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Abstract

The increasing serial cost sharing rule of Moulin and Shenker [Econo-

metrica 60 (1992) 1009] and the decreasing serial rule of de Frutos

[Journal of Economic Theory 79 (1998) 245] have attracted attention

due to their intuitive appeal and striking incentive properties. An ax-

iomatic characterization of the increasing serial rule was provided by

Moulin and Shenker [Journal of Economic Theory 64 (1994) 178]. This

paper gives an axiomatic characterization of the decreasing serial rule.
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1 Introduction

We consider cost sharing problems with a single good. Each agent in a

group demands a non-negative amount and the total cost of supplying the

aggregate demand is speci�ed by a cost function. A cost sharing rule assigns

shares of the total cost to each agent.

Two cost sharing rules have received considerable attention due to their

intuitive appeal and striking incentive properties; the increasing and de-

creasing serial rules (see, e.g., Moulin and Shenker 1992, 1994, Moulin 1996,

de Frutos 1998 and Hougaard and Thorlund-Petersen 2000, 2001).

According to the increasing serial rule (originally called serial cost shar-

ing in Moulin and Shenker 1992) each agent�s cost share is determined by

his own demand and the demands of those agents who have the same or

a smaller demand. This rule seems particularly appropriate in situations

where the cost functions are convex as argued in Hougaard and Thorlund-

Petersen (2001). Increasing serial cost sharing is characterized in Moulin

and Shenker (1992) and Moulin (1996) in terms of the strategic properties

of the induced cost sharing game. Moulin and Shenker (1994) provides an

axiomatic characterization.

According to the decreasing serial rule (de Frutos 1998) each agent�s

cost share is determined by his own demand and the demands of those

other agents who have the same or a larger demand. This rule seems par-

ticularly appropriate in a situation where the cost function is concave; in

fact it only guarantees non-negative cost shares in this case. In de Frutos

(1998) decreasing serial cost sharing is characterized in terms of the strategic
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properties of the induced cost sharing game. However, as noted by Moulin

(2002), the decreasing cost sharing rule has not yet received an axiomatic

characterization.

This paper provides such an axiomatic characterization of the decreasing

serial rule. To facilitate meaningful comparisons, and in an attempt to

develop a uni�ed approach, it has been our aim to obtain an axiomatic

characterization which parallels that given by Moulin and Shenker (1994)

where the increasing serial rule is characterized by the axioms of Separable

Costs and Additivity (see Section 3) and a sort of a consistency axiom

called Free Lunch which is discussed in Section 4. But while there are

clear similarities between the increasing and decreasing serial rules (and

their axiomatic characterizations) there are also some important di¤erences.

Indeed, for reasons that we shall explain later, for the decreasing serial rule

there appears to be no direct counterpart to the Free Lunch axiom of the

Moulin-Shenker characterization.

2 De�nitions

Let C : R+ ! R+ be a non-decreasing cost function with C(0) = 0, and

let N = f1; :::; ng be a �nite set of agents. Demands are given by a vector

q 2 RN+ , where qi denotes agent i�s demand. We assume that agents are

numbered such that q1 � � � � � qn.

The triple (N;C; q) constitutes a cost sharing problem. Given (N;C; q),

a cost allocation is a vector x in RN such that
Pn
i=1 xi = C(

Pn
i=1 qi). A

cost sharing rule is a function � that to each cost sharing problem (N;C; q)
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assigns a cost allocation x = �(N;C; q); where xi = �i(N;C; q) is the cost

share of agent i 2 N .

Given a cost sharing problem (N;C; q); we de�ne r0 = 0; r1 = nq1; r2 =

q1+ (n� 1)q2 and ri = q1+ :::+ qi�1+ (n+1� i)qi for i = 3; ::; n, and s0 =

0; s1 = nqn; s2 = qn+(n�1)qn�1 and si = qn+:::+qn+2�i+(n+1�i)qn+1�i,

for i = 3; :::; n. Note that r1 � � � � � rn = q1 + :::+ qn = sn � � � � � s1. The

increasing serial rule (Moulin and Shenker 1992, 1994) is de�ned by

�Ii (C;N; q) =

iX
k=1

C(rk)� C(rk�1)
n+ 1� k ; i = 1; : : : ; n: (1)

The decreasing serial rule (de Frutos 1998) is de�ned by

�Di (C;N; q) =

n+1�iX
k=1

C(sk)� C(sk�1)
n+ 1� k ; i = 1; : : : ; n: (2)

We say that a cost sharing rule � is continuous if whenever Ck converges

pointwise to C; then �i(N;Ck; q) converges to �i(N;C; q); for all N; i, and q.

