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Abstract

Recently a number of authors have suggested to estimate censored demand systems as a
system of Tobit multivariate equations employing a Quasi Maximum Likelihood (QML) es-
timator based on bivariate Tobit models. In this paper I study the efficiency of this QML
estimator relative to the asymptotically more efficient Simulated ML (SML) estimator in the
context of a censored Almost Ideal demand system. Further, a simpler QML estimator based
on the sum of univariate Tobit models is introduced. A Monte Carlo simulation comparing the
three estimators is performed on three different sample sizes. The QML estimators perform
well in the presence of moderate sized error correlation coefficients often found in empirical
studies. With absolute larger correlation coefficients, the SML estimator is found to be supe-
rior. The paper lends support to the general use of the QML estimators and points towards

the use of simple etimators for more general censored systems of equations.
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1 Introduction

Analysis of individuals and households consumption patterns and their response to relative price
changes has a long tradition in economics and goes back at least to Engels seminal work on
expenditure shares. Systems of flexible functional forms such as the translog and almost ideal
demand systems (Jorgensen et al. 1979, Deaton and Muellbauer 1980) and the advance of fast
computers have made estimation of price response coefficients in large demand systems with many
goods based on household survey data feasible. Hence, a large literature has grown. However,
until recently the problem of censoring of the expenditure shares (i.e. the minimum consumption
share is zero) was largely ignored or only addressed in systems with a small number of goods (see
Wales & Woodland 1983, Lee & Pitt 1986).

To account for censoring a model which allows for a positive probability of observing zero con-
sumption must be estimated. Thus, whether implicit or explicit, the model should accommodate a
market participation decision and a consumption decision. Further, the estimation procedure must
be capable of accommodating cross-equation restrictions, making joint estimation of all equations
necessary. If errors are normal and assumed to covary between the decisions to consume each good,
then - with multiple goods not consumed for some households - the contribution to the likelihood
function will require evaluation of multiple integrals over a multivariate normal density function.
As an example, consider the case of a five good demand system where a non-neglible number of
households only consume two of the five goods, thus equations for the three non-consumed goods
are censored. For these households part of the likelihood contribution will be the probability that
the three error terms fall within a range consistent with observed censoring of these three goods.
Difficulties associated with evaluating multiple integrals over the multivariate normal density func-
tion explain why accounting for censoring in applications of large demand system is rare.

One way to account for censoring which has been used in the literature is to model the con-
sumption shares as a multivariate Tobit model (see Yen, Lin and Smallwood 2003), such that
implicitly the participation decision and the consumption decision are determined by the same
process. In the context of demand system estimation two maximum likelihood based estimators

have recently been used to estimate multivariate Tobit systems. Harris and Shonkwiler (1997)



proposed a Quasi Maximum Likelihood (QML) estimator based on linking bivariate Tobit models
to avoid evaluating high dimensional integrals. More recently Yen, Lin and Smallwood (2003)
have used a Simulated Maximum Likelihood (SML) estimator of a similar system.! While both
estimators are consistent, the SML estimator is asymptotically more efficient, since it uses more
sample information than the QML estimator. However, the relative performance of the estimators
in applications with empirically relevant sample sizes is unknown.

The contribution of this paper is twofold. First - inspired by the idea of linking bivariate
Tobit models - I introduce a simpler QML estimator based on the maximization of the sum of
univariate Tobit models over all equations. Although the proposed estimator does not identify
the error correlation across equations this is of secondary importance in a demand system context
since error correlations are not used to calculate elasticities or other quantities of interest. Second,
I compare the three estimators using Monte Carlo simulations in a setup with four simultaneous
equations subject to a large degree of censoring. Their performance is assessed in three different
sample sizes with respectively 200, 1,000 and 3,000 observations. The sample sizes are chosen to
resemble a ’small’ sample of households (200 observations), a larger sample (1,000 observations)
and a typical (sub)-sample from the World Banks LSMS surveys (3,000 observations).

There are a number of reasons contributing to the relevance of this exercise. First, it is not
evident which estimator is preferable for relatively small sample sizes. Second, even if the SML
estimator is superior, the cost of implementation and the computational burden associated with
simulating the likelihood function might warrant the use of a sufficiently good second best esti-
mator. Third, the SML estimator has difficulties converging from arbitrary starting values and
computation time is reduced substantially by using good starting values possibly obtained from
less efficient estimators. Further, the type of QML estimators used in this paper can be applied to
more general systems of censored systems, i.e. the system suggested by Yen and Lin (2006).

