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Abstract

We interpret the linear relations from exact rational expectations models as
restrictions on the parameters of the statistical model called the cointegrated
vector autoregressive model for non-stationary variables. We then show how
reduced rank regression, Anderson (1951), plays an important role in the
calculation of maximum likelihood estimation of the restricted parameters.
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1 Introduction

The purpose of this paper is to show how the technique of reduced rank regression,
Anderson (1951), forms the basis for the calculation of Gaussian maximum likelihood
estimation in the cointegrated vector autoregressive model, where the parameters
are restricted by some exact rational expectations models.
Expectations play a major role in modern economics. Many variables such as long

term interest rates are based on assumptions or expectations of future developments
of other key economic variables. There exist many possibilities for modelling these
expectations or forecasts. When the economic model is formulated by incorporating
stochastic elements, a simple �rst choice is to let expectations mean probabilistic
conditional expectations with respect to the information set of the model. This is
what usually is called model based rational expectations, originally introduced by
Muth (1961).
Rational expectations models specify relations between such conditional expec-

tations of future values of some variables and past and present values of others. If
no further stochastic terms are involved, exact rational expectations is the usual
denomination. A well known example is the uncovered interest parity where the
di¤erence of the interest rates in two countries is supposed to equal the expected
appreciation or depreciation of the exchange rate in the next period. Another ex-
ample is a simple present value model for the price of stocks which is supposed to
equal a discounted sum of future expected dividends.
To describe the simultaneous dynamic behavior of a moderate number of eco-

nomic variables, a vector autoregressive model is a useful and often applied tool.
In the context of exact rational expectations, an important aspect is that the con-
ditional expectation of the variables one step ahead can easily be computed from
the vector autoregressive model and expressed as linear combinations of present and
past values. This means that exact rational expectations models imply restrictions
on the coe¢ cients of the vector autoregressive model. Thus the statistical model
embeds the economic model of exact rational expectations. This makes it possible
to test the validity of the economic model and also the speci�c values of coe¢ cients
which are assumed known by the rational expectations model. Test for linear re-
lations based on the assumption of a stationary vector autoregressive model were
developed by Hansen and Sargent (1981, 1991).
It is, however, a well recognized fact that many economic variables exhibit too

large �uctuations for this behavior to be well captured by an assumption of station-
arity. A reduced rank vector autoregressive model where one or several roots of the
characteristic polynomial are equal to one, is a better alternative. This means that
there are one or more stationary linear combinations of the variables. Using the
fact that the coe¢ cients of such cointegrating relations can be super-consistently
estimated, Baillie (1989) generalized the approach of Hansen and Sargent (1981,
1991) by �rst using the estimated coe¢ cients to transform the reduced rank vector
autoregressive model to a model for stationary variables, and then test the restric-
tions in this model. This amounts to a two stage procedure: �rst transforming the
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variables to stationarity and then conducting inference in the remaining parameters
in the model for stationary variables.
The method of reduced rank regression gives the possibility of obtaining explicit

solutions to the nonlinear optimization problem posed by Gaussian maximum like-
lihood estimation in the cointegrated vector autoregressive model. In two previous
papers, Johansen and Swensen (1999, 2004), we have shown this for some cointe-
grated vector autoregressive model models where the parameters are restricted by
exact rational expectations models. We present here the solution for such a model
where the cointegrating space in addition must satisfy some extra conditions. In this
case a small modi�cation of the argument is needed. An example of this is where
homogeneity is imposed on the cointegrating space, so that the coe¢ cients of the
long-run relations sum to zero.
One thus obtain a nesting of the models, where the reduced rank vector au-

toregressive model is the most general. The restrictions on the cointegration space
represent the next level. Finally the last level consists of models satisfying the re-
strictions from the rational expectations hypothesis in addition to the restrictions
on the long-run coe¢ cients.
Likelihood ratio statistics of two common forms of additional restrictions can be

calculated explicitly by reduced rank regression, see Johansen and Juselius (1990).
One is where all the cointegrating relations satisfy the same linear constraints. The
other is where some cointegration relations are assumed to be known. These are the
restrictions considered here
There are a couple of points that should be stressed. The �rst is that only

