
Discussion Papers 
Department of Economics 

University of Copenhagen 

 
 

 
 

 

 

 
Studiestræde 6, DK-1455 Copenhagen K., Denmark 

Tel.: +45 35 32 30 82 – Fax: +45 35 32 30 00 
http://www.econ.ku.dk 

 
 

ISSN: 1601-2461 (online) 
 

 

No. 08-34 

 

 
 

Testing for Co-integration in Vector Autoregressions  
with Non-Stationary Volatility 

 
 
 

Giuseppe Cavaliere, Anders Rahbek, 
and A. M. Robert Taylor 

 
 
 
 
 
 

 

 

  

  
 

  
 

http://www.econ.ku.dk/


Testing for Co-integration in Vector Autoregressions with
Non-Stationary Volatility

Giuseppe Cavalierea;�, Anders Rahbekb and A.M.Robert Taylorc
a Department of Statistical Sciences, University of Bologna

b Department of Economics, University of Copenhagen and CREATES
c School of Economics and Granger Centre for Time Series Econometrics, University of Nottingham

September 2008

Abstract

Many key macro-economic and �nancial variables are characterised by permanent changes
in unconditional volatility. In this paper we analyse vector autoregressions with non-
stationary (unconditional) volatility of a very general form, which includes single and
multiple volatility breaks as special cases. We show that the conventional rank statis-
tics computed as in Johansen (1988,1991) are potentially unreliable. In particular, their
large sample distributions depend on the integrated covariation of the underlying mul-
tivariate volatility process which impacts on both the size and power of the associated
co-integration tests, as we demonstrate numerically. A solution to the identi�ed inference
problem is provided by considering wild bootstrap-based implementations of the rank
tests. These do not require the practitioner to specify a parametric model for volatility,
nor to assume that the pattern of volatility is common to, or independent across, the
vector of series under analysis. The bootstrap is shown to perform very well in practice.

Keywords: Co-integration; non-stationary volatility; trace and maximum eigenvalue
tests; wild bootstrap.

J.E.L. Classi�cations: C30, C32.

1 Introduction

A number of recent applied studies have suggested time-varying behaviour, in particular a
general decline, in unconditional volatility in the shocks driving macroeconomic time-series
over the past twenty years or so is a relatively common phenomenon; see, inter alia, Busetti
and Taylor (2003), Kim and Nelson (1999), McConnell and Perez Quiros (2000), van Dijk et
al. (2002), Sensier and van Dijk (2004) and reference therein. For example, Sensier and van
Dijk (2004) report that over 80% of the real and price variables in the Stock and Watson
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(1999) data-set reject the null of constant innovation variance against the alternative of a
one-o¤ change in variance. Similarly, Loretan and Phillips (1994) report evidence against the
constancy of unconditional variances in stock market returns and exchange-rate data, while
Hansen (1995) notes that empirical applications of autoregressive stochastic volatility models
to �nancial data generally estimate the dominant root in the stochastic volatility process to
be close to the non-stationarity boundary at unity. van Dijk et al. (2002) �nd evidence that
volatility changes smoothly over time, while Watson (1999) argues that multiple changes in
volatility are commonly observed. Cavaliere and Taylor (2007) report evidence of multiple
volatility breaks and trending volatility in the monthly producer price in�ation series from
the well-known Stock and Watson (1999) database.

These �ndings have helped stimulate an interest amongst econometricians into analysing
the e¤ects of non-constant volatility on univariate unit root and stationarity tests; see, inter
alia, Kim, Leybourne and Newbold (2002), Busetti and Taylor (2003), Cavaliere (2004), and
Cavaliere and Taylor (2005,2007,2008). These authors show that standard unit root and
stationarity tests based on the assumption of constant volatility can display signi�cant size
distortions in the presence of non-constant volatility. Cavaliere and Taylor (2008) develop
wild-bootstrap-based implementations of standard unit root tests which are shown to yield
pivotal inference in the presence of non-stationary volatility. The impact of non-constant
volatility on stable autoregressions has also been analysed by Hansen (1995), Phillips and
Xu (2006), Xu and Phillips (2008) and Xu (2008), inter alia, who show that non-constant
volatility can have a large impact on standard estimation and testing procedures.

Given that non-constant volatility has been found to be a common occurrence in univari-
ate macroeconomic and �nancial time series, and to have a large impact on univariate time
series procedures, it is clearly important and practically relevant to investigate the impact
that such behaviour has on multivariate non-stationary time series methods. Indeed, using
U.S. data Hansen (1992a) has shown that the regression error in four published co-integrating
relations (namely, real per capita consumption upon real per capita disposable income; aggre-
gate nondurables and services consumption upon disposable income; real stock prices upon
real dividends, short term upon long term interest rates) are all a¤ected by non-stationary
variances. Cavaliere and Taylor (2006) consider the impact of non-constant volatility on
residual-based tests for the null hypothesis of co-integration of, inter alia, Shin (1994).

In this paper we analyse the impact of non-stationary volatility in the (vector) innovation
process driving a co-integrated vector autoregressive (VAR) model. We allow for innovation
processes whose variances evolve over time according to a quite general mechanism which
allows, for example, single and multiple abrupt variance breaks, smooth transition variance
breaks, and trending variances. We analyse the impact this has on the conventional trace and
maximum eigenvalue statistics of Johansen (1988,1991), demonstrating that the asymptotic
null distributions of these statistics depend upon the (asymptotic) integrated covariation of
the underlying volatility process. Simulation results for a one-time change in volatility suggest
that this can have a large impact on both the size and power properties of the tests.

In order to solve the identi�ed inference problem, at least within the class of volatil-
ity processes considered, we extend the univariate wild bootstrap-based unit root tests of
Cavaliere and Taylor (2008) to the multivariate context by developing wild bootstrap-based
implementations of Johansen�s maximum eigenvalue and trace test statistics. Our proposed
wild bootstrap procedure is set up in such a way that the practitioner is not required to
specify any parametric model for volatility, nor to assume that the pattern of volatility is
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common to, or independent across, the vector of series under analysis.
In a recent paper, Boswijk and Zu (2007) discuss maximum likelihood [ML] estimation and

co-integration rank testing in VAR models when the (possibly non-stationary) spot volatility
changes smoothly over time and can be estimated consistently. In contrast to the wild
bootstrap approach used in this paper, the ML approach of Boswijk and Zu (2007), although
based on a non-pivotal statistic, is asymptotically e¢ cient (under certain conditions on the
volatility process), exploiting (in the limit) the potential power gains that can arise from using
the true likelihood ratio test in a correctly speci�ed model. The approach of Boswijk and
Zu (2007) might therefore be expected to deliver more powerful tests than obtain from our
bootstrap approach. On the other hand, since estimation of the (spot) volatility process is
not required for the bootstrap tests discussed here, they are likely to have much better �nite
sample size properties in the presence of non-stationary volatility than the corresponding
tests of Boswijk and Zu (2007).1 In this respect, the test proposed in Boswijk and Zu (2007)
represents an important complement to the wild bootstrap method proposed in this paper.
However, it is important to note that we adopt a di¤erent assumption from Boswijk and Zu
(2007) regarding the class of non-stationary volatility processes allowed. In particular, while
we allow for processes which display abrupt volatility shifts, Boswijk and Zu (2007) require
the volatility process to be continuous. Moreover, our analysis does not require the existence
of a consistent estimator of the underlying spot volatility.

Seo (2007) considers ML estimation (but does not discuss co-integration rank testing) of a
co-integrated system when the errors are conditionally heteroskedastic. However, he imposes
weak stationarity and so does not allow for time-varying behaviour in the unconditional
volatility process. Other related work is considered in Hansen (2003) who considers estimation
and testing in a co-integrated VAR model that allows for a �nite number of deterministic
breaks in the covariance matrix of the system. In contrast to the wild bootstrap approach
outlined in this paper, Hansen (2003) adopts a parametric approach to structural change,
requiring that the location of the breaks in the parameters of the covariance matrix and the
number of co-integrating relations present in the system are known. A further di¤erence is
that the innovations in Hansen (2003) are assumed to be homoskedastic within each regime,
such that the moving average representation of the system within each regime is identical
to that given in Johansen (1996). In particular, this entails that both the co-integrating
relations and the common trends are homoskedastic within each regime.

The remainder of the paper is organized as follows. Section 2 outlines our heteroskedastic
co-integrated VAR model, giving both error correction and common trends representations
for the model. Here we also discuss the form of the co-integrating relationships in the con-
text of this model. In section 3 the impact of non-stationary volatility on the large sample
properties of Johansen�s maximal eigenvalue and trace statistics is detailed. Here we also
demonstrate the important result that the MLE of the parameters from our co-integrated
VAR model remain consistent. Our wild bootstrap-based approach, which also incorporates a
sieve procedure using the (consistently) estimated coe¢ cient matrices from the co-integrated

1This trade-o¤ of size against power is well documented in the univariate case. Speci�cally, Boswijk (2005)
shows that in the presence of time-varying unconditional volatility, a ML test combined with a consistent esti-
mator of the spot volatility leads to unit root tests with power almost indistinguishable from the (asymptotic)
local power envelope. This approach, however, can su¤er from quite serious size distortions in small samples.
Conversely, wild bootstrap unit root tests as in Cavaliere and Taylor (2008), although not optimal, lead to
tests with very good size properties.
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VAR model, is outlined in Section 4 and it is shown that this solves the inference prob-
lem caused by non-stationary volatility, yielding asymptotically pivotal co-integration tests.
Monte Carlo experiments illustrating the e¤ects of one time (co-)variance shifts on both stan-
dard and bootstrap co-integration tests are presented in section 5. Here it is shown that the
proposed bootstrap tests perform very well in �nite samples. Section 6 concludes. All proofs
are contained in the Appendix.

In the following �w!�denotes weak convergence, �p!�convergence in probability, and �w!p�
weak convergence in probability (Giné and Zinn, 1990; Hansen, 1996); I(�) denotes the indi-
cator function and �x := y�(�x =: y�) indicates that x is de�ned by y (y is de�ned by x); b�c
denotes the integer part of its argument. The notation CRm�n [0; 1] is used to denote the space
of m � n matrices of continuous functions on [0; 1]; DRm�n [0; 1] denotes the space of m � n
matrices of càdlàg functions on [0; 1]. The space spanned by the columns of any m�n matrix
A is denoted as col(A); if A is of full column rank n < m, then A? denotes an m� (m� n)
matrix of full column rank satisfying A0?A = 0. For any square matrix, A, jAj is used to
denote the determinant of A, kAk the norm kAk2 := tr fA0Ag, and � (A) its spectral radius
(that is, the maximal modulus of the eigenvalues of A). For any vector, x, kxk denotes the
usual Euclidean norm, kxk := (x0x)1=2.

2 The Heteroskedastic Co-integration Model

We consider the following VAR(k) model in error correction format:

�Xt = ��0Xt�1 +	Ut + �Dt + "t, t = 1; :::; T (1)

"t = �tzt (2)

where: Xt and "t are p� 1, �t is p� p, Ut :=
�
�X 0

t�1; :::;�X
0
t�k+1

�0 is p (k � 1)� 1 and 	 :=
(�1; :::;�k�1), where f�igk�1i=1 are p� p lag coe¢ cient matrices, Dt is a vector of deterministic
terms, zt is p-variate i.i.d., zt � (0; Ip), where Ip denotes the p � p identity matrix, and �
and � are full column rank p � r matrices, r � p. The initial values X0 :=

�
X 0
0; :::; X

0
�k+1

�0
are assumed to be �xed and independent of T . If zt is independent of �s for all t; s, then
conditionally on �t the term "t has mean vector zero and time-varying covariance matrix
�t := �t�

0
t, the latter assumed to be positive de�nite for all t.

Throughout the paper we assume that the process in (1) satis�es the following two con-
ditions, which we label collectively as Assumption 1:

Assumption 1: (a) all the characteristic roots associated with (1); that is of A (z) :=
Ip���0z��1z (1� z)� � � � ��k�1zk�1 (1� z) = 0, are outside the unit circle or equal to 1;
(b) det (�0?��?) 6= 0, with � := Ip � �1 � � � � � �k�1.

For unknown parameters �, �, 	, �, and for a given sequence f�tg, when � and � are p�r
matrices not necessarily of full rank (1)-(2) denotes our heteroskedastic co-integrated VAR
model, which we denote as H(r). We assume that the deterministic part can be partitioned
into Dt := (D0

1t; D
0
2t)

0 and � := (�1; �2) where �1 = ��01 is the part of the coe¢ cient of the
deterministic terms that is constrained to be in col (�). The well-known and much studied
cases of a restricted constant and of a restricted linear trend obtain for D1t := 1; D2t = 0 and
for D1t := t;D2t = 1, respectively; see, for example, Johansen (2002) and Swensen (2006).
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The model may then be written in the compact form

Z0t = ���0Z1t +	
�Z2t + "t (3)

with Z0t := �Xt, Z1t := (X 0
t�1; D

0
1t)

0, Z2t := (U 0t ; D
0
2t)

0, �� := (�0; �01)
0 and 	� := (	; �2). If

Dit is set equal to 0, it is understood that Dit is to be dropped from the de�nition of Zit,
i = 1; 2.