A cost sharing rule � is order-preserving if �1(N;C; q) � � � � � �n(N;C; q)

whenever q1 � � � � � qn. Continuity and order-preservation are standard

regularity conditions, and in the following we restrict attention to cost shar-

ing rules satisfying both conditions.

3 An axiomatic characterization

Our characterization combines two well-known properties with a third prop-

erty that is new but in a sense related to the Free Lunch axiom in Moulin

and Shenker (1994).
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Let C� denote the linear function for which C(z) = �z for all z � 0.

Axiom 1 (Separable Costs). If C = C� then �i(N;C�; q) = �qi for all i.

Separable Costs states that in case of a linear cost function all agents

pay the constant average cost for all units demanded. Since the increasing

and decreasing serial rules coincide on linear cost functions both rules satisfy

Separable Costs.

Axiom 2 (Additivity). �(N;C1+C2; q) = �(N;C1; q)+�(N;C2; q) for any

cost functions C1; C2:

Additivity states that the cost shares are independent of whether any

two cost sharing problems are resolved together or separately. It is satis�ed

by both the increasing and decreasing serial rule.

For the third axiom we make use of the following de�nitions: For z 2 R,

de�ne (z)+ = maxf0; zg: For t 2 R+; let �t(z) = minfz; tg be the plateau

cost function where total cost is equal to total demand until a plateau level

t is reached and the total cost then remains �xed. For S � N , qS is the

projection of q on RS .

Axiom 3 (Plateau Cost). If C = �t and nqn � t, then �n(N;�t; q) = t=n

and �i(N;�t; q) = �i(Nnfng;�(t�qn)+ ; qNnfng) +
qn�(qn�t)+�t=n

n�1 for i 6= n.

This axiom states that if C is a plateau cost function with plateau level

t, the agent with the highest demand pays an equal share of the plateau cost

t if the total demand would exceed t in the case that all agents demanded

the same quantity as the agent with the highest demand. This might seem
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reasonable considering that average costs are decreasing and the group as

a whole bene�ts from a large total demand. Now, having settled the cost

share of the agent with the highest demand, this agent may now be removed

from the set of agents and the cost shares of the remaining agents can be

speci�ed by imposing the same cost sharing rule on an adjusted cost function

and adding a constant. The plateau level of the cost function is adjusted for

the size of the highest demand, and a constant is added in order to ensure

budget balance, i.e. to adjust for di¤erences between the size of the demand

and the size of the cost share of the agent with the highest demand. Note

that if the demand of agent n alone is above the plateau t then all agents

share the �xed cost equally. The axiom is silent in cases where nqn < t.

It is easy to see that Plateau Cost is violated by increasing serial cost

sharing: For example, let C = �t and let q = (0; t). Then according to the

increasing serial rule �I1(�t; q) = 0 and �
I
2(�t; 0) = t. Note, that according

to the decreasing serial rule �D1 (�t; q) = �
D
2 (�t; q) = t=2 in line with Plateau

Cost. Actually, the plateau cost functions can be used to give us extreme

examples of how the rules di¤er on concave cost functions: the increasing

rule yields the most unequal allocation while the decreasing rule yields the

most equal allocation (see Lemma 4 in Hougaard and Thorlund-Petersen,

2001, for a precise statement). Lemma 1 in the appendix speci�es how the

decreasing serial rule generally works on plateau cost functions.

We shall now state the main result.

Theorem 1 A continuous and order-preserving cost sharing rule � satis�es
Axioms 1-3 if and only if it is the decreasing serial cost sharing rule �D.
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The proof is provided in the appendix. Note that the axioms are inde-

pendent: The Equal split rule, �i(C;N; q) = C(
Pn
j=1 qj)=n for all i 2 N;

satis�es Axioms 2 and 3 but not 1 (Separable Costs); Mixed serial cost shar-

ing as de�ned in Hougaard and Thorlund-Petersen (2001) satis�es Axioms

1 and 3 but not 2 (Additivity); and Increasing serial cost sharing satis�es

Axioms 1 and 2 but not 3 (Plateau Cost).

