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 Abstract 
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 1.  Introduction 
 
 An analyst who is developing an evaluation of alternatives in a decision model must 

judge whether to model the consequences of the alternatives as outcomes that occur at 

discrete times or as outcomes that occur over continuous time. Outcomes occurring at 

discrete times are modeled as sequences defined on a finite or countable set of times and 

outcomes occurring over continuous time are modeled as functions defined on an interval 

of time, to be called a planning period. The judgment as to which type of model to use 

depends on the nature of the data, the nature of the consequences, and the proclivities of 

the analyst. Each type seems more appropriate under some circumstances. 

 This paper is concerned with outcomes that occur over continuous time, to be called 

outcome-streams. Thus, an outcome-stream is a function defined on an interval of time 

whose values are outcomes. At each instant of time, an outcome-stream is an amount or a 

rate—or more generally a vector of amounts and rates. For example, an outcome-stream 

at an instant of time might be: the rate of usage of a natural resource, one or more rates         

of monetary costs and benefits, a vector of indices that describe levels of environmental 

quality, or a double-subscripted vector of health characteristics that describe the health of 

the individuals in a population. 

 This paper develops models of preferences between outcome-streams. First, we 

develop models for a planning period with a finite horizon, and then we develop models 

for a planning period with an infinite horizon. Each model contains: outcome-streams 

that are real- or vector-valued functions defined on the planning period, and a preference 

relation defined on pairs of outcome-streams. We define conditions on the preference 

relation, and we show that it satisfies the conditions if and only if it is represented by an 

integral of a discounting function times a scale defined on outcomes at instants of time. 

This ‘outcome scale’ is ordinal but is cardinally unique. The integral will be called an 

integral value function, and the model will be called an integral-value model. 

 An outcome scale represents preferences between outcomes at a common instant of 

time, and a discounting function represents tradeoffs between amounts of the outcome 
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scale at different instants. For a more detailed interpretation of these functions, see the 

working paper, Harvey and Østerdal (2005), on which this paper is based. 

 The integral-value models are developed by successively extending the family of 

outcome-streams on which the preference relation is defined. First, we develop a model 

for outcome-streams that are step functions defined on a bounded time interval. Here, a 

value of the integral value function reduces to a sum of discount weights times outcome 

scale amounts. The number of terms in a sum will depend on the outcome-stream. 

 Second, we develop a model by extending the family of step outcome-streams to a 

family of outcome-streams defined on the bounded interval that are component-wise 

Riemann integrable. The value function in this model is an integral as described above. 

 Third, we develop a model for a family of outcome-streams defined on the interval 

from zero to infinity. Here, the outcome-streams equal a specified ‘null outcome’ after 

some time and are component-wise Riemann integrable on the bounded interval from 

zero to that time. The time will vary from one outcome-stream to another. 

 Fourth, we develop a model for a family of outcome-streams that are defined on the 

unbounded interval that are Riemann integrable on each bounded subinterval. The family 

is defined in terms of the preference relation. Roughly speaking, an outcome-stream is in 

the family provided that it is arbitrarily unimportant in the sufficiently distant future. 

 A detailed discussion is needed to compare these models with previous models on 

preferences between outcomes at discrete times (e.g., Koopmans, 1960, 1972, Diamond, 

1965, and Harvey, 1986, 1995) and on preferences between outcomes over continuous 

time (e.g., Grodal and Mertens, 1968, and Weibull, 1985). Hence, we defer a discussion 

to the end of the paper. Here, we discuss three features that distinguish the models in this 

paper from those in previous research. 
 
 (1)  In the fourth model mentioned above, the family of comparable outcome-streams is 

defined in terms of the preference relation. Such a dependence allows instances of the 

model to have discounting functions with various behaviours at infinity. Previous models 

specify the family of outcome-streams that are comparable, and thus place restrictions on 
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the discounting function. This is so since the integral value function in such a model must 

have a finite value for each outcome-stream in the specified family. 

 Each of the models here allows nonconstant discounting, i.e., the discounting function 

can be neither constant nor exponential. It has been argued that only constant discounting 

should be used in a prescriptive or normative analysis; such arguments are based on the 

principles of ‘temporal consistency’ and ‘economic efficiency.’ But Harvey (1994), 

Ahlbrecht and Weber (1995), and Bleichrodt and Gafni (1996) argue to the contrary that 

nonconstant discounting can be reasonable for such a purpose. All three papers discuss 

the principle of temporal consistency; Harvey also discusses that of economic efficiency. 

 In particular, the models here allow a discounting function in which the discount rate 

tends to zero as time tends to infinity. Such a ‘slow-discounting function’ (Harvey, 1995) 

is greater than a negative-exponential function in the sufficiently distant future and thus 

assigns more importance to outcomes that occur then. A slow discounting function can 

provide insight in a policy study, e.g., a study on natural resources or on environmental 

quality, in which it is essential to consider the importance of outcomes in the distant 

future. An analyst can use a slow-discounting function and compare an evaluation based 

on it with an evaluation based on a negative-exponential discounting function. 
 
 (2)  The models here allow vector-valued outcomes. Indeed, they allow certain cases in 

which some of the variables that define the outcomes are categorical variables rather than 

continuous variables. In the next section, we discuss this use of categorical variables. 

 If a utility scale has been previously specified, then one can introduce conditions on 

preferences between the induced utility-streams that imply an integral value function. 

However, the conditions cannot be interpreted unless the utility scale can be interpreted. 

In contrast to this approach, we do not assume that a utility scale has been previously 

specified, and we define conditions on preferences between the original outcome-streams. 
 
 (3)  The outcome-streams here are (component-wise) Riemann integrable functions on 

bounded intervals of time. Riemann integrable functions are more elementary than the 

Lebesgue integrable functions in previous models. Thus, we can deduce integral value 
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functions by using elementary real analysis—while previous models deduce integral 

value functions by using existence results from measure theory and functional analysis. 

 Families of Riemann integrable functions are sufficiently large to include both step 

functions and continuous functions. Hence, one could verify conditions on preferences 

between hypothetical step outcome-streams that imply parametric families of discounting 

functions and outcome scales (see, Harvey 1998a,b). Then, one could use the resulting 

integral value function to compare the actual, continuous outcome-streams in a study. 
 
 The results in this paper are ‘if and only if’ results; they establish that a preference 

relation satisfies the conditions in a model if and only if it is represented by a function 

having the properties in the model. In this sense, we do not assume extra ‘technical 

conditions’ such as solvability or differentiability. Proofs are provided in the Appendix. 

 

 2.  Components of the models 
 

 This section defines the components of the integral-value models presented in this 

paper. It therefore delineates the type of models that are included. 
 
Outcomes and outcome-streams.  Suppose that 1N ≥  real variables jx , 1, ,j N= … , 

have been defined on sets jX . Each variable jx  will be called a component variable, and 

each set jX  will be called a component set. A vector 1( , , )Nx x x= …  in the product set 

1 NX X X= ×…×  will be called an outcome, and the set X  will be called an outcome set. 

 We assume that each component set jX  is either an interval or a finite set of numbers. 

In the first case, jx will be called a continuous variable, and in the second case jx  will 

be called a categorical variable. 

 A planning period will be a bounded interval [0, ]P T= , 0 T< < ∞ , or the unbounded 

interval [0, )P = ∞ . The upper endpoint, T  or ∞ , will be called the planning horizon. 

 An outcome-stream will be a real- or vector-valued function 1( , , )N= …x x x  whose 

domain is a planning period P  and whose values are in an outcome set X . Each real-

valued function 1, , N…x x  in an outcome-stream x  will be called a component-stream. 
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 For outcome-streams and component-streams but not for other types of functions, we 

use bold type to distinguish between a function and its values. Thus, ( )x t= x  will denote 

the real- or vector value of an outcome-stream x  at a time t, and ( )j jx t= x  will denote 

the value of a component-stream jx at a time t. 
 
Step outcome-streams.  As a slightly imprecise notation, ‹ , ›a b  will denote any interval 

that has the finite or infinite endpoints a, b. Thus, either a or b may or may not be in the 

interval. A partition p  of a planning period [0, ]P T=  will be a set of intervals, 0 1‹ , ›a a , 

… , 1‹ , ›m ma a− , where 0 10 ma a a T= ≤ ≤ ≤ =…  and the intervals are pairwise disjoint 

with the union [0, ]T . 

 A step outcome-stream based on a partition p  will be an outcome-stream of the 

form, ( ) ( )t x i=x  for t  in 1‹ , ›i ia a− , 1, ,i m= … . Thus, an outcome-stream 

1( , , )N= …x x x  is a step outcome-stream if and only if each component-stream jx in x  is 

a step function with values in the component set jX . The set of step outcome-streams 

based on a partition p  will be denoted by pS , and the union of the sets pS  will be 

denoted by TS . 

 Outcome-streams of any type will be denoted by letters near the end of the alphabet, 

e.g., ,x y , etc., and outcome-streams that are constant will be denoted by letters near the 

beginning of the alphabet, e.g., ,a b , etc. An outcome-stream a  is to have the value a  

for any time t , and so forth. For outcome-streams ,x y  and a time interval ‹ , ›α β , 

‹ , ›( , )α βx y  will denote the outcome-stream such that ‹ , ›( , )( ) ( )t tα β =x y x  for t  in ‹ , ›α β  

and ‹ , ›( , )( ) ( )t tα β =x y y  otherwise. And for outcome-streams , ,x y z  and two disjoint 

time intervals ‹ , ›α β  and ‹ , ›′ ′α β , ‹ , › ‹ , ›( , , )′ ′α β α βx y z  will have a similar meaning. 

 The distance between two outcomes ,x y  is defined as their Euclidean distance 

| |x y− = 2 1/ 2
1[ ( ) ]N

j jj x y=∑ − . The distance between two outcome-streams ,x y  in a  

set pS  is defined as the integral, ( , )∆ =x y 11( ) | ( ) ( ) |i i
m
i a a x i y i−=∑ − − , of | ( ) ( ) |t t−x y . 

And the distance between two component-streams ,j jx y  in ,x y  is defined as the 

integral, | |j j∫ − =x y 11( ) | ( ) ( ) |i i j j
m
i a a x i y i−=∑ − − , of | ( ) ( )|j jt t−x y . The integral 

distances are the same for any set pS  that contains the step outcome-streams ,x y , and 

we have the inequalities: 1| | ( , ) | |N
k k j jj=∑∫ ∫− ≤ ∆ ≤ −x y x y x y  for 1, ,k N= … . 
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Preferences and their measurement.  By the term preferences, we mean either hedonic 

comparisons, i.e., comparisons of what a person or group experiences, or the preferences, 

either descriptive or prescriptive, of a person or group. 

 For two outcome-streams x, y in a set C, the statement that x is at least as preferred as 

y will be denoted by x y . Other types of relations will be defined in terms of x y  in 

the usual manner; e.g., x y∼  will mean that x y  and y x , and x y;  will mean that 

x y  and not y x . A set of statements, x y  with x, y in C, will be denoted by . 

With this interpretation,  will be called a preference relation on the set C. 

 For two outcomes x, y in an outcome set X, the statement that x is at least as preferred 

as y will be denoted by x X y, and X  will denote a set of such statements. 

 A function ( )V x  defined on a set C of outcome-streams will be called a value function 

for a preference relation  on C provided that ( ) ( )V V≥x y  if and only if x y  for any 

x, y in C. A similar definition applies for a function ( )v x  defined on an outcome set X. 

For purposes of distinction, such a function ( )v x  will be called an outcome scale. 

 The present paper defines conditions on a preference relation  for a variety of sets 

C and shows that  satisfies the conditions if and only if there exist functions ( )a t  and 

( )v x  such that the following integral is a value function for : 
 
 ( ) ( ) ( ( ))PV a t v t dt∫=x x .  
 

A function of this form will be called an integral value function, and a model of this type 

will be called an integral-value model. In each model, the function ( )a t  is a discounting 

function, and the function ( )v x  is an outcome scale. 
 
Coherence between  and X .  How should a preference relation on outcome-streams 

be related to a preference relation on outcomes?  One method is to define the preference 

relations and then introduce assumptions that connect them. A second method is to derive 

preferences between outcomes from preferences between outcome-streams. We will use 

the second method. In our opinion, preferences between outcome-streams have a direct 
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meaning and preferences between outcomes are based on such preferences. In brief, our 

reason is that outcomes must occur over time in order to be experienced. 

 To formalize the situation, suppose that a time 0τ >  in the planning period P and an 

outcome ο  in the outcome set X are specified and that ,Cτ ο  denotes the set of outcome-

streams of the form, [0, ]( , )τa o , a in X.  Suppose, moreover, that a preference relation  

has been defined on a set C of outcome-streams. We make the following assumption. 
 
