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Abstract. This paper provides a unified growth theory, i.e. a model that explains the very

long-run economic and demographic development path of industrialized economies, stretching

from the pre-industrial era to present-day and beyond. Making strict use of Malthus’ (1798)

so-called preventive check hypothesis – that fertility rates vary inversely with the price of food –

the current study offers a new and straightforward explanation for the demographic transition

and the break with the Malthusian era. The current framework lends support to existing unified

growth theories and is well in tune with historical evidence about structural transformation.
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1. Introduction

Over the past two centuries, a so-called Malthusian era, represented by stagnant standards

of living and a positive relationship between income and fertility, has gradually been replaced

by a so-called Modern Growth era, which in turn is marked by sustained economic growth and

declining rates of fertility (a demographic transition). Building on seminal work by Galor and

Weil (2000), several attempts have been made to try to merge the two eras, and to identify

the underlying causes of the demographic transition. An incomplete list of studies includes

Boucekkine et al. (2002), Doepke (2004), Galor and Moav (2002), Hansen and Prescott (2002),

Jones (2001), Kögel and Prskawetz (2001), Lucas (2002), Strulik (2003) and Tamura (2002).

Common to these so-called unified growth theories is a complex apparatus, offered to motivate

the profound shift in human fertility behavior associated with the demographic transition. The

story of the fertility drop differs with the specific theory, but the gradual rise in the demand

for human capital “has led researchers to argue that the increasing role of human capital in

the production process induced households to increase investment in the human capital of their

offspring, ultimately leading to the onset of the demographic transition” (Galor, 2005).

The current paper offers a new and straightforward explanation for the demographic transition

and the break with the Malthusian era – a theory which nicely complements ideas proposed in

existing unified growth theories. More specifically, we provide an endogenous growth model

which is consistent with the (stylized) development path of industrialized countries but does not

rely on human capital accumulation as the driving force behind the demographic transition.

In the existing literature, a trade-off between child quantity and quality ultimately serves to

generate a drop in fertility along with rising incomes. Fertility behavior in the present context,

by contrast, relies entirely on Malthus’ so-called preventive check hypothesis – that the tendency

to matrimony, and thus implicitly the desire to give birth to children, is negatively correlated

with the price of food (Malthus, 1798). The absence of a quality-quantity trade-off in the current

paper eliminates the need of complex theoretical mechanisms hitherto required to explain the

demographic transition, and is why we claim to provide the simplest unified growth theory so

far proposed.

The current theory draws inspiration from a number of theoretical elements found in the

existing literature. The micro foundation is borrowed from Weisdorf (2007), who shows that

the Malthusian model conforms nicely to industrial development when the income-effect on the
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demand for children is removed (i.e. is set to zero). Learning-by-doing mechanisms, invoked in

the current framework to trigger growth in productivity, are based on Matsuyama (1992) and

Strulik (1997). Yet, the analogy to the R&D-driven growth literature based on Romer (1990)

and Jones (1995) is also clearly visible.1

Employing a two-sector (dual economy) framework (with agricultural and industry), economic

growth in the context of the present model derives from two sources. One is structural trans-

formation in the form of labor being transferred from agriculture to industry. More specifically,

agrarian productivity growth in conjunction with Engel’s law (which states that the proportion

of income spent on food falls as income rises) increases the share of labor allocated to industry

and therefore raise the industrial sector’s output without affecting the performance of the agri-

cultural sector. The other source of growth derives from learning-by-doing in the production

processes.

In brief, the development path proposed by the current theory can be described as follows.

During early stages of development, the population size is relatively small; the share of labor

employed in agriculture is relatively high; and standards of living are relatively close to sub-

sistence. Due to economies-of-scale to population, learning-by-doing effects, to begin with, are

relatively small. Hence, the agricultural sector’s productivity growth is slow, yet faster than

that of industry in which labor resources, and thus learning-by-doing effects, are even smaller.

Productivity growth in agriculture has two effects on development. On the one hand, higher

productivity growth in agriculture relative to industry makes food, and therefore children, rela-

tively less expensive; this raises fertility and gradually speeds up the rate of population growth.

On the other hand, agricultural productivity growth, in combination with Engel’s law, increases

the share of labor allocated to industrial activities.