4 Comments

Comparing the two axiomatizations of increasing and decreasing serial cost

sharing the di¤erence lies in the Free Lunch axiom of Moulin and Shenker

(1994) versus the Plateau Cost axiom of the present characterization; the

other axioms are the same. Roughly speaking, the Free Lunch axiom states

that if C(nqi) = 0 then agent i pays nothing - gets a �free lunch�, and the

cost shares of the other agents are una¤ected by removing agent i from

the cost sharing problem and adjusting the cost function accordingly (such

that the cost function C is replaced by the function C de�ned by C(z) =

maxfC(z+qi)��i(N;C; q); 0g if z > 0 and C(0) = 0). Hence, Free Lunch is a

limited consistency property relying on a suitable de�nition of the �reduced�

cost sharing problem just like the Plateau Cost axiom.

Since any non-decreasing and convex function can be approximated by

a weighted sum of slant functions �t(z) = (z� t)+; the proof in Moulin and

Shenker (1994) uses only the Free Lunch axiom in relation to slant functions.

Therefore a direct mirror-image of the Moulin-Shenker proof would involve

an axiom related to (a¢ ne) two-part tari¤s. But since non-decreasing and
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concave functions generally cannot be approximated by a weighted sum

of two-part tari¤s we use the closest such relative - the angle functions -

or rather their extreme form, the plateau cost functions �t. It makes a

di¤erence whether we consider two-part tari¤s or plateau cost functions and

basically it is this di¤erence that is re�ected in our formulation of Plateau

Cost versus the formulation of Free Lunch.

Following common convention, we have assumed that C(0) = 0. This as-

sumption is restrictive, since it rules out the cost sharing problems involving

a �xed cost. The assumption plays a role for an axiomatic characterization

of the increasing serial rule, because if C(0) were allowed to be positive the

increasing serial rule would actually fail to be continuous. In contrast, con-

tinuity of decreasing serial rule does not require that C(0) = 0. Indeed, it

is easy to verify that our de�nitions and characterization applies also to the

domain of cost function C : R+ ! R+:

As mentioned previously, the increasing (decreasing) serial rule seems

particularly appropriate in a situation where the cost function is convex

(concave). However, neither Moulin and Shenker�s axiomatic characteriza-

tion of the increasing serial rule nor our characterization of the decreasing

serial rule applies to the more restrictive domains of convex (concave) cost

functions. The reason is that both characterizations make use of the fact

that a plateau cost function can be written as the di¤erence between a linear

cost function and a slant function. Hence, both concave plateau function

and convex slant functions must be contained in the relevant domain of cost

function. Axiomatic characterizations on either concave or convex domains

is an interesting topic for future research.
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A Appendix: Proof of result

For the proof of Theorem 1, we �rst speci�es the decreasing serial rule for

the case of plateau cost functions �t.

Lemma 1 Let t > 0; and let (N;�t; q) be a cost sharing problem. If s1 < t;

then �Dj (N;�t; q) = qj for j = 1; : : : ; n. If sn � t then �Dj (�t; q) = t
n for

all j = 1; : : : ; n. If sn � t and s1 � t, let i be the smallest index for which

sn+1�i � t. Then

�Dj (N;�t; q) =
t

n
;

j = i; : : : ; n; and

�Dj (N;�t; q) = qj +

Pn
k=i qk � (n+ 1� i)t=n

i� 1 ;

j = 1; : : : ; i� 1.

Proof: If s1 < t then from (2) it follows readily that �Dj (N;�t; q) = qj for

j = 1; : : : ; n. Suppose therefore that s1 � t, and let i be the smallest index

for which sn+1�i � t. If sn � t then it follows from (2) that �Dj (N;�t; q) = t
n

for all j = 1; : : : ; n (since sk � t for k = 1; : : : ; n).

