand.
We have discussed the main requirements for bootstrap inference to be valid; that is, to
mimic the asymptotic distribution of the original test statistic under the null hypothesis,
and to be bounded (in probability) when the null hypothesis is false. To do so, we have
introduced the needed probability tools (which involve dealing with the conditional —
hence random —nature of the bootstrap measure) and shown how to apply them in order
to assess the large sample behavior of the bootstrap estimators and test statistics.
Needless to say, this article is not meant to be exhaustive or to provide a comprehen-

sive treatment of bootstrap inference. We have focused on bootstrap hypothesis testing
which, although being one of the most common applications of the bootstrap, is not
the only one. Further common implementations of the bootstrap involve computation of
standard errors, the construction of confidence intervals for the parameters of interest and
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bias correction of the estimators; see inter alia, Horowitz (2001) or MacKinnon (2006)
for reviews.
This article is also not exhaustive in terms of bootstrap algorithms. For instance we

have not discussed bootstrap algorithms based on re-sampling block of observations (or
residuals) rather than re-sampling single observations (or residuals). Block bootstrap
methods, as introduced by Künsch (1989), see also Politis and Romano (1994), Lahiri
(2003) and Shao (2010) inter alia, are quite flexible and powerful in cases where one does
not have strong a priori beliefs or knowledge about the dependence structure of the data.
As for subsampling methods (Politis, Romano andWolf, 1999), they also represent a valid
alternative (or complement) to recursive, model based bootstrap. We have focused on a
case (the first order AR model) where the data generating process is described by a finite
dimensional vector of parameters. Extensions to infinite-dimensional parameter spaces,
as for the case of general linear processes, are available in the literature; a classic example
is the AR(∞) sieve bootstrap of Kreiss (1988, 1992), Bühlmann (1997) and Gonçalves
and Kilian (2007).
It is important also to emphasize that there is a rich literature discussing finite-sample

improvements of the bootstrap in various models, including time series models, based on
Edgeworth expansions of the τn and τ ∗n statistics, as briefly mentioned also in Remark
3.4. An introduction to Edgeworth expansions as applied for the bootstrap can be found
in van der Vaart (2000, Chapter 23.3), see also Hall (1992) and Horowitz (2001).
Finally, it is worth noticing that throughout this article bootstrap validity under the

null is defined as the fact that under the null the bootstrap test statistic converges to the
asymptotic (null) distribution of the original statistic. This implies that, under rather
mild regularity conditions (such as continuity of the limiting distribution), if the null
hypothesis holds then the bootstrap p-value p∗n is asymptotically uniformly distributed,
see Remark 3.9. Combined with establishing that the bootstrap statistic is bounded
in probability under the alternative such that p∗n

p→ 0, see Section 3.3, this was used to
establish validity of the bootstrap. Cavaliere and Rahbek (2020) discuss in detail different
definitions of asymptotic validity and their verification under different assumptions. An
example is Cavaliere and Georgiev (2019), where validity of the bootstrap test is defined
directly in terms of asymptotic uniformity of the bootstrap p-values, rather than the
properties of (consistent) estimation of the limiting null distribution of the original test
statistic. By doing so, the bootstrap can be employed also in cases where the limiting
distribution of the original statistic may not be well defined, or in cases where the boostrap
distribution does not converge in probability but, rather, converges in distribution, see
e.g. Boswijk, Cavaliere, Georgiev and Rahbek (2020) and the discussions in Sections 5.1
and 5.4 where this was applied.
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Appendix

A Proof of Lemma 3.2

Consider the bootstrap process {x∗t}
n
t=0 as given by (3.5). Without loss of generality set

x∗0 = 0, such that by simple recursion,

x∗t =
t−1∑
i=0

ρi0ε
∗
t−i =

∞∑
i=0

ρi0ε
∗
t−i = ρ (L) ε∗t ,

with ε∗j = 0 for j ≤ 0, L the lag operator, Lε∗t = ε∗t−1, and ρ (z) =
∑∞

i=0 ρ
i
0z
i, for

z ∈ C. The summation to infinity means one can use standard manipulations of the
lag polynomial ρ (·) as well known from time series literature, see e.g. Johansen (1996),
Hamilton (1994) and references therein. Note first that as |ρ0| < 1, the coeffi cients ρi0 in
ρ (z) are exponentially decreasing and ρ (z) is convergent for |z| < 1 + δ for some δ > 0

