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Abstract

Recently a number of authors have suggested to estimate censored demand systems as a

system of Tobit multivariate equations employing a Quasi Maximum Likelihood (QML) es-

timator based on bivariate Tobit models. In this paper I study the e¢ ciency of this QML

estimator relative to the asymptotically more e¢ cient Simulated ML (SML) estimator in the

context of a censored Almost Ideal demand system. Further, a simpler QML estimator based

on the sum of univariate Tobit models is introduced. A Monte Carlo simulation comparing the

three estimators is performed on three di¤erent sample sizes. The QML estimators perform

well in the presence of moderate sized error correlation coe¢ cients often found in empirical

studies. With absolute larger correlation coe¢ cients, the SML estimator is found to be supe-

rior. The paper lends support to the general use of the QML estimators and points towards

the use of simple etimators for more general censored systems of equations.
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1 Introduction

Analysis of individuals and households consumption patterns and their response to relative price

changes has a long tradition in economics and goes back at least to Engels seminal work on

expenditure shares. Systems of �exible functional forms such as the translog and almost ideal

demand systems (Jorgensen et al. 1979, Deaton and Muellbauer 1980) and the advance of fast

computers have made estimation of price response coe¢ cients in large demand systems with many

goods based on household survey data feasible. Hence, a large literature has grown. However,

until recently the problem of censoring of the expenditure shares (i.e. the minimum consumption

share is zero) was largely ignored or only addressed in systems with a small number of goods (see

Wales & Woodland 1983, Lee & Pitt 1986).

To account for censoring a model which allows for a positive probability of observing zero con-

sumption must be estimated. Thus, whether implicit or explicit, the model should accommodate a

market participation decision and a consumption decision. Further, the estimation procedure must

be capable of accommodating cross-equation restrictions, making joint estimation of all equations

necessary. If errors are normal and assumed to covary between the decisions to consume each good,

then - with multiple goods not consumed for some households - the contribution to the likelihood

function will require evaluation of multiple integrals over a multivariate normal density function.

As an example, consider the case of a �ve good demand system where a non-neglible number of

households only consume two of the �ve goods, thus equations for the three non-consumed goods

are censored. For these households part of the likelihood contribution will be the probability that

the three error terms fall within a range consistent with observed censoring of these three goods.

Di¢ culties associated with evaluating multiple integrals over the multivariate normal density func-

tion explain why accounting for censoring in applications of large demand system is rare.

One way to account for censoring which has been used in the literature is to model the con-

sumption shares as a multivariate Tobit model (see Yen, Lin and Smallwood 2003), such that

implicitly the participation decision and the consumption decision are determined by the same

process. In the context of demand system estimation two maximum likelihood based estimators

have recently been used to estimate multivariate Tobit systems. Harris and Shonkwiler (1997)
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proposed a Quasi Maximum Likelihood (QML) estimator based on linking bivariate Tobit models

to avoid evaluating high dimensional integrals. More recently Yen, Lin and Smallwood (2003)

have used a Simulated Maximum Likelihood (SML) estimator of a similar system.1 While both

estimators are consistent, the SML estimator is asymptotically more e¢ cient, since it uses more

sample information than the QML estimator. However, the relative performance of the estimators

in applications with empirically relevant sample sizes is unknown.

The contribution of this paper is twofold. First - inspired by the idea of linking bivariate

Tobit models - I introduce a simpler QML estimator based on the maximization of the sum of

univariate Tobit models over all equations. Although the proposed estimator does not identify

the error correlation across equations this is of secondary importance in a demand system context

since error correlations are not used to calculate elasticities or other quantities of interest. Second,

I compare the three estimators using Monte Carlo simulations in a setup with four simultaneous

equations subject to a large degree of censoring. Their performance is assessed in three di¤erent

sample sizes with respectively 200, 1,000 and 3,000 observations. The sample sizes are chosen to

resemble a �small�sample of households (200 observations), a larger sample (1,000 observations)

and a typical (sub)-sample from the World Banks LSMS surveys (3,000 observations).

There are a number of reasons contributing to the relevance of this exercise. First, it is not

evident which estimator is preferable for relatively small sample sizes. Second, even if the SML

estimator is superior, the cost of implementation and the computational burden associated with

simulating the likelihood function might warrant the use of a su¢ ciently good second best esti-

mator. Third, the SML estimator has di¢ culties converging from arbitrary starting values and

computation time is reduced substantially by using good starting values possibly obtained from

less e¢ cient estimators. Further, the type of QML estimators used in this paper can be applied to

more general systems of censored systems, i.e. the system suggested by Yen and Lin (2006).