conditional expectations one step ahead are considered. Moreover, estimation is
developed under the assumption that all coe¢ cients describing the rational expec-
tations relations are known. This is clearly a limitation since they are often speci�ed
as containing unknown parameters, such as discount factors in present value models,
and they may enter nonlinearly. However, once we have an expression for the pro�le
likelihood using reduced rank regression, a numerical optimization procedure can
be used to �nd the maximum likelihood estimators of the remaining (few) parame-
ters. Finally, we only consider vector autoregressive model models without constant
and linear terms. This is done in order not to overload the exposition. However,
combining the arguments in the present paper with the earlier papers Johansen and
Swensen (1999, 2004) it should be fairly clear how such terms can be incorporated.
The paper is organized as follows. In the next section the model is introduced

and the set of restrictions de�ned. The third section deals with the case that all
cointegration vectors satisfy the same linear constraints in addition to the restrictions
that follow from the rational expectations relations, and in the �nal section we treat
the case that the additional restriction is that the cointegration space contains a
known part.
We will use the usual notation that if a is an n�m; m < n matrix of full rank,

then a = a(a0a)�1 and satis�es a0�a = Im, and a? is an n� (n�m) matrix such that
a0?a = 0 and the n� n matrix (a; a?) is nonsingular, �nally In = �aa0 + a?a

0
?:
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2 The restrictions implies by exact rational ex-
pectations

This section de�nes the cointegrated vector autoregressive model as the statistical
model which is assumed to generate the data and formulates the parameter restric-
tions implied by the exact rational expectation hypothesis.

2.1 The cointegrated vector autoregressive model

Let the p-dimensional vectors of observations be generated according to the vector
autoregressive model

�Xt = ��0Xt�1 +
kX
i=1

�i�Xt�i + "t; t = 1; : : : ; T (1)

where X�k+1; : : : ; X0 are �xed and "1; : : : ; "T are independent, identically distrib-
uted Gaussian vectors, with mean zero and covariance matrix �. We assume that
fXtgt=1;2;::: is I(1) and that the p�r matrices � and � have full column rank r. This
implies thatXt is non-stationary, �Xt is stationary, and that �0Xt is stationary. It is
the stationary relations between non-stationary processes and the interpretation as
long-run relations, that has created the interest in this type of model in economics.
We let #(��0) denote the number of identi�ed parameters in the matrix ��0;

and �nd that in model (1) we have #(��0) = pr + r(p� r):
In the following we also assume that � is restricted either by homogeneity re-

strictions of the form � = H�; (sp(�) � sp(H)) or that some cointegrating vectors
are known, � = (b; �) (sp(b) � sp(�)). This de�nes the two models

H1(r): The model is de�ned by equation (1) and the restriction � = H�; where H
is a known p � s matrix of rank s; and � is an s � r matrix of parameters,
r � s � p: In this model #(��0) = pr + r(s� r):

H2(r): The model is de�ned by equation (1) and the restriction � = (b; b? ) where b
is a known p �m matrix of rank m; and  is a (p �m) � (r �m) matrix of
parameters, m � r � p. In this model #(��0) = pr + (r �m)(p� r):

2.2 Estimation of the cointegrated vector autoregressive model,
H1(r); and H2(r)

It is well know, see Johansen (1996), that the Gaussian maximum likelihood esti-
mator of � is calculated by reduced rank regression of �Xt on Xt�1 corrected for
the stationary regressors

�Xt�1; : : : ;�Xt�k+1:

Once � is determined, the other parameters are estimated by regression.
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In model H1(r) the model is estimated by reduced rank regression of �Xt on
H 0Xt�1 corrected for the stationary di¤erences and their lags.
Finally in model H1(r) we estimate the model by noting that we already have

the cointegrating relations b; and determine the r �m remaining ones by reduced
rank regression of �Xt on b0?Xt corrected for the stationary lagged di¤erences and
b0Xt�1:

2.3 The model for exact rational expectations

The model formulates a set of restrictions on the conditional expectation of Xt+1

given the information Ot in the variables up to time t; which we write in the form

RE : The model based exact rational expectations formulates relations for condi-
tional expectations

E[c0�Xt+1jOt] = d0Xt +
kX
i=1

d0i�Xt+1�i: (2)

Here E[�jOt] denotes the conditional expectation in the probabilistic sense of
model (1), given the variables X1; : : : ; Xt. The p � q matrices c; d; di; i =
1; : : : ; k are known matrices, possibly equal to zero, but we assume that the
two matrices c and d are of rank q.

