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Abstract

In this paper we formulate and analyze a simple dynamic model of the
interaction between terrorists and authorities. Our primary aim is to ana-
lyze how the introduction of a so called copycat e¤ect in�uences behavior
and outcomes. We �rst show that our simple model of terrorist cells im-
plies that an increase in anti-terrorism makes it more likely that cells will
plan small rather than large attacks. Furthermore, we see that an increase
in anti-terrorism can make a terrorist attack more likely. Analyzing the
problem of optimal anti-terrorism we see that the introduction of a copycat
e¤ect rationalizes an increase in the level of anti-terrorism after a large at-
tack. Using this result we show how the copycat e¤ect changes the dynamic
pattern of terrorism attacks and what the long run consequences are.
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1 Introduction

In this paper we formulate and analyze a simple dynamic model of the interaction
between terrorists and authorities. The primary aim of the paper is to analyze how
the introduction of a so called copycat e¤ect in�uences behavior and outcomes.
We say that a copycat e¤ect exists if terrorist cells are more likely to be formed
after a period with a high level of terrorism (for example a large attack) than after
a period with low terrorist activity. There are several good reasons to expect that
a copycat e¤ect exists. Media attention to terrorism is higher when there has been
a lot of terrorist activity in the recent past. Therefore the possibility of becoming a
terrorist is more salient for potential terrorists. Furthermore, the increased media
attention means that even relatively minor terrorist acts get a lot of publicity.
Therefore it becomes more attractive to form a terrorist cell and thus it is likely
that more cells are formed.
In our model a terrorist cell lives for one period only and its sole decision is

whether to plan a small or a large attack. Planning a large attack is more risky
because it requires more planning and therefore involves a higher risk of being rolled
up by the authorities. The di¤erence in risk between the two types of attacks is
increasing in the authorities�spending on anti-terrorism. Therefore it follows that
if the authorities increase the level of anti-terrorism then a cell is more likely to
plan a small attack. The e¤ect of an increase in anti-terrorism on the probability
that a cell will be succesful in making an attack (small or large) is ambiguous. It
can be the case that increased spending on anti-terrorism makes a terrorist attack
more likely.
In each period of time a terrorist cell is formed with some probability. The

aim of the authorities is to minimize the sum of (discounted) expected damage
from terrorism and anti-terrorism costs over all periods by choosing the level of
anti-terrorism in each period. The horizon is in�nite. We solve for optimal anti-
terrorism in two cases. First we consider a benchmark case where the probability
of a cell being formed is the same in all periods. Then we move on to a case where
a copycat e¤ect is in play. More speci�cally we assume that the probability of
a cell being formed is higher if there was a large attack in the previous period.
We show that the authorities choose a higher level of anti-terrorism after a large
attack. Using that result we see that if a cell is formed then the probability of
a small attack is highest and the probability of a large attack and the expected
damage is lowest after a large attack. Finally, we compare long run distributions
for the benchmark case and the copycat case. In the long run the copycat e¤ect
implies more anti-terrorism, more small attacks and a higher per period sum of
terrorism damage and anti-terrorism costs. On the other hand it implies less large
attacks and less damage from terrorism.
A substantial number of papers have studied economic and game theoretic
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models of the interaction between terrorists and authorities. For a review see for
example Sandler and Enders (2004). Among the speci�c problems that have been
studied are terrorists choice of targets (see e.g. Sandler and Lapan (1988)), hostage
taking (Lapan and Sandler (1988)), substitutions by terrorists after policy changes
(Enders and Sandler (1993)), the choice between proactive and defensive countert-
errorism measures (Rosendor¤ and Sandler (2004)), and the e¤ect of concessions
to terrorists (Bueno de Mesquita (2005)). We are not aware of papers studying
the implications of copycat e¤ects. Furthermore, our model is distinct from most
of the literature because it is dynamic (with in�nite horizon), although it should
be noted that the dynamic structure is very simple because terrorist cells live for
one period only. Another dynamic model is Faria (2003).
The paper is organized as follows. In Section 2 we set up the model. Then we

consider the behavior of the terrorist cells in Section 3 and the problem of optimal
anti-terrorism in the two cases in Section 4. Finally, in Section 5, we discuss our
results and some ideas for further research.