There exist few application specific comparisons of the SML estimator and the bivariate Tobit

QML estimator considered here. Yen, Lin and Smallwood (2003) estimate a large demand system

I'Shonkwiler & Yen (1999) propose a two step estimator where the participation decision is modelled as a uni-
varite probit on each equation (or alternatively, a multivariate probit over all equations). In the second step, the
equations determining the expenditure shares are augmented to take account of the censoring and errors are assumed
multivariate normal. The estimator is consistent but less efficient relative to the SML estimator due to the two-step
nature. It is not considered in the present work, since it is not suitable for estimation of Tobit type models.



with both the SML and the bivariate Tobit QML and conclude that the QML and SML estimator
deliver very similar results. In a similar application Yen and Lin (2002) find QML and SML
estimates to be close and similar. Clearly, since the true data generating mechanism and parameters
are unknown these studies cannot shed light on the relative performance of the estimators in
question.

In the following section the model is outlined together with the three estimators. Section 3
describes the Monte Carlo setup, while section 4 presents results.? Some brief concluding remarks

are offered at the end.

2 Estimation of a multivariate system of Tobit equations

The point of departure is a multivariate generalization of the Tobit model. Denote the dependent
variable by y;, the matrix of explanatory variables by X and the full set of parameters to be
estimated by 0, then the system of equations (¢ = 1,.., M) can be written (suppressing observation
indices)

y; = max (f; (X;0)+¢;,0), i=1,.,M (1)

where ¢; is an equation specific error term. Define the vector of errors ¢ = [e1,..,eps] and allow
parametric estimation by assuming multivariate normal errors with zero mean and covariance X. In
the context of demand system estimation, y; is the expenditure share on good ¢ and the functions
f; are of some flexible form. Note that in applications where there is no need for cross equation
restrictions (1) can be estimated consistently using a univariate Tobit model equation by equation.

However, even in this case efficiency is gained by estimating all equations jointly as a system.

Simulated Maximum Likelihood estimation

To construct the likelihood function for the system given by (1), let a censoring regime z. be a
1 x M —vector with entries equal to zero for the censored equations and one for the non-censored
equations. Each observation belongs to a particular censoring regime. Thus, an observation with

the first £ equations non-censored and the remaining censored would have ones in the first £ entries

2While the simulations have been done in the context of estimating an almost ideal demand system with five goods
(the last good being determined residually as suggested by Pudney (1989), i.e. four goods/equations estimated),
this is not emphasized in the discussion of the results.



and zeros for the rest. Call this regime z. and note that all censoring regimes can be written like
this with k equal to the number of non-censored equations and a suitable reorganization of the
equations. That is, no generality is lost. To develop the likelihood function for the observations
belonging to the censoring regime, z., partition the error vector and the covariance matrix such

that

€ = [e1,62] = [€1,62, -, Ek  Ekt1sEk+2, s EM]
v = {211 }
o1 Yoo

where Y17 is a k X k matrix, Y91 is a (M — k) X k matrix and Yoo is a (M — k) x (M — k) matrix.
Let g(e1) be the joint marginal probability density function (pdf) for the first k errors. The pdf
function for the M errors can be written in terms of g(e1) and the joint marginal pdf of the
remaining (M — k) error terms conditional on observing e, h(ez | €1).Thus, the joint marginal

pdf, f(e1,€2), can be written as

f(e1,e2) = g(e1) - h(ez | €1)

It can be shown that h(es | £1) is distributed multivariate normal with mean and covariance matrix

given by (Greene 2000)

1
Po1 = XaXijer

Y21 = E22—22121_112/21

The contribution to the likelihood function for an observation belonging to censoring regime z. is
then given by

—fk+1(X§9)—fk+2(X?9) *fM(X§9)

L% = gler) . ¢(M—k) (Ukt 1, kg2, oy Upg) OUNL .. OUE 420U 11 (2)

where g(ep) is the k-variate normal density with zero mean and covariance matrix X1; evaluated
at e; = [y1 — f1(X50),y2 — f2(X;0),..,yx — fr (X;0)]. The integration is with respect to the

M — k-variate normal density with mean and covariance given above. To write the likelihood



function for the sample define the indicator function I f ° being one if observation A is in censoring
regime z. and zero otherwise. Since each observation belongs to only one censoring regime the

sample likelihood can be written as

L =TI (5"

h zc
The set of censoring regimes includes the two special cases where respectively none and all equations
are censored. The contributions to the likelihood function are L?c = g(e;) and
—f1(X;30)— f2(X30) —fr(X;0)
L% = | I | ban (ur,ug, . uar) Quar..0uzduy, both M-variate normal den-
—0o0 — 00 —0o0

sity functions having zero mean and covariance X..

