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Abstract: An explication of the key ideas behind the Cointegrated Vector Autoregression Approach.  
The CVAR approach is related to Haavelmo’s famous “Probability Approach in Econometrics” 
(1944). It insists on careful stochastic specification as a necessary groundwork for econometric 
inference and the testing of economic theories.  In time-series data, the probability approach requires 
careful specification of the integration and cointegration properties of variables in systems of 
equations.  The relationship between the CVAR approach and wider methodological issues and 
between it and related approaches (e.g., the LSE approach) are explored.  The specific-to-general 
strategy of widening the scope of econometric models to identify stochastic trends and cointegrating 
relations and to nest theoretical economic models is illustrated with the example of purchasing-power 
parity. 
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All economists agree that reality is complex and that the tools with which we confront it are far 

simpler.  Theorists sometimes deal with this gap by asking very little of the data.  Start with the 

“stylized” facts and develop relatively simply theories to account for them.  Unfortunately, stylized 

facts are often too stylized to discriminate among plausible candidate theories or to provide a basis 

for accurate quantification.  Alternative approaches start from the other end and ask much of the data.  

One European tradition, which derives from Trygve Haavelmo’s “The Probability Approach in 

Econometrics” (1944), focuses on obtaining good characterizations of data before testing and on 

drawing out the implications of data that ought to constrain economic theorizing.  The application of 

the cointegrated vector autoregression (CVAR) recounted, for example, in Katarina Juselius’s (2006) 

textbook and facilitated by the CATS in RATS econometric software (Jonathan G. Dennis et al. 2006) 

is a special macroeconometric case of the Probability Approach.  The message of the Probability 

Approach and the CVAR approach can be summarized in the slogan:  “facts, not stylized facts.”   

1. Between Data and Theory 

All econometrics aims ultimately to confront theory and data.  Different approaches differ in how 

they conceive the relationship and the problems that it poses.  To start, think of an ideal case such as 

one might find in a physics textbook.  The law of gravity is applied to the dropping of a ball from a 

tower.  The law, together with an initial condition (the height of the tower), determines the distance 

the ball  falls for each time . . . in theory.  Of course, no object conforms perfectly to the gravity law.  

If one had a generous enough notion of approximation, if the ball were steel and the initial height 

were not too high, then tight bounds of approximation would work; but not if the ball were 

styrofoam.  Now there are three choices:  A) declare that theory is no good; B) modify the original 

theory to account for the factors such as air resistance; or C) attempt to assess empirically the 

combined forces that must be used to adjust the gravity law to its application in the particular case.  
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In economics, as in physics, the difficulty is that our theory holds ceteris paribus.  When 

other things are not equal, there is always some residual left unexplained which, if large, may render 

the theory empirically irrelevant. As scientists, we can either attempt to elaborate the theory in such a 

way that fewer and fewer ceteris paribus conditions are invoked (B) or we can attempt to provide an 

adequate empirical characterization of the factors that determine the initial gap between theory and 

data (C).  Strategy C can be seen as the passive analogue to a controlled experiment (cf. Haavelmo 

1944, esp. chs. 1 and 2). It has an advantage over B, in the sense of providing clues as to how the 

theory needs to be developed – clues that would be helpful in strategy B, but for which strategy B 

itself offers no internal resources.  What is more, strategy C gives some hope of actually isolating the 

action of the gravity law and, therefore, in fact testing whether it is a contributing factor to a 

successful account of the data.  It is only when we can control for enough of the complicating factors 

that the underlying quadratic relationship of the gravity law can be detected.   

The extreme limit of strategy B is what Milton Friedman has called the “Walrasian” 

methodology, by which he means not general-equilibrium theory per se, but to the idea that one most 

have a complete, detailed theoretical account in order to say anything useful about the economy at all 

(see Kevin D. Hoover 2006).  The extreme limit of strategy C is a completely atheoretical analysis of 

data.  Both extremes are hopeless:  strategy B because we lack the cognitive capacity to elaborate a 

complete theory from first principles; strategy C because without some prior conceptual notion we 

would never find a starting place for any investigation.  Still, the Probability Approach leans toward 

strategy C:  the weight of the analysis is on characterizing the data and on using the data to criticize 

and guide theorizing.  In Friedman’s terms, the approach is “Marshallian” or, as Hoover (2006) puts 

it, “archaeological”:  we learn about the economy a piece at a time by removing the overlay of 
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detritus to uncover the underlying structure, guided by our theoretical conception of what we are 

looking for, which is tested and enriched by each new discovery. 