2 The Model

In each period of time t = 0; 1; 2; ::: a terrorist cell is formed with probability
�t 2 (0; 1]. A cell lives for one period only and its only decision is whether to plan
a small or a large attack (it can only make one attack). If the cell formed in period
t succeeds in making a small attack then the damage is D > 0. If the cell succeeds
in making a large attack then the damage is

D(1 + "t);

where "t is drawn from a probability distribution on [0;1) with cumulative dis-
tribution function F . The realization of "t is known to the cell when it makes its
decision. We assume that F (0) = 0 and that F (") < 1 for all ". Furthermore
we assume that F is di¤erentiable on [0;1) such that it has the density function
f = F 0.
The authorities choose a level a 2 [0;1) of anti-terrorism in each period. The

level of anti-terrorism in some period t, at, decides how likely it is that a cell
formed in period t is rolled up before it attacks if the cell plans a large attack. If
the cell plans a small attack then the probability that it is rolled up is zero. While
this is hardly realistic it is a simple way of modelling that a cell preparing a small
attack is less likely to be rolled up because a small attack requires less planning.
Formally, if the cell decides to plan a large attack then the probability that is
rolled up before the attack is p(at), where p : [0;1) ! [0; 1] is a di¤erentiable
and strictly increasing function satisfying p(0) = 0. The level of anti-terrorism is
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known to the cell when it makes its decision. We assume that the cell maximizes
expected damage. Therefore the cell plans a small attack if

D > (1� p(at))D(1 + "t)

and a large attack if we have the opposite inequality. If the cell is indi¤erent then
we assume that it plans a small attack.
The aim of the authorities is to minimize the sum of discounted expected

damages and anti-terrorism costs by choosing the level of anti-terrorism in each
period. The discounting rate of the authorities is � 2 (0; 1). The cost of anti-
terrorism is given by a di¤erentiable and strictly increasing function c : [0;1) !
[0;1) with c(0) = 0.
The timing of events and decisions in period t is as described in the list below. It

is important to note that when the authorities decide on the level of anti-terrorism
they know �t and F but they do not know whether a cell will be formed and what
the realized value of "t will be in that case. rt denotes the damage from terrorism
in period t.
Timing of events and decisions in period t:

1. The authorities decide on at and pays the cost c(at);

2. A new cell is formed with probability �t;

3. If a cell was formed then the value of "t is realized and the cell decides on
what kind of attack to plan;

4. If a cell was formed and planned a small attack then it launches its attack
() rt = D);

5. If a cell was formed and planned a large attack then it is rolled up with
probability p(at) () rt = 0);

6. If a cell was formed, planned a large attack and was not rolled up then it
launches its attack () rt = D(1 + "t)).

In the following we �rst take a closer look at the behavior of the terrorist cells
and its consequences. Then we move on to the problem of optimal anti-terrorism.
We will focus on two cases. First, we consider a benchmark case where in each
period the probability of a new cell being formed does not depend on actions or
events in previous periods. Secondly, we consider a case where a copycat e¤ect is
in play, i.e. it is more likely that a cell is formed in the current period if there was
a large terrorist attack in the previous period than if there was not. Finally, we
compare the copycat case to the benchmark case.
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3 The Behavior of the Terrorist Cells

Suppose that in some period t the authorities choose the level of anti-terrorism a.
Furthermore suppose that a cell is formed. As noted above the cell plans a small
attack if (and only if)

D � (1� p(a))D(1 + "t):
Thus the probability that the cell launches a small attack is

Pr(D � (1� p(a))D(1 + "t)) = Pr("t � "�) = F ("�);

where

"� =
1

(1� p(a)) � 1 =
p(a)

(1� p(a)) :

Note that
@"�

@a
=

p0(a)

(1� p(a))2 > 0

which implies
@F ("�)

@a
=
@"�

@a
f("�) > 0:

Thus we see that an increase in the level of anti-terrorism makes it more likely that
the cell will make a small attack. The probability of the cell succesfully launching
a large attack is

(1� p(a))(1� F ("�)):

Since p0 > 0 and @F ("�)
@a

> 0 this expression is decreasing in a, so an increase in
a makes a large attack less likely. Adding the two probabilities above we get the
probability that the cell launches some kind of attack (i.e. the probability that it
is not rolled up):

P (a) = F ("�) + (1� p(a))(1� F ("�)) = 1� p(a)(1� F ("�)):

We see that
@P

@a
= �p0(a)(1� F ("�)) + p(a)@"

�

@a
f("�)

The �rst term arises from a�s e¤ect on the probability of the cell being rolled up.
This term is obviously negative. The second term arises from a�s e¤ect on the
cells decision about what kind of attack to plan. An increase in a makes it more
likely that the cell will plan a small attack which decreases the probability that it
is rolled up. Thus this term is positive. Generally we cannot say which of the two
e¤ects that dominates, it depends on the functions p and F and the value of a.
Below we show by an example that an increase in the level of anti-terrorism can
make a terrorist attack more likely. That is an interesting observation.
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Consider the following simple example:

p(a) =
a

1 + a
;

F (") = 1� exp(�"):

Then we have
"� =

a

(1 + a)(1� a
1+a
)
= a

and
f(") = exp(�"):

Thus the probability of the cell making an attack is

P (a) = 1� a

1 + a
exp(�a)

and hence we have
@P

@a
=
exp(�a)
(1 + a)2

(a(1 + a)� 1):

Loosely speaking, for small levels of a an increase in the level of anti-terrorism
makes a terrorist attack less likely and for large levels of a we have the opposite
e¤ect. More precisely, @P

@a
is negative for a�s below the positive root of a(1+ a)� 1

and positive for a�s above this root.

4 Optimal Anti-Terrorism

In this section we consider the problem of the authorities. First, we consider
our benchmark case where, for each t, �t (the probability of a cell being born in
period t) does not depend on what has happened in earlier periods. In that case
the authorities�problem is just a sequence of independent static problems which
are easy to solve. Secondly, we introduce a simple type of copycat e¤ect which
makes the authorities problem truly dynamic. We solve this problem by dynamic
programming. Finally, we compare the two cases.

4.1 The Benchmark Case

In this case the level of anti-terrorism chosen in some period t does not in�uence the
problem of the authorities in future periods. Thus in each period the authorities
simply choose the level of anti-terrorism that minimizes the sum of the expected
damage from the cell possibly formed in that period and the cost of anti-terrorism.
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Consider the authorities problem in period t. For simplicity we suppress sub-
script t�s such that we write �, a and " instead of �t, at and "t. The expected
damage from a cell formed in period t is

�(a) = F ("�)D + (1� F ("�))(1� p(a))D(1 + E["j" > "�]):

Note that

E["j" > "�] =
R1
"� �f(")d�

1� F ("�) :

We can write the problem of the authorities as

min
a2[0;1)

�(a);

where
�(a) = ��(a) + c(a):

Since p, c and F are di¤erentiable so is �. The �rst order condition for an interior
solution is

�0(a) = 0;

which can also be written
c0(a) = ���0(a):

This is a simple "marginal cost equals marginal bene�t" equation. The left hand
side is of course the marginal cost of anti-terrorism. The right hand side is minus
the marginal e¤ect of anti-terrorism on the expected damage from terrorism. By
di¤erentiating � and collecting terms (see the Appendix for details) we see that
the condition can be written as

c0(a) = �p0(a)(1� F ("�))D(1 + E["j" > "�]):

Under some additional assumptions on the functions p and c the solution to the
authorities problem is unique, interior and the only solution to the �rst order
condition.

Theorem 4.1 Suppose p and c are twice di¤erentiable and that we have the fol-
lowing conditions:

1. p0(0) > 0, c0(0) = 0 and lima!1 c
0(a) =1;

2. p00 � 0 and c00 > 0.