There exist few application speci�c comparisons of the SML estimator and the bivariate Tobit

QML estimator considered here. Yen, Lin and Smallwood (2003) estimate a large demand system

1Shonkwiler & Yen (1999) propose a two step estimator where the participation decision is modelled as a uni-
varite probit on each equation (or alternatively, a multivariate probit over all equations). In the second step, the
equations determining the expenditure shares are augmented to take account of the censoring and errors are assumed
multivariate normal. The estimator is consistent but less e¢ cient relative to the SML estimator due to the two-step
nature. It is not considered in the present work, since it is not suitable for estimation of Tobit type models.
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with both the SML and the bivariate Tobit QML and conclude that the QML and SML estimator

deliver very similar results. In a similar application Yen and Lin (2002) �nd QML and SML

estimates to be close and similar. Clearly, since the true data generating mechanism and parameters

are unknown these studies cannot shed light on the relative performance of the estimators in

question.

In the following section the model is outlined together with the three estimators. Section 3

describes the Monte Carlo setup, while section 4 presents results.2 Some brief concluding remarks

are o¤ered at the end.

2 Estimation of a multivariate system of Tobit equations

The point of departure is a multivariate generalization of the Tobit model. Denote the dependent

variable by yi; the matrix of explanatory variables by X and the full set of parameters to be

estimated by �; then the system of equations (i = 1; ::;M) can be written (suppressing observation

indices)

yi = max (fi (X; �) + "i; 0) ; i = 1; ::;M (1)

where "i is an equation speci�c error term. De�ne the vector of errors " = ["1; ::; "M ] and allow

parametric estimation by assuming multivariate normal errors with zero mean and covariance �: In

the context of demand system estimation, yi is the expenditure share on good i and the functions

fi are of some �exible form. Note that in applications where there is no need for cross equation

restrictions (1) can be estimated consistently using a univariate Tobit model equation by equation.

However, even in this case e¢ ciency is gained by estimating all equations jointly as a system.

Simulated Maximum Likelihood estimation

To construct the likelihood function for the system given by (1), let a censoring regime zc be a

1�M�vector with entries equal to zero for the censored equations and one for the non-censored

equations. Each observation belongs to a particular censoring regime. Thus, an observation with

the �rst k equations non-censored and the remaining censored would have ones in the �rst k entries

2While the simulations have been done in the context of estimating an almost ideal demand system with �ve goods
(the last good being determined residually as suggested by Pudney (1989), i.e. four goods/equations estimated),
this is not emphasized in the discussion of the results.
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and zeros for the rest. Call this regime zc and note that all censoring regimes can be written like

this with k equal to the number of non-censored equations and a suitable reorganization of the

equations. That is, no generality is lost. To develop the likelihood function for the observations

belonging to the censoring regime, zc; partition the error vector and the covariance matrix such

that

" � ["1; "2] � ["1; "2; ::; "k : "k+1; "k+2; ::; "M ]

� �
�
�11
�21 �22

�

where �11 is a k� k matrix, �21 is a (M � k)� k matrix and �22 is a (M � k)� (M � k) matrix.

Let g("1) be the joint marginal probability density function (pdf) for the �rst k errors. The pdf

function for the M errors can be written in terms of g("1) and the joint marginal pdf of the

remaining (M � k) error terms conditional on observing "1; h("2 j "1):Thus, the joint marginal

pdf, f("1; "2); can be written as

f("1; "2) � g("1) � h("2 j "1)

It can be shown that h("2 j "1) is distributed multivariate normal with mean and covariance matrix

given by (Greene 2000)

�2:1 = �21�
�1
11 "1

�22:1 = �22 � �21��111 �
0

21

The contribution to the likelihood function for an observation belonging to censoring regime zc is

then given by

LZc = g(e1)

�fk+1(X;�)Z
�1

�fk+2(X;�)Z
�1

::

�fM (X;�)Z
�1

�(M�k) (uk+1; uk+2; ::; uM ) @uM ::@uk+2@uk+1 (2)

where g(e1) is the k-variate normal density with zero mean and covariance matrix �11 evaluated

at e1 = [y1 � f1 (X; �) ; y2 � f2 (X; �) ; ::; yk � fk (X; �)] : The integration is with respect to the