Example 1 We let Xt = (e12t; i1t; i2t) where e12t is the exchange rate between
two countries and i1t and i2t are the long term bond interest rates. The uncovered
interest parity assumes that

E[�e12t+1jOt] = i1t � i2t:

This has the form (2) with c0 = (1; 0; 0); d0 = (0; 1;�1); and di = 0; i = 1; : : : ; k: In
this case an I(1) model for Xt would imply that (0; 1;�1) is a cointegration vector
and because in theory, the conditional expectation only depends on i1t and i2t; this
implication can be investigated by testing restrictions on the short run dynamics.
In this example the coe¢ cients of the rational expectations restrictions are known
�

Example 2 Let Xt = (Yt; yt)
0 consist of the price of stock, Yt; at the end of

period t and of the dividends, yt; paid during the period t. The present value model
entails that the price of stock can be expressed as a discounted sum of the expected
future values of dividends given the information at time t, i.e.

Yt =
1X
i=1

�iE[yt+ijOt]:

Equivalently, after some rearrangement, we �nd the equation

E[�(Yt+1 + yt+1)jOt] = (��1 � 1)Yt � yt: (3)
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For known �; this has the form (2) with

c0 = (1; 1); d0 = (��1 � 1;�1); di = 0; i = 1; : : : ; k

Obviously (3) implies that if (Yt; yt) are I(1) variables, so that (�Yt;�yt) is stationary;
then (��1�1)Yt�yt is a cointegrating relation. Moreover no further lags are needed
in order to describe the conditional expectation. This gives potential restrictions
on the short term dynamics, see Campbell and Shiller (1987). In this example the
coe¢ cient � is not known. For given value of �; we can apply reduced rank regres-
sion to concentrate out all other parameters and we are left with a function of one
parameter to be optimized. �

2.4 Combining the exact rational expectations and the vec-
tor autoregressive models

We now combine the exact rational expectations and the vector autoregressive mod-
els, H1(r) and H2(r); and express the exact rational expectations model (2) as re-
strictions on the coe¢ cients of the statistical model (1). Taking the conditional
expectation of c0�Xt+1 given X1; : : : ; Xt, we get by using (1),

c0E[�Xt+1jOt] = c0��0Xt +
kX
i=1

c0�i�Xt+1�i:

Equating this expression to (2) implies that the following conditions must be satis�ed

c0��0 = d0; c0�i = d0i; i = 1; : : : ; k:

This can be summarized as:

Proposition 1 The exact rational expectations restrictions (2) give the following
restrictions on the parameters of model (1):

c0��0 = d0; (4)

c0�i = d0i; i = 1; : : : ; k: (5)

Note that rank(c0��0) � r; so that (4) implies that q � r.
We de�ne two submodels of H1(r) and H2(r) respectively which satisfy the re-

strictions in RE

Hy
1(r): The model is a submodel of H1(r) which satis�es the restrictions (4) and (5).

Hy
2(r): The model is a submodel of H2(r) which satis�es the restrictions (4) and (5).

The assumption (4) implies that sp(d) � sp(�); so that in Hy
1(r) it holds that

sp(d) � sp(�) � sp(H); whereas in Hy
2(r) we have sp(b; d) � sp(�):

When estimating models Hy
1(r) and H

y
2(r) it is convenient to use a parametriza-

tion of freely varying parameters. Such a parametrization is given for the two models
in sections 3 and 4.
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3 The same restrictions on all �

We �rst give a representation in terms of freely varying parameters of the matrix ��0;
when restricted by � = H� and c0��0 = d0; see (4): Next we show how estimation
of Hy

1(r) can be performed by reduced rank regression.

3.1 A reparametrization of Hy
1(r)

Proposition 2 Let d and H satisfy d = Hd� for some d�; then the restrictions

� = H� (6)

and
c0��0 = d0 (7)

hold if and only if
��0 = �cd0 + c?�d

0 + c?�&
0d�0?H

0; (8)

where � is (p� q)� (r� q) and & 0 is (r� q)� (s� q): This implies that the number
of identi�ed parameters in ��0 is

#(��0) = (p� q)r + (r � q)(s� r):

Proof. Assume �rst that (8) holds. Multiplying by c0 we �nd that c0�� = d0;
and by multiplying by ��0 and H? we �nd from d0H? = 0; that �0H? = 0; so that
� = H�: Moreover the row space of ��0 is spanned by d0 = d�0H 0 and & 0d�0?H

0; which
are linearly independent and of rank q and r � q respectively so that � has rank r:
This proves (6) and (7).
Next assume that (6) and (7) are true. Note that by multiplying by �H we �nd

that (7) implies that c0��0 = d�0: We construct d�?; s� (s� q); and �nd

(c; c?)
0��0( �d�; d�?) =

�
Iq 0

c?
0��0 �d� c?