With economies-of-scale at work in both agriculture and industry, the transfer of labor out

of agriculture gradually shifts the ratio of productivity growth in favor of industry. Sooner or

later, therefore, the rate of the industrial sector’s productivity growth surpasses that of agricul-

ture. Subsequently, industrial goods are becoming affordable at relatively lower prices, implying

that food, and therefore children, become relatively more expensive. Henceforth, fertility de-

clines, and the rate of growth of population slows down, until population growth eventually

(endogenously) comes to a halt.

1The current model can also be understood as a two-sector extension of Kremer’s (1993) model on long-run human
economic development, now capturing structural change and micro-founded population growth.
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The current theory emphasizes two important features connected to the release of agricultural

labor as a source of long-term economic growth. On the one hand, as the analysis below will

clarify, a transfer of labor out of agriculture can persist for many (i.e. hundreds of) years before

ultimately leading to substantial economic growth, a point often stressed by economic historians

(e.g., Clark, 2007). As such, the industrial revolution in the present context is not a sudden

break with the past, but a gradual outcome of long-standing processes taking place throughout

the Malthusian era. On the other hand, as the analysis below will also establish, a slowdown

of economic growth will eventually occur, as the beneficial effects of structural transformation

gradually become exhausted.

The paper continues as follows. Section 2 describes the model, Section 3 explores dynamics

and stability conditions, and Section 4 performs a quantitative analysis, highlighting the long-run

development path predicted by the model. Finally, Section 5 concludes.

2. The Model

2.1. Introduction. Consider a closed economy with two sectors: an agricultural sector pro-

ducing food, and an industrial (i.e. non-agricultural) sector producing manufactured goods.

Economic activities extent over infinite (discrete) time. Unless explicitly noted, all variables are

considered in period t.

We examine a two-period overlapping generations economy with childhood and adulthood.

Productive and reproductive activities take place only during adulthood. For simplicity, repro-

duction is asexual, meaning that each individual is born to a single parent. Individuals are

identical from every aspect, and each adult individual is endowed with one unit of labor which

is supplied inelastically to work.

Change in the size of the labor force (i.e. the adult population) between any two periods is

given by

Lt+1 = ntLt, (1)

where nt is the gross rate of growth of population. As we abstract from mortality, nt also

measures the rate of fertility in period t.

2.2. Preferences. Individuals maximize utility derived from the amount of offspring that they

have, nt, and from the consumption of manufactured goods, measured by mt.
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The cause of the demographic transition in the current framework is to be found in the in-

teraction between differential productivity growth and parental preferences. As will become

apparent below, a zero income-elasticity on the demand for children implies that fertility re-

sponds differently to changes in productivity growth (which enters through the relative price of

food), depending on whether they occur in agriculture or industry.

As is demonstrated by Weisdorf (2007), the use of quasi-linear preferences imply that an

income-increase in agriculture increases fertility whereas income-increase in industry has the

opposite effect. To obtain this result, the utility function of a representative individual is of a

quasi-linear type whereby

u = γ lnnt + mt, (2)

with γ being the weight put on children.2

To obtain the budget constraint, suppose that over the course of a lifetime an individual con-

sumes a fixed quantity of foods (i.e., calories), measured by η. For simplicity, food is demanded

only during childhood and some of it then stored for adulthood.3 The price of manufactured

goods is set to one, and pt denotes the price of food, measured in terms of manufactured goods

(i.e. the relative price of food). By setting η ≡ 1, it follows that each child consumes one unit of

food. This means that the total costs of raising nt children, measured in terms of manufactured

goods, is ptnt. The individual budget constraint thus writes

wt = ptnt + mt,

where wt is the income of a representative individual, also measured in terms of manufactured

goods.

The solution to the optimization problem implies that the demand for children is given by

nt =
γ

pt
. (3)

Consistent with Malthus’ (1798) preventive check hypothesis, the price-effect on the demand

for children is negative. Note, however, that there is no income-effect on fertility. Or to be

2Note that the use of quasi-linear preferences is not crucial to results obtained below. In fact, any utility function
in which productivity (and therefore income) growth in agriculture and industry (in a general equilibrium) have
opposite effects on the demand for children, will provide the same qualitative results as we obtain below. However,
the use of the quasi-linear preferences makes the model extremely tractable.
3It would not affect the qualitative nature of the results, if, instead, the individual’s food demand where to be
divided over two periods. However, such a construction would complicate matters severely.
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more exact, there is no direct income-effect. For, as will become apparent below, an indirect

income-effect will ultimately enter through the relative price of food.