M � k-variate normal density with mean and covariance given above. To write the likelihood
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function for the sample de�ne the indicator function IZch being one if observation h is in censoring

regime zc and zero otherwise. Since each observation belongs to only one censoring regime the

sample likelihood can be written as

L =
Q
h

Q
zc

[Lzch ]
Izch

The set of censoring regimes includes the two special cases where respectively none and all equations

are censored. The contributions to the likelihood function are LZc = g(e1) and

LZc =
�f1(X;�)R
�1

�f2(X;�)R
�1

::
�fM (X;�)R

�1
�(M) (u1; u2; ::; uM ) @uM ::@u2@u1; both M-variate normal den-

sity functions having zero mean and covariance �:

If for just one observation the number of censored equations exceeds two, a simulation method

has to be relied upon to evaluate the integral in (2). I rely on the GHK (Geweke, Hajivassiliou

and Keane) simulator to evaluate the integrals3 .

Quasi Maximum Likelihood Estimation

Although implementation of the SML estimator is feasible in most statistical packages (such as

Stata and Gauss) it is likely to be computationally intensive. In addition without good starting

values obtaining convergence can be di¢ cult. Thus, it is of interest to explore simpler estimators

which allow for cross-equation restrictions and do not require simulation techniques. Analogous

to the literature on multivariate probit models (Avery et al. 1983) a simple alternative is a QML

estimator which maximizes the sum of individual equation Tobit models (QMLT1). Formally, the

QMLT1 estimator maximizes

lnQMLT1 =
X
h

X
i

lnLT1;i (3)

where the subscript T1 indicates that the QML is with respect to the univariate Tobit model.

LT1;i is the Tobit likelihood function for the i�th equation and as before h indexes observations.

The estimator is based on maximizing the sum of marginal densities of the system in (1) and is

therefore consistent (Cameron and Trivedi, 2005). However, because the likelihood function in

(3) is mis-speci�ed relative to the true likelihood function for the model in (1), Whites robust

standard errors should be used for statistical inference (White, 1982). The estimator incorporates

3The methodology behind the GHK simulator is explained elsewhere and is beyond the scope of the present paper
(see Börsch-Supan and Hajivassiliou, 1993, and Cappellari and Jenkins, 2006). In practice the GHK simulator has
been shown to work well (Greene 2000).
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all equations simultaneously in the procedure so cross equation restrictions can be imposed. The

entries in the covariance matrix outside the diagonal in the system in (1) are not identi�ed. Hence,

the vector of estimated coe¢ cients has fewer elements than the vector of coe¢ cients from the SML

estimator. For demand system applications where cross equation correlations are not of particular

value this is of minor importance. On the other hand, if the purpose of the QML estimation is

to get starting values for the SML estimator cross equation correlations are valuable in their own

right.

An extension to the approach in (3) which yields estimates of cross equation correlation co-

e¢ cients is to estimate a sequence of pair-wise bivariate Tobit models (QMLT2). The QMLT2

estimator maximizes

lnQMLT2 =
X
h

M�1X
i

MX
j=i+1

lnLT2;(i;j)

T2 indicates that the sequence of likelihood functions are bivariate Tobits. The coe¢ cient of

correlation between the error terms in the i�th and j�th equations is identi�ed from the contribution

of LT2;(i;j) to the sample quasi likelihood. Thus, this approach yields as many estimated coe¢ cients

as the SML estimator. This last method has recently been used in a number of studies (see Yen,

Lin and Smallwood 2003, Barslund 2006, Lin and Yen 2002, Harris and Shonkwiler 1997).

3 Monte Carlo simulations

The relative performance of each estimator is explored along two dimensions. First, a system of

four equations is estimated on three di¤erent sample sizes to investigate how closely their per-

formance is related to sample size. The sample sizes of 1,000 and 3,000 observations are chosen

to resemble empirically relevant samples from typical cross sectional data sets. The third sample

with 200 observations is employed to look at performance in a �small�sample. Second, the e¤ect of

the absolute size of the error correlation coe¢ cients is examined. In particular, since the QMLT1

estimator ignores cross equation error correlations its performance should deteriorate as the ab-

solute size of the correlation coe¢ cients increases. The QMLT2 estimator identi�es the correlation

coe¢ cient via the bivariate Tobit formulation, but unlike the SML estimator it does not take into

account the complete correlation structure when estimating the pair-wise correlation coe¢ cients.
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Overall, the SML estimator should improve relative to the other two estimators when the corre-

lation between equations increases. I compare the estimators for each sample size and for two

error correlation structures; namely an empirically relevant correlation matrix (�base�correlations)

and a matrix where the base correlations are doubled (�large�correlations). For comparison, and

using the �base�correlation matrix, the system of latent shares is estimated ignoring the issue of

censoring and the errors are assumed multivariate normally distributed. Each scenario consists of

500 simulations.