If sn < t, then, for j = i; : : : ; n we have

�Dj (N;�t; q) =

n+1�jX
k=1

�t(sk)��t(sk�1)
n+ 1� k =

t

n

since �t(sk) = t for k = 1; : : : ; n+1� i: Moreover, for agent i� 1 by (2) we
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have

�Di�1(N;�t; q) =
t

n
+
sn+2�i � t
i� 1

= �(n+ 1� i)t
n(i� 1) +

Pn
k=i qk
i� 1 + qi�1

=

Pn
k=i qk � (n+ 1� i)t=n

i� 1 + qi�1:

For j = 1; : : : ; i� 2 by (2) we have

�Dj (N;�t; q) =
t

n
+
sn+2�i � t
i� 1 +

n+1�jX
k=n+3�i

sk � sk�1
n+ 1� k

= �(n+ 1� i)t
n(i� 1) +

Pn
k=i qk
i� 1 + qj

=

Pn
k=i qk � (n+ 1� i)t=n

i� 1 + qj :

since �t(sk) = sk for k = n+ 2� i; : : : ; n+ 1� j. �

We are now ready to prove our main result.

Proof of Theorem 1: First we show, in �ve steps, that the decreasing serial

rule is the only rule (if any) that can be consistent with Axioms 1-3. The

sixth and last step veri�es that the decreasing serial rule is, in fact, consistent

with the axioms.

Step 1: By Axioms 1-3 we get that �n(N;�nqn ; q) = �n(N;C
1; q)��n(N;�nqn ; q) =

qn�(nqn)=n = 0:De�ne �t(z) = (z�t)+. By order-preservation, �i(N;�nqn ; q) �

0, for i = 1; : : : ; n�1:Now, since
Pn
i=1 �i(N;�nqn ; q) = 0 we have �i(N;�nqn ; q) =

0, for all i. Thus, by Axioms 1 and 2

�i(N;�nqn ; q) = �i(N;C
1; q)� �i(N;�nqn ; q) = qi � 0 = qi;
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for all i.

Now, add a new agent n+1 with qn+1 � qn and let �N = N [fn+1g: By

Axiom 3, �n+1( �N;�(n+1)qn+1 ; (q; qn+1)) = qn+1 and by the above argument

�i( �N;�(n+1)qn+1 ; (q; qn+1)) = qi for all i � n:

Using Axiom 3 we remove the new agent again and obtain

�i( �N;�(n+1)qn+1 ; (q; qn+1)) = �i(N;�nqn+1 ; q) + 0 = qi;

for i � n. This, in turn, determines �i(N;�t; q) for large t:

�i(N;�t; q) = qi;

for all i and all t � nqn = s1. Thus, for t � s1, �(N;�t; q) = �D(N;�t; q)

by Lemma 1. In the remainder of the proof we assume that t < s1.

Step 2: By Axiom 3 we have �n(N;�t; q) = t=n and for i 6= n

�i(N;�t; q) = �i(Nnfng;�(t�qn)+ ; q
Nnfng) +

qn � (qn � t)+ � t=n
n� 1 :

If qn � t then by Axiom 3 (and using continuity for the special case

qn = t) we have �i(N;�t; q) = t=n for all i 6= n. Thus, for t < s1 and qn � t;

�(N;�t; q) = �D(N;�t; q): In the remainder of the proof we assume that

qn < t:

Step 3: By Axiom 3 we have

�i(N;�t; q) = �i(Nnfng;�t�qn ; qNnfng) +
qn � t=n
n� 1 ; for i 6= n:
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Consider the agent with the second largest demand qn�1: If s2 � t then (by

the arguments above) we have

�i(Nnfng;�t�qn ; qNnfng) = qi;

for all i = 1; : : : ; n � 1; and consequently �i(N;�t; q) = qi +
qn�t=n
n�1 for

i 6= n. Hence, for s2 � t < s1 and t > qn; �(N;�t; q) = �D(N;�t; q): In the

remainder of the proof we assume that s2 > t.

By Axiom 3, �n�1(Nnfng;�t�qn ; qNnfng) = t�qn
n�1 which implies �n�1(N;�t; q) =

t�qn
n�1 +

qn�t=n
n�1 = t=n; and thus for qn < t < s2 we have �n�1(N;�t; q) =

�Dn�1(N;�t; q) by Lemma 1.

Step 4: Now, consider an arbitrary i � n�2, and suppose that �j(N;�t; q) =

�Dj (N;�t; q) for all j = i + 1; :::; n. We will show that �i(N;�t; q) =

�Di (N;�t; q): For this, we consider two separate cases: i) t�
Pn
j=i+1 qj � 0,

and ii) t�
Pn
j=i+1 qj < 0.