2. Models of Theory, Models of Data 

The CVAR approach builds on Haavelmo’s (1944) great insight that the gap between theory and data 

need not be treated as an unstructured residual of approximation but could itself be modeled 

statistically using the theory of probability.  The cost is that we now need another level of modeling 

in addition to theory – a statistical model constructed in such a way that i) theory has implications 

interpretable in its terms and ii) data are described fully enough that its only residuals are identically 

independent random errors – that is, unsystematic noise. The payoff is that such a statistical model 

warrants the use of likelihood methods and provides a firm basis for deductions about the 

implications for theory.  

The CVAR approach sees the world as a highly complex dynamic system, the properties of 

which must be inferred from data reflecting a single (nonreplicable) realization of a multivariate, 

path-dependent process.  Naturally, this data-generating process must be approximated by simpler 

relationships, which characterize the data accurately enough for our particular purposes. The 

statistical model ties economic theory to the data when it nests both the data-generating process and 

the theoretical model.  Then the parameters of the theoretical model can be read as assertions about 

parameters of the statistical model, which can be tested against the data provided that the statistical 

model characterizes it accurately. 

While we can never know for certain that our statistical model captures the data-generating 

process, we can often find compelling evidence when it does not.  Søren Johansen (2006, pp. 293-

295) provides an example, which starts with the unobservable data-generating process:  

(1)   ttt xx ε++= − 0.19.0 1 , t = 1, 2, . . . , 100, x0 = 10,  
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where the tε are identically independently distributed (i.i.d) N(0,1).  Note that E(xt) = 1/(1 – 0.9) = 10 

and var(xt) = 1/(1 – 0.92).  Consider an economic theory that predicts that the mean value of x is 

10=μ  (it happens that our theory is exactly true, but that will not generally be the case).  To test the 

theory we need to provide a model of the probability process.  One model is 

 (2)     ttx εμ += , 

where the tε are i.i.d. .  Omitting details, the maximum likelihood estimates of (2) yield a 95 

percent asymptotic confidence interval of 

),0( 2σN

ˆ ˆ1.96 / 9.138 0.449Tμ σ± = ± .  Since 10 does not lie 

within the confidence interval, it might appear, then, that we have good grounds to reject the 

hypothesis that 10=μ .  Of course, that claim is only as good as the probability model in which it is 

based.  Model (2) models the errors terms as i.i.d normal.  Given the data-generating process (1), this 

assumption will be violated; a simple statistical test would show that the estimated residuals are 

serially correlated.  We can conclude, then, that the data-generating process is not nested in our 

statistical model, that the estimates are not reliable, and that the theory has not been tested 

adequately.  

An alternative statistical model is given by 

(3)      ttt xx ερμρ +−+= − )1(1 , 

where again the tε are i.i.d. and ),0( 2σN μ=)( txE , if |ρ| < 1.  Now, as it happens, the data-

generating process (1) is precisely nested in (3).  Again omitting details, the maximum likelihood 

estimate of (2) yields a 95 percent asymptotic confidence interval of 

ˆ ˆ1.96 /[(1 ) ] 9.123 2.247Tμ σ ρ± − = ± .  The previous estimate of μ was spuriously precise.  On the 

current probability model (3), the estimate is less precise and we cannot reject 10=μ . 
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We cannot have sufficient conditions for knowing that the data-generating process is nested 

in any conjectured probability model.  One message of our cooked example is that we should check 

the necessary conditions.  Not only did this lead us to reject (2) as an adequate description of the 

probability model, the serial correlation of the residuals from estimating (2) naturally suggest models 

in the autoregressive class such as (3).  Another message is that our tests of theory will go seriously 

wrong if we base them on statistical models that fail accurately to characterize the data in important 

ways.  The upshot of these messages is that key elements of the CVAR approach are, first, to get the 

probability model right, which is judged by ruthless application of diagnostic testing, and second, to 

judge theories in relation to the testable restrictions that they imply for the probability model.   