Monte Carlo setup

The system of equations is based on a censored almost ideal demand system. In the context of

an empirical application this corresponds to a �ve good system where the last good is residually

determined as suggested by Pudney (1989). Although adding up (expenditure shares sum to one)

is accommodated in this way, parameter restrictions designed to facilitate adding up in the latent

system of expenditure shares are still imposed. In addition, in order to see how the estimators

perform in the presence of cross equation restrictions, slutsky symmetry is imposed on latent shares

even if the theoretical justi�cation for this is blurred in censored systems.4 The latent almost ideal

demand system has the form (observation indices suppressed)

w�i = �i +
M+1P
j=1


ij log pj + �i log (x=a(p)) (4)

with log a(p) = �0 +
M+1P
j=1

�j log pj + 1=2
M+1P
i=1

M+1P
j=1


ij log pi log pj

Where w�i is the latent expenditure share on commodity i: �i; �i and 
ij are parameters to

be estimated. Exogenous variables are prices, pi and income/expenditure x. As is often done

in empirical applications, the unidenti�ed parameter �0 is set equal to zero (Moschini, 1998).

The indices i; j denote commodities, thus i; j 2 f1; ::;M + 1g. Adding-up, slutsky symmetry

and homogeneity of the latent shares are ensured by the parameter restrictions:
M+1P
i=1

�i = 1;


ij = 
ji;8i; j and
M+1P
i=1

�i = 0:Denoting the full parameter vector by � the observed shares are

4 In any case, imposing slutsky symmetry in censored demand systems is standard practice in empirical
applications.
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given by (equivalent to the system in (1))

wi = max (w
�
i (�) + "i; 0) ; i = 1; ::;M

For each scenario the simulations are done in the following steps:

1) Exogenous variables (logarithmic prices and incomes) are drawn from a standard normal

distribution.

2) Errors are drawn from the speci�ed multivariate normal distribution (cf. below).

3) Latent shares are calculated, errors added, and the observed share is determined from

the censoring rule.

4) Each estimator is estimated using the observed shares and exogenous variables.

5) Estimates are saved.

Step 2 to 5 are carried out 500 times for each scenario with �xed exogenous variables. Parameters

are chosen such that they are within a range often found in empirical applications.

Alpha Beta Gamma: Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5

Equation 1 0.3 -0.025 -0.06 -0.03 0.05 0.20 0.02

Equation 2 0.25 0.03 -0.03 -0.01 0.02 0.01 0.01

Equation 3 0.05 -0.01 0.05 0.02 -0.03 -0.02 -0.02

Equation 4 0.1 0.02 0.20 0.01 -0.02 0.01 -0.02

Equation 5 0.3 -0.015 0.02 0.01 -0.02 -0.02 0.01

The values ensure both adding up and slutsky symmetry of the latent shares. The errors are drawn

from a multivariate normal distribution with the base error correlation structure given by:

Standard Probability Correlation matrix (base corr. coef.):

deviation (�). censored (%) Eq. 1 Eq. 2 Eq. 3 Eq. 4

Equation 1 0.6 30.9 1.00 -0.20 -0.15 -0.08

Equation 2 0.5 30.9 -0.20 1.00 -0.15 -0.07

Equation 3 0.4 45.0 -0.15 -0.15 1.00 -0.10

Equation 4 0.3 36.9 -0.08 -0.07 -0.10 1.00

The probability of an observation being censored is calculated using that for any given obser-

vation the expected latent expenditure share w�i is equal to �i since expected logarithmic prices

and income are zero (drawn from a standard normal distribution). The base correlation matrix

is chosen to resemble the range of values found in empirical studies. The average absolute value

over the error correlation coe¢ cients is 0.125 with a maximum absolute value of 0.20. This com-

pares well with the average of 0.083 over absolute correlation coe¢ cients found in Yen, Lin and
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Smallwood (2003) with only one coe¢ cient out of 66 being signi�cantly larger than 0.20. Yen,

Fang and Su (2004) report slightly larger coe¢ cients. The absolute average is 0.118 and 6 out

of 45 coe¢ cients are signi�cantly larger than 0.20 with a maximum of 0.288. Similarly, Barslund

(2006) �nds an absolute average of 0.116 with 5 out of 55 correlation coe¢ cients being signi�cantly

larger than 0.20. The maximum value reported is 0.327. Lastly, Yen and Lin (2002) estimate a

three equation system with the largest correlation coe¢ cient not signi�cantly larger than 0.20 and

with an average value of 0.136 in absolute terms. Although the absolute size of the correlation

coe¢ cients is application speci�c, the scenarios with �large�correlations should provide an upper

bound for di¤erences in the estimators likely to be found in empirical applications.