If for just one observation the number of censored equations exceeds two, a simulation method

has to be relied upon to evaluate the integral in (2). I rely on the GHK (Geweke, Hajivassiliou

and Keane) simulator to evaluate the integrals®.

Quasi Maximum Likelihood Estimation

Although implementation of the SML estimator is feasible in most statistical packages (such as
Stata and Gauss) it is likely to be computationally intensive. In addition without good starting
values obtaining convergence can be difficult. Thus, it is of interest to explore simpler estimators
which allow for cross-equation restrictions and do not require simulation techniques. Analogous
to the literature on multivariate probit models (Avery et al. 1983) a simple alternative is a QML
estimator which maximizes the sum of individual equation Tobit models (QM Lz). Formally, the

QM L1, estimator maximizes

IMQMLry = > InLpy, (3)
h i

where the subscript T'1 indicates that the QML is with respect to the univariate Tobit model.
Lt1,; is the Tobit likelihood function for the 7’th equation and as before h indexes observations.
The estimator is based on maximizing the sum of marginal densities of the system in (1) and is
therefore consistent (Cameron and Trivedi, 2005). However, because the likelihood function in
(3) is mis-specified relative to the true likelihood function for the model in (1), Whites robust

standard errors should be used for statistical inference (White, 1982). The estimator incorporates

3The methodology behind the GHK simulator is explained elsewhere and is beyond the scope of the present paper
(see Borsch-Supan and Hajivassiliou, 1993, and Cappellari and Jenkins, 2006). In practice the GHK simulator has
been shown to work well (Greene 2000).



all equations simultaneously in the procedure so cross equation restrictions can be imposed. The
entries in the covariance matrix outside the diagonal in the system in (1) are not identified. Hence,
the vector of estimated coefficients has fewer elements than the vector of coefficients from the SML
estimator. For demand system applications where cross equation correlations are not of particular
value this is of minor importance. On the other hand, if the purpose of the QML estimation is
to get starting values for the SML estimator cross equation correlations are valuable in their own
right.

An extension to the approach in (3) which yields estimates of cross equation correlation co-
efficients is to estimate a sequence of pair-wise bivariate Tobit models (QM Lrs). The QM Ly

estimator maximizes

M-1 M
In QMLTQ = Z Z Z In LT2;(i,j)
h i g=i+l

T2 indicates that the sequence of likelihood functions are bivariate Tobits. The coefficient of
correlation between the error terms in the 7’th and j’th equations is identified from the contribution
of Lyy,(;,4) to the sample quasi likelihood. Thus, this approach yields as many estimated coefficients
as the SML estimator. This last method has recently been used in a number of studies (see Yen,

Lin and Smallwood 2003, Barslund 2006, Lin and Yen 2002, Harris and Shonkwiler 1997).

3 Monte Carlo simulations

The relative performance of each estimator is explored along two dimensions. First, a system of
four equations is estimated on three different sample sizes to investigate how closely their per-
formance is related to sample size. The sample sizes of 1,000 and 3,000 observations are chosen
to resemble empirically relevant samples from typical cross sectional data sets. The third sample
with 200 observations is employed to look at performance in a ’small’ sample. Second, the effect of
the absolute size of the error correlation coefficients is examined. In particular, since the QM L
estimator ignores cross equation error correlations its performance should deteriorate as the ab-
solute size of the correlation coefficients increases. The QM Lt estimator identifies the correlation
coefficient via the bivariate Tobit formulation, but unlike the SML estimator it does not take into

account the complete correlation structure when estimating the pair-wise correlation coefficients.



Overall, the SML estimator should improve relative to the other two estimators when the corre-
lation between equations increases. I compare the estimators for each sample size and for two
error correlation structures; namely an empirically relevant correlation matrix ("base’ correlations)
and a matrix where the base correlations are doubled (’large’ correlations). For comparison, and
using the ’base’ correlation matrix, the system of latent shares is estimated ignoring the issue of
censoring and the errors are assumed multivariate normally distributed. Each scenario consists of

500 simulations.