Through the paper the following assumption will be taken to hold on the sequence of p�p
volatility matrices f�tg of (2).

Assumption 2: The matrix �t is non-stochastic and satis�es �t := � (t=T ) for all t =
1; :::; T , where � (�) 2DRp�p [0; 1]. Moreover it is assumed that � (u) := � (u)� (u)0 is positive
de�nite for all u 2 [0; 1].

Remark 2.1. Assumption 2 generalises the corresponding scalar assumption of Cavaliere
(2004) and Cavaliere and Taylor (2007) to the multivariate case, and is the key condition of the
present paper. This assumption allows us to cast the dynamics of the innovation variance in a
very general framework. Speci�cally, the càdlàg assumption implies that the elements of the
innovation covariance matrix �t are only required to be bounded and to display a countable
number of jumps, therefore allowing for an extremely wide class of potential models for the
behaviour of the covariance matrix of "t. To see this fact, let � (�) := � (�)� (�)0 denote the
limiting spot covariance process. Models of single or multiple variance or covariance shifts,
as are considered in Hansen (2003), satisfy Assumption 2 with � (�) piecewise constant. For
instance, the case of a single break at time b� ijT c in the covariance E ("it"jt) obtains for
�ij (u) := �0ij + (�

1
ij � �0ij)I (u > � ij). If �ij (�) is an a¢ ne function, then �t;ij displays a

linear trend. Piecewise a¢ ne functions are also permitted, thereby allowing for variances
which follow a broken trend, as are smooth transition variance shifts. Observe also that the
case of constant unconditional volatility, where �t = �, for all t, clearly satis�es Assumption 2
with �(u) = �. Finally, note that the càdlàg assumption implies that ��2 := supt k�tk <1:

Remark 2.2. It is not strictly necessary to require that the volatility function � (�) is non-
stochastic, but this assumption allows for a considerable simpli�cation of the theoretical set-
up; see the discussion in Cavaliere and Taylor (2007). This can be weakened to allow for cases
where the innovations zt and �t0 are stochastically independent for all t; t0 = 1; :::; T . In such
a case, if the (exogenous) volatility process � (�) has sample paths satisfying Assumption 2,
the results presented should then be read as conditional on a given realization of � (�). The
conditioning argument used here in the context of the volatility function serves the same
purpose as the exogeneity assumption used by Perron (1989,pp.1387-8) to permit stochastic
changes in the trend function. Moreover, we conjecture that the results given in the paper will
continue to hold if the condition on �t in Assumption 2 is replaced by the weaker requirement
that �bT �c

w! � (�) in the space DRp�p [0; 1] equipped with the Skorohod topology, with � (�)
being possibly stochastic and independent of zt.

Remark 2.3. A special case of the volatility model considered here arises by setting �t :=
�Vt, Vt a (full rank) time-varying diagonal matrix, initialized at V0 = Ip, and � a constant
p�p nonsingular matrix. In this case, � (�) of Assumption 2 has the form � (�) = �V (�), V (�)
now depending on a vector of càdlàg processes. A similar factorization has been employed
recently in other settings by, inter alia, Van der Weide (2002) and Lanne and Saikkonen
(2007) in the context of multivariate conditionally heteroskedastic models, and by Lanne
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and Lütkepohl (2005) to model non-normality in VAR processes. Finally, notice that the
special case where the errors share common volatility shocks obtains, for example, by setting
Vt := vtIp, where vt is a scalar process satisfying Assumption 2.

Remark 2.4. Since the volatility matrix �t depends on T , a time series generated according
to (1)-(2) with �t satisfying Assumption 2 formally constitutes a triangular array of the type
fXT;t : 0 � t � T; T � 1g, where XT;t is recursively de�ned as �XT;t = ��0XT;t�1 +	UT;t +
�Dt + �T;tzt, �T;[Tu] := � (u). However, since the triangular array notation is not essential,
for simplicity the subscript T is suppressed in the sequel. �

2.1 Representation

Under Assumptions 1 and 2 the model (1)-(2) admits the following representation which
generalizes the well-known MA representation of a co-integrated I(1) VAR model with ho-
moskedastic innovations; cf. Johansen (1996) and the references therein.

Lemma 1 Under Assumptions 1 and 2,

Xt = C

tX
i=1

(�izi + �Di) + St + C0: (4)

Here C := �? (�
0
?��?)

�1 �0? and C0 := C(Ip;�	)X0 is a constant which depends on the
initial values. The p-dimensional process St := (�;	)QX�t, where

X�t :=
�

�0Xt for k = 1�
X 0
t�;�X

0
t; :::;�X

0
t�k+1

�0 otherwise
is a (r + p(k � 1))-dimensional heteroskedastic autoregressive process satisfying,

X�t = �X�t�1 + �Dt + �t, �t := (�; Ip; 0; :::; 0)
0 �tzt (5)

where � := (�; Ip; 0; :::; 0)
0 �. In particular, we say that X�t is �stable�as the spectral radius of

� is smaller than one; that is, � (�) < 1. The matrix Q is non-singular and (r + p(k � 1))�
(r + p(k � 1)) dimensional.

The result given in Lemma 1 di¤ers from the standard case in two main respects, the
implications of which are discussed further below. First, the cumulated shocks appearing
on the right hand side of (4) display non-stationary volatility (unless � (�) of Assumption 2
is constant) and, hence, do not form a standard random walk as in the constant volatility
case. Second, the component St, although stable, is non-stationary due to the fact that its
volatility changes over time. In Lemma A.1 in the Appendix we show that multivariate stable
processes with heteroskedastic innovations, such as the example in (5), satisfy a law of large
numbers (LLN), irrespective of the initial values. Lemma A.1 generalizes results in Phillips
and Xu (2006, Lemma 1(i) and 1(ii)) in two ways. First, the conditions of Lemma A.1 allow
for multivariate autoregressive processes, and, second, they do not assume that these have an
in�nite moving average representation; i.e., the LLN is multivariate and holds irrespective of
initial values. This re�ects the fact that Lemma 1 provides a full representation theorem in
terms of common trends and multivariate autoregressive processes initialised at X0 (and not
in the in�nite past), and with �t de�ned for t � 1:
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2.2 Common Trends

By analogy to the homoskedastic case we may de�ne the common trends as the (p� r) � 1
vector

Pt := �0?

tX
i=1

"i = �0?

tX
i=1

�izi. (6)

Due to the time-variation in �t, Pt is in general not I(1) in the conventional sense; rather, Pt
is a (p� r)-dimensional process driven by heteroskedastic innovations satisfying Assumption
2. However, similarly to the homoskedastic case, the common trend component Pt is of order
T 1=2 and satis�es a functional central limit theorem (FCLT), although the limiting process
involved is no longer a (multivariate) standard Brownian motion. To see this fact, consider
the following lemma, which holds under Assumption 2.

Lemma 2 Let zt � iid(0; I), "t = �tzt and let B(�) denote a p-variate standard Brownian
motion. Then, under Assumption 2, as T !1,0@ 1

T 1=2

bT �cX
t=1

"t;
1

T 3=2

TX
t=1

 
t�1X
i=1

"i

!
"0t

1A w!
�
M (�) ;

Z 1

0
M(s) (dM(s))0

�
;

where M (�) :=
R �
0 � (s) dB (s) is a p-variate continuous martingale.

This result generalizes the well known FCLT and convergence to stochastic integrals re-
sults for partial sums of homoskedastic random walks to the case of general volatility dynam-
ics satisfying Assumption 2; standard convergence results discussed e.g. in Hansen (1992b),
Johansen (1996) follow as special cases when � (�) is constant. It follows immediately from
Lemma 2 and an application of the continuous mapping theorem that PT (�) := T�1=2PbT �c

w!
�0?M(�). That is, the scaled common trends component does not converge in the limit to a
vector Brownian motion; rather, it converges to a process with increments which although
still independent are no longer identically distributed through time. More speci�cally, the
limiting process M(�) is a continuous martingale with spot volatility � (�) and integrated
covariation equal to

R �
0 � (s) ds; cf. Shephard (2005,p.9).

Remark 2.5. Although "t is heteroskedastic, it is possible for the common trends to be
standard (homoskedastic) random walks. In particular, this will occur if �? annihilates the
variability of �t; that is, if �0?�t�? = �0?�t0�?, all t; t

0 = 1; :::; T . In such a case, Pt is a
standard random walk and T�1=2PbT �c converges to a multivariate standard Brownian motion,
regardless of any heteroskedasticity in the innovations "t. The foregoing large sample results
continue to hold under the weaker condition that �0?� (s)�? = �0?� (s

0)�?, all s; s0 2 [0; 1].

Remark 2.6. It is interesting to analyze the form of the limiting �common trend�process
M (�) in the special case considered in Remark 2.3. In this case, M (�) is a vector variance-
transformed Brownian motion; see Davidson (1994). To see this, observe that

M (�) :=
Z �

0
� (s) dB (s) = �

Z �

0
V (s) dB (s) = ��

264 �V �11

R �
0 V1 (s) dB1 (s)

...
�V �1p

R �
0 Vp (s) dBp (s)

375 =: ��
264 B�1 (s)

...
B�p (s)

375
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where �Vi := (
R 1
0 Vi (s)

2 ds)1=2 (i = 1; :::; p), �� := ��V , with �V := diag( �Vi; :::; �Vp). Each
of the B�i (�) := �V �1i

R �
0
�Vi (s) dBi (s) is a variance-transformed (or time-change) Brownian

motion with directing process �i (�) := �V �2i

R �
0 Vi (s)

2 ds; cf. Davidson (1994, p.486). Hence,
M(�) = ��B�(�), where B�(�) := (B�1(�); :::; B�p(�))0 is a vector of independent variance-
transformed Brownian motions. This implies, see Davidson (1994, p.492), that M(�) is a
vector variance transformed Brownian motion on [0; 1], de�ned by the covariance matrix
����0 and the homeomorphism , �(�) := (�1(�); :::; �p(�))0. �

2.3 Co-integrating Relations

Let us brie�y turn to a consideration of the linear combination �0Xt. In the homoskedastic
case, it is well known that under Assumption 1 �0Xt can be given an initial distribution
such that it is stationary. In the heteroskedastic case, however, stationarity does not hold in
general, due to the time-variation in �t. Nonetheless, �0Xt is stable, in the sense that it is
free of stochastic trends.

To see this fact, taking the case of no deterministics to illustrate, recall that representation
(6) implies that, apart from the contribution of the initial values, the linear combination �0Xt
depends on a linear combination of a stable process; that is, �0Xt = (Ip; 0; :::; 0)X�t, where
X�t is a �rst-order vector autoregressive process with stable roots only. However, in contrast
to the homoskedastic case, �0Xt cannot be made stationary by an appropriate choice of the
initial values since the innovations to X�t have non-stationary volatility. Hence, the model
considered in this paper generates co-integrating relations which are generally non-stationary
due to heteroskedasticity but are stable.

A key feature of the stability of �0Xt is, as already noticed, that the law of large numbers
applies to the sample moments of �0Xt. For instance, and taking the case of � = 0 to
illustrate, from Lemma A.1 in the appendix it follows that 1

T

PT
t=1 �

0Xt
�
�0Xt

�0 p! ����, with
���� a well-de�ned, full rank covariance matrix; see Section A.2 of the Appendix.

Remark 2.7. Even where "t is heteroskedastic, it is still possible for the co-integrating
relations to be stationary. Speci�cally, in the k = 1 case, if � annihilates the variability of
�t, in the sense that �0�t� = �0�t0� (all t; t0 = 1; :::; T ), then �

0Xt can be made stationary
by choosing the initial values appropriately. This feature shows that although in the �het-
eroskedastic�VAR(1) model with time-varying volatility �0Xt is in general heteroskedastic,
strict stationarity may in fact hold if the additional restriction that �0�t is constant over time
holds. �

3 The Impact of Non-Stationary Volatility on Standard Gaussian
Co-integration Analysis

In this section we focus on the properties of standard Gaussian-based Maximum Likelihood
(ML) estimators and associated co-integration rank tests based on the assumption of in-
dependent, identically distributed Gaussian shocks when volatility is time-varying satisfying
Assumption 2. In this case the Likelihood Ratio (LR) approach of Johansen (1991) is based on
a mis-speci�ed model and hence should be considered a pseudo Maximum Likelihood (PML)
method. Two results are given in this section. First, we show that the pseudo LR (PLR)
co-integration rank tests have non-pivotal asymptotic null distributions; that is, standard
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critical values cannot be employed in general. Second, we show that even though based on a
mis-speci�ed model PML still delivers consistent estimation of the (identi�ed) co-integrating
vector � and of the parameters �;	; �.