Then there is a unique solution to the authorities problem and it is interior and
the only solution to the �rst order condition.
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Proof. See the Appendix.

If the conditions in the theorem are satis�ed then we let �a denote the unique
solution to the authorities problem. By using the Implicit Function Theorem on
the �rst order condition it is easily seen that �a is a di¤erentiable function of � and
that

@�a

@�
> 0

(simply note that @�
0

@�
< 0 and, by the proof of Theorem 4.1, �00(a) > 0). So if the

probability of a cell being formed is increased then the authorities will choose a
higher level of anti-terrorism. This immediately implies that the probability of a
small attack,

�F ("�(�a));

is increasing in � (remember that "� increases with the level of anti-terrorism). We
cannot generally say in which direction the probability of a large attack,

�(1� F ("�(�a)))(1� p(�a));

changes when � increases. The same is true for the sum of the two probabilities and
for the expected damage, ��(�a). Note, however, that conditional on a cell being
formed we have that the probability of a large attack and the expected damage
from terrorism are decreasing in �. Conditioning on a cell being formed does not
change the result that the probability of a small attack is increasing in � or the
fact that we cannot determine in which direction the probability of some kind of
attack changes when � increases.
As an example of functions satisfying the conditions in Theorem 4.1 we can

take the example of p from the previous section and c(a) = a2. If we again
let F (") = 1 � exp(�") then the �rst order condition for optimal anti-terrorism
becomes

2a� �exp(�a)
(1 + a)2

(2 + a)D = 0:

4.2 Introducing a Copycat E¤ect

Now we introduce a simple type of copycat e¤ect. More speci�cally we assume
that �t is higher if there was a large terrorist attack in period t � 1 than if there
was not. To model the copycat e¤ect de�ne the variable x at time t as

xt =

�
s if rt�1 � D
l if rt�1 > D

�
:
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So xt = s (for small) if the damage from terrrorism was at most D in period t� 1.
If the damage was higher than D in period t� 1 then xt = l (for large). We then
let �t depend on xt and assume that

�t(s) < �t(l);

which re�ects the copycat e¤ect. We furthermore assume that �t(s) and �t(l) does
not depend on t. Thus we can write

�t(s) = �
s < �l = �t(l) for all t.

Having modelled the copycat e¤ect it is obvious that the level of anti-terrorism
chosen in period t in�uences the probability that a cell is born in period t + 1
because it in�uences rt and thus xt+1. Therefore the authorities must solve a
truly dynamic problem in order to �nd their optimal level of anti-terrorism in each
period. We solve the problem by dynamic programming.
The Bellman equation for the dynamic programming problem can be written

as
V (x) = inf

a2[0;1)
[�(a; x) + �(P (s; x; a)V (s) + P (l; x; a)V (l))];

where
�(a; x) = �x�(a) + c(a)

and
P (x0; x; a) = Pr(xt+1 = x

0jxt = x; at = a) for all x; x0 2 fs; lg:
Note that the Bellman equation is a little non-standard because the transition
probabilities depend on a. Writing the transition probabilities in detail we get

P (l; x; a) = �x(1� p(a))(1� F ("�))

and

P (s; x; a) = 1� P (l; x; a)
= 1� �x(1� p(a))(1� F ("�))

for all x 2 fs; lg, a 2 [0;1). By plugging in the transition probabilities the
Bellman equation becomes

V (x) = inf
a2[0;1)

[�(a; x) + ��x(1� p(a))(1� F ("�))(V (l)� V (s)) + �V (s)]:

Lemma 4.2 There exists a unique solution �V to the Bellman equation above. It
satis�es �V (s) < �V (l).
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Proof. See the Appendix.