Case i). Repeated use of Axiom 3 gives us

�i(N;�t; q) = �i(Nnfi+ 1; :::; ng;�t�Pn
j=i+1 qj

; qNnfi+1;:::;ng)

+
qn � t=n
n� 1 +

qn�1 � t�qn
n�1

n� 2 + :::+
qi+1 �

t�
Pn
k=i+2 qk
i+1

i

= �i(Nnfi+ 1; :::; ng;�t�Pn
j=i+1 qj

; qNnfi+1;:::;ng)

+

Pn
k=i+1 qk � (n� i)t=n

i
:

If sn+1�i � t, then by Axiom 3 we get

�i(Nnfi+ 1; :::; ng;�(t�Pn
j=i+1 qj)+

; qNnfi+1;:::;ng) =
t�

Pn
k=i+1 qk

i
;
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hence

�i(N;�t; q) =

Pn
k=i+1 qk � (n� i)t=n

i
+
t�

Pn
k=i+1 qk

i

=
t

n
:

If sn+1�i < t then by Step 1 we have

�i(Nnfi+ 1; :::; ng;�t�Pn
j=i+1 qj

; qNnfi+1;:::;ng) = qi

and consequently

�i(N;�t; q) = qi +

Pn
k=i+1 qk � (n� i)t=n

i
:

Using Lemma 1, we can therefore conclude that �i(�t; q) = �Di (�t; q) if

t�
Pn
j=i+1 qj � 0 and t < s2:

Case ii). By Lemma 1, we have �Dj (N;�t; q) =
t
n for j = i + 1; :::; n.

Moreover, by Axiom 3 and budget balance (i.e.
Pn
i=1 �i(N;�t) = t) we

get �j(N;�t; q) =
t
n for all j < i + 1: Using Lemma 1 we conclude that

�i(N;�t; q) = �
D
i (N;�t; q) if t�

Pn
j=i+1 qj < 0: (Note that t�

Pn
j=i+1 qj < 0

implies t < s2).

We conclude that �(N;�t) = �D(N;�t).

Step 5: By Axiom 1 and 2, and Lemma 1 in Moulin and Shenker (1994),

we have that �(C; q) = �D(C; q) for any function C that can be written

as the di¤erence between two non-decreasing convex functions, and C(0) =

0. By continuity, Axiom 2, and Remark 2 in Moulin and Shenker (1994)

we conclude that �(N;C; q) = �D(N;C; q) for an arbitrary non-decreasing
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function C.

Step 6: Lastly, we need to show the decreasing serial cost sharing rule is,

in fact, consistent with Axioms 1-3 . It is well-known (or readily veri�ed)

that �D satis�es Axioms 1 and 2, so we focus on Axiom 3. Let s1 � t then

according to (2) we get

�Dn (N;�t; q) =
�t(s1)

n
=
t

n
;

hence the decreasing serial cost sharing rule satis�es the �rst part of Ax-

iom 3. Now, if qn � t then sk � t for all k = 1; : : : ; n and consequently

�Di (N;�t; q) = t=n for all i satisfying Axiom 3. Hence, let qn < t: For

j = n� 1 we have

�Dn�1(N;�t; q) =
�t(s2)

n� 1 �
t

n(n� 1)

=
�t�qn(s2 � qn)

n� 1 +
qn
n� 1 �

t

n(n� 1)

= �Dn�1(Nnfng;�t�qn ; qNnfng) +
qn � t=n
n� 1 :
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Now consider an arbitrary j 2 f1; : : : ; n� 2g: Then

�Dj (N;�t; q) =

n+1�jX
k=1

�t(sk)��t(sk�1)
n+ 1� k

=
t

n
+
�t(s2)� t
n� 1 +

n+1�jX
k=3

�t(sk)��t(sk�1)
n+ 1� k

= � t

n(n� 1) +
�t(s2)

n� 1 +
n+1�jX
k=3

�t(sk)��t(sk�1)
n+ 1� k

= � t

n(n� 1) +
qn
n� 1 +

�t�qn(s2 � qn)
n� 1

+

n+1�jX
k=3

�t�qn(sk � qn)��t�qn(sk�1 � qn)
n+ 1� k

=
qn � t=n
n� 1 + �Dj (Nnfng;�t�qn ; qNnfng);

which shows that �D also satis�es Axiom 3. �
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