Assumption 1.  The set C includes the set ,Cτ ο  for a specified time 0τ >  and a specified 

outcome ο , and a preference relation X  is defined on the outcome set X  by: 
 
  Xa b   if and only if  [0, ] [0, ]( , ) ( , )τ τa o b o .  
 

 The integral-value models include conditions on preferences which imply that the 

preference relation X  does not depend on the choice of τ  and ο . In the models with 

[0, )P = ∞ , we regard ο  as a ‘null outcome’ and we define the set C in terms of ο . 
 
Modeling assumptions on X .  The models in this paper include three assumptions on 

the preference relation X . First, we assume that X  is non-trivial, that is, there exist 

outcomes ,j jx x′  in jX  that are not indifferent according to X . The purpose of this 

assumption is to avoid discussing an uninteresting special case. The assumption implies 

that at least one of the sets jX  is non-point (i.e., it contains more than one number). 

 Second, we assume that X  is weakly increasing in each component variable. For an 

index 1, ,j N= … , suppose that jx  denotes a combination of amounts of the variables kx , 

k j≠ , and ( , )j jx x x=  denotes an outcome where jx  and the amounts kx , k j≠ , are 

suitably arranged. In this notation, the condition states that for each 1, ,j N= …  and any 

( , )j jx x x=  and ( , )j jx x x′ ′=  in X : j jx x′≥  implies Xx x′ . Typically, the condition 

can be satisfied by a suitable choice of the component variables. 

 The third assumption seems the most important. For our method of proof to succeed, 

we need a guarantee that the range of any continuous outcome scale ( )v x  is an interval. 

The additive-value model of Debreu (1960) is similar in this regard. It needs a guarantee 

that each function ( )i iv x  in an additive value function 1 1( , , ) ( )n
n i iiV x x v x=∑… =  has an 
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interval range. Debreu assumes that the domain iD  on which a function ( )i iv x  is defined 

is topologically connected. This condition is stronger than is needed; a set is topologically 

connected if and only if every continuous function defined on it has an interval range. 

 Harvey (2006) introduces a weaker condition and shows that it suffices for Debreu’s 

additive-value model. As a general definition, he calls a set S  with a preference relation 

 preferentially connected provided that S  cannot be divided into two non-empty sets 

A  and B  such that each is open as a subset of S  and a b;  for any elements a  in A  

and b  in B . He shows that a pair ( , )S  is preferentially connected if and only if any 

continuous function defined on S  that is a value function for  has an interval range. 

 As a basis for the models in this paper, we use an additive-value model in which each 

set iD  is a common outcome set X . Both here and in the rest the paper, the method of 

proof is the same whether X  is assumed to be topologically connected or is assumed to 

be preferentially connected. Hence, we assume only preferential connectedness. 

 Whereas topological connectedness of an outcome set requires that every component 

variable is a continuous variable, preferential connectedness permits some of the variables 

to be categorical. Because of its special structure, an outcome set X  is preferentially 

connected if and only if the subsets of X  defined by fixing the values of the categorical 

variables can be ordered such that any two adjacent subsets contain indifferent outcomes 

(Harvey, 2006). 

 The above three assumptions can be combined into the following statement. 
 
Assumption 2.  The preference relation X  defined on an outcome set X  is non-trivial 

and is weakly increasing in each component variable, and X  is preferentially connected. 
 
Definition 1.  A pair ( , )C  will be called an outcome-stream space and the related pair 

( , )XX  will be called an outcome space provided that Assumptions 1, 2 are satisfied. 

 

  3.  Conditions on preferences 
 

 This section presents conditions on preferences in an outcome-stream space ( , )C . 

It also presents several implications of the conditions for the outcome space ( , )XX . 
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 In contrast with Assumptions 1, 2, the conditions (A)-(E) below are ‘if and only if’ 

requirements in each integral-value model, that is, the conditions (A)-(E) both imply and 

are implied by the existence of an integral value function that has the stated properties. 

 Assumptions 1, 2 correspond to the assumption in Harvey (1998a,b) that the outcome 

set X  is a non-point interval in which greater amounts are preferred, and conditions (A)-

(E) correspond to conditions with the same labels in those papers. 
 
(A)   concurs with X  on C :  For any ,x y  in C ,  

 (a)  If ( ) ( )Xt tx y  almost everywhere (a.e.) for int P , then x y . 

 (b)  If ( ) ( )Xt tx y  a.e. in P  and ( ) ( )Xt tx y;  on a non-point interval, then .x y;  
 
(B)  is transitive on C :  For any , ,x y z  in C , if x y  and y z , then x z . 

  is complete on C :  For any ,x y  in C , either x y  or y x . 
 
(C)   is continuous on C  with respect to TS :  For any x  in C  and any w  in TS C∩ , 

 (a)  If w x≺ , then there exists a 0δ >  such that ( , )∆ < δz w  implies that z x≺  for any 

z  in TS C∩ . 

 (b)  If w x; , then there exists a 0δ >  such that ( , )∆ < δz w  implies that z x;  for any 

z  in TS C∩ . 
 
(D)   is tradeoffs independent on C :  Suppose that ,‹ ›a b  is a bounded interval in P  

and that the following outcome-streams are in C . Then, , ,( , ) ( , )‹ › ‹ ›a b a bx x x y  

implies that , ,( , ) ( , )‹ › ‹ ›a b a bz x z y . 
 
 Condition (D) states that if two outcome-streams are equal during an interval ‹ , ›α β  

(so that a comparison depends on outcomes at other times), then the common outcome-

stream in ‹ , ›α β  can be changed to another common outcome-stream in ‹ , ›α β  without 

changing the comparison. Condition (D) can also be interpreted as stating that tradeoffs 

(see below) at times not in ‹ , ›α β  do not depend on the outcome-stream in ‹ , ›α β . 

 Conditions analogous to (D) play an essential role in additive-value models: e.g., 

Debreu (1960) and Gorman (1968). Such conditions usually are called ‘preferential 
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independence.’ However, we prefer the term tradeoffs independence to emphasize the 

interpretation of (D) in terms of tradeoffs between outcomes at different times. 

 Two outcome pairs ,a b  and ,c d  will be called tradeoffs pairs with respect to a pair 

of intervals ‹ , ›α β  and ‹ , ›γ δ  in P  provided that ‹ , ›α β , ‹ , ›γ δ  are bounded and disjoint 

and ‹ , › ‹ , ›( , ,α β γ δa d o)  is indifferent to ‹ , › ‹ , ›, , )α β γ δb c o( . An outcome â  will be called a 

tradeoffs midvalue of an outcome pair ,a a  on an interval ‹ , ›α β  provided that there exist 

an interval ‹ , ›γ δ  and an outcome pair ,c d  such that ˆ,a a  and ,c d  are tradeoffs pairs 

and ˆ,a a  and ,c d  are tradeoffs pairs with respect to the intervals ‹ , ›α β  and ‹ , ›γ δ . 

 Condition (E) below is a requirement on preferences between outcome-streams of the 

form ‹ , › ‹ , ›( , ,α β γ δa b o). Thus, we use it only for sets C  that include any such outcome-

stream. A variety of analogous conditions for vectors and discrete-time consequences are 

described in Fishburn (1970), Krantz et al. (1972, page 305), and Harvey (1986, 1995). 
 
(E)   is midvalue independent on C :  For any bounded intervals ‹ , ›α β , ‹ , ›′ ′α β  in P , 

if an outcome pair a , a  has tradeoffs midvalues both on ‹ , ›α β  and on ‹ , ›′ ′α β , then the 

outcome pair a , a  has the same tradeoffs midvalues on ‹ , ›α β  and ‹ , ›′ ′α β . 
 
 We present below several implications of conditions (A)-(C) for an outcome space 

( , )XX . To do so, we need the following definitions. For two outcomes ,x y , x y≥  

will state that j jx y≥  for 1, , .j N= …  A preference relation X  will be called weakly 

increasing provided that x y≥  implies Xx y , and a real-valued function ( )v x  defined 

on X  will be called weakly increasing provided that x y≥  implies ( ) ( )v x v y≥ . Hence, 

any weakly increasing preference relation X  or function ( )v x  is weakly increasing in 

each component variable. Finally, a preference relation X  will be called continuous 

provided that for any outcomes x w;  there exists a 0δ >  such that for any outcome z :  

| |z w− < δ  implies z x≺ , and | |z x− < δ  implies z w; . 
 
Lemma 1.  Suppose that an outcome-stream space ( , )C  satisfies condition (B). Then: 

 (i)  The preference relation X  is transitive, complete, and weakly increasing. 

 (ii)  The outcome set X  contains outcomes ,x y  such that Xx y; . 



 11

 (iii)  Any outcome scale for the outcome space ( , )XX  is weakly increasing and has 

a non-point range, and any continuous outcome scale for ( , )XX  has an interval range. 

 (iv)  If the space ( , )C  satisfies condition (C), then the preference relation X  is 

continuous and there exists a continuous outcome scale for ( , )XX . 

 (v)  If the space ( , )C  satisfies condition (A), then the preference relation X  does 

not depend on the choice of τ  and ο , that is, for any time 0′τ >  and for any outcomes 

′ο  and ,a b , if the outcome-streams below are in C , then:  
 
  [0, ] [0, ]( , ) ( , )τ τa o b o   if and only if  [0, ] [0, ]( , ) ( , )′ ′τ τ′ ′a o b o . 

 

  4.  Models for a bounded planning period 
 
 This section presents two integral-value models for outcome-streams defined on a 

bounded planning period [0, ]P T= . First, we present a model for step outcome-streams 

on [0, ]T , and then we extend this result to present a model for a set of outcome-streams 

on [0, ]T  whose component-streams are Riemann integrable functions on [0, ]T . 
 

Step outcome-streams. As defined in Section 2, a step outcome-stream on [0, ]T  (i.e., an 

outcome-stream x  in )TS  has the form, ( ) ( )t x i=x  for t  in 1‹ , ›i ia a− , 1, ,i m= … , where 

0 1 1: ‹ , ›, , ‹ , ›m mp a a a a−…  is a partition of the interval [0, ]T . Such an outcome-stream is 

piecewise constant with a finite number of values. 
 

Theorem 1.  An outcome-stream space ( , )TS , 0T > , satisfies conditions (A)-(E) if 

and only if it has a value function of the form 
 

 0( ) ( ) ( ( )) ,   in  T
TV a t v t dt S∫=x x x  (1) 

 

such that the Lebesgue integral (1) exists for any x  in TS  and: 

 (a)  The function ( )v x  defined on the outcome set X  is continuous, weakly increasing, 

has a non-point interval range, and is an outcome scale for the outcome space ( , )XX . 

 (b)  The function ( )a t  defined on the planning period [0, ]P T=  is non-negative and 

Lebesgue integrable. 
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 (c)  The function 0( ) ( )tA t a s ds∫=  defined on [0, ]T  is strictly increasing, absolutely 

continuous, and has the value (0) 0A = . 

 (d)  The function ( )V x  is continuous on TS , that is, for any x  in TS  and any 0ε >  

there exists a 0δ >  such that ( , )∆ < δz x  implies | ( ) ( ) |V V− < εz x  for any z  in TS . 

 Moreover, the function ( )v x  is unique up to a positive affine transformation, and the 

function ( )A t  is unique up to a positive multiple. 
 

 The function ( )a t  can be interpreted as a discounting function, and the indefinite 

integral ( )A t  is then a cumulative discounting function. The fact that ( )a t  is not required 

to be Riemann integrable is of practical importance since a Riemann integrable function 

must be bounded. In particular, the model allows a discounting function to be unbounded 

near the present, 0t = . The most common such discounting functions are the so-called 

power discounting functions. They correspond to the functions ( ) kA t t=  where the 

parameter k  is in the range 0 1k< < . Then, 1( ) ka t k t −=  for 0t > , and thus ( )a t  is 

unbounded near 0t = . These discounting functions are used in descriptive models of 

choice behavior (e.g., Ainslie, 1992) and in prescriptive models of quality-adjusted life 

years (QALYs) (e.g., Pliskin et al., 1980). 

 The properties (a)-(c) of the functions ( )v x , ( )a t , and ( )A t  do not imply the joint-

continuity property (d) of the function ( )V x . For a counterexample, see Harvey (1998b). 

 Since an outcome-stream x  in TS  is in a set pS , i.e., x  is a step outcome-stream 

with respect to some partition p , the integral ( )V x  in (1) reduces to a finite sum 
 

 11( ) ( ) ( ) ( ) ,   in  ( )m pi i iiV A a A a v x S−=∑= −x x . (1 )′  
 

It follows that ( )V x  has the same value for any partition p  with x  in pS . 