and ρ (1) = (1− ρ0)−1.
When considering the average of x∗t , n

−1
∑n

t=1 x
∗
t one may for example use an expan-

sion of ρ (z) (see Remark A.1 below) of ρ (z) around z = 1, such that

x∗t = ρ (L) ε∗t−i = ρ (1) ε∗t + ρ∗ (L) ∆ε∗t ,

with ρ∗ (z) =
∑∞

i=1 θiz
i with θi = −iρi0 exponentially decreasing. This immediately gives

n−1

n∑
t=1

x∗t = (1− ρ0)−1 n−1

n∑
t=1

ε∗t + n−1ρ∗ (L) ε∗n.
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The first term tends to zero by (3.8). Next, for the second term use that ε∗t are i.i.d.
(conditionally on the data) such that

E∗ |n−1ρ∗ (L) ε∗n| = n−1 E∗ |
∞∑
i=1

iρi0ε
∗
n−i| ≤ n−1

∞∑
i=1

i|ρ0|i E∗ |ε∗n−i| ≤ cn−2

n∑
t=1

|ε̃ct |
p→ 0,

with c = |ρ0| (1− |ρ0|)−2 and where n−1
∑n

t=1 |ε̃ct |
p→ κ <∞ for κ a constant by standard

application of the LLN.
Turning to the average of x∗2t , note that

n−1

n∑
t=1

x∗2t = n−1

n∑
t=1

(
∞∑
i=0

ρi0ε
∗
t−i)

2 = n−1

n∑
t=1

∞∑
i=0

ρ2i
0 ε
∗2
t−i + δ∗n

where

δ∗n = n−1

n∑
t=1

n∑
i 6=j=1

ρi+j0 ε∗t−iε
∗
t−j.

With ρ2 (z) =
∑∞

i=0 ρ
2i
0 z

i and ω0 = ρ2 (1)σ2
0 = σ2

0/ (1− ρ2
0) the first term can be written

as

n−1

n∑
t=1

∞∑
i=0

ρ2i
0 ε
∗2
t−i = n−1

n∑
t=1

ρ2 (L) η∗t + ω0,

where η∗t = ε∗2t − σ2
0. Thus using arguments identical to above, n

−1
∑n

t=1 ρ2 (L) η∗t
p∗→p 0.

It remains to show that δ∗n
p∗→p 0. First, observe that by definition of the double

summation,

δ∗n = 2n−1

n∑
t=1

(
∞∑
i=0

ρi0ε
∗
t−i

∞∑
j=1

ρi+j0 ε∗t−i−j) = 2
∞∑
i=0

ρ2i
0 (n−1

n∑
t=1

ε∗t−i

∞∑
j=1

ρj0ε
∗
t−i−j).

As E∗
(
ε∗t−iε

∗
t−j
)

= 0 for j 6= i, it follows that

E∗
(
δ∗2n
)

= 4
∞∑
i=0

ρ4i
0 E∗(n−1

n∑
t=1

ε∗t−i

∞∑
j=1

ρj0ε
∗
t−i−j)

2 = 4n−2

∞∑
i=0

ρ4i
0

n∑
t=1

E∗(ε∗t−i

∞∑
j=1

ρj0ε
∗
t−i−j)

2.

Here

E∗(ε∗t−i

∞∑
j=1

ρj0ε
∗
t−i−j)

2 =

∞∑
j=1

∞∑
m=1

ρ2j
0 E∗

(
ε∗2t−iε

∗
t−i−jε

∗
t−i−m

)
=

∞∑
j=1

ρ2j
0 E∗

(
ε∗2t−iε

∗2
t−i−j

)
=
∞∑
j=1

ρ2j
0

(
E∗
(
ε∗2t
))2

= c(n−1

n∑
t=1

ε̃2
t )

2 p→ c̃,

with c̃ = ρ2
0σ

4
0/ (1− ρ2

0).

Remark A.1 The equality

ρ (z) = ρ (1) + ρ∗ (z) (1− z) ,
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with ρ∗ (z) =
∑∞

i=1 θiz
i−1 and θi = −iρi0 follows by the identity

ρ∗ (z) = ρ(z)−ρ(1)
1−z = −

∞∑
i=1

iρi0z
i−1.

Also note that the polynomial ρ∗ (z) is convergent for |z| < 1 + δ as the coeffi cients
θi = −iρi0 of ρ∗ (z) are exponentially decreasing.

Figures and Tables

Table 1: Empirical rejection frequencies of asymptotic and bootstrap tests in
the homoskedastic and heteroskedastic case.

