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1 Introduction

The concept of balanced growth, generally synonymous with exponential growth,

has proved extremely useful in the theory of economic growth. This is not only

because of the historical evidence (Kaldor’s “stylized facts”), but also because of

its convenient simplicity. Yet there may be a deceptive temptation to oversimplify

and ignore other possible growth patterns. We argue there is a need to allow for a

richer set of parameter constellations than in standard growth models and to look

for a more general “regularity” concept than that of exponential growth. The

motivation is the following:

First, when setting up growth models researchers place severe restrictions

on preferences and technology such that the resulting model is compatible with

balanced growth. For instance, models exhibiting balanced growth usually rely

on some form of knife-edge restrictions, which drastically restrict the shape of

preferences and production technology (Solow, 2000, Chapters 8-9). This paper

demonstrates that regular long-run growth, in a sense specified below, can arise

even if these restrictions are violated.

Second, standard R&D-based semi-endogenous growth models imply that the

long-run growth rate is proportional to the growth rate of the labor force (Jones,

2005). This class of models is frequently used for positive and normative analysis

since it appears to be empirically plausible in many respects. If we employ this

type of model to evaluate the prospect of growth in the very long run, then we

end up with the assertion that the growth rate converges to zero. This is simply

due the fact that there must be limits to population growth. But then, what does

this really imply for economic development in the very long run? This question

has not received much attention so far and the answer is not that clear at first

glance.

Third, everything less than exponential growth often seems interpreted as a

fairly bad outcome and associated with economic stagnation. For instance, in

the context of the Jones (1995) model with constant population, Young (1998, n.

10) states “Thus, even if there are intertemporal spillovers, if they are not large

enough to allow for constant growth, the development of the economy grinds to

a halt.” However, to our knowledge, the case of zero population growth in the

Jones model has not really been explored yet. We take the opportunity to let

an analysis of this case serve as our illustration of the usefulness of the general

concept of regular growth.

The paper is structured as follows. Section 2 introduces our regularity concept

and shows how it is related to the cases of exponential and arithmetic growth.

Section 3 illustrates that allowing a richer set of parameter combinations than
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in standard growth models indeed gives rise to other regularity patterns than

exponential growth. Finally, Section 4 summarizes the findings.

2 Regular Growth

Growth theory explains long-run economic development as some pattern of regular

growth. The most common regularity concept is that of exponential growth. Oc-

casionally another regularity pattern turns up, namely that of arithmetic growth.

Indeed, a Ramsey growth model with AK technology and CARA preferences fea-

tures arithmetic GDP per capita growth (e.g., Blanchard and Fischer, 1989, pp.

44/45). Similarly, under Hartwick’s rule, a model with essential non-renewable

resources features arithmetic growth of capital (Solow, 1974; Hartwick, 1977).

In similar settings with non-renewable resources Mitra (1983), Pezzey (2004) and

Asheim et al. (2005) consider growth paths of the form x(t) = x(0)(1+µt)ω, µ, ω >

0, which, by the last-mentioned authors, is called “quasi-arithmetic growth”. In

these analyses the quasi-arithmetic growth pattern is associated with exogenous

quasi-arithmetic growth in either population or technology. In this way results

by Dasgupta and Heal (1979, pp. 303-308) on optimal growth within a classi-

cal utilitarian framework with non-renewable resources, constant population and

constant technology are extended.

In our view there is a rationale for a concept of regular growth, subsuming

exponential growth and arithmetic growth as well as the whole range between

these two. Also some kind of less-than-arithmetic growth should be included.

This general concept is labelled regular growth, for reasons that will become clear

below. The example we consider in Section 3 shows how a quasi-arithmetic growth

pattern may arise endogenously in a two-sector knowledge-driven growth model.

To describe our suggested concept of regular growth, a few definitions are

needed. Let the variable x(t) be a positively-valued differentiable function of time

t. Then the growth rate of x(t) at time t is:

g1(t) :=
ẋ(t)

x(t)
,

where ẋ(t) := dx(t)/dt. We call g1(t) the first-order growth rate. Since we seek a

more general concept of regular growth than exponential growth, we allow g1(t)

to be time-variant. Indeed, the regularity we look for relates precisely to the way

growth rates change over time. Presupposing g1(t) is strictly positive within the

time range considered, let g2(t) denote the second-order growth rate of x(t) at

time t, i.e.,

g2(t) :=
ġ1(t)

g1(t)
.
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We suggest the following criterion as defining regular growth:

g2(t) = −βg1(t) ∀t ≥ 0, (1)

where β ≥ 0. That is, the second-order growth rate is proportional to the first-
order growth rate with a non-positive factor of proportionality. The coefficient

β is called the damping coefficient, since it indicates the rate of damping in the

growth process.

Let x0 and α denote the initial values x(0) > 0 and g1(0) > 0, respectively.

The unique solution of the second-order differential equation (1) may then be

expressed as:

x(t) = x0 (1 + αβt)
1
β . (2)

Note that this solution has at least one well-known special case, namely x(t) =

x0e
αt for β = 0.1 Moreover, it should be observed that, given x0, (2) is also the

unique solution of the first-order equation:

ẋ(t) = αxβ0x(t)
1−β, α > 0, β ≥ 0, (3)

which is an autonomous Bernoulli equation. This gives an alternative and equiv-

alent characterization of regular growth.

The simple formula (2) describes a family of growth paths, the members of

which are indexed by the damping coefficient β. Figure 1 illustrates this family of

regular growth paths.2 There are three well-known special cases. For β = 0, we

have g1(t) = α, a positive constant. This is the case of exponential growth. At

the other extreme we have complete stagnation, i.e., the constant path x(t) = x0.

