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Abstract

In the present paper a model of competition between sports clubs

in a sports league is presented. Clubs are endowed with initial

players but at a cost clubs are able to sell their initial players and

buy new players. The results are that: if the quality of players

is one-dimensional, then equilibria in pure strategies exist, and;

if the quality of players is multi-dimensional, then there need not

exist equilibria in pure strategies, but equilibria in mixed strate-

gies exist. Equilibria in mixed strategies resemblance signings on

deadline day in european soccer.
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1 Introduction

Competition between sports clubs in a sports league has been studied for

fifty years at least and many papers have pointed out several peculiarities of

sports leagues. A peculiarity of sport clubs in a sports league is that there are

production externalities between clubs as pointed out by El-Hodiri & Quirk

(1971), Neale (1964) and Rottenberg (1956). Indeed a game takes two clubs

and the quality of a game depends on the quality as well as the tactic of

both clubs, but also the competitive balance in the league is of importance.

Therefore without regulation the outcome of competition between sports

clubs need not effecient.

Sport clubs have many players, for soccer clubs a team consists of eleven

players and five substitutes, but typically clubs have more players. We

stoically assume that a club has a single player to make the analysis sim-

ple. Sport clubs seem to have different objectives: profit (Liverpool and

Manchester United in UK and FCK in Denmark), utility of the owner (Chelsea

in UK and AC Milan and Inter Milan in Italy) and welfare of majority of club

members (Barcelona and Real Madrid in Spain) just to mention a few pos-

sible objectives. We assume that clubs maximize their profits, but revenues

may be interpreted as utilities of owners, welfare of majorities of members

or something else.

In the present paper a model of competition between sport clubs in a

league is presented. The outcome of the competition depends on the distri-

bution of players between clubs, so the strategic variable for a club is the

quality of its player and the performance of a club depends on the quality

of its player as well as the quality of the players in the other clubs. Clubs

are endowed with initial players, but there is a market for players, so clubs

are able to sell their initial players and buy new players. Since there are

externalities between clubs the decision to go on the market or not depends

on the decisions of the other clubs. The cost of an initial player consists of

a salary while the cost of selling an initial player and buying a new player

consists of a transaction cost and a salary to the new player. Therefore there
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is a build-in discontinuity in the cost function of a club at the quality of the

initial player.

In the paper we show that if the quality of players is one-dimensional and

the revenues of clubs have increasing differences, so the change in revenue

for a club of going from a player of low quality to a player of high quality is

increasing in the quality of the players of the other clubs, then there exists

a Nash equilibrium in pure strategies (Theorem 1). Depending on the initial

players, no clubs, some clubs or all clubs sell their initial players and buy new

players. More realistically, if the quality of players is multi-dimensional, then

there need not exist an equilibrium in pure strategies. However we show that

if the quality of players is multi-dimensional, then there exist equilibria in

mixed strategies and strategies in these equilibria are rather simple as every

club mixes over their initial players and one other player (Theorem 2 and

Corollary 1). For a club a mixed strategy corresponds to trading players just

before the transfer window closes so other clubs do not know whether the

club keeps its initial player or signs a new player and therefore cannot react

to the actual action of the club.

The paper is organized as follows: in Section 2 the model is introduced;

in Section 3 existence of Nash equilibria in pure strategies is studied, and;

in Section 4 existence and structure of Nash equilibria in mixed strategies is

studied.

2 Setup and assumptions

There is a finite number n of clubs j ∈ N = {1, . . . , n} and each club has one
player. Clubs compete so their profits depend on the quality level of their

own players as well as the players of the other clubs. Players are described

by a quality vector q ∈ Rm+ , where each coordinate corresponds to some
capability, skill or talent.

Outside the league there is a market for players where clubs can sell and

buy players. Club j is characterized by its initial player ωj ∈ Rm+ where
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ωj W= 0, its revenue function rj : (Rm+ )n → R+ which depends on its own
player as well as the players of the other clubs, and its cost function cj :

Rm+ × Rm+ → R+ which depends on its own initial player and its new player.
The cost of a new player of quality qj consists of a cost of having the player

(salary) and a transaction cost of selling the initial player and buying the

new player (transfer fee).