 While a sum ( )V x  has a finite number of terms, the number of terms varies from one 

step outcome-stream to another. Indeed, there is no upper bound on the number of terms 

in a sum. Hence, the model here is not a finite additive-value model. 

 Our method of proof proceeds in a direction opposite to the above derivation of (1 )′  

from (1). First, we construct an additive-value model with a value function (1 )′  for a set 
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pS ; next we extend this result to construct a model for the union TS  of the sets pS ; and 

then we show that the value function (1 )′  can be written as a Lebesgue integral (1). 
 

Riemann outcome-streams. A real-valued function ( )f t  defined on an interval [0, ]T            

is said to be Riemann integrable provided that, roughly speaking, any sequence of sums 

11 ( ) ( )m
i i ii f t a a −=∑ −  based on partitions of [0, ]T  converges to the same amount as the 

maximum lengths of the intervals 1‹ , ›i ia a−  tend to zero. A function ( )f t  on [0, ]T  is 

Riemann integrable if and only if it is bounded and is continuous almost everywhere. 

 Here, we define a family of outcome-streams 1( , , )N= …x x x  on [0, ]T  by requiring 

that each component-stream jx  in x  is Riemann integrable and has bounds that are in the 

component set jX . Since each jx  is continuous at a time t  if and only if x  is continuous 

at t , and each ( )j j jx t x≤ ≤x  if and only if 1 1( , , ) ( ) ( , , )N Nx x x t x x x= … ≤ ≤ = …x , 

we can define the family by requiring properties of the outcome-stream x  itself. 
 
Definition 2.  An outcome-stream x  defined on [0, ]P T=  will be called a Riemann 

outcome-stream on [0, ]T  provided that: 

 (i)  x  is continuous almost everywhere on [0, ]T . 

 (ii)  There exist outcomes ,x x  such that ( )x t x≤ ≤x  for any t  in [0, ]T . 

 The set of Riemann outcome-streams on [0, ]T  will be denoted by TR . 
 
 Any outcome-stream on [0, ]T  that is piecewise continuous (e.g., a step outcome-

stream or a continuous outcome-stream) satisfies (i), (ii) above and thus is a Riemann 

outcome-stream on [0, ]T . Hence, the set TR  of Riemann outcome-streams on [0, ]T  

seems to be sufficiently inclusive for typical applications. 
 

Theorem 2.  An outcome-stream space ( , )TR , 0T > , satisfies conditions (A), (B) on 

the set TR , satisfies condition (C) on the pair of sets ,TR  ,TS  and satisfies conditions 

(D), (E) on the set TS  if and only if it has a value function of the form 
 
 0( ) ( ) ( ( )) ,   in  T

TV a t v t dt R∫=x x x  (2) 
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such that the Lebesgue integral (2) exists for any x  in TR  and the functions ( )v x , ( )a t , 

0( ) ( )tA t a s ds∫= , and ( )V x  have the properties (a)-(d) in Theorem 1. 

 Moreover, the function ( )v x  is unique up to a positive affine transformation, and the 

function ( )A t  is unique up to a positive multiple. 
 

 A real-valued function ( )f t  defined on [0, ]T  is Riemann integrable if and only if it 

is Darboux integrable, that is, there exists monotone sequences ( )
1{ }n

ns ∞
= , ( )

1{ }n
ns ∞
=  of 

step functions such that ( ) ( )( )n ns f t s≤ ≤ , t  in [0, ]T , and the distances ( ) ( )| |n ns s∫ −  

tend to zero as n  tends to infinity. The proof of Theorem 2 uses this equivalence. We 

show that for any Riemann outcome-stream x there exist monotone sequences ( )
1{ }n

n
∞
=s , 

( )
1{ }n

n
∞
=s  of step outcome-streams such that ( ) ( )( ) ( ) ( )n nt t t≤ ≤s x s , t  in [0, ]T , and 

the distances ( ) ( )( , )n n∆ s s  tend to zero as n  tends to infinity, and we use this ‘squeeze 

property’ of Riemann outcome-streams to extend the integral-value model in Theorem 1 

for step outcome-streams to an integral-value model for Riemann outcome-streams. 
 

 5.  Models for an unbounded planning period 
 
 This section presents two models for outcome-streams defined on the planning period 

[0, )P = ∞ . Like Theorems 1, 2, the first model is a steppingstone to the second model. 

 In the second model, the set of outcome-streams that are comparable (i.e., the set on 

which the preference relation is complete) is specified in terms of the preference relation. 

In this sense among others, the model differs from all previous continuous-time models 

and from most previous discrete-time models. See Section 6 for details. 

 The discrete-time models in Harvey (1986, 1995)—and models in Wakker (1993) for 

discrete probability distributions—do assume completeness of a preference relation on a 

set that depends on the relation. Harvey argues that this comparability dependence permits 

an arbitrary sequence of discount weights, and Wakker argues that it is the crucial change 

in the axioms of Savage (1954) that permits an unbounded utility function. 
 
Finite outcome-streams.  Here, we present a model in which each outcome-stream equals 

the null outcome ο  (see Assumption 1) after a time that depends on the outcome-stream. 
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Definition 3.  An outcome-stream x  on the planning period [0, )P = ∞  will be called a 

finite outcome-stream provided that there exists a horizon 0T >  such that the restriction 

of x  to [0, ]T  is a Riemann outcome-stream on [0, ]T  and ( )t = οx  for any t T> . 

 The set of finite outcome-streams will be denoted by fR . 
 
 An outcome-stream x in a set TR , 0T > , will be identified with the outcome-stream 

[0, ]( ,Tx ( , ) )T ∞o  in the set fR . Thus, fR  is the union of the sets TR . And for T T′ > , an 

outcome-stream x in TR will be identified with the outcome-stream [0, ]( ,Tx  ( , ] )T T ′o  in 

the set TR ′ , and thus, TR  is a subset of TR ′ . 
 
Theorem 3.  An outcome-stream space ( , )fR  satisfies conditions (A), (B) on each set 

TR , 0T > , satisfies condition (C) on each pair TR , TS , 0T > , and satisfies conditions 

(D), (E) on each set TS , 0T > , if and only if ( , )fR  has a value function of the form 
 
  0( ) lim ( ) ( ( )) ,   in  T

f
T

V a t v t dt R
→

∫=
∞

x x x  (3) 
 

such that the improper Lebesgue integral ( )V x  exists for any x  in fR  and: 

 (a)  The function ( )v x  defined on the set X  is continuous, weakly increasing, has a 

non-point interval range, is an outcome scale for the space ( , )XX , and ( ) 0v ο = . 

 (b)  The function ( )a t  defined on the interval [0, )∞  is non-negative and is Lebesgue 

integrable on each interval [0, ]T , 0T > . 

 (c)  The function 0( ) ( )tA t a s ds∫=  defined on the interval [0, )∞  is strictly increasing 

and is absolutely continuous on each interval [0, ]T , 0T > , and (0) 0A = . 

 (d)  For each 0T > , the function ( )V x  is continuous at each w  in TS  in that for any 

0ε >  there exists a 0δ >  such that ( , )∆ < δz w  implies | ( ) ( ) |V V− < εz w  for z  in TS . 

 Moreover, each of the functions ( )v x  and ( )A t  is unique up to a positive multiple. 
 

Comparable outcome-streams. The model in Theorem 3 can be extended to a model for 

a set of outcome-streams for which the improper integral (3) converges. We define a set 

of outcome-streams on [0, )∞ , and in terms of a preference relation on this set we define 

a smaller set and construct a model for the preference relation restricted to this smaller set. 
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Definition 4.  An outcome-stream x  on [0, )∞  will be called a Riemann outcome-stream 

on [0, )∞  provided that for any horizon 0T >  the restriction of x  to [0, ]T  is in TR . 

 The set of Riemann outcome-streams on [0, )∞  will be denoted by R∞ . 
 
 Suppose that a preference relation  is defined on a set R∞ . We do not assume that 

 is complete on R∞ ; instead, we will define a subset of R∞  in terms of  and assume 

that  is complete on the subset. Roughly speaking, the subset is to contain the outcome-

streams in R∞  that become arbitrarily unimportant in the sufficiently distant future. 

 To make this idea precise, consider tradeoffs between the immediate future period 

[0, 1]  and an unbounded future period ( , )t ∞ , 1t ≥ . Then, for an outcome-stream x  we 

can compare changes between two outcomes a  and b  in the period [0, 1]  with changes 

between x  and the null outcome-stream o  in the period ( , )t ∞ . 
 
Definition 5.  A Riemann outcome-stream x on [0, )∞  will be called comparable provided 

that for any outcomes X Xa b c≺ ≺  there exists a horizon 1T ≥  such that for any t T≥ : 
 
  ([0,1] [0,1] , ) [0,1]( , ) ( , , ) ( , )t ∞a o b o x c o≺ ≺ . 
 
 The set of comparable outcome-streams will be denoted by cR . 
 
 First, we show two circumstances in which an outcome-stream on [0, )∞  satisfies the 

above condition of comparability. 
 
Lemma 2.  Suppose that the pair ( , )R∞  is an outcome-stream space. Then: 

 (a)  Any finite outcome-stream is comparable. 

 (b)  For any two outcome-streams ,x y  in R∞ , if x  is comparable and there exists a 

horizon 0U >  such that ( ) ( )t t=x y  for all t U> , then y  is comparable. 
 
 Below, we present an integral-value model for an outcome-stream space ( , )cR . In 

this model, the improper integral (4) converges for any outcome-stream in the subset cR  

of R∞ . One may ask whether, conversely, any outcome-stream in R∞  such that the 

integral (4) converges is in the subset cR . This statement is true if and only if  satisfies 

an additional condition; see Harvey (1998b). 



 17

Theorem 4.  An outcome-stream space ( , )R∞  satisfies conditions (A), (B), and (D)              

on the set cR , satisfies condition (C) on each pair of sets TR , TS , 0T > , and satisfies 

condition (E) on each set TS , 0T > , if and only if the outcome-stream space ( , )cR  

has a value function of the form 
 
 0( ) lim ( ) ( ( )) ,   inT

cT
V a t v t dt R

→∞
∫=x x x  (4) 

 
such that the improper Lebesgue integral ( )V x  exists for any x  in cR  and the functions 

( )v x , ( )a t , ( )A t , and ( )V x  have the properties (a)-(d) in Theorem 3. 

 Moreover, each of the functions ( )v x  and ( )A t  is unique up to a positive multiple. 
 
 6.  Relationships with previous research 
 
 It is surprising that the models developed here were not developed long ago—at least 

for the case of a single outcome variable—and many readers may assume that they have 

been. In reflecting on our work, we cannot avoid the thought that one reason for this lack 

of prior research may be the difficulty of the proofs. We were unable to derive the models 

as corollaries of known mathematical results, and we leave it as an open question whether 

such an approach is possible. 

 However, a variety of continuous-time models have been developed, and thus we need 

to explain how they differ from those in this paper. For completeness, we also mention a 

few discrete-time models. Loewenstein (1992) provides a broader history of discounting. 

 Samuelson (1937) defined a continuous-time model in which the outcomes are rates 

x  of a person’s consumption, the outcome-streams are consumption streams ( )x t= x  

defined on an interval P, and preferences between the outcome-streams are represented 

by an integral, ( ) ( ( ))rt
PV e v t dt−
∫=x x , where 0r >  is an instantaneous discount rate 

and v(x) is the cardinal utility of a rate x of consumption. 

 Samuelson’s model is not a measurement theory model, that is, he did not deduce his 

integral value function from a list of conditions on preferences. Samuelson’s purpose for 

the model was to infer a person’s cardinal utility function for consumption rates from the 

person’s choices of optimal outcome-streams. 
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 A variety of measurement-theory models with discrete time have been developed. 

Williams and Nassar (1966) developed a model in which the outcomes are net gains and 

the outcome-streams are cash flows 0( , , )mx x= …x  for a fixed m . They establish that 

preferences satisfy certain conditions if and only if they are represented by a function of 

the form, 0( ) m
t ttV a x=∑=x . This model does not allow a nonlinear utility function v(x). 

 Koopmans (1960, 1972), Koopmans et al. (1964), and Diamond (1965) developed 

models in which the outcomes are in a connected subset of a space nR  and the outcome-

streams are sequences 0 1( , , )x x= …x  of outcomes at equally-spaced points of time, e.g., 

outcomes during annual periods. In each model, preferences satisfy certain conditions if 

and only if they are represented by a sum, 0( ) (1 ) ( )t
ttV r v x−∞

=∑= +x  where 0r >  is an 

annual discount rate and v(x) is the cardinal utility of an outcome x. 