As is standard, let Mij := T�1
PT
t=1 ZitZ

0
jt, i; j = 0; 1; 2, with Zit de�ned as in (3), and

let Sij := Mij:2 := Mij �Mi2M
�1
22 M2j , i; j = 0; 1. The pseudo likelihood function is de�ned

by imposing the auxiliary assumption of i.i.d. Gaussian innovations with constant variance
�; that is, �t := �t�

0
t = �. The PML parameter estimators of �; �;	; � and �, are then

obtained by maximizing this Gaussian log-likelihood; see Johansen (1996).
Speci�cally, denoting the ordered solutions to the eigenvalue problem,���S11 � S10S�100 S01�� = 0; (7)

by �̂1 > : : : > �̂p, we may write the maximized (pseudo) log-likelihood under H (r), say ` (r),
as

` (r) = �T
2 log jS00j �

T
2

rP
i=1
log
�
1� �̂i

�
:

The PLR test statistic for H(r) vs H(p) is consequently given by

Qr := �2 (` (r)� ` (p)) = �T
pX

i=r+1

log
�
1� �̂i

�
(8)

and it is well know that under the null hypothesis the asymptotic distribution of Qr is given by

tr(
R 1
0 (dB(s))F (s)

0
�R 1
0 F (s)F (s)

0
��1 R 1

0 F (s)(dB(s))
0), where B(�) is a (p�r)-variate standard

Brownian motion and F (�) depends on B(�) and on the deterministic term; see Johansen
(1991) for further details. This result, however, no longer holds under non-stationary volatility
of the form considered in Assumption 2.

More speci�cally, the following result holds under the null hypothesis, where to keep the
presentation simple we assume, for the present, no deterministics in the model and in the
estimation.

Theorem 1 Let fXtg be generated as in (1)-(2) under Assumptions 1 and 2 with � = 0
and correspondingly let Z1t := Xt�1 and Z2t := Ut, and assume that zt is symmetrically
distributed with �nite fourth order moment �. Then, under the hypothesis H(r), as T !1,
Qr := �2 (` (r)� ` (p)), has asymptotic distribution

Qr
w! tr

 Z 1

0
(d ~M(s)) ~M(s)0

�Z 1

0

~M(s) ~M(s)0ds

��1 Z 1

0

~M(s)(d ~M(s))0

!
(9)

where ~M(�) is a (p� r)-variate Gaussian process with independent increments and Ip�r inte-
grated covariation at unity. More speci�cally, ~M(�) is the (p� r)-variate stochastic volatility
process

~M (u) :=
�
�0? ���

0
?
��1=2

�0?

Z u

0
�(s)dB(s)

where �� :=
R 1
0 � (s) ds and B(�) is a p-variate standard Brownian motion.
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Remark 3.1. The asymptotic null distribution of the Qr statistic is not a functional of
a standard Brownian motion as in the homoskedastic case considered in Johansen (1991).
Although, like a standard Brownian motion, this process is Gaussian, continuous and has
independent increments, these increments are, however, not necessarily stationary. As is
clear from Lemma 2, the asymptotic null distribution of Qr will in general depend on the
integrated covariation,

R �
0 � (s) ds of M(�). Consequently, inference using the standard trace

statistics will not in general be pivotal if p-values are retrieved on the basis of the tabulated
distributions.

Remark 3.2. As in Johansen (1991), under H(r), the r largest eigenvalues solving (7),
�̂1; : : : ; �̂r, converge in probability to positive numbers, while T �̂r+1; : : : ; T �̂p are of Op(1).
Consequently, and as in the case of constant volatility, under Assumption 2 the test based on
Qr will be consistent at rate Op(T ) if the true co-integration rank is, say, r0 > r. Despite this,
the result in Theorem 1 states that under non-stationary volatility the sequential approach
to determining the co-integration rank2 outlined in Johansen (1992) will not in general lead
to the selection of the correct co-integrating rank with probability (1 � �) in large samples,
as it does in the constant volatility case. The impact of a one time break in volatility on the
sequential procedure is explored numerically in section 5.

Remark 3.3. Under the special case considered in Remark 2.6, ~M(�) obtains as a nonsingular
linear combination of a vector variance transformed Brownian motion.

Remark 3.4. From the de�nition of ~M(�) of (9) it can be seen that this process is built
up from �0?M(�) = �0?

R �
0 �(s)dB(s). As a consequence, if �? annihilates the variation in

� (�); that is, if ~� (s) := �0?� (s) is constant over time (cf. Remark 2.5), then so the limiting
distribution in (9) will reduce to the so-called multivariate Dickey-Fuller distribution, with
p� r degrees of freedom, tr(

R 1
0 (dB(s))B(s)

0(
R 1
0 B(s)B(s)

0ds)�1
R 1
0 B(s)(dB(s))

0). This result
has a very important implication: provided the non-stationary volatility appears in the stable
direction of the system only, then the trace test will continue to have the same asymptotic
distribution as reported in Johansen (1991).

Remark 3.5. The discussion outlined in this section extends to the so-called maximum
eigenvalue test; that is, a PLR test based for H(r) vs H(r + 1). As is known, this test is

based on the statistic Qr;max := �2 (` (r)� ` (r + 1)) = �T log
�
1� �̂r+1

�
; see, for example,

Equation (2.14) of Johansen (1991). It then follows from the proof of Theorem 1 that the null
asymptotic distribution of Qr;max corresponds to the distribution of the maximum eigenvalue
of the real symmetric random matrix

R 1
0 (d

~M(s)) ~M(s)0(
R 1
0
~M(s) ~M(s)0ds)�1

R 1
0
~M(s)(d ~M(s))0

appearing in (9). Hence, as for the trace test, inference based on the maximal eigenvalue
statistics will not in general be pivotal if p-values based on a homoskedasticity assumption
are used.

We conclude this section by demonstrating that the PML estimators obtained by maxi-
mizing the (pseudo) Gaussian likelihood function are consistent under the stated assumptions.
As before, to keep the presentation simple we assume, for the present, no deterministics in
the model and in the estimation.

2This procedure starts with r = 0 and sequentially raises r by one until for r = r̂ the test statistic Qr̂ does
not exceed the � level critical value for the test.
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Theorem 2 Under the conditions of Theorem 1, consider the PML estimators of �; �;	 and
�. Then the PML estimators of � and 	 are T 1=2-consistent, the PML estimator of � is
T -consistent, while �nally the PML estimator of � converges in probability to ��:

Remark 3.6. Theorem 2 shows that in the presence of time-varying volatility of the form
speci�ed in Assumption 2, the PML estimators of �; � and 	 remain consistent. Moreover,
the estimator of the pseudo parameter � converges in probability to the (asymptotic) average
innovation variance, �� :=

R 1
0 � (s) ds. Note also that if 	 is estimated unrestrictedly (i.e.,

assuming full rank p), then the corresponding estimator is consistent even if the true rank is
strictly less than p (the proof is straightforward and is omitted for brevity). These results,
together with the additional consistency results discussed in Remark 3.7 below are key prop-
erties which will be needed to establish the usefulness of the bootstrap co-integration rank
test presented in the next section.

Remark 3.7. All results given in this section carry over straightforwardly to the case of
either a restricted constant term (D1t = 1, D2t = 0) or a restricted linear trend (D1t = t,
D2t = 1), as are considered in Swensen (2006). For example, the limiting null distributions of
the Qr statistic in these two cases are straightforward generalisations of the representations
given for these two cases in Johansen (1996), replacing the standard Brownian motion B(�)
appearing in the relevant representations therein with the limiting process ~M(�) from Lemma
2 throughout. Similarly, it can additionally be shown that where a (restricted) constant or
a (restricted) linear time trend are included, the PML estimator of � := (�; � �;	) remains
consistent under our assumptions. �

4 Bootstrapping the PLR Test

As demonstrated in Theorem 1, in the presence of volatility of the form speci�ed in As-
sumption 2 the asymptotic null distributions of the PLR tests on the co-integration rank
will, in general, depend on the asymptotic integrated covariation,

R �
0 � (r)� (r)

0 dr, implying
that inference based on the standard homoskedastic critical values will not be pivotal; cf.
Remark 3.1. In this section we show that because, as was shown in section 3, we can still
consistently estimate the relevant parameters of the model (asymptotically) pivotal p-values
can be obtained in the presence of time-varying heteroskedasticity satisfying Assumption 2
using re-sampling methods.

Our proposed re-sampling algorithm draws on the wild bootstrap literature (see, inter alia,
Wu, 1986; Liu, 1988; Mammen, 1993) and allows us to construct bootstrap co-integration
rank tests which are asymptotically robust to non-stationary volatility. In the context of the
present problem, the wild bootstrap scheme is required, rather than the standard residual
re-sampling schemes used for other bootstrap co-integration tests proposed in the literature;
see, e.g., Swensen (2006) and, in the univariate case, Inoue and Kilian (2002), Paparoditis and
Politis (2003), Park (2003). This is because, unlike these other schemes, the wild bootstrap
replicates the pattern of heteroskedasticity present in the original shocks; cf. Remark 4.1.

4.1 The Bootstrap Algorithm

Let us start by considering the problem of testing the null hypothesis H(r) against H(p),
r < p. Swensen (2006, section 2) discusses at length a way of implementing a bootstrap
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version of the well known trace test in this case. Here we extend his approach by modifying
his resampling scheme in order to account for the presence of time-varying volatility using
the wild bootstrap. Implementation of the wild bootstrap requires us only to estimate the
VAR(k) model under H(p) (i.e., the unrestricted VAR) and under H(r).

In this section we let 	̂ := (�̂1; :::; �̂k�1) and �̂2 denote the PML estimates of 	 and �2,
respectively, from the model estimated under H(p); the corresponding unrestricted residuals
are denoted by "̂t, t = 1; :::; T . In addition, we let �̂; �̂ and �̂1 denote the PML estimates of
�,� and �1 under the null hypothesis H (r). Finally, we set �̂ :=

�
�̂01; �̂

0
2

�0. The bootstrap
algorithm we consider in this section requires that the roots of the equation jÂ� (z) j = 0 are
either one or outside the unit circle, where

Â (z) := (1� z) Ip � �̂�̂
0
z � �̂1 (1� z) z � :::� �̂k�1 (1� z) zk�1 ;

moreover, we also require that j�̂0?�̂�̂?j 6= 0, (�̂ := Ip � �̂1 � ::: � �̂k�1). While the latter
condition is always satis�ed in practice, if the former condition is not met, then the bootstrap
algorithm cannot be implemented, because the bootstrap samples may become explosive; cf.
Swensen (2006, Remark 1). However, in such cases any estimated roots which have modulus
greater than unity may simply be shrunk to have modulus strictly less than unity; cf. Burridge
and Taylor (2001,p.73).

The following steps constitute our wild bootstrap algorithm:

Algorithm 1 (Wild Bootstrap Co-integration Test)

Step 1: Generate T bootstrap residuals "bt , t = 1; :::; T , according to the device "bt := "̂twt,
where fwtgTt=1 denotes an independent N(0; 1) scalar sequence;
Step 2: Construct the bootstrap sample recursively from

�Xb
t := �̂�̂

0
Xb
t�1 + �̂1�X

b
t�1 + :::+ �̂k�1�X

b
t�k+1 + �̂Dt + "

b
t ; t = 1; :::; T;

with initial values, Xb
t := Xt, t = �k + 1; :::; 0;

Step 3: Using the bootstrap sample, fXb
t g, obtain, setting the bootstrap lag length, kb, equal

to k, the bootstrap test statistic, Qbr := �2
�
`b (r)� `b (p)

�
, where `b(r) and `b(p) denote the

bootstrap analogues of `(r) and `(p), respectively;

Step 4: Bootstrap p-values are then computed as, pbr;T := 1�Gbr;T (Qr), where Gbr;T (�) denotes
the (conditional) cumulative distribution function (cdf) of Qbr. �

Remark 4.1. Notice that the bootstrap shocks, "bt , replicate the pattern of heteroskedasticity
present in the original shocks since, conditionally on "̂t, "bt is independent over time with zero
mean and variance "̂t"̂0t. Speci�cally, notice that, conditionally on the data,

T�1=2
bT �cX
i=1

"bt = T�1=2
bT �cX
i=1

"̂twt � N

0@0; 1
T

bT �cX
t=1

"̂t"̂
0
t

1A :

Since, as it will be shown below, T�1
PbT �c
t=1 "̂t"̂

0
t � T�1

PbT �c
t=1 �t�

0
t !