Homoskedastic case Heteroskedastic case
(A) (B) (C) (D) (E) (F)

n Asymp. iid boot. Asymp. iid boot. Wild boot. Wild boot.
N(0,1) Rademacher

ρ0 = ρ̄ = 0.5

15 0.0825 0.0512 0.1319 0.1015 0.0720 0.0462

25 0.0733 0.0541 0.1329 0.1121 0.0685 0.0496

50 0.0623 0.0519 0.1370 0.1265 0.0625 0.0486

100 0.0538 0.0511 0.1425 0.1383 0.0586 0.0488

250 0.0521 0.0508 0.1428 0.1419 0.0593 0.0557

500 0.0498 0.0478 0.1398 0.1375 0.0526 0.0491

1000 0.0495 0.0493 0.1434 0.1463 0.0515 0.0502

ρ0 = ρ̄ = 0.9

15 0.1971 0.0558 0.1797 0.0597 0.0688 0.0534

25 0.1651 0.0552 0.1727 0.0688 0.0670 0.0563

50 0.1218 0.0526 0.1603 0.0875 0.0628 0.0530

100 0.0866 0.0507 0.1518 0.1016 0.0565 0.0501

250 0.0664 0.0511 0.1444 0.1226 0.0538 0.0494

500 0.0559 0.0480 0.1452 0.1323 0.0500 0.0474

1000 0.0548 0.0516 0.1463 0.1376 0.0515 0.0503

Notes: The data generating process is given by (4.1) with ρ0 ∈ {0.5, 0.9} and
δ0 = 0 and the bootstrap process defined in (4.2). In panels (A) and (B), the
innovations εt are i.i.d.N(0, σ2

0) distributed with σ2
0 = 1, while in panels (C)—(F)

εt are independently N(0, σ2
t ) distributed, with σ

2
t given in (4.5).
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Table 2: Empirical rejection frequencies of asymptotic and boot-
strap tests under the alternative.

ρ̄ Asymptotic iid bootstrap
0.9 0.0651 0.0485

0.875 0.0980 0.0810

0.85 0.2911 0.2658

0.825 0.5533 0.5283

0.8 0.7730 0.7567

0.75 0.9617 0.9578

0.7 0.9958 0.9954

Notes: The data generating process is given by (4.1) with n = 250

and ρ0 = 0.9, such that ρ0 6= ρ̄ except for the first row entry.
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Figure 1: Residuals from a typical simulation with sample length n = 500. Panel
(A) shows a sample of restricted residuals ε̃ct , while panels (B)-(D) show corresponding
bootstrap innovations {ε∗t}nt=1 for the iid bootstrap and the wild bootstrap, with the

auxiliary w∗t Gaussian and Rademacher distributed respectively.
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Table 3: Empirical rejection frequencies with heavy tailed innovations.

Asymptotic iid Wild Permutation
n Student’s tν , ν = 3/2

15 0.1434 0.0395 0.0248 0.0499
25 0.0959 0.0382 0.0256 0.0520
50 0.0563 0.0350 0.0268 0.0488
100 0.0363 0.0340 0.0262 0.0443
250 0.0290 0.0350 0.0326 0.0480
500 0.0249 0.0333 0.0322 0.0465
1000 0.0278 0.0351 0.0348 0.0513
n Student’s tν , ν = 3

15 0.1809 0.0508 0.0494 0.0508
25 0.1512 0.0491 0.0475 0.0522
50 0.1129 0.0494 0.0496 0.0521
100 0.0806 0.0491 0.0486 0.0505
250 0.0596 0.0487 0.0514 0.0490
500 0.0578 0.0528 0.0515 0.0534
1000 0.0499 0.0465 0.0486 0.0481
n Student’s tν , ν = 5

15 0.1894 0.0519 0.0531 0.0511
25 0.1571 0.0486 0.0515 0.0499
50 0.1119 0.0523 0.0495 0.0507
100 0.0807 0.0503 0.0497 0.0503
250 0.0639 0.0486 0.0477 0.0486
500 0.0542 0.0484 0.0478 0.0485
1000 0.0540 0.0498 0.0501 0.0503

Notes: Empirical rejection frequencies of asymptotic and bootstrap tests with
εt i.i.d. Student’s tν for ν ∈ {1, 3, 5}. Results are reported for the iid boot-
strap, the wild boostrap with wt Rademacher distributed and the permutation
bootstrap. Simulations are reported for sample lengths n ∈ {15, ..., 1000}. The
number of bootstrap replications is B = 399 and N = 10, 000 replications.
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