Let sj(qj) be the cost of having a player of quality qj and let tj(qj,ωj) be

the transaction cost of selling a player of quality ωj and buying a player of

quality qj, then the cost function takes the following form:

cj(qj,ωj) =

⎧⎨⎩ sj(qj) for qj = ωj

sj(qj) + tj(qj,ωj) for qj W= ωj.

The cost function has a build-in discontinuity at qj = ωj because of the

transaction cost.

The following assumptions are supposed to be satisfied

(A.1) rj is continuous, bounded from above and strictly concave in qj.

(A.2) sj is continuous, convex and monotone.

(A.3) tj is continuous, convex and monotone in qj.

(A.4) tj is strictly positive on the strictly positive part of the diagonal, so

tj(qj,ωj) > 0 for all (qj,ωj) such that qj = ωj and qj ,ωj > 0.

(A.5) sj + tj is unbounded, so lim,qj,→∞ sj(qj) + tj(qj,ωj) =∞.

(A.1)-(A.3) are quite natural. (A.4) implies that there are transaction costs

because the cost of selling a player and buying a player of identical quality is

strictly positive. (A.5) implies that costs increases without bound as quality

increases without bound.
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3 Equilibrium in pure strategies

Let Πj(qj, q−j) = rj(qj, q−j) − cj(qj,ωj) be the profit of club j. Then the
problem of club j is to choose a player in order to maximize its profit given

the players of the other clubs q−j = (q1, . . . , qj−1, qj+1, . . . , qn)

max
qj

Πj(qj, q−j) = rj(qj, q−j)− cj(qj,ωj) (1)

Definition 1 A collection of players q∗ = (q∗1, . . . , q
∗
n), where q

∗
j ∈ Rm+ and

q∗j is a solution to Problem (1) given q
∗
−j, is an equilibrium in pure strategies.

Suppose that the quality of players is 1-dimensional, so the quality of a

player is described by a number (or alternatively only co-linear qualities of

players are available) and revenue functions has increasing differences. Then

an equilibrium in pure strategies exists

Theorem 1 Suppose that the quality of players is 1-dimensional, so m = 1.

If rj(qj, q−j) has increasing differences in (qj, q−j) (so if qj ≥ qIj and q−j ≥
qI−j, then rj(qj, q−j)− rj(qj, qI−j) ≥ rj(qIj, q−j)− rj(qIj, qI−j)), then there exists
an equilibrium in pure strategies.

Proof: Firstly it is shown that the game (N , (Sj,Πj)j) where Sj = R+ and
Πj : Rn+ → R is the profit, is a supermodular game. Secondly Theorem

4.2.1. in Topkis (1998) on existence of equilibrium in pure strategies in

supermodular games is applied.

The game (N , (Sj,Πj)j) is supermodular: 1. Sj is a lattice; 2. Πj is
supermodular in qj, because all functions from R to R are supermodular,

and; 3. q−j ≥ qI−j implies that Πj(qj, q−j) − Πj(qj, qI−j) is non-decreasing in
qj, because q−j ≥ qI−j implies that rj(qj, q−j) − rj(qj, qI−j) is non-decreasing
in qj by assumption. Moreover, there exists q̄ ∈ R+, such that for all j and
q−j, if qj is a solution to Problem (1), then qj ≤ q̄ because rj is bounded

from above and sj + tj is unbounded. Therefore the set of equilibria in the

game (N , (Sj,Πj)j) and set of equilibria in the game (N , (qj,Πj)j) where
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qj = [0, q̄], coincide. According to Theorem 4.2.1. in Topkis (1998), the

game (N , (Sj,Πj)j) has an equilibrium in pure strategies.