R �
0 � (s) ds, the cumu-

lated bootstrap shocks display the same (asymptotic) integrated covariation as the original
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shocks. This will turn out to be a key property for establishing that the wild bootstrap
statistic Qbr has the same �rst-order asymptotic null distribution as the standard Qr statistic;
cf. section 4.2 below.

Remark 4.2. As is standard, the bootstrap samples are generated by imposing the null
co-integration rank on the re-sampling scheme, thereby avoiding the di¢ culties with the use
of unrestricted estimates of the impact matrix � := ��0; see Basawa et al. (1991) in the
univariate case and Swensen (2006) in the multivariate case.

Remark 4.3. As is well known in the wild bootstrap literature (see Davidson and Flachaire,
2008, for a review) in certain cases improved accuracy can be obtained by replacing the
Gaussian distribution used for generating the pseudo-data by an asymmetric distribution with
E (wt) = 0, E

�
w2t
�
= 1 and E

�
w3t
�
= 1 (Liu, 1988). A well known example is Mammen�s

(1993) two-point distribution: P (wt = �0:5(
p
5�1) = 0:5(

p
5+1)=

p
5 = p, P (wt = 0:5(

p
5+

1)) = 1 � p. Davidson and Flachaire (2008) also consider the Rademacher distribution:
P (wt = 1) = 1=2 = P (wt = �1). We found no discernible di¤erences between the �nite
sample properties of the bootstrap unit root tests based on the Gaussian or the Mammen
or Rademacher distributions. This �nding is consistent with evidence reported in Table 5 of
Gonçalves and Kilian (2004,p.105) in the context of hypothesis testing in stationary univariate
autoregressive models, and in Cavaliere and Taylor (2008) in the context of unit root testing.

Remark 4.4. In practice, the cdf Gbr;T (�) required in Step 4 of Algorithm 1 will not be
known, but can be approximated in the usual way through numerical simulation; cf. Hansen
(1996) and Andrews and Buchinsky (2000). This is achieved by generating N (conditionally)
independent bootstrap statistics, Qbn:r, n = 1; :::; N , computed as above but recursively from

�Xb
n:t := �̂�̂

0
Xb
n:t�1 + �̂1�X

b
n:t�1 + :::+ �̂k�1�X

b
n:t�k+1 + "

b
n:t; t = 1; :::; T;

for some initial valuesXb
n:�k+1; :::; X

b
n:0 and with ffwn:tgTt=1gNn=1 a doubly independentN(0; 1)

sequence. The simulated bootstrap p-value is then computed as ~pbr;T := N�1PN
n=1 I

�
Qbn:r > Qr

�
,

and is such that ~pbr;T
a:s:! pbr;T as N !1. Note that an asymptotic standard error for ~pbr;T is

given by (~pbr;T (1� ~pbr;T )=N)1=2; cf. Hansen (1996, p.419).

Remark 4.5. The maximum eigenvalue statistic, Qr;max for H(r) vs H(r + 1) can be
bootstrapped in the same way as outlined for Qr above, replacing Qbr with Qbr;max :=

�2
�
`b (r)� `b (r + 1)

�
in Steps 3 and 4 of Algorithm 1, and similarly in Remark 4.4.

4.2 Asymptotic Theory

The asymptotic validity of the wild bootstrap method outlined in Algorithm 1 is now estab-
lished in Theorem 3. The proof of Theorem 3 is a modi�cation of the proof of Proposition
1 in Swensen (2006) to the case of wild bootstrap and heteroskedastic innovations. In order
to keep our presentation simple, we again demonstrate our result for the case of no deter-
ministic variables. The equivalence of the �rst-order limiting null distributions of the Qbr and
Qr statistics can also be shown to hold for the deterministic time trends models discussed in
Remark 3.7. Again this is straightforward to show and is omitted in the interests of brevity.
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Theorem 3 Let the conditions of Theorem 1 hold. Then, under the null hypothesis H(r),
as T !1

Qbr
w!p tr

 Z 1

0
(d ~M(s)) ~M(s)0

�Z 1

0

~M(s) ~M(s)0ds

��1 Z 1

0

~M(s)(d ~M(s))0

!
:

Moreover, pbr;T
w! U [0; 1].

Remark 4.6. A comparison of the result for Qbr in Theorem 3 with that given for Qr in
Theorem 1 demonstrates the usefulness of the wild bootstrap: as the number of observations
diverges, the bootstrapped statistics have the same �rst-order null distribution as the original
test statistics. Consequently, the bootstrap p-values are (asymptotically) uniformly distrib-
uted under the null hypothesis, leading to tests with (asymptotically) correct size even in the
presence of non-stationary volatility of the form given in Assumption 2.

Remark 4.7. Because Step 2 of the bootstrap procedure outlined in Algorithm 1 imposes the
null hypothesis H(r) on the re-sampling procedure, the bootstrap eigenvalues, �̂

b

1 > : : : > �̂
b

p,
say, which solve the bootstrap analogue of (7) will, regardless of the true co-integrating rank,

be such that �̂
b

1; : : : ; �̂
b

r will converge in probability to positive numbers, while T �̂
b

r+1; : : : ; T �̂
b

p

will be of Op(1). An immediate consequence of this is that the bootstrap Qbr statistic will
remain of Op(1) when the true co-integrating rank r0 exceeds r, which obviously implies
from Step 4 of Algorithm 1 that our bootstrap procedure will be consistent at rate Op(T ),
due to the divergence of the standard Qr statistic; cf. Remark 3.2. This, coupled with the
asymptotically correct size of our proposed bootstrap tests under the true co-integrating rank,
means that the sequential procedure of Johansen (1992), as outlined in footnote 1, applied to
the bootstrap Qr test will, unlike the corresponding procedure for the standard Qr test (cf.
Remark 3.2), correctly select the true co-integrating rank with probability (1 � �) in large
samples even in the presence of non-stationary volatility satisfying Assumption 2.

Remark 4.8. Notice that Theorem 3 does not show that the wild bootstrap is able to
provide an asymptotic re�nement, but simply that it is able to retrieve the true asymptotic
distribution of the reference test statistic under the null hypothesis. Indeed, one would not
expect to be able to achieve any asymptotic re�nement in this case because the asymptotic
distribution of Qr is non-pivotal under Assumption 2 (cf. Theorem 1). For similar results in
the univariate (unit root) case see Cavaliere and Taylor (2008).

Remark 4.9. Given the results in Theorem 3, it follows straightforwardly that the limiting
null distribution of the bootstrap maximum eigenvalue statistic, Qbr;max, coincides with that
given in Remark 3.4, so that again our wild bootstrap procedure will deliver (asymptotically)
correctly sized maximum eigenvalue co-integration tests under Assumption 2.

5 Finite Sample Simulations

In this section we use Monte Carlo simulation methods to compare the �nite sample size and
power properties of the PLR co-integration rank test of Johansen (1988,1991) with its wild
bootstrap version proposed in Section 4. We also compare the properties of the sequential
approach of Johansen (1992) when applied using the PLR test and its bootstrap analogue.
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As in Johansen (2002) and Swensen (2006), we consider as our simulation DGP an I(1)
V AR(1) process where we set the dimension of the VAR process to p = 5, and consider both
the case of no co-integration (r = 0) and of a single co-integrating vector (r = 1). In the
r = 1 case, the DGP we use is of the form

�Xt = ��0Xt�1 + "t, "t := �tzt; t = 1; :::; T;

initialised at X0 = 0, and where � and � are p � 1 vectors and zt := (z1;t; :::; zp;t)
0 is a p-

dimensional Gaussian process with mean zero and covariance matrix Ip. Initially, in sections
5.1 and 5.2 we assume, as in Remark 2.3, that the volatility term is of the form �t = Vt,
with Vt := diag(V1;t; :::; Vp;t) a time-varying diagonal matrix initialized at V0 := Ip. This is
subsequently relaxed in section 5.3 where we investigate the e¤ects of (possibly time-varying)
contemporaneous correlations between the elements of "t. Following Johansen (2002) and
Swensen (2006) we consider DGPs with � := (1; 0; :::; 0)0 and � := (a1; a2; 0; :::; 0)

0. This
leads, in the absence of contemporaneous correlations, to the model

�X1;t = a1X1;t�1 + V1;tz1;t

�X2;t = a2X1;t�1 + V2;tz2;t

�Xi;t = Vi;tzi;t, i = 3; :::; p

with j1 + aj j < 1, j = 1; 2. In the r = 0 case, the model reduces to the multivariate random
walk with serially uncorrelated but heteroskedastic innovations,

�Xt = "t, "t := Vtzt; t = 1; :::; T

again initialised at X0 = 0.
The simulation model considered above therefore generalises that used by previous authors

in that we are allowing the volatility Vt to vary over time rather than being constant. In
particular, in what follows we will consider the case where the volatility of each element
of "t := ("1t; :::; "pt)

0 may display a one time change. Corresponding results for other non-
stationary volatility models such as those considered in Cavaliere (2004), Cavaliere and Taylor
(2007) did not yield qualitatively di¤erent results from those presented here for the one time
change case and are consequently omitted in the interests of brevity.

We consider �ve di¤erent cases, according to the how many of the shocks "it display a
one time change in volatility. In the j-th heteroskedastic model, j = 1; :::; p, we assume that

Vi;t = vt for i = 1; :::; j

Vi;t = 1 for i = j + 1; :::; p:

Hence, we are implicitly assuming that the heteroskedastic shocks display a common volatility
process, vt. As regards vt, we consider the case where volatility displays either a positive
(vt switches from 1 to � > 1) or a negative (vt switches from 1 to � < 1) shift at time
T � = b�T c. In order to limit the number of experiments, we vary the break fraction among
� 2 f0; 1=3; 2=3g and the break magnitude among � 2 f1=3; 3g. The case � = 0 indicates
that the volatility is constant over time. The values of � = 1=3 and � = 2=3 therefore allow
for either an early or a late volatility shift, while � = 3 and � = 1=3 allow the magnitude of
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the volatility shift to be either positive (of size 3 standard deviations) or negative (of size 1=3
standard deviation).3

The reported simulations were programmed using the rndKMn function of Gauss 7.4All
experiments were conducted using 10; 000 replications. The sample sizes were chosen within
the set f100; 200; 400g. All tests were conducted at the nominal 0:05 signi�cance level. No
deterministics were included in the estimation. For the standard PLR tests we employed
asymptotic critical values as reported in Table 15.1 of Johansen (1996). The bootstrap PLR
tests were constructed as outlined in Algorithm 1 and Remark 4.4 using N = 399 bootstrap
replications and initialised at Xb

0 = 0.

5.1 The Non-Co-Integrated Model (r = 0)

Table 1 reports the �nite sample (empirical) size properties of both the standard PLR Q0
test and its bootstrap analogue test for H(0) : r = 0 against H(5) : r = 5, in the presence of
a one time change in volatility occurring in either none of the series, one of the series, and so
on through to the case where all �ve series display a break in volatility. Table 2 reports the
corresponding properties of the sequential procedures of Johansen (1992) using the standard
and bootstrap Qr (r = 0; :::; 4) tests, as described in footnote 1 with � = 0:05.

Tables 1� 2 about here

Consider �rst the results in Table 1. Even in the absence of a break in volatility it can
be seen from the �rst panel of Table 1 that the bootstrap Q0 test displays �nite sample size
closer to the nominal level than the standard test based on asymptotic critical values; for
example, while the standard test has size of 8:4% for T = 100, the bootstrap test has size of
5:4%.5 It is, however, where shifts in volatility occur that the bene�ts of the bootstrap test
become most apparent. The results in the second panel of Table 1 show that under a one time
change in volatility the standard Q0 test displays very unreliable size properties. The size
distortions seen in the standard test are worse, other things being equal, for early negative and
late positive vis-à-vis late negative and early positive changes, and worsen as the number of
elements of "t that display a break in volatility increases. For example, while an early positive
break in "1t only e¤ects only a modest size in�ation to 6:8%, an early negative break in all
of the elements of "t yields a massive in�ation of size to 63:8%, in each case for T = 400.
For a given break, notice also that the size distortions in the standard Q0 test do not change
very much as the sample size increases, suggesting that the asymptotic distribution theory
given in Theorem 1 provides a useful predictor for the �nite sample behaviour of Q0 under
a break in volatility. In contrast, the size properties of our bootstrap Q0 test seem largely

3Notice that the chosen values of � are empirically relevant; for example, the size of the late negative
volatility shift in U.S. real GDP growth reported in McConnell and Perez-Quiros (2000, Table III) was found
to be � = 1=2:5, while Kahn et al. (2002, Table 1) show that the variability (standard deviation) of the core
CPI in the 69:1�83:4 period was three times larger (� = 1=3) than in the 84:1�00:4 period. Although not
reported here we also experimented with other values of �. As might be expected, values of � further from
(closer to) unity give rise to larger (smaller) size distortions in the standard co-integration tests than those
reported.