 In each of these discrete-time models, categorical variables are not allowed, and the 

set of comparable outcome-streams does not depend on the preference relation. The finite-

period model by Williams and Nassar allows non-constant discounting while the infinite-

period models allow a nonlinear utility function v(x). 

 Harvey (1986, 1995) developed discrete-time models in which the outcomes are in an 

interval, the outcome-streams are sequences of outcomes, and preferences are represented 

by a function of the form, 0( ) ( )t ttV a v x∞
=∑=x . Here, the set of comparable outcome-

streams depends on the preference relation and non-constant discounting is allowed. 

 Two types of measurement-theory models with continuous-time have been developed. 

Grodal (2003, Section 12.3 and Note 12.5.1) presents models in which the outcomes are 

in a connected separable metric space X , the outcome-streams are Lebesgue measurable 

functions defined on an interval P with values in X , and preferences are represented by a 

function of the form, ( ) ( ) ( ( )) ( )PV a t v t d t∫= µx x  where µ is a measure on P. The models 

are based on a working paper by Grodal and Mertens (1968). 

 These models do not allow categorical outcome variables or a dependence of the set of 

comparable outcome-streams on the preference relation. In particular, constant outcome-

streams are assumed to be comparable. Thus, the models exclude non-discounting and 

certain types of so-called slow discounting (see, e.g., Harvey, 1986, 1995). 
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 Moreover, the models are incomplete in two ways. They establish that ‘if x is preferred 

to y then ( ) ( )V V>x y ,’ but they do not establish that ‘if ( ) ( )V V>x y  then x is preferred to 

y.’ Therefore, it could happen that ( ) ( )V V>x y  while x and y are indifferent. In this sense, 

V(x) only partially represents the preference relation. Second, the models establish that 

conditions on preferences imply that the preferences are partially represented by a function 

V(x) as described, but they do not establish the converse implication. 

 Weibull (1985) developed a second type of continuous-time model. In this model, the 

outcomes are real numbers and the set of outcome-streams is a convex cone C in a space 
1( )L µ  of measurable functions. By means of the Riesz Representation Theorem for affine 

functionals on 1( )L µ , he shows that preferences satisfy certain conditions if and only if 

they are represented by a function of the form, ( ) ( ) ( ) ( )PV a t t d t∫= µx x . 

 Weibull’s model differs from those in this paper in five respects. First, it allows only 

a single continuous outcome variable. Second, the set C of outcome-streams does not 

depend on the preference relation. The set C may be too small for many applications since 

any consequence in C has a finite non-discounted value, ( ) ( )P t d t∫ µx . Hence, outcome-

streams that are constant on an unbounded planning period are excluded. By contrast, the 

approach in this paper allows outcome-streams that lack finite non-discounted values.  

 Third, the set C of outcomes will be unbounded above whenever the outcome variable 

has positive values and unbounded below whenever it has negative values. By contrast, 

the approach in this paper allows component sets to be bounded or semi-bounded intervals 

or even finite sets. Such component sets may be needed in a variety of applications. 

 The fourth difference is that as in the Williams and Nassar model, a nonlinear utility 

function v(x) is not allowed. Thus, the model excludes issues of preferences such as 

decreasing marginal utility and intertemporal equity. 

 Fifth, the set C consists of Lebesgue integrable functions rather than Riemann out-

come-streams (whose component functions are therefore continuous almost everywhere). 

It seems likely that in any application the outcome-streams will be continuous almost 

everywhere. And in such an application, assumptions on preferences would be far more 

difficult to envision for Lebesgue outcome-streams than for Riemann outcome-streams. 
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  Appendix:  Proofs of Results 
 
Proof of Lemma 1.  By Assumption 1, the one-to-one correspondence between outcomes 

a  and outcome-streams [0, ]( , )τa o  defines the preference relation X  in terms of the 

preference relation  in the subspace ,( , )Cτ ο  of the outcome-stream space ( , )C . 

 To show parts (i), (ii), first observe that condition (B) implies that X  is transitive 

and complete. To show that X  is weakly increasing, consider two outcomes x y≥ . For 

each 0, ,k N= … , define ( )kx  as the vector with the components for 0, ,jy j k= …  and 

 for 1, , .jx j k N= + …  Then, (0)x x= , ( )Nx y= , and each vector ( )kx  is in the product 

set X . For each 1, ,k N= … , the outcomes ( 1)kx − , ( )kx  can differ only in their k-th 

components and ( 1) ( )k kx x− ≥ . Hence, Assumption 2 implies that ( 1) ( )k k
Xx x−  for 

each k , and thus Xx y  by transitivity. Assumption 2 also states that not all outcomes 

are indifferent. Since X  is complete, it follows that there exist outcomes Xx y; . 

 To show part (iii), suppose that ( )v x  is an outcome scale for ( , )XX . Then, x y≥  

implies that Xx y  by part (i) which implies that ( ) ( )v x v y≥ . Thus, ( )v x  is weakly 

increasing. By Assumption 2, there exist outcomes ,x y  with Xx y; . Thus, ( ) ( )v x v y>  

which implies that the outcome scale ( )v x  has a non-point range. And since ( , )XX  is 

preferentially connected by Assumption 2, a result in Harvey (2006) implies that any 

continuous outcome scale has an interval range. 

 For part (iv), suppose that the space ( , )C  satisfies condition (C). Then, the prefer-

ence relation X  is continuous since [0, ] [0, ]( ( , ), ( , ) ) | |a bτ τ∆ = τ −a o b o  for ,a b  in X , 

and thus a result in Debreu (1954, 1964) implies that X  has a continuous outcome scale 

(since the set X  with the metric of Euclidean distance is a separable metric space). 

 Part (v) is implied by the following more detailed result. 
 
Lemma A1.  If an outcome-stream space ( , )C  satisfies conditions (A), (B), then: 

 (i)  The comparison of outcome-streams in C  that are constant on an interval does not 

depend on the common outcome-stream at other times, that is, for any interval ‹ , ›α β , any 

outcomes ,a b , and any outcome-streams , ′y y : 
 
  ‹ , › ‹ , ›( , ) ( , )α β α βa y b y   if and only if  ‹ , › ‹ , ›( , ) ( , )α β α β′ ′a y b y . 
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 (ii)  The comparison of outcome-streams in C that are constant on a non-point interval 

does not depend on the common interval, that is, for any non-point intervals ‹ , ›α β  and 

‹ , ›′ ′α β , any outcomes ,a b , and any outcome-stream y : 
 
  ‹ , › ‹ , ›( , ) ( , )α β α βa y b y   if and only if  ‹ , › ‹ , ›( , ) ( , )′ ′ ′ ′α β α βa y b y . 
 
Proof.  For both parts, we show that Xa b  if and only if ‹ , › ‹ , ›( , ) ( , )α β α βa y b y  for 

any outcomes ,a b , any non-point interval ‹ , ›α β , and any outcome-stream y  in the set 

C. First, assume that Xa b . Then, ‹ , ›( , )( ) Xtα βa y  ‹ , ›( , )( )tα βb y for any t  in the 

planning period P . Hence, condition (A) implies that ‹ , › ‹ , ›( , ) ( , )α β α βa y b y . Next, 

assume that Xa b  is false. Then, Xb a;  since X  is complete by Lemma 1(i). Thus, 

‹ , ›( , )( ) Xtα βb y ‹ , ›( , )( )tα βa y  for any t  and ‹ , › ‹ , ›( , )( ) ( , )( )Xt tα β α βb y a y;  for t  in 

the non-point interval ‹ , ›α β . Hence, ‹ , › ‹ , ›( , ) ( , )α β α βb y a y;  by condition (A), and thus 

‹ , › ‹ , ›( , ) ( , )α β α βa y b y  is false. 

 Since  is transitive, the above result implies (i) and (ii) for any non-point interval 

‹ , ›α β . If ‹ , ›α β  is a point interval, then ‹ , › ‹ , ›( , )( ) ( , )( )t tα β α βa y b y∼  a.e. which implies 

‹ , › ‹ , ›( , ) ( , )α β α βa y b y∼  by condition (A). 
 

Lemma A2.  If an outcome-stream space ( , )TS  satisfies conditions (A)-(B), then: 

 (i)  For any point interval 1‹ , ›i ia a−  in [0, ]T  and any ,x y  in TS : if ( ) ( )t t=x y  for t  

not in 1‹ , ›i ia a− , then x y∼ . (In this sense, any point interval is ‘inessential.’) 

 (ii)  For any non-point interval 1‹ , ›i ia a−  in [0, ]T , there exist ,x y  in TS  such that 

( ) ( )t t=x y  for t  not in 1‹ , ›i ia a−  but x y∼  is false. (In this sense, any non-point interval 

is ‘essential.’) 
 
Proof. For part (i), consider two outcome-streams ,x y  as described. Then, ( ) ( )t t=x y  

a.e., and thus ( ) ( )Xt tx y∼  a.e. which implies that x y∼  by condition (A). 

 For part (ii), note that since X  is non-trivial and complete, there exist outcomes a, b 

such that Xa b; . Then, condition (A) implies that ‹ , › ‹ , ›( , ) ( , )α β α βa o b o; . 
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Lemma A3.  If an outcome-stream space ( , )TS  satisfies conditions (A)-(C), then for 

any non-point, disjoint intervals ‹ , ›α β , ‹ , ›′ ′α β  in [0, ]T  and any outcomes ,a b  such 

that Xa b≺ , there exist outcomes a+ , b−  such that: Xa a+≺ , Xb b− ≺ , and 
 

  , , , , , ,( , , ) ( , , ) ( , , )‹ › ‹ › ‹ › ‹ › ‹ › ‹ ›
+ −
α β ′ ′ ′ ′ ′ ′α β α β α β α β α βa a o a b o b b o≺ ≺ . 

 

Proof.  We show the existence of an outcome a+  as described. The arguments for the 

existence of b−  are similar and thus can be omitted. 

 Define { in : }XA x X x a− = ≺ , 0 { in : }XA x X x a= ∼ , and { in : }XA x X x a+ = ; . 

These sets are pairwise disjoint, and since X  is complete their union is X . Moreover, 

the sets 0A  and A+  are nonempty. We will use the assumption that X  is preferentially 

connected to show that there exist an 0a  in 0A  that is in the closure of A+ . 

 The set A+  is open since X  is continuous. Since X  is preferentially connected, it 

follows that A+  is not closed. However, the set 0A A+∪  is closed (again since X  is 

continuous), and thus the closure of A+  is a subset of 0A A+∪ . Hence, there exists an 

outcome 0a  in 0A  that is in the closure of A+ . It follows that there exists a sequence 

1{ }n na+ ∞
=  of outcomes in A+  such that 0| |na a+ −  tends to zero as n  tends to infinity. 

 Condition (A) implies ‹ , ›0 , , , , ,( , , ) ( , , ) ( , , )‹ › ‹ › ‹ › ‹ › ‹ ›α β ′ ′ ′ ′ ′ ′α β α β α β α β α βa a o a a o a b o≺∼  

since 0
X Xa a b≺∼ . Thus, condition (C) implies that there exists a 0δ >  such that for 

any a+ :  ‹ , › ‹ , ›0, ,( , , ), ( , , )‹ › ‹ ›( )α β α β
+

′ ′ ′ ′α β α β∆ < δa a o a a o  implies ‹ , › ,( , , )‹ ›α β
+

′ ′α βa a o ≺  

, ,( , , )‹ › ‹ ›′ ′α β α βa b o . By the above result, 10| | ( )a a+ −− < δ β−α  for some a+  in A+ , 

and it follows that ‹ , › ‹ , ›0 0, ,( , , ), ( , , ) ( ) | |‹ › ‹ ›( ) a aα β α β
+ +

′ ′ ′ ′α β α β∆ = β−α − < δa a o a a o . 
 

 Suppose that 1: ‹ , ›, 1, , ,i ip a a i m− = …  and 1: ‹ , ›, 1, , ,j jq b b j n− = …  denote two 

partitions of a planning period [0, ]T . Since the intersections 1 1‹ , › ‹ , ›i i j ja a b b− −∩  are 

pairwise disjoint, they form another partition of [0, ]T . We will refer to this partition as 

the conjunction of p and q, and we will denote it by pq. The sets pS  and qS  are subsets 

of pqS  since, for example, an outcome-stream that is in pS  is constant on each interval 

1‹ , ›i ia a−  and thus is constant on each interval 1 1‹ , › ‹ , ›i i j ja a b b− −∩ . 
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Lemma A4.  Suppose that an outcome-stream space ( , )TS  satisfies conditions (A)-

(E). Suppose, moreover, that a partition 1: ‹ , ›, 1, , ,i ip a a i m− = …  of [0, ]T  contains at 

least three non-point intervals. Then, the subspace ( , )pS  has a value function of the 

form 
 
 ,1( ) ( ( )) , inm

p pi p pi vV a x i S=∑=x x  (A1) 

such that: 

 (a)  The function ( )pv x  defined on X  is continuous, weakly increasing, and has a non-

point interval range. Moreover, it is an outcome scale for the outcome space )( , XX . 