Monte Carlo setup

The system of equations is based on a censored almost ideal demand system. In the context of
an empirical application this corresponds to a five good system where the last good is residually
determined as suggested by Pudney (1989). Although adding up (expenditure shares sum to one)
is accommodated in this way, parameter restrictions designed to facilitate adding up in the latent
system of expenditure shares are still imposed. In addition, in order to see how the estimators
perform in the presence of cross equation restrictions, slutsky symmetry is imposed on latent shares
even if the theoretical justification for this is blurred in censored systems.? The latent almost ideal

demand system has the form (observation indices suppressed)

M1
wi = o+ Zl 7ijlogpj + B;log (z/a(p)) (4)
=
M+1 M+1M+1
with loga(p) = ao+ ). ajlogp; +1/2 > >° v;;logp;logp;
j=1 i=1 j=1

Where w is the latent expenditure share on commodity 4. a;, 5; and +,; are parameters to
be estimated. Exogenous variables are prices, p; and income/expenditure x. As is often done
in empirical applications, the unidentified parameter «q is set equal to zero (Moschini, 1998).
The indices ¢,7 denote commodities, thus ¢,5 € {1,..,M +1}. Adding-up, slutsky symmetry

M+1
and homogeneity of the latent shares are ensured by the parameter restrictions: > «a; = 1,
i=1

MA+1
Yij = YVji» Vi, J and > B, = 0.Denoting the full parameter vector by 6 the observed shares are

i=1

4In any case, imposing slutsky symmetry in censored demand systems is standard practice in empirical
applications.



given by (equivalent to the system in (1))

w; = max (w; (0) +¢;,0), i=1,..M

For each scenario the simulations are done in the following steps:
1) Exogenous variables (logarithmic prices and incomes) are drawn from a standard normal
distribution.
2) Errors are drawn from the specified multivariate normal distribution (cf. below).
3) Latent shares are calculated, errors added, and the observed share is determined from
the censoring rule.
4) Each estimator is estimated using the observed shares and exogenous variables.
5) Estimates are saved.
Step 2 to 5 are carried out 500 times for each scenario with fixed exogenous variables. Parameters
are chosen such that they are within a range often found in empirical applications.

Alpha Beta Gamma: Eq.1 Eq.2 Eq.3 Eq. 4 Eq. 5

Equation 1 0.3 -0.025 -0.06 -0.03 0.05 0.20 0.02
Equation 2 0.25 0.03 -0.03 -0.01 0.02 0.01 0.01
Equation 3 0.05 -0.01 0.05 0.02 -0.03 -0.02 -0.02
Equation 4 0.1 0.02 0.20 0.01 -0.02 0.01 -0.02
Equation 5 0.3 -0.015 0.02 0.01 -0.02 -0.02 0.01

The values ensure both adding up and slutsky symmetry of the latent shares. The errors are drawn

from a multivariate normal distribution with the base error correlation structure given by:

Standard Probability Correlation matrix (base corr. coef.):

deviation (o).  censored (%) Eq.1 Eq.2 Eq. 3 Eq. 4

Equation 1 0.6 30.9 1.00 -0.20 -0.15 -0.08
Equation 2 0.5 30.9 -0.20 1.00 -0.15 -0.07
Equation 3 0.4 45.0 -0.15 -0.15 1.00 -0.10
Equation 4 0.3 36.9 -0.08 -0.07  -0.10 1.00

The probability of an observation being censored is calculated using that for any given obser-
vation the expected latent expenditure share wj is equal to «; since expected logarithmic prices
and income are zero (drawn from a standard normal distribution). The base correlation matrix
is chosen to resemble the range of values found in empirical studies. The average absolute value
over the error correlation coefficients is 0.125 with a maximum absolute value of 0.20. This com-

pares well with the average of 0.083 over absolute correlation coefficients found in Yen, Lin and



Smallwood (2003) with only one coefficient out of 66 being significantly larger than 0.20. Yen,
Fang and Su (2004) report slightly larger coefficients. The absolute average is 0.118 and 6 out
of 45 coefficients are significantly larger than 0.20 with a maximum of 0.288. Similarly, Barslund
(2006) finds an absolute average of 0.116 with 5 out of 55 correlation coefficients being significantly
larger than 0.20. The maximum value reported is 0.327. Lastly, Yen and Lin (2002) estimate a
three equation system with the largest correlation coefficient not significantly larger than 0.20 and
with an average value of 0.136 in absolute terms. Although the absolute size of the correlation
coefficients is application specific, the scenarios with ’large’ correlations should provide an upper
bound for differences in the estimators likely to be found in empirical applications.