4A GAUSS program for computing the bootstrap p-values and the sequential determination of the co-
integrating rank is available from the web page http://www2.stat.unibo.it/cavaliere/bootstrap/

5This phenomenon of �nite sample over-sizing in the standard PLR test when using asymptotic critical
values is well-known in the literature; see, inter alia, Johansen (2002,p.1940-1) and Cheung and Lai (1993).
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satisfactory throughout. It is important to acknowledge, however, that a signi�cant degree of
�nite sample oversize is still seen in the bootstrap test for T = 100 under early negative and
late positive breaks: for example, where such breaks occur in all of the elements of "t, the
bootstrap test has size of 12% which is still uncomfortably large. However, the distortions
in these cases have all but gone by T = 400 and even for the smaller sample sizes considered
still represent a vast improvement on the corresponding size properties of the standard test
which incorrectly reject the null in excess of 60% of the time even for T = 400 here.

Notice also from the second panel of Table 1 that the results for a late positive break
are quite similar throughout to those for an early negative break. Moreover, the results
for an early positive break are similar to those for a late negative break throughout. These
similarities were also observed in the results reported in Tables 2-4 and so to avoid unnecessary
duplication in what follows we only report results for early negative and late negative shifts.

Consider next the results in Table 2. Since all of the tests were run at the asymptotic 5%
signi�cance level, in the constant volatility case both the standard and bootstrap sequential
procedures should (in the limit) select r = 0 with probability 95% and r > 0 with probability
5%. Consistent with the results in Table 1, we see from the �rst panel of Table 2 that under
constant volatility the procedure based on the bootstrap PLR tests gets considerably closer
to these proportions in small samples than the procedure based on the standard PLR tests.
Where volatility is non-constant, the procedure based on the standard PLR test performs very
poorly indeed, as can be seen from the results in the second panel of Table 2. For example,
in the presence of an early volatility shift in all of the elements of "t, the standard procedure
selects the correct co-integrating rank only 36:2% of the time even for T = 400; indeed, 17.6%
of the time it will indicate that the true co-integrating rank is two. In contrast, the procedure
based on the bootstrap PLR tests appears to perform very well in practice, with its empirical
probability of selecting the true co-integrating rank of zero converging rapidly towards 95 %
throughout; cf. Remark 4.7. In the example above, the bootstrap procedure selects the true
co-integrating rank 93.5% of the time.

5.2 The Co-Integrated Model (r = 1)

In the r = 1 case, observe that the matrix �0? is given by

�
0
? =

0BB@
�a2=a1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1CCA
which clearly implies that, in the case where a2 = 0, the common trends depend on the vector
("2t; :::"4)

0 but not on "1t. Consequently, it is to be expected that under a2 = 0 variance shifts
in "1t will not a¤ect the rejection frequency of the rank test, at least in samples of su¢ ciently
large size. Conversely, when a2 6= 0, the common trends depend on the whole vector "t. Also,
notice that since �0Xt depends on "1t only, the co-integrating relation �0Xt is stationary
even in the presence stationary volatility shifts in ("2t; :::"5t)

0. We report results below for
a1 = �0:4 and a2 2 f0:0;�0:4g.

Tables 3� 7 about here
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Consider �rst the results in Table 3 for the standard Q1 test and its bootstrap analogue.
The results in the �rst panel for the case where volatility is constant show that the bootstrap
Q1 test displays good size properties regardless of the value of a2. The standard Q1 test is
a little oversized for a2 = �0:4 when T = 100 but otherwise displays good size. The results
in the second panel of Table 3 show that, as with the corresponding results in Table 1, the
standard PLR test does not display anything like adequate size control in the presence of
breaks in volatility. The one exception occurs, as predicted, where a2 = 0 and there is a
shift in "1t only, and here the standard PLR test is size controlled. However, where breaks
occur in the other elements of "t the size of the PLR test exceeds the nominal level, with
these distortions worsening with the number of elements of "t which display a break. These
distortions are larger, other things equal, for a2 = �0:4 than for a2 = 0:0; this is to be
expected given the fact that a break in "1t has no impact on the tests when a2 = 0:0 but
does have an impact when a2 6= 0. In contrast to the standard test, the bootstrap Q1 test
displays excellent size control throughout, with only two cases occurring in the whole table
(both for T = 100) were the size exceeds 7%.

Tables 4 and 5 report corresponding results for the sequential procedure of Johansen
(1992) for a2 = 0 and a2 = �0:4, respectively. Since now the co-integrating rank is one, in
the constant volatility case both the standard and bootstrap procedures should, in the limit,
select r = 0 with probability 0% (because the tests against r = 0 are consistent here), r = 1
with probability 95% and r > 1 with probability 5%. Again this is pretty much the case
as the results in the �rst panel of both Tables 4 and 5 show. While these proportions are
largely maintained by the bootstrap-based procedure in the second panel of Tables 4 and 5,
the same cannot be said for the procedure based on the standard PLR tests, which as with
the corresponding results in Table 2 has a strong tendency to over-estimate the co-integrating
rank, even in large samples. For example, under an early volatility shift a¤ecting each element
of "t, with a2 = �0:4 and T = 400, the standard procedure selects the true co-integrating
rank of one 53% of the time, a rank of two 36.2% of the time and a rank of three 9:6% of the
time. In contrast, the bootstrap procedure picks the true rank 95% of the time, a rank of
two 4.4% of the time and a rank of three 0.5% of the time. It is also interesting to also note
that in small samples the standard procedure displays a lesser tendency to under-estimate
the true co-integration rank than the bootstrap procedure - for example, for T = 100, a2 = 0,
and an early negative shift in the �rst four elements of "t, the standard procedure selects
a co-integrating rank equal to zero only 12.7% of the time, while the bootstrap procedure
does so 61.7% of the time. This result is of course an artefact of the uncontrolled size of the
standard Q0 test, this test in fact having size of 45:5% in this case; cf. Table 1.

5.3 Contemporaneous Correlations

Thus far in our simulation DGPs we have assumed that there are no contemporaneous cor-
relation, be they time-invariant or otherwise, between the elements of "t. It is well-known
that the standard (P)LR tests of co-integration rank are (asymptotically) invariant to linear
transformations of the errors, so that time-invariant contemporaneous correlations should
have no impact in the limiting behaviour of these tests. The same is true for the bootstrap
tests proposed in this paper; cf. Theorem 3. The results in Theorem 3 also demonstrate that
the bootstrap tests are asymptotically una¤ected by the presence of time-varying contempo-
raneous correlations. However, as should be clear from Theorem 1, this does not hold for the
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standard PLR statistic. In this section we present some results from a small Monte Carlo ex-
periment which con�rms these predictions from the asymptotic theory. For space constraints
only the V AR(1) case under r = 0 is considered, and for the case where a volatility shift
occurs it is assumed to do so in all of the elements of "t; qualitatively similar results were
obtained for the other cases considered in sections 5.1 and 5.2.

First, consider the same DGP with a one-time break in volatility that was used in section
5.1, but where we now allow the contemporaneous correlation between each pair "it; "jt,
i; j = 1; :::; 5, i 6= j, to be 0:8 rather than 0:0 as was the case in section 5.1. The resulting size
properties of the standard and bootstrap PLR tests are reported in Table 6. As expected,
the results are little changed from those reported in the last three rows of Table 1, with the
wild bootstrap tests continuing to display the same good size properties that they showed in
the contemporaneously uncorrelated case.

Secondly, we now consider the case where the (contemporaneous) correlation between
each pair "it; "jt, i; j = 1; :::; 5, i 6= j, displays a one-time change from 0:0 to 0:8 (a positive
shift) or from 0:8 to 0 (a negative shift) occurring at a sample fraction of either 1=3 (an early
shift) or 2=3 (a late shift). In order to see the impact of one-time changes in the correlations
without contaminating e¤ects from shifts in volatility we impose the volatility process to be
time-invariant. The results are reported in Table 7. While breaks in the contemporaneous
correlations can be seen to signi�cantly impact upon the size of the standard PLR test, with
sizes of around 10% for late negative and early positive breaks and around 20% for early
negative and late positive breaks, the wild bootstrap test again performs very well in terms
of �nite sample size, demonstrating that the asymptotic predictions from Theorem 3 again
appear to hold well in �nite samples.

6 Conclusions

In this paper we have shown that non-stationary behaviour in the unconditional volatil-
ity of the innovations has potentially serious implications for the reliability of tests for co-
integration based on the trace and maximum eigenvalue statistics of Johansen (1988,1991).
We have shown that in such cases the limiting null distributions of these statistics depend
on the asymptotic integrated covariation of the underlying volatility process, thereby ef-
fecting tests whose true size can be signi�cantly in excess of the nominal signi�cance level
when using conventional critical values. In order to rectify this problem, we have proposed
a wild bootstrap-based approach to testing for co-integration rank. Our proposed bootstrap
co-integration rank tests have the considerable advantage that they are not tied to a given
parametric model of volatility. The proposed wild bootstrapping scheme was shown to de-
liver co-integration rank statistics which share the same �rst-order limiting null distributions
as the corresponding standard co-integration statistics, con�rming the asymptotic validity
of our bootstrap tests within the class of non-stationary volatility considered. Monte Carlo
evidence was reported for the case of a one time change in volatility which suggested that the
proposed bootstrap co-integration tests perform well in �nite samples avoiding the large over-
size problems that can occur with the standard tests, the latter being worse, ceteris paribus,
where the volatility shifts were common across the individual series.
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A Appendix

A.1 Preliminary Lemmata

Consider the p-dimensional heteroskedastic VAR processes:

Yt = A1Yt�1 + : : :+AmYt�m + "t; "t = �tzt (A.1)

Xt = B1Xt�1 + : : :+BnXt�n + "t;

with zt i.i.d.(0; Ip), symmetric and with �nite fourth order moment � and �t satis�es As-
sumption 2. The corresponding characteristic polynomials are denoted as A (z) = 1�A1z �
::: � Amz

m and B (z) = 1 � B1z � ::: � Bnz
n respectively. The processes are well-de�ned

for t = 1; ::; T with initial values Y0 = (Y 00 ; Y 0�1; :::; Y 0�m+1)0 and X0 = (X 0
0; X

0
�1; :::; X

0
�n+1)

0.
Then we have:

Lemma A.1 Consider the VAR heteroskedastic processes Yt and Xt de�ned in (A.1), where
the roots of det jA (z) j = 0 and det jB (z) j = 0 are all assumed to lie outside the unit circle.
Then as T !1, for k � 0,

1

T

TX
t=1

YtX
0
t+k

p!
1X
i=0

�i ���
0
i+k (A.2)

where �� :=
R 1
0 � (s) ds, � (�) = � (�)� (�)0and �i and �i are the coe¢ cients obtained by

inversion of the characteristic polynomials A (z) and B (z) respectively.

Proof. Rewrite (A.2) as

1

T

TX
t=1

YtX
0
t+k =

1

T

TX
t=1

EYtX
0
t+k +

1

T

TX
t=1

�
YtX

0
t+k � E

�
YtX

0
t+k

��
: (A.3)

We split the proof into two parts. In Part I we show that the �rst term on the right hand side
of (A.3) converges to

P1
i=0�i

���0i+k, while in Part II we show that the second term converges
in probability to zero.

Part I. With Yt =
�
Y 0t ; : : : ; Y

0
t�m

�0 then Yt = AYt�1 + et where the spectral radius of A is
smaller than one, � (A) < 1, by assumption. Likewise for the VAR(n) process Xt. Hence, we
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may restrict attention to the case of VAR processes of order one. Therefore, let Yt and Xt
solve the VAR(1) equations Yt = AYt�1 + "t and Xt = BXt�1 + "t, with solutions,

Yt =
t�1X
i=0

Ai"t�i +A
tY0; Xt =

t�1X
i=0

Bi"t�i +B
tX0. (A.4)

Inserting these solutions gives,

1

T

TX
t=1

EYtX
0
t+k =

1

T

TX
t=1

AtY0X
0
0B

t+k0 +
1

T

TX
t=1

t�1X
i=0

Ai�t�iB
k+i0:

Now,



 1T PT

t=1A
tY0X

0
0B

t+k0



 = O

�
1
T

�
since � (A) and � (B) < 1 implies in particular that

At



Bt

 � c�t for some 0 < � < 1 and constant c as t!1. Next,

1

T

TX
t=1

t�1X
i=0

Ai�t�iB
k+i0 =

1

T

TX
j=1

TX
t=j

At�j�jB
t+k�j0

and the results holds by,

vec

0@ 1
T

TX
j=1

TX
t=j

At�j�jB
t+k�j0

1A =
1

T

TX
j=1

TX
t=j

�
Bt+k�j 
At�j

�
vec (�j)

=
1

T

TX
j=1

T�jX
i=0

�
Bk+i 
Ai

�
vec (�j)

=
1

T

TX
j=1

1X
i=0

�
Bk+i 
Ai

�
vec (�j) +

1

T

TX
j=1

0@ 1X
i=T�j+1

�
Bk+i 
Ai

�1A vec (�j)
=

1X
i=0

�
Bk+i 
Ai

�
vec
�
��
�
+ o (1) = vec

 1X
i=0

Ai ��Bk+i0

!
+ o (1)

where we have used the fact that T�1
PT
j=1 vec (�j)! vec

�
��
�
(under Assumption 2, � (�) is

Riemann integrable) and that





 1T
TX
j=1

0@ 1X
i=T�j+1

�
Bk+i 
Ai

�1A vec (�j)






 � ��2c=T

as � (A
B) = � (A) � (B) and ��2 := supt k�tk < 1 by Assumption 2. Finally, note that
�i = (Ip; 0; : : : ; 0)Ai (Ip; 0; : : : ; 0)0 and likewise �i = (Ip; 0; : : : ; 0)Bi (Ip; 0; : : : ; 0)0 with

A =

0BBB@
A1 A2 � � � Am
Ip 0 � � � 0

. . .
...