 (b)  A coefficient ,i pa  is positive if 1‹ , ›i ia a−  is a non-point interval and zero otherwise. 

 Moreover, the function ( )pv x  is unique up to a positive affine transformation and 

the coefficients ,i pa  are unique up to a common positive multiple. 
 
Proof.  Assume that ( , )TS  satisfies conditions (A)-(E). The set pS  of outcome-streams 

x  of the form ( ) ( )t x i=x  for t  in 1‹ , ›i ia a− , corresponds to the set mX X X= ×…×  of 

outcome-vectors ( (1) , , ( ) )m x x m= …x . Thus,  induces a preference relation m  on 
mX , and the space ( , )m mX  can be identified with the space ( , )pS . We will define 

the distance between two outcome-vectors ,m mx y  in mX  as the distance ( , )∆ =x y  

1( ) | ( ) ( ) |m
i ii a a x i y i=∑ − − between the corresponding outcome-streams ,x y  in pS . 

 Lemma A2 implies that an i-th component set in mX  is essential if it corresponds to 

a non-point interval 1‹ , ›i ia a−  in the partition p  and is inessential if it corresponds to a 

point interval 1‹ , ›i ia a−  in p . Thus, mX  has at least three essential component sets. 

 Lemmas A1, A2 imply that the preference relation m  induces a preference relation 

on each essential component set that coincides with X  and induces a preference relation 

on each inessential component set that regards any outcomes as indifferent. Condition (B) 

implies that m  is transitive and complete, condition (C) implies that m  is continuous, 

and condition (D) implies that m  is tradeoffs independent. 

 The outcome space )( , XX  is preferentially connected. Hence, the extension of 

Debreu’s additive-value model in Harvey (2006) implies that ( , )m mX  has an additive 

value function, ( ) ( ( ))m m
M i iiV a v x i∈∑=x , where M  denotes the set of indices of the 
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essential component sets. Here, each component function ( )iv x  is a continuous value 

function for )( , XX , and each coefficient ia  is positive. Lemma 1 implies that each 

function ( )iv x  is weakly increasing and has a non-point interval range. Moreover, the 

functions ( )iv x , i  in M , are unique up to a common positive linear transformation and 

the coefficients ia , i  in M , are unique up to a positive multiple. 

 Condition (E) implies that m  satisfies the condition of ‘equal tradeoffs midvalues’ 

defined in Harvey (1986). By use of an argument there, the functions ( )iv x  can be chosen 

as a common function, which we will denote by ( )v x . Thus, the space ( , )m mX  has a 

value function of the form, ( ) ( ( ))m m
M iiV a v x i∈∑=x . By defining 0ia =  for each 

inessential component set, it follows that the space ( , )pS  has a value function of the 

form, ,1( ) ( ( ))m
p i p pi vV a x i=∑=x , where the function ( )pv x  and the coefficients ,i pa  

have the properties (a), (b). In particular, each coefficient for an inessential component 

set must be zero since the function ( )pv x  is not constant, and thus the coefficients ,i pa  

as described in (b) are unique up to a positive multiple. 
 

Proof of Theorem 1.  A partition with at least three non-point intervals will be called 

proper. The conjunction pq  of a proper partition p  and any partition q  is proper. Thus, 

the set TS  is the union of the sets pS  such that p  is a proper partition. 

 To show the forward implications, we normalize the value functions in Lemma A4 

and paste together the normalized functions to construct a value function of the form (1). 

 By Lemma 1, there exist outcomes 1 1
Xa a−; . Assume that for a proper partition p , 

the outcome scale ( )pv x  and the coefficients ,i pa  in a value function ( )pV x  in Lemma 

A4 are normalized such that 1( ) 1pv a− = − , 1( ) 1pv a = , and ,1 1m
i pi a=∑ = . The resulting 

scale ( )pv x , coefficients ,i pa , and function ,1( ) ( ( ))mp i p piV a v x i=∑=x  are unique. 

 For two proper partitions ,p q , suppose that ,1 1( ) ( ( , ))m n
pq ij pq pqi jV a v x i j= =∑ ∑=x  is 

the normalized value function for the conjunction pq . Then, ( )pqV x  is a value function 

for the subset pS  of pqS , and ,1 1( ) ( ) ( ( ))m n
pq ij pq pqjiV a v x i= =∑ ∑=x  for x  in pS . Since 

1( ) 1pqv a− = − , 1( ) 1pqv a = , and ,1 1( ) 1m n
ij pqi j a= =∑ ∑ = , ( )pqV x  is normalized as a value 
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function for pS . Thus, ( ) ( )pq pv x v x=  for x  in X  and , ,1
n

ij pq i pj a a=∑ =  for 1, ,i m= …  

by uniqueness. The same arguments apply for ( )pqV x  restricted to the subset qS  of pqS . 

 We will show that the normalized function ( )pv x  and the normalized coefficients 

,i pa  associated with a proper partition p  do not depend on p . First, note that for any 

two proper partitions p  and q : ( ) ( ) ( )p pq qv x v x v x= = , x  in X . We will denote the 

common function by ( )v x . 

 Next, we show that a normalized coefficient ,i pa  associated with a proper partition 

p  is a function, , 1( , )i p i ia f a a−= , of the endpoints 1ia − , ia  of the interval 1‹ , ›i ia a− . 

For suppose that p  is a proper partition with an interval 1‹ , ›h ha a−  and q  is a proper 

partition with an interval 1‹ , ›k kb b−  such that 1 1h ka b− −= , h ka b= . Then, the interval 

1 1‹ , › ‹ , ›h h k ka a b b− −∩  in the conjunction pq  also has these endpoints. Therefore, the 

intervals 1 1‹ , › ‹ , ›i i k ka a b b− −∩ , i ≠ h, and 1 1‹ , › ‹ , ›h h j ja a b b− −∩ , j k≠ , are point 

intervals, and hence ,ik pqa = 0 for i ≠ h and ,hj pqa = 0 for j k≠ . It follows that 

, , ,1
m

hk pq ik pq k qia a a=∑= =  and , , ,1
n

hk pq hj pq h pja a a=∑= = , and thus , ,k q h pa a= . 

 Suppose that p  is a proper partition with adjacent intervals 1‹ , ›h ha a− , 1‹ , ›h ha a +  

and q is a proper partition with an interval 1‹ , ›k kb b−  = 1 1‹ , › ‹ , ›h h h ha a a a− +∪ . For 

1h h′ = + : , , ,1
n

h p hj pq hk pqja a a=∑= = , , , ,1
n

h p h j pq h k pqja a a′ ′ ′=∑= = , and 

, ,1
m

k q ik pqia a=∑= =  , ,hk pq h k pqa a ′+  Thus, , , ,k q h p h pa a a ′= + . It follows that 

1 1 1( , ) ( , )h h h hf a a f a a− + −= +  1( , )h hf a a + , and thus ( , ) ( , ) ( , )f a c f a b f b c= +  for any 

a b c≤ ≤  in the interval [0, ]T . 

 To solve this functional equation, define ( ) (0, )A t f t= . Then, ( , ) ( ) ( )f b c A c A b= −  

and (0) (0,0) (0) (0) 0A f A A= = − = . See, e.g., Aczél (1966, pp. 223-224) for references. 

 The value function ,1( ) ( ( ))m
p i p piV a v x i=∑=x  for a set pS  can now be written as: 

 
  11( ) ( ) ( ) ( ( )) , in( )m

p i i piV A a A a v x i S−=∑= −x x , 
 
where the functions ( )A t  and ( )v x  are independent of the proper partition p . 

 If an outcome-stream x  is in the sets pS , qS  for different proper partitions ,p q , 

then x  is in pqS  and ( )pV =x  ( ) ( )pq qV V=x x . Thus, for any x  in TS , the amount ( )V x  
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in (2) is well-defined as the common amount ( )pV x  for any proper partition p  such that 

x  is in pS . 

 The function ( )V x  is a value function for the space ( , )TS . For consider any x , y  

in TS . Then, x  is in pS  and y  is in qS  for some proper partitions p and q. Hence, x  

and y  are both in pqS , and thus ( ) ( )pqV V=x x  and ( ) ( )pqV V=y y . Therefore, x y  if 

and only if ( ) ( )pq pqV V≥x y  if and only if ( ) ( )V V≥x y . 

 The normalizations, ,1 1m
i pi a=∑ = , imply that ( ) 1A T = . Hence, ( ) ( )V v a=a  for any 

outcome a . Moreover, an amount ( )V x  is a weighted average of amounts ( ( ))v x i . Thus, 

the range of the function ( )V x  equals the non-point interval range of the function ( )v x . 

 The normalization, 1( ) 1v a± = ± , of the function ( )v x  implies that the common range 

of the functions ( )v x  and ( )V x  includes the interval [ 1, 1]− . Thus, for any 1 1r− ≤ ≤  

there exists an outcome ra  such that ( )rv a r=  and ( )rV r=a . 

 Next, we show that the functions ( ), ( ), ( )v x A t V x , have properties (a)-(c). Lemma A4 

implies that ( )v x  has the properties in (a) since ( ) ( )pv x v x=  for any proper partition p . 

 The function ( )A t  is strictly increasing on [0, ]T  since by Lemma A4 any coefficient 

,i pa  for a nonpoint interval is positive. Moreover, (0) 0A =  as shown above. 

 To show that ( )A t  is absolutely continuous on [0, ]T  it suffices to show that for any 

0 1< ε <  there is a 0δ >  such that  11( )n
i ii a a −=∑ − < δ  implies 11 ( ) ( )( )n

i ii A a A a −=∑ − <  

ε  for any pairwise disjoint intervals 1( , ),i ia a−  1, ,i n= … , in the interval [0, ]T . Here, 

the union of the intervals 1( , )i ia a−  can be any subset of [0, ]T . 

 For intervals 1( , )i ia a−  as described, define a step outcome-stream z  by 1( )t a=z  if 

t  is in the union of the intervals 1( , )i ia a−  and 0( )t a=z  otherwise. Then, 0( , )∆ =z a  
1 0

11( ) | |n
i ii a a a a−=∑ − −  and 11( ) ( ) ( )( )n

i iiV A a A a −=∑= −z . 

 Consider an outcome-stream εa , 0 1< ε < . Then, 0 εa a≺ . Condition (C) implies that 

there exists a 0δ >  such that 0( , )∆ < δz a  implies εz a≺  for any z  in TS . Define 
1 0 1| | .a a −′δ = δ −  Then, 11( )n

i ii a a −=∑ ′− < δ  implies 0( , )∆ < δz a  implies εz a≺  

implies ( ) ( )V V ε<z a  implies 11 ( ) ( )( )n
i ii A a A a −=∑ − < ε . 

 To show property (c), consider an x  in TS  and an 0ε > . As the primary case, assume 

that there exist ,− +x x  in TS  with ( ) ( ) ( )V V V− +< <x x x . Since the function ( )V x  has 
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an interval range, ( ) ( ) ( ) ( ) ( )V V V V V− εε− ε < < < < + εx x x x x  for some −εx , εx  in 

TS . Thus, by condition (C) there exist 1 2, 0δ δ >  such that 1( , )∆ < δz x  implies −εz x; , 

and 2( , )∆ < δz x  implies εz x≺ . Define 1 2min ,{ }δ = δ δ . Then, ( , )∆ < δz x  implies 
− εεx z x≺ ≺  implies ( ) ( ) ( )V V V−ε < < + εx z x . 

 As a second case, assume that ( ) ( )V V≤z x  for any z  in TS . Then, there exists an 
−εx  in TS  such that ( ) ( ) ( )V V V−ε− ε < <x x x . Thus, by condition (C) there exists a 

0δ >  such that ( , )∆ < δz x  implies −εz x;  for z  in TS . Thus, ( , )∆ < δz x  implies 

( ) ( )V V −ε>z x  implies ( ) ( ) ( )V V V− ε < ≤x z x . The arguments are similar and thus can 

be omitted for the remaining case that ( ) ( )V V≥z x  for any z  in TS . 

 For the converse part of the proof, assume that an outcome-stream space ( , )TS  has 

a value function ( )V x  of the form (1) with properties (a)-(c). Then, it is straightforward 

to show that ( , )TS  satisfies conditions (A), (B), (D), and (E). 