Accurately characterizing the persistence of the data is a vital aspect the CVAR approach.  In 

equation (3), we assumed that |ρ| < 1, which implies that the xt is mean-reverting or stationary – i.e., 

integrated of order zero or I(0).  But if instead, ρ = 1, then xt would be a nonstationary, unit-root 

process (i.e., I(1)) in which shocks would accumulate, forming a stochastic trend (i.e., a permanent, 

nondeterministic shift in the mean).  Statistical inferences that fail to account for nonstationarity 

(deterministic or stochastic) will be misleading in a manner analogous to inferences based on 

equation (2).  One way to account for a unit root is to transform the data to stationarity by 

differencing.  But differencing throws away all the long-run information in the data.  Fortunately, 

when data share a stochastic trend, a particular linear combination of the levels of the variables will 

also be stationary.  Such variables are said to be cointegrated.  Cointegration was formalized by 

Clive Granger and Robert Engle (1987), although it is implicit in the earlier work of the London 

School of Economics (LSE) approach on error-correction mechanisms (see Grayham E. Mizon 

1995).  Since economic theories frequently have clear, testable implications about degrees of 

persistence and cointegration, these dynamic properties are central to the CVAR approach.  For 
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example, a stationary cointegrating relationship among nonstationary variables can frequently be 

interpreted as defining a long-run equilibrium toward which variables are adjusting.  This is the 

famous “error-correction mechanism” of the LSE approach. 

3. The Cointegrated Vector Autoregression Model 

The CVAR provides a simple linear system that can characterize the probability distribution of a set 

of variables.  While the importance of cointegration is widely accepted, the CVAR approach can be 

distinguished from its close ally, the LSE approach, which has most often focused on single-

equations, even though it can be readily generalized to systems (David Hendry 1995).  And the 

CVAR approach can be distinguished from many other applications of cointegration in systems of 

equations by its focus on well-specified, congruent statistical models – a hallmark of Haavelmo’s 

probability approach.  Recognition that macroeconomic time-series data are typically nonstationary 

and cointegrated motivated, first, the development of likelihood-based inference for the CVAR 

model (Johansen 1996), including tests for determining the numbers of stochastic trends and 

cointegrating relations and tests of hypotheses on their structure and an applied macroeconometric 

methodology (Juselius 2006), a practical method of asking within the broad context of a theoretical 

model, what do the data say when they are allowed to speak freely?   The necessary tests and 

methods are implemented in CATS in RATS (Dennis et al. 2006). 

Two facts argue for the CVAR approach:  first, statistical evidence indicates that 

nonstationary data are pervasive; second, economic theory is mainly about the adjustment of one 

variable to another in search of individually optimal, systemically more coordinated outcomes.  By 

combining differenced and cointegrated data, the CVAR model responds to both facts.  Economic 

data are analyzed as short-run variations around moving longer run equilibria.  Longer run forces are 

themselves divided into the forces that move the equilibria (pushing forces, which give rise to 
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stochastic trends) and forces that correct deviations from equilibrium (pulling forces, which give rise 

to cointegrating relations).  Interpreted in this way, the CVAR has a good chance of nesting a 

multivariate, path-dependent data-generating process and relevant dynamic macroeconomic theories.  

Unlike approaches in which the data are silenced by prior restrictions,  the CVAR model gives the 

data a rich context in which to speak freely.  

Especially with respect to persistence properties, it is worth recalling that the CVAR is not 

the underlying data-generating process; rather it is a good enough approximation for a particular 

problem.  For example, we can (and usually should) approximate highly persistent data by an exact 

unit root, since tests based on χ²-, F-, and t-distributions and the assumption of stationarity will go 

badly wrong when the data-generating process has a near unit root, unless we have a very long 

sample of, say, more than 5000 observations (Johansen, 2006). 