0 Ip 0

1CCCA ; B =

0BBB@
B1 B2 � � � Bn
Ip 0 � � � 0

. . .
...

0 Ip 0

1CCCA .
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Part II. As in Part 1, we consider the VAR(1) case and without loss of generality we set
Yt = Xt =: Ut. Hence we establish that

1

T

TX
t=1

�
UtU

0
t+k � E

�
UtU

0
t+k

�� p! 0 (A.5)

with Ut a heteroskedastic VAR process of order one, Ut = AUt�1 + "t. Re-write (A.5) as,

1

T

TX
t=1

(UtUt+k � E (UtUt+k)) =
1

T

TX
t=1

�
UtU

0
t � E

�
UtU

0
t

��
Ak0+

1

T

TX
t=1

0@Ut k�1X
i=0

Ai"t+k�i

!01A :

The last term tends to zero by the LLN for martingale di¤erences since k�tk � ��2 <1.
Next, for any � 2 Rp set VT � 1

T

PT
t=1 �

0 (UtU 0t � E (UtU 0t))�;

P (jVT j > �) � E jVT j2 =�2 = Var (VT ) =�2 =
1

�
Var

 
1

T

TX
t=1

�
�0Ut

�2!

and with Z :=
�
�0U1; :::; �

0UT
�0
; C := 1

T IT , we thus need to show that

Var
�
Z 0CZ

�
! 0. (A.6)

By simple recursion, �0Ut =
Pt�1
i=0 �

0Ai"t�i+�
0AtU0, and, hence, EZ := � = �0

�
AU0; :::; A

TU0
�

6= 0. From the identity (where C is symmetric)

Var
�
Z 0CZ

�
� Var

�
(Z � �)0C (Z � �)

�
+ 4Var

�
�0CZ

�
+ 2Cov

�
(Z � �)0C (Z � �) ; 2�0CZ

�
;

it follows that (A.6) holds if, Var
�
(Z � �)0C (Z � �)

�
! 0 and Var

�
�0CZ

�
! 0. If Z is

Gaussian, then Var
�
(Z � �)0C (Z � �)

�
= 2 tr (C
C
) ; where Var(Z) =: 
. If Z is not

Gaussian but symmetric with �nite fourth order moment �, then Var
�
(Z � �)0C (Z � �)

�
�

2max
�
1; �3

�
tr (C
C
). Next,

tr (C
C
) =
1

T 2
tr
�

2
�
=
1

T 2
tr (Var (Z))2

=
1

T 2

TX
t=1

TX
s=1

�
Cov

�
�0Ut; �

0Us
��2

=
1

T 2

24 TX
t=1

Var
��
�0Ut

�2�
+ 2

TX
t=1

T�tX
j=1

Cov(
�
�0Ut

�2
;
�
�0Ut+j

�2
)

35

=
1

T 2

"
�0
t+r�1X
i=0

Ai�2t+r�iA
i0�+ 2�0

t�1X
i=0

Ai�t�iA
i0 �Aj�0 �#

� c

T 2

24 TX
t=1

TX
s=t

0@min(t;s)X
i=1



As+t�2i


1A235 = O

�
1

T

�
.
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Here we have used the fact that 1
T

PT
t=1



At

2 = O (1) as


At

 = O

�
j�jt
�
; with j�j < 1 the

spectral radius of A: We can therefore conclude that Var
�
(Z � �)0C (Z � �)

�
! 0. Likewise,

V ar
�
�0CZ

�
= �0C
C 0� � c

T 2

TX
t=1

TX
s=t

tX
i=1



As+t�i

2 = O

�
1

T

�
:

This concludes Part II. �

A.2 Proof of Lemmas 1-2, Theorems 1-2 and Related Lemmas

Proof of Lemma 1: Without loss of generality, set �Dt = 0. With Xt :=
�
X 0
t; :::; X

0
t�k+1

�0
the system can be written in companion form as, �Xt = AB0Xt�1+et, with et := ("0t; 0; :::; 0)0,
X0 �xed and

A :=

0BBBB@
� �1 �2 ::: �k�1
0 Ip 0 ::: 0
0 0 Ip ::: 0
::: ::: ::: ::: :::
0 0 0 ::: Ip

1CCCCA B :=

0BBBB@
� Ip 0 ::: 0
0 �Ip Ip ::: 0
0 0 �Ip ::: 0
::: ::: ::: ::: :::
0 0 0 ::: �Ip

1CCCCA : (A.7)

Note that with X�t := B0Xt,

X�t =
�
Ir+p(k�1) + B0A

�
X�t�1 + B0et (A.8)

=
t�1X
i=0

�
Ir+p(k�1) + B0A

�i B0et�i + �Ir+p(k�1) + B0A�tX�0:
Using this, standard arguments and recursions give, Xt = C

Pt
i=1 ei + St + CX0; where

C = B?(A0?B?)
�1A0?; and St = A (B

0A)�1X�t. It follows that as Xt = (Ip; 0; :::; 0)Xt, then
Xt can be written as

Xt = C
tX
i=1

�izi + St + C(Ip;�	)X0 (A.9)

where St = PX�t, where X�t is the heteroskedastic VAR process of order one given by (A.8)
with autoregressive coe¢ cient

�
Ir+p(k�1) + B0A

�
=: R, for which � (R) < 1 by Assumption 1.

The matrix P is of dimension p�(r + p(k � 1)) and is given by P : = (Ip; 0; :::; 0)0A (B0A)�1 =
(�;	)Q, for Q := (B0A)�1. Note that the singular variance of B0et equals, 
t := Var (B0et) =
(�; Ip; 0; :::; 0)

0�t (�; Ip; 0; :::; 0), and in particular, k
tk � c k�tk = c��2. Note also that,
A? = (Ip;��1; :::;��k�1)0 �?, B? = (Ip; :::; Ip)

0 �?, from which the various expressions
follow by simple algebraic identities. �

Proof of Lemma 2: The convergence to M (�) follows as in Lemma 1 of Cavaliere and
Taylor (2006), while the convergence to the stochastic integral holds by Theorem 2.1 in
Hansen (1992b) as supT



T�1�Tt=1E("t"0t)

 = supT 

T�1�Tt=1�t�0t

 < 1 under Assumption
2. �

Proof of Theorem 1: To prove Theorem 1 we �rst establish Lemma A.2 and Lemma A.3:
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Lemma A.2 Under the assumptions of Theorem 1 and Assumption 2, and with � = 0, then
as T !1,

S00
p! ��00, �0S10

p! ���0 and �
0S11�

p! ���� . (A.10)

In terms of these the following identities hold,

��00 = ����0 + ��; ��0� = ����� (A.11)

with �� :=
R 1
0 � (u) du, and �nally,

���100 � ��
�1
00 �(�

0 ���100 �)
�1�0 ���100 = �?(�

0
? ���?)

�1�0?: (A.12)

Proof: Consider �0S10 = �0M10 � �0M12M
�1
22 M20. Using Lemma 1 and that by de�nition,

�Xt = ��0Xt�1 +	�Xt�1 + "t; (A.13)

the �rst term equals, �0M10 =
1
T

PT
t=1 �

0Xt�1�X 0
t =

1
T

PT
t=1 �

0St�1 ((�;	)X�t�1 + "t)0,
where St = (�;	)QX�t. Hence Lemma A.1 implies that, �0M10

p! 
�0, where 
�0 :=
�0 (�;	)Q

P1
i=0

�
�i (�; Ip; 0; :::; 0)

0 �� (�; Ip; 0; :::; 0)�i0
�
(�;	)0. Likewise the terms �0M12,

M22 andM20 converge in probability and we conclude that �0S10
p! ���0 := 
�0�
�2
�122 
20.

Identical arguments lead to (A.10).

The identities in (A.11) follow by postmultiplying (A.13) by (the transpose of) �0Xt�1;�X 0
t

and �Xt�1 respectively and taking averages and using Lemma A.1 as before. To prove the
identity in (A.12) use the projection identity Ip = ���100 �(�

0 ���100 �)
�1�0+�?(�

0
?
��00�?)

�1�0?
��00,

and �0? ��00 = �0?
��, see (A.11). �

Lemma A.3 De�ne the (p� r)-dimensional process,

G(u) := �0?CM(u), (A.14)

where M(�) is de�ned in Lemma 2. Then under the conditions of Lemma 1 as T !1,

1p
T
�0?XbTuc

w! G(u) , (A.15)

�0?S10�? = �0?S12�?
w!
Z 1

0
G (s) dM (s)0 �? , (A.16)

1

T
�0?S11�?

w!
Z 1

0
G(s)G(s)0ds , (A.17)

and furthermore,
p
T�0S10�? =

p
T�0S1"�?

w! Nr�p�r(0; ���� 
 �0? ���?), (A.18)

�0S11�? 2 Op(1). (A.19)
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Proof: Note �rst that (A.15) and (A.17) follow immediately from Lemma 2 using the
continuous mapping theorem. To prove (A.16) note that �0?S1� = �0?M1"��0?M12M

�1
22 M21,

where M1" := T�1
PT
t=1�Xt"

0
t. Consider �rst �

0
?M1". Using the representation of Xt,

�0?M1" =
1

T

�
�0?C

XT

t=1
(
Xt�1

i=1
"i)"

0
t + �

0
?
XT

t=1
St�1"

0
t + �

0
?C0

XT

t=1
"0t

�
;

which by Lemma 2, the LLN in Lemma A.1 and the fact that "t and "t�1 are uncorrelated
weakly converges to

R 1
0 G (s) dM (s)0. Next, M"2 := T�1

PT
t=1 "tU

0
t tends to zero in probabil-

ity by the law of large numbers. Since �0?M12 2 Op(1) and M22 converges in probability by
the law of large numbers, we conclude that (A.16) holds. Finally (A.18) holds by applying the
central limit theorem to the martingale di¤erence sequence �0Xt�1"0t rewriting S1" as above
and using the LLN in Lemma A.1. �

Using Lemmas A.2,A.3 and mimicking the proof of Theorem 11.1 in Johansen (1996),
similarly to Hansen, Dennis and Rahbek (2002) it immediately follows that the smallest p�r
solutions of the eigenvalue problem S (�) = 0 normalized by T converge to those of�����Z 1

0
G (s)G (s)0 ds�

Z 1

0
G (s) (dM (s))0 �?

�
�0? ���?

��1
�0?

Z 1

0
(dM (s))G (s)0

���� = 0:
(A.20)

With �� :=
R 1
0 � (s) ds; de�ne

~M :=
�
�0?
���?

��1=2
�0?M . We may then express (A.20) as,�����Z 1

0

~M (s) ~M (s)0 ds�
Z 1

0

~M (s) (d ~M (s))0
Z 1

0
(d ~M (s)) ~M (s)0

���� = 0 (A.21)

and, hence, �2 logQ (H (r) jH2 (p)) converges as stated in Theorem 1. It follows that the
limiting process ~M is continuous on [0; 1], has independent (but not necessarily stationary)
increments and quadratic variation at time u 2 [0; 1] given by

[ ~M ]u =
�
�0? ���?

��1=2
�0?

�Z u

0
� (s) ds

�
�?
�
�0? ���?

��1=2
:

Consequently, the integrated covariation on [0; 1] equals the identity matrix I. �

Proof of Theorem 2: The result follows using Lemmas A.2 and A.3 and mimicking the
proofs of Lemmas 13.1 and Theorem 13.3 in Johansen (1996).

A.3 Proof of Theorem 3 and Related Lemmas

As in Swensen (2006) we use P � to denote the bootstrap probability and likewise E� denotes
expectation under P �. Moreover, without loss of generality we set initial values to zero. We
�rst introduce four lemmas which constitute the basic ingredients of the proof of Theorem 3.

Lemma A.4 Under the conditions of Theorem 3, Xb
t = Ĉ

Pt
i=1 "

b
i + T 1=2Rbt , where Ĉ :=

�̂?(�̂
0
?�̂�̂?)