2

Let πj(qj, q−j) = rj(qj, q−j) − sj(qj) − tj(qj,ωj) be the profit of club j
given the transaction cost has to be paid even if the club keeps its initial

player. Then the artificial problem of club j is

max
qj

πj(qj, q−j) = rj(qj, q−j)− sj(qj)− tj(qj,ωj). (2)

Problem (2) has a solution because the revenue is bounded from above and

the cost is unbounded and the solution is unique because the profit is strictly

concave. Therefore let the map Fj : Rn−1+ → R+ be the solution map, so
Fj(q−j) is the solution to Problem (2) given q−j, then Fj is continuous ac-
cording to Berge’s Maximum Theorem and Fj is bounded from above because

the revenue is bounded from above and the cost is unbounded.

Clearly for all q−j ∈ Rn−1+ there exist a pair of functions FLj , F
U
j : Rn−1+ →

R+, such that if ωj < FLj (q−j) or ωj > FUj (q−j), then Fj(q−j) is the solution
to Problem (1), and if FLj (q−j) < ωj < F

U
j (q−j), then ωj is the solution to

Problem (1).

Suppose that πj(qj, q−j) = rj(qj, q−j) − sj(qj) − tj(qj,ωj) is twice differ-
entiable and differentiable strictly concave, so D2

qjqj
πj(qj, q−j) < 0, then if qj

and qk where k W= j are strategic complementarities for all k, soD2
qjqk

πj(qj, q−j) >

0 for all k W= j, then πj satisfies increasing differences. Indeed according to
the Implicit Function Theorem

DqkFj(q−j) = −
D2
qjqk

πj(qj, q−j)

D2
qjqj

πj(qj, q−j)

so if πj is twice differentiable strictly concave and differentiable strictly

concave and qj and qk are strategic complementarities, then Fj is strictly

monotone as illustrated in the first diagram in Figure 1. However if qj and

qk are not strategic complementarities, then Fj need not be monotone as

illustrated in the second diagram in Figure 1.
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Figure 1: The importance of increasing differences.

In the first diagram: 1. if the initial players are ω, then ω is an equilib-

rium, because the clubs’ initial players are sufficiently close to the optimal

players; 2. if the initial players are ωI, then in equilibrium club 1 trade play-

ers, while club 2 keeps its player, and; 3. if the initial players are ωII, then

in equilibrium both clubs trade players, because both clubs’ initial players

are too far away from the optimal players. In the second diagram: if the

initial players are ω, then: 1. ω is not an equilibrium; 2. if only one club

trades players, then the other club also wants to trade players, and; 3. if

both clubs trade players, then club 1 regrets that it traded players. There-

fore in the second diagram where the profit function of club 1 does not have

increasing differences, if the initial players are ω, then there does not exist

an equilibrium in pure strategies.

4 Equilibrium in mixed strategies

Unfortunately Theorem 1 does not generalize to multi-dimensional players,

because if qj is multi-dimensional, then the function Πj is not supermodular:

For qj, q
I
j ∈ Rm+ , let qj∨qIj (qj∧qIj) be their join (meet), so the i’th coordinate

of qj ∨ qIj (qj ∧ qIj) is the maximum (minimum) of the i’th coordinate of qj
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and the i’th coordinate of qIj. Πj is supermodular in qj if and only if

Πj(qj, q−j) +Πj(qIj, q−j) ≤ Πj(qj ∨ qIj, q−j) +Πj(qj ∧ qIj, q−j).

Suppose that qj = ωj and that q
I
j converges to qj such that qj∨qIj , qj∧qIj W= qj1.

Then Πj(qj, q−j) = Πj(ωj, q−j) > πj(ωj, q−j) and Πj(qIj, q−j), Πj(qj ∨ qIj, q−j)
and Πj(qj ∧ qIj, q−j) converges to πj(ωj, q−j), so Πj is not supermodular in
qj. Note that for one-dimensional players qj ∨ qIj = max{qj, qIj} and qj ∧ qIj =
min{qj, qIj}, so qj ∨ qIj = qj and qj ∧ qIj = qIj or qj ∨ qIj = qIj and qj ∧ qIj = qj.
Therefore it is impossible that both qj ∨ qIj W= qj and qj ∧ qIj W= qj are satisfied
for one-dimensional players.