A �nal issue relates to the evaluation of the SML log-likelihood using the GHK simulator. The

GHK simulator relies on a speci�c number, R, of random draws from the unit interval. Because the

accuracy of the GHK simulator relies on the size of R, formally, the e¢ ciency of the SML estimator

hinges on
p
N=R �! 0, where N is the number of observations (see Train 2003). The pitfall to

avoid in relation to the Monte Carlo simulation is that the relative performance of the SML versus

the QMLT1 and QMLT2 is not confounded with poor accuracy of the SML estimator due to an

inadequate number of draws when using the GHK simulator. The random draws were generated

by Statas mdraws command (Cappellari and Jenkins, 2006). In practice, the number of draws

were determined following a suggestion by Haan and Uhlendor¤ (2006). They propose to start

by maximizing a simulated log-likelihood function using R equal to N0:55 random draws and then

increase the number of draws until the maximized log-likelihood function stabilizes on a value. For

all three sample sizes Halton sequences with R = 84 and antithetic draws were used (Cappellari

and Jenkins, 2006). For the sample of 3,000 observations the change in the log-likelihood value at

R = 84 was below 1=100 of a percentage point. The change in parameter values was on average

less than 1/25 of the di¤erence between the SML and the QMLT2 estimator.5

5All estimations were done in Stata with �seeding� of the random generator used for drawing errors so as to
facilitate replicability. Files are available from the author.
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4 Results

To manage the amount of output the discussion of the results will concentrate on di¤erences in

the mean squared error (MSE) between the estimators. The performance of the QML estimators,

QMLT1 and QMLT2, is measured relative to the asymptotically more e¢ cient SML estimator.

Table 1 shows the results for the base correlation speci�cation with a sample of 200 observations.

Columns numbered 2 through 10 show the percentage deviation of the mean over the 500

simulations from the true value and the MSE for each of the estimated parameters for respectively,

the SML, QMLT1, QMLT2, and the non-censored estimator. The deviation from the mean is

reported in order to gorge the biasness in �nite samples. As expected - given the degree of censoring

- the non-censored estimator shows a large bias for all coe¢ cients (column 8). Turning to the three

estimators of primary interest, the most interesting thing coming out of Table 1 is how similar

the results are. Looking across the rows it is clear that the di¤erences between the estimators for

both measures are small. When one estimator performs particularly well with respect to a point

estimate of a coe¢ cient the other two also do well. And similar when coe¢ cients are less precisely

estimated. For an illustration look at the estimated standard deviations for the error term of

equation 1 (�1) and 4 (�4), respectively. In terms of their MSE, �4 performs well over all three

estimators whereas the opposite is true for �1. Column 10, 11 and 12 summarize the di¤erences

between the coe¢ cient MSEs over the three estimators. Column 10 shows a comparison of the

SML and QMLT2 estimator, where a plus indicates that the SML has the lowest MSE. Similar

for column 11 where the SML is compared to the QMLT1 estimator. Lastly, the QMLT2 and

QMLT1 estimators are compared in column 12. Thus, for all three columns a plus signi�es that

the estimator using the most sample information performed better. Re�ecting the resemblance

of column 2 to 7 none of the estimators perform better than the two others for all coe¢ cients.

However, the QMLT2 seems to have on average slightly lower MSEs than both the SML (minus

in column 10) and the QMLT1 (plus in column 12).

It is of interest to test if the small di¤erences in performance between the estimators are

statistically signi�cant. For this purpose I perform two-tailed t-tests of equality of MSEs based on

the sample of 500 replications. Signi�cance levels are indicated in the three last columns by one,
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two or three asterisks equivalent to signi�cance at 10, 5 and 1 percent, respectively. For only one

coe¢ cient (�1) does the SML estimator perform signi�cantly better than the two others, while the

QMLT2 does signi�cantly better than the SML for �ve coe¢ cients and better than the QMLT1

for seven coe¢ cients. In sum, for small samples with error correlations of empirical relevant size

both the QMLT1 and QMLT2 perform very well.

Table 2 is similar to Table 1, but the sample size is increased to 1,000 observations. First,

note that for the three estimators of primary interest the deviations of the mean for most esti-

mated coe¢ cients are smaller than in Table 1. This is to be expected from consistent estimators.