�1�̂0? and for all � > 0, P
� �maxt=1;:::;T 

Rbt

 > �

�
! 0 in probability as T !1.
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Proof : From the proof of Lemma 1 with Xbt :=
�
Xb0
t ; :::; X

b0
t�k+1

�0
and Xb0 := 0 we �nd

directly from (A.9) that Xb
t = (Ip; 0; :::; 0)Xbt has the representation, Xb

t = Ĉ
Pt
i=1 "

b
i +

T 1=2Rbt , and R
b
t := (�̂; 	̂)(bB0bA)�1Pt�1

i=0(Ipk +
bB0bA)i(T�1=2bB0ebt�i), 	̂ := (�̂1; :::; �̂k�1), bA,bB

being de�ned as A,B of (A.7) with � and � replaced by the corresponding estimators �̂; �̂,
and ebt :=

�
"b0t ; 0; :::; 0

�0
. Next, note that

max
t=1;:::;T




Rbt


 �  T max
t=1;:::;T




T�1=2�bt



where �bt = bB0ebt = �

�̂; Ip; 0; :::; 0
�0
"bt and  T

p!  : This holds by using the established

consistency of the estimators; see Theorem 2. In particular, note that for su¢ ciently large T
we have, by continuity, that �(Ipk + bB0bA) < 1, which implies that jj(Ipk + bB0bA)ijj �const.�i
for some 0 < � < 1. As a consequence,

 T =



(�̂; 	̂)(bB0bA)�1









T�1X
i=0

(Ipk + bB0bA)i





 p!  :

Finally, showing that P �
�
maxt=1;:::;T



T�1=2�bt

 > �
�
is of order op (1) implies the desired,

P �
�
maxt=1;:::;T



Rbt

 > �
� p! 0. This holds if P �

�
T�1=2maxt=1;:::;T



"bt

 > �
�
= op (1). But

P �
�
T�1=2 max

t=1;:::;T




"bt


 > �

�
� 1

�4T 2

TX
t=1

E�
�
"b0t "

b
t

�2
=

�

�4T 2

TX
t=1

�
"̂0t"̂t

�2 p! 0

as T�1
PT
t=1

�
"̂0t"̂t

�2
= Op (1) under the assumption that "t has bounded fourth moment. �

Lemma A.5 Under the conditions of Theorem 3, SbT (�) := 1
T 1=2

PbT �c
t=1 "

b
t
w!p M (�).

Proof: Conditionally on f"̂tgTt=1, SbT (�) is a Gaussian process with independent increments
and covariance E�

�
SbT (�)SbT (�)

0� = 1
T

PbT �c
t=1 "̂t"̂

0
t: Consequently, the veracity of Lemma A.5

follows if T�1
PbTuc
t=1 "̂t"̂

0
t !

R u
0 � (s)� (s)

0 ds in probability, uniformly for all u 2 [0; 1]. Now,
since T�1

PbTuc
t=1 "̂t"̂

0
t is monotonically increasing in u and the limit function is continuous

in u, it su¢ ces to prove pointwise convergence; cf. Hansen (2000, proof of Lemma A.10).
Pointwise convergence follows by noticing that 1

T

PbTuc
t=1 "̂t"̂

0
t =

1
T

PbTuc
t=1 "t"

0
t + op (1), where

T�1
PbTuc
t=1 "t"

0
t !

R u
0 � (s)� (s)

0 ds by a simple modi�cation of Lemma A.1 where we account
for the fact that the summation is taken from 1 to bTuc with u between 0 and 1. �

Lemma A.6 With G (�) de�ned in (A.14), then under the assumptions of Theorem 3,

1p
T
�̂
0
?X

b
bTuc

w!p G(u) , (A.22)

�̂
0
?S

b
10�? = �̂

0
?S

b
12�?

w!p

Z 1

0
G (s) dM (s)0 �? , (A.23)

1
T �̂

0
?S

b
11�̂?

w!p

Z 1

0
G(s)G(s)0ds , (A.24)
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and furthermore,

p
T �̂

0
Sb10�̂? =

p
T �̂

0
Sb1"�̂?

w!p Nr�p�r(0; ���� 
 �0? ���?), (A.25)

�̂
0
Sb11�̂ 2 Op�(1) (A.26)

in probability as T !1.

Proof: Applying Lemma A.4 and Lemma A.5, the results hold by mimicking the proof of
Lemma 6 in Swensen (2006). �

Lemma A.7 Under the conditions of Theorem 3,

P �
�


Sb00 � ��00


 > �

�
! 0 (A.27)

P �
�


Sb01�̂ � ��0�


 > �

�
! 0 (A.28)

P �
�


�̂0Sb11�̂ � ����


 > �

�
! 0 (A.29)

in probability as T !1.

Proof: We only consider the proof of (A.27), without loss of generality. Let

M :=
1

T

TX
t=1

�Xt�X0t, M b :=
1

T

TX
t=1

�Xbt�Xb0t

with Xt :=
�
X 0
t; :::; X

0
t�k+1

�0 and Xbt := �
Xb0
t ; :::; X

b0
t�k+1

�0
. Moreover, ��M := p limT!1M

which is well-de�ned by Lemma A.1. By showing that P �
�

M b � ��M



 > �
�
tends to zero

in probability, the stated result then follows.

Similar to Swensen (2006), note initially that


M b � ��M



 � 

M b � ��Mb



 + 

��Mb � ��M


,

where ��Mb := E�
�
M b
�
. By Lemmas 1 and A.4, it holds that �Xt and �Xbt have a moving

average representation of the form�Xt =
Pt�1
i=0 �

i�t�i, �Xbt =
Pt�1
i=0 �̂

i�bt�i, where �
b
t = �̂twt,

and as noted in the proof of Lemma A.4,


�i

 < c�i for some constant c > 0 and 0 < � < 1,

and likewise for T large enough,



�̂i


 < c�i.

Next, we show that


��Mb � ��M



 tends to zero in probability. Note that
��Mb = E�

0@ 1
T

TX
t=1

 
t�1X
i=0

�̂i�bt�i

! 
t�1X
i=0

�̂i�bt�i

!01A
=

1

T

TX
t=1

 
t�1X
i=0

�̂iE�
�
�bt�i�

b0
t�i

�
�̂i0

!
=
1

T

TX
t=1

 
t�1X
i=0

�̂i�̂t�i�̂
0
t�i�̂

i0

!
:

Using the (vec) arguments made in Part I of the proof of Lemma A.1 (in particular change of
summation) this converges in probability to ��M ; provided T�1

PT
t=1

�
�̂t�̂

0
t � �t�0t

� p! 0. This
again is implied by the consistency of the estimators, see Theorem 2.
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Next consider the term


M b � ��Mb



. We have
M b =

1

T

TX
t=1

 
t�1X
i=0

�̂i�bt�i

! 
t�1X
i=0

�̂i�bt�i

!0

=
1

T

TX
t=1

 
t�1X
i=0

�̂i�bt�i

�
�̂i�bt�i

�0!
+
1

T

TX
t=1

0@ t�1X
i;j=0;i6=j

�̂i�bt�i�
b0
t�j�̂

j0

1A =:M b
1 +M

b
2 :

First, notice that M b
1 � ��Mb = 1

T

PT
t=1

�Pt�1
i=0 �̂

i�̂t�i�̂
0
t�i�̂

i0�t�i
�
, with �t :=

�
w2t � 1

�
being

i.i.d. with mean zero and �nite moments of all order. Now,

1

T

TX
t=1

 
t�1X
i=0

vec
�
�̂i�̂t�i�̂

0
t�i�̂

i0�t�i
�!

=
1

T

TX
t=1

�t

 
T�tX
i=0

�̂i 
 �̂i
!
vec
�
�̂t�̂

0
t

�
which implies that

P �

 




 1T
TX
t=1

 
t�1X
i=0

vec
�
�̂i�̂t�i�̂

0
t�i�̂

i0�t�i
�!




 > �

!
� 1

T 2�2

TX
t=1

E�






�t
 
T�tX
i=0

�̂i 
 �̂i
!
vec
�
�̂t�̂

0
t

�





2

�
E
�
�2t
�

T�2

0@ 1
T

TX
t=1







 
T�tX
i=0

�̂i 
 �̂i
!
vec
�
�̂t�̂

0
t

�





2
1A :

Thus, with cT = c+ op (1),

1

T

TX
t=1







 
T�tX
i=0

�̂i 
 �̂i
!
vec
�
�̂t�̂

0
t

�





2

� cT
T

TX
t=1



vec ��̂t�̂0t�

2 ,
which converges in probability as "t and, therefore, �t have bounded fourth order moment.
This establishes the result that P �

�

M b
1 � ��Mb



 > �
�
! 0 in probability. Similar arguments

apply to M b
2 , which completes the proof. �

Proof of Theorem 3: The stated results can be shown to hold by following the proof of
Theorem 1 and using Lemmas A.6 and A.7 above, see also Swensen (2006, proof of Prop. 1).
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Table 1: Size of Standard and Bootstrap PLR Tests for Rank = 0 Against Rank = 5. True Rank is 0.

Standard PLR test Bootstrap PLR test
T No volatility shifts No volatility shifts

100 8.4 5.4
200 6.6 5.0
400 5.6 4.7

Single volatility shift Single volatility shift
shift in: T early negative late negative early positive late positive early negative late negative early positive late positive

100 8.8 8.6 8.1 8.8 5.3 5.6 4.9 5.4
ε1t 200 7.1 6.7 7.4 7.8 4.8 4.7 5.2 5.6

400 7.0 6.6 6.8 7.5 5.2 4.8 5.5 5.6

100 13.3 9.8 10.5 14.7 6.0 5.2 5.6 6.6
ε1t, ε2t 200 12.6 9.4 9.3 13.5 5.5 5.7 5.4 5.8

400 11.3 8.2 9.0 13.4 5.0 5.1 5.5 5.8

100 25.5 14.8 15.6 26.1 6.7 6.0 6.6 8.0
ε1t, .., ε3t 200 24.5 13.6 13.1 24.6 7.2 5.6 5.7 6.4

400 22.5 12.3 13.2 23.6 5.4 5.3 5.4 6.2

100 45.5 23.6 22.9 45.9 9.1 6.0 7.0 10.6
ε1t, .., ε4t 200 42.2 20.4 21.1 43.1 7.2 5.6 5.8 7.5

400 41.6 19.1 20.8 42.0 6.3 5.3 5.1 6.1

100 67.9 37.5 35.8 66.1 11.5 7.2 7.8 12.1
ε1t, .., ε5t 200 65.2 32.3 34.4 63.5 7.8 5.8 6.5 8.7

400 63.8 31.8 32.2 63.3 6.5 5.6 5.6 6.6



Table 2: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration Rank. True Rank is 0.

Standard PML test Bootstrap PML test
no volatility shifts no volatility shifts

T r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5

100 91.6 7.4 0.9 0.2 0.0 94.6 4.6 0.7 0.1 0.0
200 93.4 5.8 0.7 0.0 0.0 95.0 4.5 0.4 0.0 0.0
400 94.4 5.1 0.4 0.0 0.0 95.3 4.4 0.2 0.0 0.0

single volatility shift single volatility shift
early negative shift late negative shift early negative shift late negative shift

shift in: T r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5

100 91.2 7.8 0.9 0.1 0.0 91.4 7.8 0.7 0.1 0.0 94.7 4.5 0.6 0.1 0.0 94.4 5.1 0.4 0.1 0.0
ε1t 200 92.9 6.4 0.6 0.1 0.0 93.3 6.0 0.5 0.1 0.0 95.2 4.4 0.4 0.1 0.0 95.3 4.3 0.3 0.1 0.0

400 93.0 6.4 0.5 0.0 0.0 93.4 5.8 0.6 0.1 0.0 94.8 4.9 0.3 0.0 0.0 95.2 4.2 0.5 0.1 0.0

100 86.7 11.7 1.4 0.2 0.1 90.2 8.9 0.8 0.1 0.0 94.0 5.3 0.5 0.1 0.0 94.8 4.7 0.5 0.0 0.0
ε1t, εt 200 87.4 11.4 1.2 0.0 0.0 90.6 8.5 0.9 0.1 0.0 94.5 5.0 0.5 0.0 0.0 94.3 5.3 0.4 0.0 0.0

400 88.7 10.3 0.9 0.1 0.0 91.8 7.4 0.8 0.0 0.0 95.0 4.5 0.5 0.0 0.0 94.9 4.7 0.4 0.0 0.0

100 74.5 21.9 3.2 0.2 0.1 85.2 12.9 1.7 0.2 0.0 93.3 5.8 0.8 0.1 0.0 94.0 5.4 0.6 0.0 0.0
ε1t, .., ε3t 200 75.5 21.0 3.1 0.3 0.1 86.4 12.1 1.3 0.1 0.0 92.8 6.3 0.7 0.0 0.1 94.4 5.2 0.4 0.0 0.0