By comparison, fertility, in the existing literature, responds to a (direct) change in income

(e.g. Kremer, 1993, Galor and Weil, 2000, and Jones, 2001). Here, instead, fertility responds

to a change in the price of food. By contrast to existing studies, this means – when combining

the micro and macro frameworks – that population growth in the current framework reacts

to structural changes rather than changes in income per capita. In accordance with stylized

historical facts proposed by Crafts (1996) and Voth (2003), therefore, the present work captures

the idea that persistent (and rapidly shifting rates of) population growth went on during early

phases of industrialization, where standards of living were almost stagnant but when substantial

structural transformation took place.

2.3. Production. In line with existing unified growth theories, agricultural production is sub-

ject to constant returns to labor and land, the latter being measured by X. Land is in fixed

supply, and the total amount is normalized to one (i.e. X ≡ 1).

Industrial production is subject to constant returns to labor. As is also common in the related

literature, this implies that land is not an important factor in industrial production, and that

we abstract from the use of capital in production in both sectors.

Inspired by Matsuyama (1992), new technology in each of the two sectors appears as a result

of learning-by-doing. More specifically, output and new technology in the respective sectors are

produced according to the following production functions:

Y A
t = µAε

tL
A
t

α
= At+1 −At, 0 < α, ε < 1 (4)

Y M
t = δMφ

t LM
t = Mt+1 −Mt, 0 < φ < 1. (5)

The variable At is total factor productivity in agriculture (superscript A for agricultural goods),

and the variable Mt measures total factor productivity in industry (superscript M for manufac-

tured goods). With 0 < ε, φ < 1, there are decreasing returns to learning in both sectors.

Define gZ
t ≡ (Zt+1 − Zt) /Zt to be the net rate of growth of a variable Z between any two

periods. Then it follows that the net rate of productivity growth in the agricultural sector is gA
t ≡

µAε−1
t

(
LA

t

)α. Similarly, the net rate of productivity growth in industry is gM
t = δMφ−1

t LM
t .
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2.4. Equilibrium. The variables LA
t and LM

t measure total labor input in agriculture and

industry, respectively, and together fulfil the condition that

LA
t + LM

t = Lt. (6)

The share of total labor devoted to agriculture is determined by the food market equilib-

rium condition. This condition says that total food supply, Y A
t , equals total food demand,

which (when each person child consumes one unit of food) is ntLt. Using (4), the food market

equilibrium condition implies that the share of farmers to the entire labor force is given by

θt ≡
LA

t

Lt
=

(
nL1−α

µAε
t

) 1
α

. (7)

Note that productivity growth in agriculture releases labor from agriculture, whereas population

growth has the opposite effect.

Consistent with existing unified growth theories, we assume that there are no property rights

over land, meaning that the land rent is zero. This implies that, in both sectors, labor receives

the sector’s average product. The labor market equilibrium condition implies that the relative

price of food adjusts, so that farmers and manufacturers earn the same income, i.e. wt =

ptY
A
t /LA

t = Y M
t /LM

t . By the use of (3)-(7), this means that the relative price of food is given

by

pt =

(
δMφ

t

)α
(γLt)

1−α

µAε
t

. (8)

Note that the relative price of food increases with productivity growth in industry and the size

of population. Productivity growth in agriculture, however, has the opposite effect.

Finally, a second use of (3) in (8) provides the rate of fertility in a general equilibrium, and is

nt = µ
(γ

δ

)α Aε
t

Mαφ
t L1−α

t

. (9)

It follows that productivity growth in agriculture increases fertility whereas productivity growth

in industry and population growth has the opposite effect.