Now, for each x 2 fs; lg, consider the problem

min
a2[0;1)

[�(a; x) + �(P (s; x; a) �V (s) + P (l; x; a) �V (l))]:

Pairs of solutions to these two minimization problems are solutions to the dynamic
programming problem of the authorities. In the theorem below we present an
existence and uniqueness result. For simplicity we de�ne

g(a; x) = �(a; x) + �(P (s; x; a) �V (s) + P (l; x; a) �V (l)):

Theorem 4.3 Suppose the assumptions from Theorem 4.1 are satis�ed, that F is
twice di¤erentiable, and that

@2

@a2
F ("�) =

@

@a
(
@"�

@a
f("�)) � 0:

Then, for each x 2 fs; lg, there is a unique solution to the problem considered
above and it is interior and the only solution to the �rst order condition

@

@a
g(a; x) = 0

Furthermore, letting �a+(x) denote the optimal level of terrorism in state x we have

�a+(s) < �a+(l):

Proof. See the Appendix.

The result that authorities choose a higher level of anti-terrorism when x = l
than when x = s is perhaps not surprising but it does have some interesting
implications. Consider the probability of a small attack as a function of x. This
probability is

�xF ("�(�a+(x)))

and thus it is highest when x = l. So if there was a large attack in the previous
period then there is a higher probability of a small attack than if there was not.
This is also true if we instead consider the probability of a small attack conditional
on a cell being born, which is of course equal to F ("�(�a+(x))). The probability of
a large attack as a function of x is

�x(1� p(�a+(x)))(1� F ("�(�a+(x)))):
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We cannot generally say whether this function is highest when x = s or when
x = l. However, note that the probability of a large attack conditional on a cell
being formed is highest when there was not a large attack in the previous period.
With respect to the expected damage from terrorism, �x�(�a+(x)), we again cannot
say whether it is highest when x = s or when x = l. But conditional on a cell
being born it is highest when there was not a large attack in the previous period.
Finally, note that the per period sum of damage from terrorism and anti-terrorism
costs,

�(a; x) = �x�(�a+(x)) + c(�a+(x));

is highest when x = l. This follows from the observation that �(a; s) is increasing
for a � �a+(s), which follows easily from Theorem 4.4 in the following section.
Now we will consider the problem of �nding the long run distribution of x when

the authorities behave optimally. De�ne

Q(x0; x) = P (x0; x; �a+(x)) for all x0; x 2 fs; lg

and note that
Q(x0; x) 2 (0; 1) for all x0; x 2 fs; lg:

These transition probabilities de�nes a map Q� on the set of probability distribu-
tions on fs; lg into itself by

(Q��)(x0) = Q(x0; s)�(s) +Q(x0; l)�(l); x0 2 fs; lg:

De�ne �� by

��(s) =
Q(s; l)

1�Q(s; s) +Q(s; l) :

It is easily seen that �� is the unique �xed point for Q� and that (Q�)t� ! �� for
any �. Hence �� is the unique stationary distribution of x and for any distribution
of x0 the distribution of xt converges to ��. Therefore we conclude that the long
run distribution of x is given by ��. Of course �� then determines the long run
distribution of the level of anti-terrorism and all functions thereof.
Finally we return brie�y to the example of p, F and c considered earlier. Since

F is twice di¤erentiable and

@2

@a2
F ("�) =

@2

@a2
(1� exp(�a)) = � exp(�a) < 0

we have that the conditions in Theorem 4.3 are satis�ed. For each x the �rst order
condition for optimal anti-terrorism is

2a� �x exp(�a)
(1 + a)2

(2 + a)D � ��x[exp(�a)
(1 + a)2

(2 + a)]( �V (l)� �V (s)) = 0;
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which can be simpli�ed to

2a� �x exp(�a)
(1 + a)2

(2 + a)(D + �( �V (l)� �V (s))) = 0:

By comparing with the �rst order condition from the benchmark case we see that
in each state the authorities behave as if they were in a case where there is no
copycat e¤ect and D is replaced by D + �( �V (l)� �V (s)).

4.3 Comparing the Two Cases

Consider the authorities�problem with and without the copycat e¤ect in some
period t. Suppose that � = �xt, i.e. that the probability of a new cell being
formed is the same whether or not there is a copycat e¤ect. Then the following
result shows that the authorities will choose a strictly higher level of anti-terrorism
if the copycat e¤ect is present. Note that we still assume that the assumptions in
Theorem 4.3 (which include the assumptions in Theorem 4.1) are satis�ed.