0��0d�?

�
:

We let � = c?
0��0 �d�: We de�ne the r� q matrix � = �0c; r� q; and �?; r� (r� q):

Then, because �0�0d�? = c0��0d�? = d�0d�? = 0; we �nd

c?
0��0d�? = c?

0�(���0 + �?�
0
?)�

0d�? = (c?
0��?)(�

0
?�

0d�?) = �& 0;

where � = c?
0��? is (p� q)� (r � q); and & 0 = �0?�

0d�? is (r � q)� (s� q): Hence,
using ( �d�; d�?)

�1 = (d�; d�?)
0 and (c; c?0)�1 = (�c; c?)0; we �nd

��0 = �cd�0 + c?�d
�0 + c?�&

0d�0?:

When multiplied by H 0 we have proved (8).
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3.2 Estimation of model Hy
1(r)

We �nd from (1) the equation for c0�Xt

c0�Xt = d0Xt�1 +

kX
i=1

d0i�Xt�i + c0"t: (9)

In this equation the only parameter is the variance c0�c:
The equation for c?0�Xt given c0�Xt is

c?
0�Xt = �(c0�Xt � d0Xt�1) + �d0Xt�1 + �& 0d�0?H

0Xt�1

+

kX
i=1

(c?
0�i � �d0i)�Xt�i + (c?

0 � �c0)"t;

where � = c?
0�c(c0�c)�1: The parameters

V ar((c?
0 � �c0)"t) = c?

0�c? � c?
0�c(c0�c)�1c0�c?

and
(�; �; �; &; c?

0�i � �d0i; i = 1; : : : ; k)

are freely varying. This implies that estimation of the conditional equation can be
performed by reduced rank regression of c?0�Xt on d�0?H

0:Xt�1 corrected for the
stationary regressors

(c0�Xt � d0Xt�1; d
0Xt�1;�Xt�1; : : : ;�Xt�k):

This determines the remaining r � q cointegrating relations. We summarize the
result in the next proposition.

Proposition 3 The maximum likelihood estimators for models Hy
1(r) and H1(r)

can be calculated by regression and reduced rank regression, and the likelihood ratio
statistic �2logLR(Hy

1(r)jH1(r)) is asymptotically distributed as �2 with degrees of
freedom equal to qs+ kpq:

Proof. The estimation result is given above and the asymptotic results follow
from the general results about inference in the cointegrated vector autoregressive
model, see Johansen (1996). The number of unknown parameters in the conditional
mean in the model H1(r) is pr + r(s � r) + kp2: In model Hy

1(r) the number of
parameters is (p�q)r+(r�q)(s�r)+k(p�q)p which gives the degrees of freedom.

4 Some � assumed known

We �rst give a representation in turns of freely varying parameters of the matrix
��0 when restricted by � = (b; b?�) and c0��0 = d0. Next we show that estimation
of Hy

2(r) can be conducted by regression and reduced rank regression.
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4.1 A reparametrization of Hy
2(r)

We start by investigating the relation between the spaces spanned by d and b. The
spaces may or may not overlap and the matrix b0d? could be of any rank from
zero to min(m; (p � q)), depending on the relative positions of the spaces. We
decompose b0d? = uv0; where u; m�q0; and v; (p�q)�q0; and de�ne the orthogonal
decomposition of Rp

(d; b1; b2) = (d; d?v; d?v?)

of dimensions (q; q0; p� q � q0) respectively. Note that

b = d �d0b+ d?d?
0
b = d �d0b+ b1u

0;

and that sp(b; d) = sp(d; b1); and �nally that b2 span the orthogonal complement of
sp(d; b):

Proposition 4 Let b and d be given and assume r � rank(b; d): Then the restric-
tions