Contrast that with the biased non-censored estimator, where deviations from the mean are more

or less unchanged between Table 1 and 2. Also the MSEs are reduced substantially. Regarding

the comparison in the last three columns, the SML estimator has lower MSEs for a majority of

coe¢ cients than both the QMLT1 and QMLT2 estimators. However, this better performance is

not statistically signi�cant (except for one coe¢ cient in the comparison between the SML and

QMLT1 estimators), again re�ecting that the coe¢ cient estimates coming from the three estima-

tors are very close for each simulation. The QMLT2 estimator has lower MSEs for all but two

parameters (�ve are signi�cantly lower) compared with the QMLT1 estimator. In Table 3 the

number of observations is further increased to 3,000 while keeping the same base error correlation

structure. Except for the non-censored estimator the e¤ect on the deviation of the mean and the

MSEs for all estimators are as expected. The great majority of parameters have means within one

percent of the true value and the MSEs have decreased compared to Table 2. However, the SML

estimator is now superior to both QML estimators. Not only does it perform better for the great

majority of parameters (lower MSEs) as indicated in column 10 and 11 in Table 3, but it is also

signi�cantly better for a small number of parameters. The QMLT2 does a better job than the

QMLT1 estimator (column 12).

The main message from Table 1 to 3 where simulations are done with the base error correlation

structure is that it takes a relatively large sample size before the theoretical better performance of

the SML estimator shows up. Even then the gains from employing the SML estimator are small.

In particular, it is clear that both QML estimators provide very accurate approximations of the

SML estimator for the sample sizes examined here, although only the QMLT2 estimator yields
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error correlation estimates. To illustrate the last point consider the di¤erence in individual point

estimates between the SML andQMLT1 estimators for the 500 simulations with 3,000 observations.

The two estimators have 22 parameters in common since the QMLT1 estimator does not identify

error correlations. For 13 of the 22 parameters the QMLT1 estimator is never more than 5 percent

worse than the SML estimator. For the remaining parameters, more than 85 of the 500 point

estimates are not more than 5 percent further from the true value than the SML estimator. The

only exception being 
22 where only 71 percent lies within this criterion.

Table 4 to 6 are analogous to table 1, 2 and 3, but with the correlation matrix multiplied by two

(�large�correlations). The non-censored estimator is not included since the results above showed

it to be clearly biased. Although all three tables are presented for completeness, table 4 with 200

observations provides a clear case of how the results di¤er between the two sets of tables. With

the absolute larger correlation coe¢ cients the SML estimator is superior to both the QMLT2 and

the QMLT1 estimators with very few (�ve) MSEs larger than those for the two QML estimators.

Further, signi�cant di¤erences show up for a substantial number of coe¢ cients. Similarly, the

QMLT2 estimator, which takes error correlations into account, performs much better than the

QMLT1 estimator that does not. In table 5 with 1,000 observations this is even more evident. The

majority of parameters show the SML estimator to be signi�cantly better performing than the two

other estimators, whereas the same is the case for the QMLT2 versus the QMLT1 estimator. The

picture is the same in table 6 where the simulations are done on 3,000 observations.

Table 4, 5 and 6 show, that with larger correlation coe¢ cients there are signi�cant gains from

using more sophisticated estimators and that the gains are apparent at all sample sizes analyzed

here. Since it is often di¢ cult to have a prior opinion on the size of the correlation coe¢ cients for

a given application, one recommendation would be to �rst apply the QMLT2 estimator to assess

the size of the correlation coe¢ cients before considering to go on with the SML estimator. In that

case, the QMLT2 provides some very accurate starting values.
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5 Concluding remarks

The results in this paper indicate that there is very little to gain from using a SML estimator

compared to the two simpler QML estimators investigated here, if the absolute size of the error

correlation coe¢ cients is of the same magnitude as usually found in empirical studies. However,

the error correlation structure can not be known prior to an application, and if these are large in

absolute value there will be gains from using the asymptotically better SML estimator. In this

case both QML estimators provide good starting values for the SML estimator; something which

is useful in the cause of achieving convergence of the maximum likelihood routine.

Even if Monte Carlo simulations are subject to the problem of speci�city which makes broad

generalizations of the results di¢ cult, this study has shown that for moderate sample sizes most

commonly found in empirical applications simple QML estimators perform surprisingly well. The

results herein also suggest that QML estimators of a similar type to those presented here might be

useful in more general systems of censored equations.
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