The simplest unified growth model is complete with equations (1) to (9).
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3. Balanced and Unbalanced Growth in the Long-Run

Along a balanced growth path, all variables grow at constant rates (possibly zero). Balanced

growth rates are identified by a missing time index. According to (4) and (5), a constant rate

of productivity growth in each of the two sectors implies that

1 = (1 + gA)ε−1(1 + gL)α = (1 + gM )φ−1(1 + gL). (10)

According to (9), the gross rate of fertility change is

nt+1

nt
=

(1 + gA
t )ε

(1 + gM
t )αφn1−α

t

.

Multiplying by nt and using the fact that nt = (1 + gL
t ) for all t we obtain the balanced rate of

population growth.

(1 + gL)1−α =
(1 + gA)ε

(1 + gM )αφ
. (11)

Equating (10) and (11), and eliminating gL
t , it is evident that productivity growth, along a

balanced growth path, must fulfill the condition that

1 + gA = (1 + gM )1+φα−φ. (12)

Insert (12) into (11) to get the balanced growth condition between population growth and

productivity growth.

(1 + gL)1−α = (1 + gM )
ε(1+φα−φ)

αφ . (13)

Finally insert (13) into (10) to get the condition for population growth along the balanced growth

path.

(1 + gL)(1−α)(φ−1)αφ = (1 + gL)ε(1+φα−φ). (14)

For non-zero population growth it has to be true that (1− α)(φ− 1)αφ = ε(1 + φ(1− α)). But

since all involved parameters are larger than zero and smaller than one, the left hand side of

the condition is negative and the right hand side is positive. The condition is never fulfilled i.e.

there is no population growth along a balanced growth path. The only value that fulfills (14)

is gL = 0. Plugging this into (10), we see that gA = gM = 0 along the balanced path. The

economy stagnates along the unique balanced growth path.
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This is a noteworthy result. Since positive population growth cannot persist forever (because

of a limited space), other long-run growth theories, such as Jones (2001), have to impose the

condition that population growth is zero over the long run (which ultimately leads to a zero

rate of growth of productivity). In the present context, by contrast, a stationary population

level over the long-run occurs endogenously. More specifically, population growth in the cur-

rent model “digs its own grave” through the feedback-effect of productivity. The reason is that

increasing productivity in manufacturing increases the relative costs of children. This slows

down the growth of population, thus decelerating productivity growth for the subsequent gen-

eration. Eventually, therefore, the economy endogenously converges to a state of zero growth in

productivity and population.

While a balanced growth path involves stagnant levels of population and income, an unbalanced

growth path, characterized by imploding or exploding growth, may in principle exist. In the

following, we explore the two cases of unbalanced growth, starting with the case of imploding

growth. Imploding growth implies perpetually negative population growth, i.e. nt is smaller

than one and Lt is decreasing. It is easy to see that imploding growth is not an option since gA
t

and gM
t are bound to be non-negative. There is no forgetting-by-doing. With limL→0 gA = 0

and limL→0 gM = 0, we have limL→0 n = const./L1−α from (9). As Lt converges to zero, nt

goes to infinity. A contradiction to the initial assumption of nt being smaller than one. There

is no imploding growth. Intuitively, decreasing marginal returns of labor in agriculture (α < 1)

prevent implosion. As population size decreases agricultural productivity goes up and prices go

down so that fertility and thus next period’s population increases.

As for the case of explosive growth, this implies that gA
t > gM

t ≥ 0. In this case, the relative

price of food ultimately goes to zero, and fertility to infinity. Since, in this case, productivity

growth is faster in agriculture than in industry, the rate of growth of population converges to

the rate of growth of productivity in agriculture, so that ultimately gL
t = gA

t . Hence, for the

relative price of food to reach zero, the denominator on the right hand side of (8) must increase

faster than the numerator, meaning that (1+gA
t )ε > (1+gM

t )φα(1+gL
t )1−α. Using the fact that

gL
t = gA

t , the following condition must therefore hold for unbalanced explosive growth to exist:

(1 + gM
t ) < (1 + gA

t )(ε+α−1)/(αφ). (15)
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With the parameter assumption made so far, this condition might indeed be fulfilled. In order

to get rid of empirically unrealistic outcomes, therefore, explosive growth needs to be eliminated

by the use of further parameter restrictions. With gA
t > gM

t ≥ 0, the condition stated by (13)

is generally not fulfilled when α + ε − 1 < αφ. In fact, it is never fulfilled when α + ε < 1, a

necessary and sufficient condition, therefore, to rule out unbalanced growth.