Theorem 4.4 If � = �x then
�a < �a+(x):

Proof. By the �rst order conditions for the two cases we have that

��0(�a) + c0(�a) = 0

and
�x�0(�a+(x)) + c

0(�a+(x)) > 0:

Since � = �x and ��(a) + c(a) is convex it follows that �a < �a+(x). 2

The intuition behind this result is the following. With the copycat e¤ect the
authorities do not only consider the sum of expected damage and anti-terrorism
costs in the present period, they also take into account that raising the anti-
terrorism level makes it less likely that a cell will be formed in the following period.
Thus the marginal bene�t from anti-terrorism is higher with the copycat e¤ect and
therefore a higher level is chosen.
From the result it follows easily that if we are in a period with � = �xt then

the probability of a small attack is higher with the copycat e¤ect than without it.
On the other hand the probability of a large attack and the expected damage from
terrorism is lower with the copycat e¤ect (note, however, that the sum of damages
and costs is higher with the copycat e¤ect).
Ultimately we want to compare long run distributions for the two cases. The

problem with this is how to choose the parameters �, �s and �l in order to get
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meaningful comparisons. We do it the following way. Fix �s and �l and suppose
that in each period the probability of a cell being formed in the benchmark case is

� =

�
�s with probability ��(s)
�l with probability ��(l)

�
;

where �� is the long run distribution of x from the copycat case. The realization
of � is known to the authorities when they choose the level of anti-terrorism. We
de�ne � this way to ensure that the long run distributions of the probability of a
cell being formed are the same in the benchmark and the copycat case. Thus any
di¤erence between the two cases does not arise because of di¤erences in these long
run distributions.
We say that a variable (e.g. the level of anti-terrorism or the expected damage

from terrorism) is higher in the long run with (without) the copycat e¤ect if the
long run distribution of the variable with (without) the e¤ect strictly �rst order
stochastically dominates the long run distribution without (with) the e¤ect. Note
that this implies that the long run average of the variable is higher with (without)
the e¤ect. With this de�nition we have the following results.

Theorem 4.5 Assuming � is distributed as described above the following state-
ments hold.

1. The level of anti-terrorism is higher in the long run with the copycat e¤ect.

2. The probability of a small attack (r = D) is higher in the long run with the
copycat e¤ect.

3. The probability of a large attack (r > D) is higher in the long run without
the copycat e¤ect

4. The expected damage from terrorism is higher in the long run without the
copycat e¤ect.

5. The sum of expected damage and anti-terrorism costs is higher in the long
run with the copycat e¤ect.

Proof. When � is distributed as described above then any variable v depending
on the level of anti-terrorism is higher in the long run with (without) the copycat
e¤ect if and only if

v(�a+(x)) � v(�a(�x)) for each x 2 fs; lg
( � )
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with strict inequality for at least one x. Using that observation all conclusions
follow easily from Theorem 4.4. 2

It is worth noting that we cannot generally say whether the long run probability
of some kind of attack (r > 0) is highest with or without the copycat e¤ect.

5 Discussion

Using our simple model of terrorist cells we saw that an increase in the level of anti-
terrorism makes it more likely that a cell will make a small attack and less likely
that it will make a large attack. The probability that a cell makes some kind of
attack (which is equal to the probability that it is not rolled up by the authorities)
can change in either direction. This is an interesting observation - spending more
on anti-terrorism may increase the probability of a terrorist attack. Suppose that
there has just been a terrorist attack and that the authorities increase the level
of anti-terrorism only to try to calm down the public. This e¤ort can have the
e¤ect that another terrorist attack becomes more likely! Note, however, that an
increase in the level of anti-terrorism always decreases the expected damage made
by a terrorist cell.
By analyzing the problem of optimal anti-terrorism we saw that the existence of