 To show that ( , )TS  satisfies the continuity condition (C), consider any ,x y  in TS  

with x y≺  and thus ( ) ( )V V<x y . Define ( ) ( ) 0V Vε = − >y x . By property (c), there is a 

0δ >  such that ( , )∆ < δz x  implies | ( ) ( ) |V V− < εz x  for z  in TS . Thus, ( , )∆ < δz x  

implies ( ) ( )V V<z y  which implies z y≺ . By a similar argument, there is a 0δ >  such 

that ( , )∆ < δz y  implies z x; . Hence, condition (C) is satisfied. 

 It remains to show the uniqueness properties of the functions ( )v x and ( )A t . Suppose 

that 11( ) ( ) ( ) ( ( ))( )m
i iiV A a A a v x i−=∑= −x  and 11

ˆ ˆˆ ˆ( ) ( ) ( ) ( ( ))( )m
i iiV A a A a v x i−=∑= −x  are 

value functions for ( , )TS  with the properties (a)-(d). Then, for any proper partition p , 

( )V x  and ˆ( )V x  are value functions for the subset pS  of TS . Lemma A4 implies that 

1 1ˆ( ) ( )p pv x v x= α +β , x  in X , where 1 0pα > . Since ( )v x  has a non-point range, 1 1,p pα β  

are independent of p , and thus ˆ( )v x  is a positive linear transformation of ( )v x . 

 Lemma A4 also implies that 1 12
ˆ ˆ( ) ( ) ( ) ( )( )p

i i i iA a A a A a A a− −− = α − , 1, ,i m= … , 

where 2 0pα > . By adding these equations, it follows that 2
ˆ( ) ( )pA T A T= α , and thus 2

pα  

is independent of p . Hence, 1 1 0 2 1 0 2 1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )( )A a A a A a A a A a A a= − = α − α=  

where 2α  is the common value of 2
pα . But 1a  can be any time in [0, ]T , and thus ˆ( )A t  

is a positive multiple of ( )A t . 
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 Conversely, if 11( ) ( ) ( ) ( ( ))( )m
i iiV A a A a v x i−=∑= −x  is a value function for ( , )TS  

and ˆ( )V =x 11
ˆ ˆ ˆ( ) ( ) ( ( ))( )m

i ii A a A a v x i−=∑ −  where 1 1ˆ( ) ( )v x v x= α +β  and 2ˆ( ) ( )A t A t= α , 

1 2, 0α α > , then 1 2 1 1ˆ ˆ( ) ( ) ( )V V A T= α α +α βx x  and thus ˆ( )V x  is also a value function. 
 

Lemma A5.  An outcome-stream x  is a Riemann outcome-stream on [0, ]T  if and only if 

there exist two sequences ( )
1{ }n

n
∞
=x  and ( )

1{ }n
n
∞
=x  of step outcome-streams such that: 

 

 (1) (2) (2) (1)( ) ( ) ( ) ( ) ( )t t t t t≤ ≤ … ≤ ≤… ≤ ≤x x x x x  
 

for t  in [0, ]T , and limn→∞
( ) ( )( , ) 0n n∆ =x x . 

 
Proof.  For the forward implication, assume that x is a Riemann outcome-stream on [0, ]T . 

Then, each component-stream jx  is continuous a.e. and ( )j j jx t x≤ ≤x  for t  in [0, ]T . 

 Choose a nested sequence of partitions ( )
1{ }n

np ∞
=  so that ( ) ( )

1lim max( ) 0n n
i iin

a a −→∞
− = . 

For each 1, ,j N= … , define two sequences ( )
1{ }n

nj
∞
=x , ( )

1{ }n
nj
∞
=x  of step functions by: 

( ) ( ) ( )
1( ) inf { ( ) : , }‹ ›n n n

jj iit t t a a−= ∈x x  and ( ) ( ) sup{ ( ) :n
jj t t=x x ( ) ( )

1, }‹ ›n n
iit a a−∈  for t  in 

the subinterval ( ) ( )
1,‹ ›n n

iia a−  in the partition ( )np . Since a component set jX  is finite or 

an interval, and ( )j j jx t x≤ ≤x , the ‘inf’ and ‘sup’ values of the step functions ( ) ( )n
j tx , 

( ) ( )n
j tx , are in jX . Hence, the values of the corresponding vector-valued functions ( )nx , 

( )nx  are in the outcome set X , and thus ( )nx  and ( )nx  are step outcome-streams. 

 The sequences ( )
1{ }n

n
∞
=x , ( )

1{ }n
n
∞
=x  satisfy the stated inequalities since the sequence 

( )
1{ }n

np ∞
=  of partitions is nested. Moreover, limn→∞

( ) ( )( ) 0n n
j j∫ − =x x  for 1, ,j N= …  

since a real-valued function is continuous a.e. and bounded if and only if it is so-called 

Darboux integrable. Hence, limn→∞
( ) ( )( , ) 0n n∆ =x x  since 1( , ) | |j j

m
i=∑ ∫∆ ≤ −x y x y . 

 The proof of the converse implication is essentially the above arguments in reverse. 
 

Lemma A6.  Suppose that a function ( )a t  on [0, ]T  is non-negative, Lebesgue integrable, 

and its indefinite integral 0( ) ( )tA t a s ds∫=  is strictly increasing, and that a function ( )v x  

on X  is continuous and weakly increasing. Then, for any ,x y  in TR : 

 (a)  The function ( ( ))v tx  is Riemann integrable on [0, ]T  and the function ( ) ( ( ))a t v tx  

is Lebesgue integrable on [0, ]T . 
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 (b)  For any sequences ( )
1{ }n

n
∞
=x  and ( )

1{ }n
n
∞
=x  of step outcome-streams as described 

in Lemma A5,  lim
n→∞

( )
0 ( ) ( ( ))nT a t v t dt∫ x  = lim

n→∞
( )

0 ( ) ( ( ))nT a t v t dt∫ x  = 0 ( ) ( ( ))T a t v t dt∫ x . 

 (c)  If ( ( )) ( ( ))v t v t≤x y  a.e. on [0, ]T , then exactly one of the following cases is true: 

 (i) ( ( )) ( ( ))v t v t=x y  a.e. on [0, ]T , and 0 0( ) ( ( )) ( ) ( ( ))T Ta t v t dt a t v t dt∫ ∫=x y . 

 (ii) ( ( )) ( ( ))v t v t<x y  on a non-point interval, and 0 ( ) ( ( ))T a t v t dt∫ <x 0 ( ) ( ( ))T a t v t dt∫ y . 
 
Proof.  For (a), consider an outcome-stream x  in TR . Then, x is continuous a.e. and there 

are outcomes x , x  such that ( )x t x≤ ≤x  for t  in [0, ]T . Hence, the composite function 

( ( ))v tx  is continuous a.e. (since the function ( )v x  is continuous) and is bounded by ( )v x  

and ( )v x  (since ( )v x  is weakly increasing). Thus, ( ( ))v tx  is Riemann integrable. But 

( )a t  is Lebesgue integrable, and thus the product ( ) ( ( ))a t v tx  is Lebesgue integrable. 

 For (b), define ( ) ( ) ( )( ) ( ) ( )n n n
j j jf t t t= −x x , t  in [0, ]T , for each 1, ,j N= … . Then, the 

functions ( ) ( )n
jf t  are non-negative step functions and (1) (2)( ) ( )j jf t f t≥ ≥… , t  in [0, ]T . 

 The sequence ( )
1{ ( )}n

njf t ∞
=  converges for t  in [0, ]T . Define ( )jf t = lim

n→∞
( ) ( )n
jf t . 

Then, ( )jf t  is Lebesgue integrable and 0 ( )T
jf t dt∫  = lim

n→∞
( )

0 ( )nT
jf t dt∫  by the Monotone 

Convergence Theorem. But lim
n→∞

( )
0 ( ) 0nT

jf t dt∫ =  since lim
n→∞

( ) ( )( , ) 0n n∆ =x x . Hence, 

0 ( )T
jf t dt∫ = 0. 

 To show that ( ) 0jf t =  a.e. on [0, ]T , define { [0, ] : ( ) 0}jE t T f t= ∈ >  and mE =  

{ [0, ] : ( ) 1/ }jt T f t m∈ > , 1, 2,m = …. Then, 1m mE E∞
== ∪ . If the measure ( )Eλ  of the 

union E  is positive, then the measure ( )mEλ  of mE  is positive for some 1, 2,m = … . 

But ( )mEλ > 0 implies that 0 ( ) (1/ ) ( ) 0T
j mf t dt m E∫ ≥ λ >  which is a contradiction. 

 Thus, lim
n→∞

( ) ( )n
j t =x lim

n→∞
( ) ( )n
j t =x lim

n→∞
( ) ( )n
j tx  for all 1, ,j N= …  a.e. Since ( )v x  

is continuous, it follows that lim
n→∞

( )( ( ))nv t =x lim
n→∞

( )( ( ))nv t =x lim
n→∞

( )( ( ))nv tx  a.e. . 

Thus, lim
n→∞

( )( ) ( ( ))na t v t =x lim
n→∞

( )( ) ( ( ))na t v t =x lim
n→∞

( )( ) ( ( ))na t v tx  a.e. . 

 Since ( )
1{ ( ) ( ( )) }n

na t v t ∞
=x  is a weakly decreasing sequence of Lebesgue integrable 

functions, the Monotone Convergence Theorem implies that lim
n→∞

( )
0 ( ) ( ( ))nT a t v t dt∫ =x  

0 ( ) ( ( ))T a t v t dt∫ x . And by a similar argument, lim
n→∞

( )
0 0( ) ( ( )) ( ) ( ( ))nT Ta t v t dt a t v t dt∫ ∫=x x . 

 For (c), assume that ( ( )) ( ( ))v t v t≤x y  a.e.  Then, 0 0( ) ( ( )) ( ) ( ( ))T Ta t v t dt a t v t dt∫ ∫≤x y  

since ( )a t is non-negative. But 0 0( ) ( ( )) ( ) ( ( ))T Ta t v t dt a t v t dt∫ ∫=x y  if ( ( )) ( ( ))v t v t=x y  a.e.. 

Suppose ( ( )) ( ( ))v t v t<x y  on a set E  of positive measure. Since x , y  are continuous a.e., 
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they are continuous at a time 0t  in E . Define 0 0( ( )) ( ( )) 0v t v tε = − >y x . There exists a 

non-point interval ,‹ ›α β  with ( ( )) ( ( )) /2v t v t− > εy x  on ,‹ ›α β . Thus, ( ( )) ( ( ))v t v t<x y  

on ,‹ ›α β , and 0 0( ) ( ( )) ( ) ( ( ))T Ta t v t dt a t v t dt∫ ∫−y x ( ( ) ( )) /2 0A A≥ β − α ε > . 

 

Proof of Theorem 2.  For the forward part of the proof, assume that an outcome-stream 

space ( , )TR  satisfies the stated conditions. Then,  restricted to the set TS  satisfies 

the conditions in Theorem 1. Thus, there exist functions ( )v x , ( )a t , ( )A t , ( )V x  with the 

properties (a)-(d) in Theorem 1 such that ( )V x  is a value function for the space ( , )TS . 

Moreover, the function ( )v x  is unique up to a positive linear transformation, and the 

function ( )A t  is unique up to a positive multiple. 

 By Lemma A6(a), the function ( ) ( ( ))a t v tx  is Lebesgue integrable for any x in the set 

TR  and thus 0( ) ( ) ( ( ))TV a t v t dt∫=x x  is well-defined on .TR  Our task is to show that ( )V x  

is a value function for the space ( , )TR . To do so, we establish the following properties. 
 
 (i)  For any x  in TR  and any 0ε > , there exists a w  in TS  such that w x∼  and 

| ( ) ( ) |V V− < εw x . 
 
Proof:  Consider x  in TR  and 0ε > . By Lemmas A5, A6, there exist x , x  in TS  such 

that: (1)  ( ) ( ) ( )t t t≤ ≤x x x , t in [0, ]T , and (2)  | ( ) ( ) |V V− < εx x  and | ( ) ( ) |V V− < εx x . 

 The inequalities (1) imply ( ) ( ) ( )X Xt t tx x x  and ( ( )) ( ( )) ( ( ))v t v t v t≤ ≤x x x  for t  

in [0, ]T  by Lemma 1. Hence, x x x  by condition (A), and ( ) ( ) ( )V V V≤ ≤x x x  by 

Lemma A6(c). If x x∼  or x x∼ , then by the inequalities (2) we are through. 

 Assume the remaining case that x x≺  and x x≺ . Then, x x≺ , and thus ( ) ( )t t≠x x  

on a non-point interval 1,‹ ›i ia a− . Hence, ( , ) 0∆ >x x . 