The following proposition summarizes the considerations made above about balanced and

unbalanced growth.

Proposition 1. There exists a unique balanced growth path for the simplest unified growth

model. It implies zero population growth and zero (exponential) economic growth. If α + ε < 1,

there exists no unbalanced growth in the long-run.

Intuitively, the restriction of decreasing returns with respect to knowledge and labor in agri-

culture (i.e. the assumption that α + ε < 1) eradicates the outcome in which population growth

is permanently driving hyper-exponential growth in agriculture.

Even under the assumption that α + ε < 1, however, learning-by-doing effects may still

be sufficiently strong to generate (i) a demographic transition (a fertility transition, strictly

speaking); (ii) a structural transformation of the economy; and (iii) a (temporary) take-off of

economic growth, i.e. an ‘industrial revolution.’ In the following, we thus explore the adjustment

dynamics predicted by the model.

4. Adjustment Dynamics: Growth in the Middle Ages, Industrialization, and

the Productivity Slowdown

In words, the model predicts the following adjustment path. As a starting point, consider

a preindustrial, agricultural economy; that is, an economy in which the population level is

relatively small; the share of labor employed in agriculture is relatively high; and the level of

income per capita is relatively close to subsistence.

Due to economies-of-scale to population, learning-by-doing effects, to begin with, are relatively

small. Hence, the agricultural sector’s productivity growth is slow, yet faster than that of

industry in which labor resources, and thus learning-by-doing effects, are even smaller.

Productivity growth in agriculture has two effects on development. On the one hand, higher

productivity growth in agriculture relative to industry makes food, and therefore children, rel-

atively less expensive; this raises fertility and gradually speeds up rates of population growth.
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On the other hand, agricultural productivity growth, in combination with Engel’s law, increases

the share of labor allocated to industrial activities.

With economies-of-scale at work in both agriculture and industry, the transfer of labor out of

agriculture gradually shifts the ratio of productivity growth in favor of industry. Sooner or later,

therefore, the rate of the industrial sector’s productivity growth surpasses that of agriculture.

Subsequently, food, and therefore children, become relatively more expensive; fertility declines,

and population growth slows down until it eventually comes to a halt.

Note, from the inspection of (8), how the size of elasticities (i.e. ε and φ) shape the inverted

u-path of fertility: The higher is ε, the stronger is the economic impact on fertility increase

during the take-off phase of agriculture (the ‘agricultural revolution’). On the other hand, the

higher is φ, the more pronounced is the fertility decline (the demographic transition) during the

take-off phase of industry (the ‘industrial revolution’).

In order to get a more precise picture of the adjustment dynamics, a calibration of the model

is done below.4 We calibrate the model such that it approximates the peak of the demographic

transition in England and the subsequent slowdown of productivity growth. We set parameter

values such that population growth reaches its peak of 1.5 percent annually in the year 1875,

and such that total factor productivity (TFP) begins to slowdown in the year 1975 when it

grows at a rate of 1.5 percent annually.

For the benchmark case, we set the following parameters: α = 0.8, ε = 0.45, φ = 0.3, µ = 0.5,

δ = 1.5, and γ = 1.5. Start values are θ = LA/L = 0.95, L = 0.1, A = 0.1, n = 1.08. For

better readability of the results, it is assumed that a generation takes 25 years (approximately

the length of the fecundity period), and we then translate generational growth rates into annual

ones.

4Since we are simulating growth trajectories for a very simple model it can be expected that our results will be
inferior against large-scale CGE modelling approaches to the industrial revolution. These studies use multi-factor,
multi-sector models taking many important determinants into account that we all ignore (for example, capital
accumulation, education, international trade, and energy production). In particular, it can be expected that our
model makes large approximation errors at the end of the transition paths when learning-by-doing effects level off
and there is neither capital accumulation nor education to foster growth. Our challenge can thus not be to redraw
the historical paths of before and after industrialization as accurately as possible. More humbly, our experiment
is to explore how much of economic and demographic history can be explained with the simplest conceivable
growth model. See Harley and Crafts (2000) and Stokey (2001) for large scale CGE modelling of the industrial
revolution.