a copycat e¤ect o¤ers a rational choice explanation of why authorities increase the
level of anti-terrorism after a large attack. Therefore, when a copycat e¤ect exists
a terrorist cell formed after a large attack is more likely to make a small attack and
less likely to make a large attack. This implies that after a large attack there is a
larger probability of a small attack. But, because of the increased likelihood of a
cell being formed, it does not necessarily imply that there is a smaller probability
of a large attack. By the same argument we have that while the expected damage
made by a terrorist cell is smaller after a large attack, the a priori expected damage
from terrorism may be higher.
In our comparison of the copycat case and the benchmark case we saw that the

long run distribution of several variables di¤ers systematically in the two cases.
With the copycat e¤ect there is more anti-terrorism, more small attacks and a
higher sum of damages and costs while there is less large attacks and less damage.
Note that the benchmark case is the better one for the authorities because the
sum of damages and costs are lower.
The way we de�ne the copycat e¤ect is evidently stylized. Instead of assuming

that �t is a piecewise constant function of rt�1 with a jump at D it would be
more desirable to assume only that it is some increasing function of rt�1. That
would, however, also make the model more technically challenging to analyze. Our
intuition tells us that a model with a more realistic assumption on �t�s dependence
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on rt�1 would give results that are qualitatively similar to ours. Still, it would be
nice to see the analysis of such a model carried out.
The copycat e¤ect is introduced exogenously into the model. As we have

mentioned earlier there are good reasons for assuming that a copycat e¤ect exists.
Nevertheless, it would be desirable to have a model where the copycat e¤ect follows
endogenously from the dynamic interaction between terrorists and authorities (and
perhaps the public and the media). This is an interesting direction for further
research.
A di¤erent way of rationalizing that authorities increase the anti-terrorism level

after a large attack is to assume that such an attack reveals information that the
authorities use to update beliefs. For example, it could be information about the
number of existing cells, the probability that a cell is formed during some period of
time, or the striking capabilities of existing or new cells. Modelling this is another
possible direction for further research.
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7 Appendix

Proof of �0(a) = �p0(a)(1� F ("�))D(1 + E["j" > "�]).
First write �(a) as

�(a) = F ("�)D + (1� F ("�))(1� p(a))D + (1� p(a))D
Z 1

"�
�f(")d�:

By di¤erentiation we get

�0(a) =
@"�

@a
f("�)D � @"

�

@a
f("�)(1� p(a))D � p0(a)(1� F ("�))D

� p0(a)D
Z 1

"�
�f(")d�� (1� p(a))D@"

�

@a
"�f("�):

By collecting terms we then get

�0(a) = �p0(a)(1� F ("�))D(1 + E["j" > "�])

+
@"�

@a
f("�)D(1� (1� p(a))(1 + "�)):

Since "� = 1
(1�p(a)) � 1 it follows that the last term is equal to zero and thus we are

done. 2

Proof of Theorem 4.1.
First note that it su¢ ces to show that

�0(0) < 0; lim
a!1

�0(a) =1 and �00 > 0:

We know that

�0(a) = c0(a)� �p0(a)(1� F ("�))D(1 + E["j" > "�]):

Thus we have

�0(0) = c0(0)� �p0(0)(1� F (0))D(1 + E["j" > 0])
= c0(0)� �p0(0)D(1 + E["]):

And then it follows from the two �rst assumptions in 1: that �0(0) < 0. Now
rewrite �0 as

�0(a) = c0(a)� �p0(a)(1� F ("�))D � �p0(a)D
Z 1

"�
�f(")d�:
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By that expression and the assumption that p00 � 0 we see that

�0(a) � c0(a)� �p0(a)D(1 + E["])
� c0(a)� �p0(0)D(1 + E["])

Using that inequality it follows from the last assumption in 1: that lima!1 �
0(a) =

1. By di¤erentiating �0 we get

�00(a) = c00(a)� �p00(a)(1� F ("�))D(1 + E["j" > "�])

+ �p0(a)
@"�

@a
f("�)D(1 + "�):

By our assumptions the �rst term is strictly positive and each of the last two terms
are non-negative. Thus we have �00 > 0. 2