 Define (1 )λ = λ + −λx x x  for 0 1≤ λ ≤ . Then, (1) implies ( ) ( ) ( )t t tλ≤ ≤x x x , t  in 

[0, ]T , and thus ( ) ( ) ( )V V Vλ≤ ≤x x x  by Lemma A6. Hence, | ( ) ( ) |V Vλ − < εx x  by (2). 

 One can check that ( )( )µ λ− = µ −λ −x x x x  for ,λ µ  in [0, 1]  and thus ( , )λ µ∆ =x x  

1 11 1( ) | ( ) ( ) | ( ) | | | ( ) ( ) |m m
i i i ii ia a x i x i a a x i x iλ µ= =∑ ∑− −− − = − λ −µ − = | | ( , )λ −µ ∆ x x . 

 Define { [0,1] : }L λ= λ∈ x x≺  and { [0,1] : }U λ= λ∈ x x; . Then, L  and U  are 

disjoint, 0 is in L , and 1 is in U . Moreover, the sets L  and U  are open relative to [0,1] . 

For consider, e.g., an λ  in L . Then, λx x≺ , and thus by condition (C), there is a 0δ >  
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such that ( , )µ λ∆ < δx x  implies µx x≺ . Hence, 1| | ( , )−µ −λ < ∆ δx x  implies that µ  is 

in L . Since [0,1] is connected, there exists a ν  in [0,1]  that is not in L  or U , and thus 

vx x∼  by the completeness of . 
 
 (ii)  ( ) ( )V V<x y  implies x y≺  for any ,x y  in TR . 
 
Proof.  Consider ,x y  in TR  with ( ) ( )V V<x y . Define 1 2/ ( ( ) ( ) )V Vε = −y x . By (i), 

there exist ,w z  in TS  with w x∼ , z y∼ , | ( ) ( ) |V V− < εw x , and | ( ) ( ) |V V− < εz y . 

Hence, ( ) ( )V V<w z , and thus w z≺  since the function ( )V x  represents ( , )TS . 

Therefore, x y≺  by the transitivity of . 
 
 (iii)  ( ) ( )V V=x y  implies x y∼  for any ,x y  in TR . 
 
Proof.  Consider ,x y  in TR  with ( ) ( )V V=x y . By property (i) there exist ,w z  in TS  

such that w x∼  and z y∼ . Then, ( ) ( )V V=w x  and ( ) ( )V V=z y  since otherwise, e.g., 

( ) ( )V V<w x  which implies w x≺  by (ii). Thus, ( ) ( )V V=w z . Since the function ( )V x  

represents ( , )TS , this equality implies that w z∼ . Therefore, x y∼  by transitivity. 
 
 Properties (ii), (iii) imply that ( )V x  is a value function for ( , )TR . For x y  implies 

not x y≺  which implies ( ) ( )V V≥x y  by (ii), and ( ) ( )V V≥x y  implies ( ) ( )V V>x y  or 

( ) ( )V V=x y  which implies x y;  or x y∼  by (ii) and (iii) which implies x y . 

 For the converse part of the proof, assume that a function ( )V x  of the form (2) is 

well-defined and is a value function for an outcome-stream space ( , )TR , and that the 

functions ( )v x , ( )a t , ( )A t , and ( )V x  satisfy the properties (a)-(d). Then,  satisfies 

condition (B) on TR  since ( )V x  is a value function, and  satisfies conditions (D) and 

(E) on the set TS  by Theorem 1. 

 To show that  satisfies condition (A) on TR , assume that ( ) ( )Xt tx y  a.e. . Then, 

( ( )) ( ( ))v t v t≥x y  a.e. by property (a). Hence, ( ) ( )V V≥x y  by Lemma A6(c), and thus 

x y . If also ( ) ( )Xt tx y;  a.e. on a non-point interval ,‹ ›α β , then ( ( )) ( ( ))v t v t>x y  on 

,‹ ›α β . Hence, ( ) ( )V V>x y  by Lemma A6(c), and thus x y; . 

 To show that  satisfies condition (C) on the pair of sets TR , TS , consider any x  in 

TR  and w  in TS  such that w x≺ . Then, ( ) ( )V V<w x . Define ( ) ( ) 0V Vε = − >x w . By 

property (c) in Theorem 1, there exists a 0δ >  such that for any z  in TS  ( , )∆ < δz w  
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implies | ( ) ( ) |V V− < εz w . But | ( ) ( ) |V V− < εz w  implies ( ) ( )V V<z x  implies z x≺ . 

The argument when w x;  is similar, and thus condition (C) is satisfied. 

 To prove the uniqueness properties of the functions ( )v x  and ( )A t , consider two 

functions ( )V =x 0 ( ) ( ( ))T a t v t dt∫ x , ˆ ( )V =x 0 ˆ ˆ( ) ( ( ))T a t v t dt∫ x , and the associated functions, 

0( ) ( )tA t a s ds∫= , 0
ˆ ˆ( ) ( )tA t a s ds∫= . Assume that ( )V x  and ˆ( )V x  are value functions for 

the space ( , )TR  and that they satisfy the properties (a)-(d). Then, by Theorem 1 the 

function ˆ( )v x  is a positive linear transformation of the function ( )v x  and the function 
ˆ( )A t  is a positive multiple of ( )A t . It is straightforward to verify that, conversely, if 

( )V x  is a value function for ( , )TR , ˆ( )v x  is a positive linear transformation of ( )v x , 

and ˆ( )A t  is a positive multiple of ( )A t , then ˆ( )V x  is a value function for ( , )TR . 
 

Proof of Theorem 3.  Since TR  is a subset of TR ′  for T T′ > , fR  is the union of the sets 

TR , T U≥ , for any horizon U < ∞ . For our purposes, we choose 1U = . 

 First, we show the forward implications. Lemma 1 implies that there exists an outcome 

Xx+ ο;  or an outcome Xx− ο≺ . The arguments are the same in both cases, so it suffices 

to assume that there is an outcome Xx+ ο; . 

 The assumptions in Theorem 3 imply those in Theorem 2 for any horizon 0T > . And 

Theorem 2 implies in particular that for any 1T ≥  there exist a value function ( )TV x  as 

described for the space ( , )TR . Moreover, we can assume that the associated functions 

( )Tv x , ( )TA t  are normalized such that ( ) 0Tv ο = , ( ) 1Tv x+ = , (0) 0TA = , (1) 1TA = , 

and thus ( )Tv x  and ( )TA t  are unique. Then, for any 1T T′ > ≥ , both ( )TV x  and ( )TV ′ x  

are normalized value functions for ( , )TR , and thus ( ) ( )T Tv x v x′=  for x  in X  and 

( ) ( )T TA t A t′=  for 0 t T≤ ≤ . 

 Hence, the following functions are well-defined: the function ( )v x , x  in X , defined 

by ( ) ( )Tv x v x=  for x  in X , and the function ( )A t , 0 t≤ < ∞ , defined by ( ) ( )TA t A t=  

for 0 .t T≤ ≤  We define a function ( ),a t  0 t≤ < ∞ , by ( ) ( )a t A t′=  if the derivative ( )A t′  

exists and ( ) 0a t =  otherwise. Hence, ( ) ( ) ( )Ta t A t a t′= =  a.e. for 0 ,t T≤ ≤  and thus 

( )TV x = 0 ( ) ( ( ))T
T Ta t v t dt∫ x = 0 ( ) ( ( ))T a t v t dt∫ x  for x  in TR . Finally, we define a function 
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( )V x , x  in fR , by ( ) ( )TV V=x x  for x  in TR . Since ( ) 0v ο = , this definition implies 

that, ( )V x = lim
T→∞

( )TV x  = lim
T→∞ 0 ( ) ( ( ))T a t v t dt∫ x , for any x  in fR . 

 Theorem 2 implies that ( )V x  is a value function for ( , )TR  for any 1T ≥  and that 

the functions ( )v x , ( )A t , ( )a t , ( )V x  have properties (a)-(d). Moreover, ( )V x  is a value 

function for ( , )fR . For consider any ,x y  in fR . Then, x  is in TR  and y  is in TR ′  

for some , 1T T ′ ≥ . Assume that T T ′≤ . Then, x  and y  are in TR ′  and thus can be 

compared by the normalized function ( )TV ′ x . Thus, x y  if and only if ( ) ( )T TV V′ ′≥x y  

if and only if ( ) ( )V V≥x y  since ( ) ( )TV V ′=x x  and ( ) ( )TV V ′=y y . 

 To show the converse implications, assume that there exist functions ( ),v x ( ),A t  ( ),a t  

and ( )V x  as described in Theorem 3. Then, Theorem 2 implies that for any 0T >  the 

preference relation  satisfies conditions (A)–(E) with regard to the sets TR and TS . 

 To show that each function A(t) and v(x) is unique up to a positive multiple, consider 

two value functions ( )V x  = lim
T→∞ 0 ( ) ( ( ))T a t v t dt∫ x  and ˆ( )V x  = lim

T→∞ 0 ˆ ˆ( ) ( ( ))T a t v t dt∫ x  as 

described in Theorem 3. In particular, ˆ( ) ( ) 0v vο = ο =  and ˆ(0) (0) 0A A= = . 

 For any 0T > , the functions ( )V x , ˆ ( )V x  restricted to TR  are 0( ) ( ) ( ( ))TV a t v t dt∫=x x  

and ˆ( )V x  = 0 ˆ ˆ( ) ( ( ))T a t v t dt∫ x . Thus, Theorem 2 implies that there exist constants 0,Tα >  

Tβ , and 0Tγ >  such that ˆ( ) ( )T Tv x v x= α +β , x  in X , and ˆ( ) ( )TA t A t= γ , 0 .t T≤ ≤  

Then, 0Tβ =  since ˆ( ) ( ) 0v vο = ο = . Moreover, Tα  and Tγ  are independent of 0T > . 

The reason is that for T T ′≤ : ˆ( ) ( ) ( )T Tv x v x v x′α = = α , x  in X  and ˆ( ) ( )T A t A tγ = =  

( )T A t′γ , 0 t T≤ ≤ . Since ( ) 0v x+ ≠ , ( ) 0A T ≠ , it follows that T T ′α = α  and T T ′γ = γ . 
 

Proof of Lemma 2.  To show (a), consider an x  in fR . Then, there is a 1T ≥  such that 

( , ) ( , )t t∞ ∞=x o  for t T≥ . But X Xa b c≺ ≺  implies [0,1] [0,1] [0,1]( , ) ( , ) ( , )a o b o c o≺ ≺  

by the definition of X , and thus x  satisfies Definition 5. 

 For (b), consider two outcome-streams x , y  in R∞  such that y  is in R . If there 

exists a time 0U >  such that ( ) ( )t t=x y  for any t U> , then ( , ) ( , )t t∞ ∞=x y  for t U≥ , 

and thus y  satisfies Definition 5 with the horizon T  replaced by the horizon max{ , }T U . 
 

Lemma A7.  Suppose that the preference relation  in an outcome-stream space ( , )R∞  

satisfies conditions (B), (D) on the set R  and satisfies conditions (A), (C) on each set 
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,TS  0T > . Then, for any outcome-stream x  in R , any non-point, bounded interval 

,‹ ›,α β  and any outcomes X Xa b c≺ ≺ , there exists a time T ≥ β  such that: 

  (, , ), ,( , ) ( , , ) ( , )‹ › ‹ › ‹ ›tα β ∞α β α βa o b o x c o≺ ≺ ,  t T≥   
 
Proof.  It suffices to show that for any non-point, bounded, disjoint intervals ‹ , ›α β , 

‹ , ›′ ′α β , if an outcome-stream in R  satisfies the comparability condition with respect  

to ‹ , ›′ ′α β , then it satisfies the comparability condition with respect to ‹ , ›α β . This result 

implies the lemma for the case that [0, 1]  and ‹ , ›α β  are not disjoint since we can intro-

duce a third interval that is disjoint from [0, 1]  and from ‹ , ›α β  and then use the result 

twice. We will consider only the left-hand strict preferences since the argument for the 

right-hand strict preferences is similar. 

 Consider an x  in R  that satisfies the comparability condition with respect to a non-

point, bounded interval ‹ , ›′ ′α β ; for example, for any outcomes Xb b− ≺  there exists a 

T ′≥ β  such that: (i) (, , ),( , ) ( , , )‹ › ‹ › t
−
′ ′ ′ ′α β ∞α βb o b o x≺  for t T≥ . Lemma 2 states that 

any outcome-stream in R∞  that is in fR  or that equals x  after a finite time is in R . 

 Suppose that ‹ , ›α β  is a non-point, bounded interval that is disjoint from ‹ , ›′ ′α β  and 

that a  is an outcome such that Xa b≺ . Lemma A3 implies that there exists an outcome 

Xb b− ≺  such that: (ii) , , , ,( , , ) ( , , )‹ › ‹ › ‹ › ‹ ›
−

′ ′ ′ ′α β α β α β α βb a o b b o≺ . 