Much of the focus in the CVAR approach is on the long run:  can we identify the stochastic 

shocks?  what are the cointegrating relations?  Juselius and Massimo Franchi (2007; also Johansen 

2006) show how to translate the assumptions underlying a dynamic, stochastic general-

equilibrium (DSGE) model (Peter Ireland 2004) into a set of testable assumptions on 

cointegrating relationships and stochastic trends in a CVAR.  Accounting for (near) unit roots in 

the model provides a powerful robustification of the statistical and economic inference. Most 

assumptions underlying the DSGE model and, hence, the RBC model were rejected when 

properly tested. Structuring the data in this way offers a number of facts, for example that it was 

shocks to consumption that have generated the long business cycles, that a theory model should 

replicate in order to claim empirical relevance.  Thus, the CVAR approach provides both a 

critical framework and constructive insights.  
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Juselius’s (2007) investigation of purchasing-power parity provides a more detailed case 

study.  Call the logarithm of German prices p1, the logarithm of U.S. prices p2, and the logarithm of 

the exchange rate s12.  Inflation rates (Δp1, Δp2) display a stochastic trend; and, since inflation rates 

are I(1), price levels are I(2).  The exchange rate is I(1).  Since prices are a higher level of integration 

than exchange rates, purchasing-power parity requires that prices be cointegrated – that is, relative 

prices must be I(1) (pp = p1 – p2 ~ I(1)) and exchange rates and relative prices must share a common 

trend, so that ppp = p1 – p2 – s12 ~ I(0).  Then, the hypothesis of purchasing-power-parity in the 

dollar/deutschmark case amounts to a complex hypothesis:  {p1 ~ I(2), p2 ~ I(2), pp = p1 – p2 ~ I(1), 

s12 ~ I(1), ppp = p1 – p2 – s12 ~ I(0), p1 & p2 are pushing, s12 is adjusting}.  Here “adjusting” means 

that the shocks to the nominal exchange rate do not contribute to any stochastic trend, even the ones 

that drive s12 itself. A careful CVAR analysis, confirms that p1 ~ I(2), p2 ~ I(2), pp ~ I(1), and s12 ~ 

I(1); but, contrary to the hypothesis, pp and s12 have different stochastic trends, so that they are not 

cointegrating (i.e., ppp ~ I(1)), and s12 is pushing. 

The failure of purchasing-power parity requires that we dig deeper. General equilibrium 

implies that a persistent departure from purchasing-power parity must generate a similar persistent 

movement somewhere else in the economy.  Since exchange rates are involved in capital movements 

as well as trade in goods and services, a natural place to look is in the behavior of interest rates.  

Johansen et al. (2007) adds the interest rates on German and U.S. long-term bonds (b1 and b2), 

generalizing the more specific original model.  In the more general model, the I(1) trend in ppp is the 

same as the trend in the relative bond yield (b1–b2), so that ppp and the real interest-rate differential 

are cointegrating:  (ppp – ω[(b1 – Δp1) – (b2 – Δp2)] ~ I(0), where ω is a constant parameter. Such a 

“specific-to-general approach,” which starts with a small model and works to a larger one, is 

justified because cointegration is a property that is invariant to widening the data set.   
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How should one understand these findings economically?  While it is beyond our present 

purpose to make a detailed case, the failure of purchasing-power parity appears to be related to the 

joint determination of nominal exchange rates in the goods and the foreign-exchange market, and 

how the latter influences determination of interest rate.  These findings are consistent with the 

application to the foreign-exchange market of the theory of imperfect knowledge economics as 

developed by Roman Frydman and Michael D. Goldberg (2007).  Such a theory is post-Walrasian in 

the sense that it rejects a central tenet of modern Walrasian macroeconomics – the rational 

expectations hypothesis.  But more fundamentally, it is post-Walrasian (that is Marshallian in 

Friedman’s sense or archaeological in Hoover’s) in that it rejects the privileging of a priori economic 

theory over empirical evidence.  In the language of the CVAR approach, empirical evidence is the 

pushing force and economic theory is adjusting. 
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