Since an equilibrium in pure strategies need not exist for multi-dimensional

players, let P be the set of probability measures on Rm+ and let μ ∈ P be de-
noted a random player. The problem of club j is to choose a (random) player

in order to maximize its expected profit given the random players of the other

clubs μ−j = (μ1, . . . ,μj−1,μj+1, . . . ,μn)

max
μj

8
qj

X8
q−j
Πj(qj, q−j)dμ−j(q−j)

~
dμj(qj) (3)

Definition 2 A collection of random players μ∗ = (μ∗1, . . . ,μ
∗
n) where μ

∗
j ∈

P, such that μ∗j is a solution to Problem (3) given μ∗−j is an equilibrium in

mixed strategies.

Theorem 2 There exists an equilibrium in mixed strategies.

Proof: For all μ−j ∈ Pn−1, there exists a solution to Problem (3). Let

Γ : Pn → Pn be defined by μIj ∈ Γj(μ) if and only if μ
I
j is a solution to

Problem (3) given μ−j, then Γ is convex valued and upper hemi-continuous
according to Berge’s Maximum Theorem. Moreover, there exists q̄ ∈ Rnm+ ,

such that for all μ if μI ∈ Γ(μ), then μI([0, q̄]) = 1. Therefore there exists μ∗
such that μ∗ ∈ Γ(μ∗) according to Kakutani’s Fixed Point Theorem.

1If qj = ωj = (1, 1) and q
I
j = (1 + ε, 1 − ε) where ε > 0, then qj ∨ qIj = (1 + ε, 1) and

qj ∧ qIj = (1, 1− ε).
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2

The random player version of the artificial problem of club j is to maxi-

mize its profit given the transaction cost has to be paid even if the club keeps

its initial player
max
qj

πj(qj,μ−j), (4)

Problem (4) has a unique solution. Therefore let the map Fj : Pn−1 → Rm+ be
the solution map, so Fj(μ−j) is the solution to Problem (4) given μ−j, then

Fj is continuous according to Berge’s Maximum Theorem and Fj is bounded

from above according to (A.2).

Corollary 1 Suppose that μ∗ is an equilibrium in mixed strategies. Then for

all j

μ∗j(ωj) + μ∗j(Fj(μ
∗
−j)) = 1.

Proof: Clearly for all μ−j Problem (3) has either one pure solution: ωj or

Fj(μ−j), or two pure solutions: ωj and Fj(μ−j). Let the correspondence

Gj : Pn−1 → Rm+ be the solution correspondence, so qj ∈ Gj(μ−j) if and only
if qj is a solution to Problem (3).

Let the correspondence Γ : Pn → Pn be defined by μIj ∈ Γj(μ) if and only
if μIj has support on Gj(μ−j), then μ

I
j ∈ Γ(μ) if and only if μIj is a solution

to Problem (3) given μ−j. Therefore there exists μ∗ such that μ∗ ∈ Γ(μ∗)
according to Theorem 2 and for all μIj in Γ(μ)

μIj(ωj) + μIj(Fj(μ−j)) = 1

by construction.

2

According to Corollary 1 if a club uses a mixed strategy then it mixes

between keeping its initial player and selling its initial player and buying the

optimal player given the transaction cost has to be paid even if the club keeps

its initial player.
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Signings well before the transfer window closes resemblance pure strate-

gies as other clubs are able to react to the signings. In the real signings

just before the transfer window closes world resemblance mixed strategies as

other clubs are not able to react because they do not know about the sign-

ings before after the transfer window closes. Deadline day is usually one the

busiest days in the the transfer window: it attracts a lot of attention from

the media and some very big moves have occurred on this day.

In the present paper every club is a firm and there are production ex-

ternalities between firms. Therefore the outcome should not be expected

to be efficient. Indeed generally if μ∗ = (μ∗1, . . . ,μ
∗
n) is an equilibrium col-

lection of random players, then there exists another collection of players

q∗ = (q∗1, . . . , q
∗
n) such that the aggregate profit is larger

�
i(π(q

∗)− ci(q∗i )) >$ �
i(πi(q)− ci(qi)) dμ∗(q).
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