 By condition (D), (i) implies: (iii) (, , ), , ,( , , ) ( , , , )‹ › ‹ › ‹ › ‹ › t
−
′ ′ ′ ′α β ∞α β α β α βb b o b b o x≺ , 

max{ , }t T≥ β . Then, (ii) and (iii) imply , , ( , ), ,( , , ) ( , , , )‹ › ‹ › ‹ › ‹ › t′ ′α β α β ′ ′ ∞α β α βb a o b b o x≺  

by transitivity, and condition (D) implies , ( , ),( , ) ( , , ),‹ › ‹ › tα β ∞α βa o b o x≺  max{ , }.t T≥ β  
 

Lemma A8.  Suppose that a non-negative function ( )a t  on [0, )∞  is Lebesgue integrable 

on each interval [0, ]T , 0T > , and that the indefinite integral 0( ) ( )tA t a s ds∫=  is strictly 

increasing on [0, )∞ . Suppose also that a function ( )v x  defined on X  is continuous and 

weakly increasing. Then, for any ,x y  in R∞  and any 0T > : 

 (a)  If  0 ( ) ( ( ))T a t v t dt∫ <x 0 ( ) ( ( ))T a t v t dt∫ y , then ( ( )) ( ( ))v t v t<x y  on a non-point interval 

in [0, ]T . 

 (b)  If ( ( )) ( ( ))v t v t<x y  on a set of positive measure in [0, ]T , then for any 0ε >  there 

exists a non-point interval ,‹ ›α β  in [0, ]T  and outcomes ,a b  such that: 
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 (i) ( ( )) ( ) ( ) ( ( ))v t v a v b v t≤ < ≤x y  for t  in ‹ , ›α β . 

 (ii) 0 ( ) ( ) ( ) ( ( ))a t v b dt a t v t dtβ β
α α∫ ∫≤ − < εx  and 0 ( ) ( ( )) ( ) ( ) .a t v t dt a t v a dtβ β

α α∫ ∫≤ − < εy  

Proof.  Assume that 0 ( ) ( ( ))T a t v t dt∫ <x 0 ( ) ( ( ))T a t v t dt∫ y . Then, ( ( )) ( ( ))v t v t<x y  on a set 

E  in [0, ]T  of positive measure since otherwise ( ( )) ( ( ))v t v t≥x y  a.e. in [0, ]T  which 

implies 0 0( ) ( ( )) ( ) ( ( ))T Ta t v t dt a t v t dt∫ ∫≥x y  by Lemma A6. Since ,x y  are continuous a.e., 

there is a 0t  in E  such that the function ( ( )) ( ( ))v t v t−y x  is continuous at 0t . Thus, there 

is a non-point interval ,‹ ›α β  in [0, ]T  such that ( ( )) ( ( )) 0v t v t− >y x  for t  in ,‹ ›α β . 

 For (b), assume that ( ( )) ( ( ))v t v t<x y  on a set in [0, ]T  of positive measure. By a slight 

extension of the above argument, there is an amount 0δ >  and a non-point interval ,‹ ›α β  

in [0, ]T  such that ( ( )) ( ( ))v t v t− > δy x  for t  in ,‹ ›α β . Define 1 inf{ ( ( )) : ‹ , ›}v v t t= ∈ α βx  

2 sup{ ( ( )) : ‹ , ›}v v t t= ∈ α βx , 3 inf{ ( ( )) : ‹ , ›}v v t t= ∈ α βy , and 1 sup{ ( ( )) : ‹ , ›}v v t t= ∈ α βy . 

Then, 1 2 3 4v v v v≤ < ≤  where 3 2v v− ≥ δ . 

 The range of the function ( )v x  is an interval I  by Lemma 1. The functions ( ( ))v tx , 

( ( ))v ty  restricted to [0, ]T  have bounds in I  since ,x y  are in R∞  and the function ( )v x  

is weakly increasing. Thus, the amounts 1 4, ,v v…  are in I , and thus there are outcomes 

1 4, ,a a…  in X  such that 1 1( )v v a= , etc. Hence, part (i) is established. 

 For part (ii), we construct a subinterval ,‹ ›γ δ  of ,‹ ›α β  that is sufficiently small. But 

3 3 1( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( )( )( )a t v a dt a t v t dt A A v a v aδ δ
γ γ∫ ∫− ≤ δ − γ −x  for any subinterval ,‹ ›γ δ , 

and a similar inequality is true for y . The function ( )A t  is strictly increasing and 

continuous, and thus we can choose γ < δ  such that the inequalities in (ii) are true. 
 

Proof of Theorem 4.  To show the forward implications, assume the stated conditions. 

Then, by Lemma 2, fR  is a subset of R , and thus the space ( , )fR  satisfies the 

conditions of Theorem 3. Hence, there exist functions ( )v x , ( )a t , ( )A t , and ( )V x  (as in 

(3)) that have the properties (a)-(d) in Theorem 3 and such that ( )V x  represents ( , )fR . 

 To show that ( )V x  converges for any x  in R , it suffices to show that for any 0ε >  

there exists a 0T >  such that [0, ] [0, ](( , )) (( , ))t sV V− < εx o x o  for s, t T≥ . Then, also 

[0, ] [0, ](( , )) (( , ))s tV V− < εx o x o  for ,s t T≥ . Hence, [0, ] 1(( , )){ }n nV ∞
=x o  is a Cauchy 

sequence and thus has a limit V . The inequalities then imply that lim
t→∞ [0, ](( , ))tV V=x o . 
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 For x in R  and 0ε > , choose outcomes X Xa b c≺ ≺  with (1) ( ) ( )( )A v c v a− < ε . 

By Lemma A7, there exists a time 1T ≥  such that [0,1] [0,1] ( , )( , ) ( , , )s ∞a o b o x≺  and 

[0,1] ( , ) [0,1]( , , ) ( , )t ∞b o x c o≺  for ,s t T≥ . Therefore, [0,1] (1, ] [0,1] (1, )( , , ) ( , )s ∞a x o b x≺  

and [0,1] (1, ) [0,1] (1, ]( , ) ( , , )t∞b x c x o≺  by condition (D). Thus, transitivity implies that 

[0,1] (1, ] [0,1] (1, ]( , , ) ( , , )s ta x o c x o≺ . Hence, [0,1] (1, ] [0,1] (1, ](( , , )) (( , , ))s tV V<a x o c x o  

since the function ( )V x  represents  on fR . Adding [0,1]( )V x  to both sides, we obtain, 

[0, ] [0, ](1) ( ) (( , )) (1) ( ) (( , ))s tA v a V A v c V+ < +x o x o . Thus, [0, ] [0, ](( , )) (( , ))s tV V− <x o x o  

(1) ( ) ( )( )A v c v a− < ε for any ,s t T≥ . 

 Next, we show that ( )V x  represents the space ( , )R . First, suppose that an x  in 

R  is upper extremal in the sense that x y  for any y  in R . Then, ( ) ( )V V≥x y  for 

any y  in R . For assume that ( ) ( )V V>y x . Then, [0, ] [0, ](( , )) (( , ))T TV V>y o x o  for 

some T > 0, and thus ( ( )) ( ( ))v t v t>y x  on a nonpoint interval ,‹ ›α β  in [0, ]T  by Lemma 

A8. Hence, ( ) ( )Xt ty x;  for t  in ,‹ ›α β . But the outcome-stream ,( , )‹ ›α βy x  is in R  

by Lemma 2, and ,( , )‹ ›α βy x x;  by condition (A). A similar argument can be given for 

the case in which an outcome-stream x  in R  is lower extremal. 

 Next, suppose that an x  in R  is non-extremal, i.e., there exist ,− +y y  in R  such 

that − +y x y≺ ≺ . In this case, we will show that for some 0T >  there exists an outcome-

stream in TS  that is indifferent to x . The argument is parallel to that in Theorem 3; in 

particular, the properties (i)–(iii) below correspond to (i)–(iii) in the proof of Theorem 3. 

 (i)  For any non-extremal outcome-stream x  in R  and any 0ε > , there exist a time 

0T >  and an outcome-stream w  in TS  such that w x∼  and | ( ) ( ) |V V− < εw x . 

 To prove (i), it suffices to show that for any 0ε >  there exists a time 0T >  and step 

outcome-streams ,− +w w  in TS  such that − +w x w  and | ( ) ( ) |V V− − < εw x , 

| ( ) ( ) |V V+ − < εw x . For we can then use the proof of (i) in Theorem 3 to obtain an 

outcome-stream of the form, (1 ) , 0 1,+ −= λ + −λ ≤ λ ≤w w w  that satisfies (i). 

 To show the existence of a step outcome-stream +w  as described, we will construct a 

sequence of the form:  x , [0, ]( , )Tx o , [0, ] ‹ , › ‹ , ›( , , )T − α β α βx b o , +w . The arguments to 

show the existence of −w  are similar. Assume that an amount 0ε >  is given. 
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 For the first step, observe that since the integral ( )V x  converges there exists a time 

1 0T >  such that [0, ]| ( ) (( , )) | /3tV V− < εx x o  for any 1t T≥ . 

 For the second step, observe that since x  is non-extremal there exists an outcome-

stream y x;  in R . Condition (A) implies that ( ) ( )Xt ty x;  on a set of positive measure. 

Thus, there is a time 2 0T >  such that ( ) ( )Xt ty x;  on a set E  of positive measure in the 

interval 2[0, ]T . Thus, ( ( )) ( ( ))v t v t>y x  on E . Then, Lemma A8b implies that there is a 

non-point interval ,‹ ›α β  in 2[0, ]T  and outcomes ,a b  such that: (1) ( ( )) ( ) ( )v t v a v b≤ <x  

for t  in ,‹ ›α β , and (2) 0 ( ) ( ) ( ) ( ( )) /3a t v b dt a t v t dtβ β
α α∫ ∫≤ − < εx . 

 The inequalities (1) imply by condition (A) that ,( , )‹ ›α βx a x , and they imply by 

Lemma A7 that there exists a 3T ≥ β  such that , ( , ) ,( , , ) ( , )‹ › ‹ ›tα β α β∞a o x b o≺  for 3t T≥ . 

Condition (D) then implies that , [0, ] , ,( , ) ( , , )‹ › ‹ › ‹ ›tα β − α β α βa x x b o≺  for 3t T≥ . Hence, 

[0, ] , ,( , , )‹ › ‹ ›t − α β α βx x b o≺  for 3t T≥  by transitivity. 

 Next, the inequalities (2) imply that [0, ] , , [0, ]| (( , , )) (( , )) |‹ › ‹ ›t tV V− α β α β − =x b o x o  

| ( ) ( ) ( ) ( ( )) | /3a t v b dt a t v t dtβ β
α α∫ ∫− < εx  for 3t T≥ . 

 For the third step, define 1 2 3max{ , , }T T T T= . By property (i) in the proof of 

Theorem 3, there exists a step outcome-stream +w  in TS  such that 

[0, ] , ,( , , )‹ › ‹ ›t
+

− α β α βw x b o∼  and [0, ] , ,| ( ) (( , , )) | /3‹ › ‹ ›tV V+
− α β α β− < εw x b o . 

 To conclude, [0, ] , ,( , , )‹ › ‹ ›t
+

− α β α βx x b o w≺ ∼  implies +x w≺  by transitivity. And 

by adding the above three inequalities, it follows that | ( ) ( ) |V V+ − < εw x . 

 The arguments for (ii) and (iii) below are the same as those for (ii), (iii) in Theorem 3. 

Moreover, the argument that (ii), (iii) suffice to show that ( )V x  is a value function for the 

non-extremal outcome-streams in ( , )R  is the same as in the proof of Theorem 3. 

 (ii)   ( ) ( )V V<x y  implies x y≺  for any non-extremal x , y  in R . 

 (iii)  ( ) ( )V V=x y  implies x y∼  for any non-extremal x , y  in R . 

 To show the converse implications, assume that ( , )R∞  is an outcome-stream space, 

that ( )V x  is a function of the form (4) that is well-defined on the set R and is a value 

function for the space ( , )R , and that the functions ( )a t , ( )A t , ( )v x , and ( )V x  

satisfy the properties in (b). Then, it is straightforward to verify that  satisfies the 

conditions (A), (B), and (D) on the set R . By Theorem 3,  satisfies condition (E) on 
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each set TS , 0T > , and one can use an argument similar to that in Theorem 3 to show 

that  satisfies condition (C) on each pair of sets R , TS , 0T > . 

 By Theorem 3, each of the functions ( )A t , ( )v x  is unique up to a positive multiple. 
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