10



Figure 1: Long-Run Dynamics According to the Simplest Unified Growth Model
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Solid lines: benchmark case, dashed lines: γ = 2, otherwise benchmark case. From top to
bottom the diagrams show population growth, productivity growth in agriculture, produc-
tivity growth in manufacturing, and the labor share in agriculture (our measure of structural
change).

Figure 1 demonstrates the adjustment path, running from the year 1200 on to the year 2200.

The solid lines show the path of the benchmark economy. The dashed lines, by contrast, concerns

an alternative economy to be discussed further below.
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To begin with, nearly the entire labor force is allocated in agriculture. In line with numbers

provided by Galor (2005), industrial productivity growth initially is almost completely absent,

while productivity growth in agriculture is around 0.15 percent annually.

Agricultural progress, manifesting itself in a slowly decreasing relative price for food, is almost

entirely converted into population growth. Due to diminishing returns to labor in agriculture,

however, standards of living are hardly affected by the growth of productivity.

With economies-of-scale to population, population growth (in a Boserupian manner) furthers

productivity growth in agriculture.5 Over the subsequent years, therefore, agricultural produc-

tivity growth slowly builds up to reach 0.5 percent by the 18th century.

By then, agriculture progress makes possible a substantial transfer of labor into manufacturing,

causing an upsurge in industrial productivity growth.6 By contrast to agriculture, productivity

growth in the industrial sector derives from two sources: population growth and a transfer of

labor from agriculture. What’s more, the fact that the industrial sector (unlike agriculture) is

not exposed to diminishing returns to labor positively influences standards of living. From the

turn of the 19th century onwards, therefore, economic growth gains momentum.

Figure 2: Long-Run Dynamics: Implied TFP Growth and Population Growth
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L
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Solid line: TFP growth, dotted line: population growth

Although productivity growth in industry is now gradually on the rise, its rate of growth during

the 19th century is still lower than that in agriculture. Consequently, the relative price of food

is still falling, causing further increase in fertility. Strikingly, although substantial structural

5See Boserup (1981) for a detailed exploration on how population growth drives agricultural progress.
6This outcome of the model is in line with the observation that the direct labor input to produce a ton of grain
– while staying almost constant for a long time in history – declined by 70 percent in the 19th century (Johnson,
2002).
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and demographic changes takes place in the 19th century, major improvements in standards of

living, according to the model, do not appear before the 20th century.

Note that this phase of adjustment dynamics is well in tune with the demo-economic ob-

servations made in relation to the industrial revolution. As has been emphasized by economic

historians such as Crafts (1996) and Voth (2003), a high rate of structural change and con-

siderable rates of population growth are accompanied by relatively low rates of productivity

growth.

In order to keep track of the relationship between productivity growth on the one hand, and

demographic growth on the other, implied total TFP growth is calculated using Domar weights.

The implied TFP growth thus writes

gTFP
t ≡ pt

Y A
t

Yt
gA
t +

Y M
t

Yt
gM
t = ptθ

yA
t

yt
gA
t + (1− θ)

yM
t

yt
gM
t ,

where Y = pY A + Y M measures GDP. Figure 2 combines the adjustment dynamics for implied

TFP growth (the solid line) and population growth (the dotted line). As is evident from the

illustration, the growth rate of population reaches its peak by the end of the 19th century

whereas implied TFP growth peaks about one century later.

This result nicely fits ideas proposed by Galor and Weil (2000). According to their theory, the

drop in fertility (the demographic transition) does not emerge before the rate of TFP growth

reaches a substantial level.

Figure 3: Population-TFP-Nexus:
From 1200 BC to Year 1875 (left) and from 1875 to 1975 (right)
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In fact, the current model predicts a structural break for the correlation between TFP growth

and population growth. As is evident from Figure 3, the correlation is positive before the year

1875, i.e. during the Malthusian phase, when TFP growth is relatively slow, and the rate of

population growth is on the rise. By 1875, the rate of growth of population reaches its peak,

and then starts to decline. However, TFP growth, at least for a period of time, continues to

rise, indicating a negative correlation between TFP and population growth after 1875.