Proof of Lemma 4.2.
De�ne the map T from the set of real functions on fs; lg (which can be identi�ed

with R2) into itself by

(Tf)(x) = inf
a2[0;1)

[�(a; x) + �(P (s; x; a)f(s) + P (l; x; a)f(l))]:

It is easily checked that T satis�es Blackwells su¢ cient conditions for a contraction
(see e.g. Stokey and Lucas (1989), Theorem 3.3, p. 54). And then it follows by
Banach�s Fixed Point Theorem / The Contraction Mapping Theorem (see e.g.
Stokey and Lucas (1989), Theorem 3.2, p. 50) that there exists a unique �V such
that

T �V = �V :

Furthermore we have T nf ! �V for all f .
To show �V (s) < �V (l) it su¢ ces to show that, for any f ,

f(s) � f(l)) (Tf)(s) < (Tf)(l):

Because then we can pick such an f to get

�V (s) = lim
n
(T nf)(s) � lim

n
(T nf)(l) = �V (l)

and thus
�V (s) = (T �V )(s) < (T �V )(l) = �V (l):
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Suppose f(s) � f(l). Then we have

(Tf)(l) = inf
a2[0;1)

[�(a; s) + �(P (s; s; a)f(s) + P (l; s; a)f(l))

+ (�l � �s)�(a) + �(�l � �s)(1� p(a))(1� F ("�))(f(l)� f(s))]:

From this equation we see that

(Tf)(l) � inf
a2[0;1)

[�(a; s) + �(P (s; s; a)f(s) + P (l; s; a)f(l))] + (�l � �s) inf
a2[0;1)

[�(a)]

= (Tf)(s) + (�l � �s) inf
a2[0;1)

[�(a)]

and since infa2[0;1)[�(a)] = D it then follows that

(Tf)(l) > (Tf)(s):

2

Proof of Theorem 4.3.
First note that to prove the �rst statement of the theorem it su¢ ces to show

that, for each x 2 fs; lg,

@

@a
g(a; x)ja=0 < 0; lim

a!1

@

@a
g(a; x) =1 and

@2

@a2
g(a; x) > 0:

By di¤erentiation we get (after collecting some terms)

@

@a
g(a; x) =

@

@a
�(a; x)

+ ��x[�p0(a)(1� F ("�))� (1� p(a))@"
�

@a
f("�)]( �V (l)� �V (s)):

By plugging in a = 0 and using Theorem 4.1 we get

@

@a
g(a; x)ja=0 <

@

@a
�(a; x)ja=0 < 0:

Since p00 � 0 and @
@a
(@"

�

@a
f("�)) � 0 it follows that the term

p0(a)(1� F ("�)) + (1� p(a))@"
�

@a
f("�)
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is bounded. By Theorem 4.1 we have lima!1
@
@a
�(a; x) = 1 and thus we can

conclude that

lim
a!1

@

@a
g(a; x) =1:

By di¤erentiation of @
@a
g(a; x) we get

@2

@2a
g(a; x) =

@2

@2a
�(a; x)

+��x[�p00(a)(1�F ("�))+2p0(a)@"
�

@a
f("�)�(1�p(a)) @

@a
(
@"�

@a
f("�))]( �V (l)� �V (s)):

By our assumptions the term in the square brackets is non-negative and by The-
orem 4.1 we have @2

@2a
�(a; x) > 0. Thus we see that

@2

@a2
g(a; x) > 0:

To prove the last statement of the theorem note that

@

@a
g(a; l) =

@

@a
g(a; s)

+ (�l � �s)[�0(a)� �( �V (l)� �V (s))(p0(a)(1� F ("�)) + (1� p(a))@"
�

@a
f("�))]:

Since the term in the square brackets is negative we have

@

@a
g(a; l) <

@

@a
g(a; s):

Therefore
@

@a
g(a; l)ja=�a+(s) <

@

@a
g(a; s)ja=�a+(s) = 0:

And then it easily follows by the convexity of g(a; l) that

�a+(s) < �a+(l):

2
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