A final issue relates to the evaluation of the SML log-likelihood using the GHK simulator. The
GHK simulator relies on a specific number, R, of random draws from the unit interval. Because the
accuracy of the GHK simulator relies on the size of R, formally, the efficiency of the SML estimator
hinges on v N/R — 0, where N is the number of observations (see Train 2003). The pitfall to
avoid in relation to the Monte Carlo simulation is that the relative performance of the SML versus
the QM Ly and QM Lps is not confounded with poor accuracy of the SML estimator due to an
inadequate number of draws when using the GHK simulator. The random draws were generated
by Statas mdraws command (Cappellari and Jenkins, 2006). In practice, the number of draws
were determined following a suggestion by Haan and Uhlendorff (2006). They propose to start
by maximizing a simulated log-likelihood function using R equal to N-3% random draws and then
increase the number of draws until the maximized log-likelihood function stabilizes on a value. For
all three sample sizes Halton sequences with R = 84 and antithetic draws were used (Cappellari
and Jenkins, 2006). For the sample of 3,000 observations the change in the log-likelihood value at
R = 84 was below 1/100 of a percentage point. The change in parameter values was on average

less than 1/25 of the difference between the SML and the QM Lo estimator.?

5 All estimations were done in Stata with ’seeding’ of the random generator used for drawing errors so as to
facilitate replicability. Files are available from the author.
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4 Results

To manage the amount of output the discussion of the results will concentrate on differences in
the mean squared error (MSE) between the estimators. The performance of the QML estimators,
QM L1y and QM Ly, is measured relative to the asymptotically more efficient SML estimator.
Table 1 shows the results for the base correlation specification with a sample of 200 observations.

Columns numbered 2 through 10 show the percentage deviation of the mean over the 500
simulations from the true value and the MSE for each of the estimated parameters for respectively,
the SML, QM Ly, QM Lpy, and the non-censored estimator. The deviation from the mean is
reported in order to gorge the biasness in finite samples. As expected - given the degree of censoring
- the non-censored estimator shows a large bias for all coefficients (column 8). Turning to the three
estimators of primary interest, the most interesting thing coming out of Table 1 is how similar
the results are. Looking across the rows it is clear that the differences between the estimators for
both measures are small. When one estimator performs particularly well with respect to a point
estimate of a coefficient the other two also do well. And similar when coefficients are less precisely
estimated. For an illustration look at the estimated standard deviations for the error term of
equation 1 (o1) and 4 (04), respectively. In terms of their MSE, o4 performs well over all three
estimators whereas the opposite is true for ;. Column 10, 11 and 12 summarize the differences
between the coefficient MSEs over the three estimators. Column 10 shows a comparison of the
SML and QM Lto estimator, where a plus indicates that the SML has the lowest MSE. Similar
for column 11 where the SML is compared to the QM Ly estimator. Lastly, the QM L and
QM L1, estimators are compared in column 12. Thus, for all three columns a plus signifies that
the estimator using the most sample information performed better. Reflecting the resemblance
of column 2 to 7 none of the estimators perform better than the two others for all coefficients.
However, the QM L1y seems to have on average slightly lower MSEs than both the SML (minus
in column 10) and the QM Lz (plus in column 12).

It is of interest to test if the small differences in performance between the estimators are
statistically significant. For this purpose I perform two-tailed t-tests of equality of MSEs based on

the sample of 500 replications. Significance levels are indicated in the three last columns by one,
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two or three asterisks equivalent to significance at 10, 5 and 1 percent, respectively. For only one
coefficient () does the SML estimator perform significantly better than the two others, while the
QM L1y does significantly better than the SML for five coefficients and better than the QM Ly
for seven coefficients. In sum, for small samples with error correlations of empirical relevant size
both the QM L1 and QM Lo perform very well.