Empirically, this is not an unfamiliar result. For the past century, Bernanke and Guerkaynak

(2002) provide supporting evidence for the negative correlation between TFP and population

growth. For the preindustrial period, by contrast, a positive relationship between TFP and

population growth is well-documented by Clark (2007).7

Figure 4: Population-Size and Population Growth:
From One Million B.C. to Year 1875 (left) and from 1875 to 2000 (right)
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The model’s prediction concerning the relationship between population size and population

growth is also noteworthy. Using a one-sector variant of the current model, but with an exoge-

nously imposed population growth, Kremer (1993) establishes a remarkable positive correlation

between the size and growth of population, a phenomenon unseen for any other species than hu-

mans. His result is supported empirically, though only weakly for the last data points concerning

the 20th century (cf. his Figure 1).

7Note, when inspecting the right panel of Figure 3, that the process of development starts at the lower right
corner, when population growth is at its highest and TFP growth is relatively weak. It ends in the year 1975,
when TFP growth reaches its maximum and population growth is relatively slow. After 1975, a third phase,
in which both population growth and TFP growth decline, can be observed, once again suggesting a (modest)
positive correlation.
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Repeating Kremer’s exercise using the present model, a structural break is generated in the

year 1875. From one million BC to 1875, the correlation is positive as suggested by Kremer. The

slope is non-linear and the best fit of the correlation is obtained for the function gL = const·L0.2.

This suggests that the positive correlation was particularly strong during early times, and then

became flatter as the population growth rate reaches its peak. After 1875, for industrialized and

fully-developed countries, the correlation turns negative, and, indeed, becomes almost linear.

Finally, an analysis of variation in the taste for children provides insight into the understanding

the differences in the timing of the industrial revolution and the demographic transition across

countries. Compared to the benchmark case (solid lines), the dashed lines in Figure 1 capture

the adjustment dynamics of an alternative economy.

In the alternative economy, everything is identical to the benchmark case, except for γ which

is set to 2 instead of 1.5. All other things being equal, parents in the alternative economy hence

display a stronger taste for children than parents of the benchmark economy.

As has been demonstrated by Strulik (2007), population growth, on average, peaks at higher

rates in countries of lower latitude. Following Strulik, therefore, the dashed lines of Figure 1

would capture a country situated closer to the equator than England.

Having a relatively strong taste for children involves parents having a relatively large demand

for food. In the alternative economy, therefore, agriculture will dominate for more years than in

the benchmark economy. Hence, when the industrial revolution sets off in the benchmark case,

industrial productivity growth in the alternative economy is still relatively slow.

In terms of Figure 1, the ‘industrial revolution’ (i.e. the transfer of labor from agriculture to

industry) and the fertility drop in the alternative economy both start about 50 years (or two

generations) later than in the benchmark case. However, once structural changes begin to emerge

in the alternative economy, industrial productivity growth is faster than in the benchmark case.

The reason, of course, is that the alternative economy’s population level, and thus its learning-

by-doing effects, are larger because of the stronger taste for children.

In terms used by Bloom et al. (2001), the alternative economy ultimately earns its ‘demo-

graphic dividend,’ and it eventually draws nearer to the benchmark economy because of a higher

growth rate of productivity and a faster rate of structural change. Effectively, a catching up

effect is therefore at play.
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5. Conclusion

This paper provides a unified growth theory, i.e. a model consistent with the very long-run

economic and demographic development path of industrialized economies, stretching from the

Malthusian era to present-day and beyond. Making strict use of Malthus’ preventive check

hypothesis – that fertility rates vary inversely with the price of food – the current study offers

a new and straightforward explanation for the demographic transition and the break with the

Malthusian era.

Existing unified growth theories focus on human capital accumulation and a trade-off of child-

quantity for child-quality as the driving force behind the demographic transition. The present

study offers an alternative explanation, which nicely complements the ideas proposed in the

existing literature, especially Galor and Weil (2000) and Kremer (1993), and, in addition, is well

in line with historical evidence about structural transformation.

Putting the current theory to the test means testing if ratio of agricultural to industrial

productivity growth moves in the directions predicted by the model, keeping in mind that the

theory considers a closed economy, and that, during industrialization, countries typically become

open up to foreign trade.
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