400 77.5 19.2 3.1 0.2 0.0 87.7 10.7 1.4 0.2 0.0 94.6 5.0 0.4 0.0 0.0 94.7 4.7 0.6 0.0 0.0

100 54.5 35.0 9.2 1.1 0.2 76.4 19.9 3.1 0.5 0.1 90.9 8.0 1.0 0.0 0.1 94.0 5.3 0.7 0.0 0.0
ε1t, .., ε4t 200 57.8 32.5 8.4 1.1 0.1 79.6 17.7 2.3 0.4 0.0 92.8 6.3 0.8 0.1 0.0 94.4 5.0 0.5 0.0 0.0

400 58.4 32.6 7.8 1.0 0.2 80.9 16.6 2.3 0.3 0.0 93.7 5.5 0.7 0.1 0.0 94.7 4.7 0.5 0.0 0.0

100 32.1 42.0 19.9 5.5 0.5 62.5 28.9 7.1 1.2 0.2 88.5 9.9 1.3 0.2 0.0 92.8 6.3 0.8 0.1 0.1
ε1t, .., ε5t 200 34.8 41.4 18.5 4.7 0.5 67.7 25.3 6.2 0.6 0.2 92.2 6.6 1.1 0.1 0.0 94.2 5.0 0.7 0.1 0.1

400 36.2 41.4 17.6 4.3 0.6 68.2 25.7 5.3 0.7 0.1 93.5 5.8 0.6 0.2 0.0 94.4 5.0 0.6 0.0 0.0



Table 3: Size of Standard and Bootstrap PLR Tests for Rank = 1 Against Rank = 5. True Rank is 1 (a1 = −0.4; a2 ∈ {0.0,−0.4}).
Standard PLR test Bootstrap PLR test
No volatility shifts No volatility shifts

T a2 = 0.0 a2 = −0.4 a2 = 0.0 a2 = −0.4
100 4.9 0.0 7.4 0.0 3.8 0.0 5.4 0.0
200 6.0 0.0 6.7 0.0 5.3 0.0 5.2 0.0
400 5.8 0.0 5.7 0.0 4.9 0.0 5.0 0.0

Single volatility shift Single volatility shift
a2 = 0.0 a2 = −0.4 a2 = 0.0 a2 = −0.4

shift in: T early negative late negative early negative late negative early negative late negative early negative late negative
100 4.7 5.0 8.2 9.8 3.5 3.9 4.9 5.6

ε1t 200 5.6 5.8 7.6 7.6 4.8 4.8 5.5 5.3
400 5.9 5.6 6.2 6.3 4.9 4.7 4.8 4.7

100 6.1 4.8 8.0 7.4 3.8 3.3 4.7 4.8
ε1t, ε2t 200 6.4 6.7 7.2 6.8 4.9 5.2 5.3 4.9

400 6.3 6.1 6.2 6.3 4.8 5.0 4.5 4.9

100 10.8 7.5 14.0 10.4 4.1 3.7 5.9 5.5
ε1t, .., ε3t 200 12.2 8.9 13.4 9.1 5.2 5.3 5.2 5.0

400 12.4 8.3 11.7 8.1 5.1 5.0 5.0 5.0

100 25.2 11.1 28.1 15.6 5.1 3.9 7.4 5.5
ε1t, .., ε4t 200 26.4 13.5 24.9 14.2 6.4 5.2 6.2 5.2

400 26.0 12.7 25.9 12.5 5.6 5.0 5.4 5.0

100 44.5 21.0 50.6 26.4 5.9 3.9 8.3 6.0
ε1t, .., ε5t 200 48.6 22.5 49.2 23.3 6.3 5.2 6.8 5.3

400 47.7 22.0 47.0 21.5 5.9 5.5 5.0 4.8



Table 4: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration Rank. True Rank is 1 (a1 = −0.4; a2 = 0.0).
Standard PML test Bootstrap PML test
no volatility shifts no volatility shifts

T r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5
100 43.4 51.7 4.4 0.4 0.1 53.2 42.9 3.4 0.3 0.1
200 0.7 93.4 5.4 0.5 0.1 1.2 93.6 4.8 0.4 0.1
400 0.0 94.2 5.2 0.5 0.0 0.0 95.1 4.5 0.4 0.0

single volatility shift single volatility shift
early negative shift late negative shift early negative shift late negative shift

shift in T r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5
100 41.5 53.9 4.3 0.2 0.1 41.8 53.2 4.5 0.4 0.1 51.8 44.7 3.0 0.3 0.1 53.5 42.7 3.4 0.4 0.1

ε1t 200 2.1 92.3 5.2 0.4 0.0 1.0 93.3 5.2 0.5 0.1 3.3 91.9 4.4 0.4 0.0 2.0 93.2 4.3 0.4 0.1
400 0.0 94.1 5.4 0.4 0.0 0.0 94.4 5.1 0.4 0.1 0.0 95.1 4.6 0.3 0.0 0.0 95.3 4.3 0.4 0.0

100 34.0 59.9 5.5 0.5 0.0 40.2 55.0 4.4 0.4 0.0 55.4 40.9 3.4 0.3 0.1 56.6 40.1 3.0 0.3 0.0
ε1t, ε2t 200 1.4 92.2 5.8 0.6 0.1 1.0 92.3 6.1 0.6 0.0 5.1 90.0 4.3 0.5 0.0 2.3 92.5 4.7 0.4 0.0

400 0.0 93.7 5.6 0.5 0.1 0.0 93.9 5.7 0.4 0.0 0.0 95.2 4.2 0.4 0.1 0.0 95.0 4.6 0.4 0.0

100 25.0 64.3 9.8 1.0 0.1 32.7 59.7 6.7 0.8 0.1 58.8 37.1 3.7 0.3 0.1 58.0 38.3 3.2 0.4 0.1
ε1t, .., ε3t 200 0.8 87.0 11.0 1.1 0.1 0.7 90.4 8.1 0.7 0.1 8.1 86.6 4.6 0.6 0.1 3.1 91.6 4.9 0.4 0.0

400 0.0 87.6 11.3 1.0 0.1 0.0 91.7 7.6 0.6 0.0 0.0 94.9 4.6 0.5 0.0 0.0 95.0 4.7 0.3 0.0

100 12.7 62.1 21.5 3.5 0.2 25.6 63.3 9.7 1.2 0.2 61.7 33.3 4.3 0.6 0.1 60.9 35.2 3.4 0.3 0.1
ε1t, .., ε4t 200 0.3 73.2 23.0 3.0 0.4 0.5 86.0 12.2 1.3 0.1 12.7 81.0 5.7 0.6 0.1 5.1 89.7 4.6 0.5 0.1

400 0.0 74.0 22.6 3.1 0.2 0.0 87.3 11.5 1.2 0.1 0.0 94.4 5.0 0.5 0.1 0.0 95.0 4.7 0.3 0.0

100 5.6 49.9 32.9 10.4 1.2 15.6 63.4 17.7 2.9 0.4 62.9 31.2 5.1 0.6 0.2 64.0 32.1 3.3 0.4 0.1
ε1t, .., ε5t 200 0.1 51.3 36.7 10.5 1.4 0.2 77.4 19.8 2.4 0.3 19.3 74.4 5.6 0.6 0.1 7.1 87.7 4.5 0.6 0.1

400 0.0 52.3 36.6 9.6 1.6 0.0 78.0 19.1 2.5 0.4 0.0 94.0 5.2 0.6 0.1 0.0 94.5 5.1 0.3 0.1



Table 5: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration Rank. True Rank is 1 (a1 = −0.4; a2 = −0.4).
Standard PML test Bootstrap PML test
no volatility shifts no volatility shifts

T r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5
100 3.0 89.6 6.7 0.6 0.1 5.2 89.4 4.8 0.5 0.1
200 0.0 93.3 6.3 0.3 0.1 0.0 94.8 4.9 0.3 0.1
400 0.0 94.3 5.3 0.3 0.1 0.0 95.0 4.7 0.3 0.0

single volatility shift single volatility shift
early negative shift late negative shift early negative shift late negative shift

shift in: T r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5 r = 0 r = 1 r = 2 r = 3 r = 4, 5
100 0.0 91.8 7.5 0.6 0.1 0.0 90.2 8.8 0.9 0.1 0.0 95.1 4.5 0.3 0.1 0.0 94.4 5.0 0.6 0.1

ε1t 200 0.0 92.4 7.0 0.5 0.1 0.0 92.4 7.0 0.5 0.1 0.0 94.5 4.9 0.5 0.1 0.0 94.7 4.9 0.3 0.0
400 0.0 93.8 5.8 0.4 0.0 0.0 93.7 5.9 0.4 0.1 0.0 95.2 4.5 0.3 0.0 0.0 95.3 4.3 0.3 0.0

100 4.3 87.7 7.4 0.5 0.1 3.4 89.2 6.8 0.5 0.1 11.5 83.9 4.2 0.5 0.0 8.3 86.9 4.4 0.3 0.1
ε1t, ε2t 200 0.0 92.8 6.6 0.5 0.1 0.0 93.2 6.2 0.5 0.1 0.0 94.7 4.9 0.3 0.1 0.0 95.1 4.5 0.4 0.1

400 0.0 93.8 5.7 0.5 0.0 0.0 93.7 5.8 0.5 0.1 0.0 95.5 4.1 0.4 0.0 0.0 95.1 4.4 0.4 0.1

100 2.8 83.2 12.4 1.5 0.1 2.8 86.8 9.3 1.0 0.1 15.1 79.1 5.2 0.6 0.0 9.4 85.1 4.9 0.5 0.1
ε1t, .., ε3t 200 0.0 86.6 12.5 0.9 0.0 0.0 90.9 8.4 0.6 0.0 0.1 94.7 4.8 0.3 0.0 0.0 95.0 4.5 0.5 0.0

400 0.0 88.3 10.7 1.0 0.1 0.0 91.9 7.4 0.6 0.1 0.0 95.0 4.4 0.5 0.1 0.0 95.0 4.5 0.4 0.0

100 1.2 70.7 23.8 3.8 0.4 1.8 82.6 13.6 1.9 0.2 19.6 73.1 6.6 0.6 0.2 11.7 82.7 4.8 0.7 0.1
ε1t, .., ε4t 200 0.0 75.1 21.3 3.3 0.3 0.0 85.8 12.9 1.2 0.1 0.1 93.7 5.5 0.6 0.1 0.0 94.8 4.7 0.4 0.1

400 0.0 74.1 22.7 2.9 0.2 0.0 87.5 11.1 1.3 0.1 0.0 94.6 4.8 0.5 0.1 0.0 95.0 4.5 0.5 0.1

100 0.4 49.0 38.3 10.5 1.8 0.7 72.9 22.2 3.6 0.5 24.9 66.8 7.1 0.9 0.3 15.3 78.7 5.2 0.6 0.2
ε1t, .., ε5t 200 0.0 50.8 37.0 10.9 1.3 0.0 76.7 20.0 3.1 0.3 0.4 92.8 6.1 0.6 0.1 0.0 94.7 4.9 0.4 0.0

400 0.0 53.0 36.2 9.6 1.2 0.0 78.5 18.5 2.6 0.4 0.0 95.0 4.4 0.5 0.1 0.0 95.2 4.2 0.5 0.1



Table 6: Size of Standard and Bootstrap PLR tests for Rank = 0 Against Rank =5. True rank is 0.
Volatility shift in ε1t,...,ε5t; correlation between εit and εjt equals 0.8, all i 6= j =1,...,5.

Standard PLR test Bootstrap PLR test
T no volatility shifts no volatility shifts
100 8.0 5.4
200 7.3 5.5
400 6.8 5.1

single volatility shift single volatility shift
T early negative late negative early positive late positive early negative late negative early positive late positive
100 67.9 37.4 34.7 65.2 11.1 6.2 7.6 10.9
200 65.7 33.9 35.0 63.3 7.9 6.1 6.6 7.8
400 64.0 31.1 32.7 62.8 6.8 5.4 6.0 6.9

Table 7: Size of standard and Bootstrap PLR Tests for Rank = 0 Against Rank =5 Under Correlation Breaks.
True Rank is 0. The Correlation Between εit and εjt, all i 6= j =1,...,5, Switches from 0.0 to 0.8 (Positive Shift)
and from 0.8 to 0.0 (negative shift).

Standard PLR test Bootstrap PLR test
T early negative late negative early positive late positive early negative late negative early positive late positive
100 20.0 11.7 11.0 20.7 6.5 6.0 5.5 7.5
200 19.4 11.1 9.6 19.6 5.9 6.2 5.3 6.6
400 17.4 10.5 8.9 19.7 5.6 5.5 5.3 6.0
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