� = (b;  ) (10)

and
c0�� = d0 (11)

hold if and only if
��0 = �cd0 + c?�1d

0 + c?�2b
0
1 + c?�&

0b02; (12)

where b0d? = uv0; b1 = d?v; and b2 = d?v?; and � is (p� q)� (r � q � q0) and & 0 is
(r � q � q0)� (p� q � q0): This implies that the number of identi�ed parameters is

#(��0) = (p� q)r + (r � q � q0)(p� r):

Proof. Assume �rst that (12) holds, then

c0��0 = c0�cd0 + c0(c?�1d
0 + c?�2b

0
1 + c?�&

0b02) = d0

which shows (11). Next we prove that b is part of the cointegrating space, see (10).
We have from (11) that d 2 sp(�):We want to show that b1 2 sp(�); which together
with d 2 sp(�); shows that also b 2 sp(�):
We �nd

c?
0��0 = �1d

0 + �2b
0
1 + �& 0b02

so that
(c?

0 � �1c
0)��0 = �2b

0
1 + �& 0b02

and therefore
�0?(c?

0 � �1c
0)��0 = �0?�2b

0
1:

This shows that b1 2 sp(�) and that r � q + q0 = rank(b; d) which proves (10).
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Finally we want to show that (10) and (11) implies (12). We investigate the
matrix

(c; c?)
0��0( �d; b1; b2) =

�
Iq 0 0

c?
0��0 �d c?

0��0b1 c?
0��0b2

�
:

We de�ne �1 = c?
0��0 �d and �2 = c?

0��0b1: We know that sp(d; b) = sp(d; b1) �
sp(�); and can write (d; b1) = �� for some �: Then, because �0�0b2 = (d; b1)0b2 = 0
we have

c?
0��0b2 = c?

0�(���0 + �?�
0
?)�

0b2 = c?
0��?�

0
?�

0b2;

and we de�ne � = c?
0��?; (p�q)�(r�q�q0); and � 0 = �0?�

0b2; (r�q�q0)�(p�q�q0):
This implies that

��0 = �cd0 + c?�1d
0 + c?�2b

0
1 + c?��

0b02:

4.2 Estimation of model Hy
2(r)

The marginal equation for c0�Xt is given by (9) and is used for estimation of c0�c:
The conditional equation for c0?�Xt given the past and c0�Xt is

c?
0�Xt = �(c0�Xt � d0Xt�1) + �1d

0Xt�1 + �2b
0
1Xt�1 + �& 0b02Xt�1

+
kX
i=1

(c?
0�i � �d0i)�Xt�i + c?

0"t;

where � = c?
0�c(c0�c)�1; and the parameters

(�; �1; �2; �; &; c?
0�i � �d0i; i = 1; : : : ; k)

are variation independent. This shows the conditional model can be again analysed
by reduced rank regression of c?0�Xt on b02Xt�1 corrected for the stationary regres-
sors

(c0�Xt � d0Xt�1; d
0Xt�1; b

0
1Xt�1;�Xt�1; : : : ;�Xt�k):

Thus we exploit that in Hy
2(r) there are q+ q

0 known cointegrating vectors spanning
sp(d; b) and the remaining r � q � q0 are determined by reduced rank regression.

Proposition 5 The maximum likelihood estimators for both modelsHy
2(r) andH2(r)

can be calculated by regression and reduced rank regression, and the likelihood ratio
statistic �2logLR(Hy

2(r)jH2(r)) is asymptotically distributed as �2 with degrees of
freedom equal to rq + (q + q0 �m)(p� r) + kpq:

Proof. The estimation result is given above and the asymptotic results follow
from the general results about inference in the cointegrated vector autoregressive
model, see Johansen (1996). The number of unknown parameters in the model
Hy
2(r) which are contained in (12) is (p� q)r+ (r� q� q0)(p� r). In addition there

is the k(p � q)p free parameters in the matrices c?0�i; i = 1; : : : ; k:The number of
parameters in model H2(r) is pr+ (r�m)(p� r) + kp2; and the degrees of freedom
of the test is the di¤erence.
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5 Conclusion

Reduced rank regression was developed more than 50 years ago and has been used
in limited information maximum likelihood estimation ever since. In cointegration
analysis it found a new domain of applicability. We have shown here that some exact
rational expectations model, when embedded in the cointegrated vector autoregres-
sive model, can be estimated by reduced rank regression. Not all such models have
a simple solution, but even in more complicated models, reduced rank regression is
a simple way of eliminating many parameters in the vector autoregressive model.
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