Table 2 is similar to Table 1, but the sample size is increased to 1,000 observations. First,
note that for the three estimators of primary interest the deviations of the mean for most esti-
mated coeflicients are smaller than in Table 1. This is to be expected from consistent estimators.
Contrast that with the biased non-censored estimator, where deviations from the mean are more
or less unchanged between Table 1 and 2. Also the MSEs are reduced substantially. Regarding
the comparison in the last three columns, the SML estimator has lower MSEs for a majority of
coefficients than both the QM L7, and QM L1o estimators. However, this better performance is
not statistically significant (except for one coefficient in the comparison between the SML and
QM Ly estimators), again reflecting that the coefficient estimates coming from the three estima-
tors are very close for each simulation. The QM Lo estimator has lower MSEs for all but two
parameters (five are significantly lower) compared with the QM Ly estimator. In Table 3 the
number of observations is further increased to 3,000 while keeping the same base error correlation
structure. Except for the non-censored estimator the effect on the deviation of the mean and the
MSEs for all estimators are as expected. The great majority of parameters have means within one
percent of the true value and the MSEs have decreased compared to Table 2. However, the SML
estimator is now superior to both QML estimators. Not only does it perform better for the great
majority of parameters (lower MSEs) as indicated in column 10 and 11 in Table 3, but it is also
significantly better for a small number of parameters. The QM Lpo does a better job than the
QM Ly estimator (column 12).

The main message from Table 1 to 3 where simulations are done with the base error correlation
structure is that it takes a relatively large sample size before the theoretical better performance of
the SML estimator shows up. Even then the gains from employing the SML estimator are small.
In particular, it is clear that both QML estimators provide very accurate approximations of the

SML estimator for the sample sizes examined here, although only the QM Lps estimator yields
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error correlation estimates. To illustrate the last point consider the difference in individual point
estimates between the SML and QM L estimators for the 500 simulations with 3,000 observations.
The two estimators have 22 parameters in common since the QM Ly, estimator does not identify
error correlations. For 13 of the 22 parameters the QM L1 estimator is never more than 5 percent
worse than the SML estimator. For the remaining parameters, more than 85 of the 500 point
estimates are not more than 5 percent further from the true value than the SML estimator. The

only exception being 95 where only 71 percent lies within this criterion.

Table 4 to 6 are analogous to table 1, 2 and 3, but with the correlation matrix multiplied by two
('large’ correlations). The non-censored estimator is not included since the results above showed
it to be clearly biased. Although all three tables are presented for completeness, table 4 with 200
observations provides a clear case of how the results differ between the two sets of tables. With
the absolute larger correlation coefficients the SML estimator is superior to both the QM Ly and
the QM L, estimators with very few (five) MSEs larger than those for the two QML estimators.
Further, significant differences show up for a substantial number of coefficients. Similarly, the
QM L1y estimator, which takes error correlations into account, performs much better than the
QM L1 estimator that does not. In table 5 with 1,000 observations this is even more evident. The
majority of parameters show the SML estimator to be significantly better performing than the two
other estimators, whereas the same is the case for the QM Lp5 versus the QM L7, estimator. The
picture is the same in table 6 where the simulations are done on 3,000 observations.

Table 4, 5 and 6 show, that with larger correlation coefficients there are significant gains from
using more sophisticated estimators and that the gains are apparent at all sample sizes analyzed
here. Since it is often difficult to have a prior opinion on the size of the correlation coefficients for
a given application, one recommendation would be to first apply the QM Lyo estimator to assess
the size of the correlation coefficients before considering to go on with the SML estimator. In that

case, the QM Lps provides some very accurate starting values.
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5 Concluding remarks

The results in this paper indicate that there is very little to gain from using a SML estimator
compared to the two simpler QML estimators investigated here, if the absolute size of the error
correlation coefficients is of the same magnitude as usually found in empirical studies. However,
the error correlation structure can not be known prior to an application, and if these are large in
absolute value there will be gains from using the asymptotically better SML estimator. In this
case both QML estimators provide good starting values for the SML estimator; something which
is useful in the cause of achieving convergence of the maximum likelihood routine.

Even if Monte Carlo simulations are subject to the problem of specificity which makes broad
generalizations of the results difficult, this study has shown that for moderate sample sizes most
commonly found in empirical applications simple QML estimators perform surprisingly well. The
results herein also suggest that QML estimators of a similar type to those presented here might be

useful in more general systems of censored equations.
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