This can be interpreted as the limiting case β → ∞.3 Arithmetic growth, i.e.,

ẋ(t) = α, ∀t ≥ 0, is the special case β = 1.

1 Indeed, limβ→0 x0(1 + αβt)
1
β = x0e

αt. To see this, use L’Hôpital’s rule for “0/0” on ln (x(t))
= ln(x0) +

1
β ln (1 + αβt).

2Figure 1 is based on α = 0.05 and x0 = 1. In this case, the time paths do not intersect.
Intersections occur for x0 < 1. However, for large t the picture always is as shown in Figure 1.

3Use L’Hôpital’s rule for “∞/∞” on lnx(t). If we allow g1(0) = 0, stagnation can of course
also be seen as the case α = 0.
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Figure 1: A family of growth paths indexed by β.

Table 1 lists these three cases and gives labels also to the intermediate ranges

for the value of the damping coefficient β. Apart from being written in another

(and perhaps less family-oriented) way, the “quasi-arithmetic growth” formula in

Asheim et al. (2005) mentioned above, is subsumed under these intermediate

ranges.

Table 1: Regular growth paths: g2(t) = −βg1(t) ∀t ≥ 0, β ≥ 0, g1(0) > 0.
Label

Damping

coefficient
Time path

Limiting case 1: exponential growth β = 0 x(t) = x0e
αt, α > 0

More-than-arithmetic growth 0 < β < 1 x(t) = x0(1 + αβt)
1
β , α > 0

Arithmetic growth β = 1 x(t) = x0(1 + αt), α > 0

Less-than-arithmetic growth 1 < β <∞ x(t) = x0(1 + αβt)
1
β , α > 0

Limiting case 2: stagnation β =∞ x(t) = x0

As to the case β > 1, notice that though the increase in x per time unit is

falling over time, it remains positive; there is sustained growth in the sense that

x(t) → ∞ for t → ∞.4 Formally, also the case of β < 0 (more-than-exponential

growth) could be included in the family of regular growth paths. However, this

case should be considered as only relevant for a description of possible phases of

transitional dynamics. A growth path (for, say, GDP per capita) with β < 0 is

4Empirical investigation of post-WWII GDP per-capita data of a sample of OECD countries
yields non-negative damping factors between 0.17 (UK) and 1.43 (Germany). The associated
initial (annual) growth rates in 1951 are 2.3% (UK) and 12.4% (Germany), respectively. The fit
of the regular growth formula is remarkable.
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explosive in a very dramatic sense: it leads to infinite output in finite time (Solow,

1994).

3 An Example

An optimal growth problem within the simple Jones (1995) framework is consid-

ered in order to illustrate how the regularities described above may arise. Popula-

tion L is governed by L = L(0)ent, where n ≥ 0 is constant. We include the case
n = 0 not only for theoretical reasons, but also because it is of practical interest

in view of the projected stationarity of the population of developed countries as

a whole already from 2005 (United Nations, 2005).5 Technologically the economy

is described by:

Y = AσKα(uL)1−α, σ > 0, 0 < α < 1, (4)

K̇ = Y − cL, K(0) given, (5)

Ȧ = γAϕ(1− u)L, γ > 0, ϕ ≤ 1, A(0) given, (6)

where Y is aggregate manufacturing output (net of capital depreciation), A soci-

ety’s stock of “knowledge”, K society’s capital, u the fraction of the labour force

(= population) employed in manufacturing and c per-capita consumption; σ, α, γ

and ϕ are constant parameters. The criterion functional of the social planner is:

U0 =

Z ∞

0

c1−θ − 1
1− θ

Le−ρtdt,

where θ > 0 and ρ ≥ 0, both constant. In the spirit of Ramsey (1928) we include
the case ρ = 0, since giving less weight to future generations than to current might

be deemed “ethically indefensible”. When ρ = 0, there exist feasible paths for

which the integral U0 does not converge. In that case our optimality criterion is

the catching-up criterion, see Case 4 below. The social planner chooses a plan

(c, u)∞t=0, where c > 0 and u ∈ [0, 1] , to optimize U0 under the constraints (4), (5)
and (6) as well as K ≥ 0 and A ≥ 0, ∀t ≥ 0.

Case 1: ϕ = 1, ρ > n = 0. This is the fully-endogenous growth case considered

by Romer (1990).6 An interior optimal solution converges to exponential growth

with growth rate gc = (1/θ) [σγL/(1− α)− ρ)] and u = 1− (1− α)gc/(σγL).

Case 2: ϕ < 1, ρ > n > 0. This is the semi-endogenous growth case considered

by Jones (1995). An interior optimal solution converges to exponential growth

5From now, the explicit timing of the variables is suppressed when not needed for clarity.
6Contrary to Romer (1990), though, we allow σ 6= 1−α for reasons explained in Alvarez-Pelaez

and Groth (2005).
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with growth rate gc = n/(1− ϕ) and u = (σ/(1−α))(θ−1)n+(1−ϕ)ρ
(σ/(1−α))θn+(1−ϕ)ρ .7

Case 3: ϕ < 1, ρ > n = 0. In this case the economy can be shown to end

up in stagnation (constant c), as is indicated by putting n = 0 in the formula

for u in Case 2. The explanation is the combination of a) no population growth

to countervail the diminishing marginal returns to knowledge (∂Ȧ/∂A → 0 for

A→∞), and b) a positive constant rate of time preference.
Case 4: ϕ < 1, ρ = n = 0. Depending on the values of ϕ, σ, α and θ,

a continuum of dynamic processes emerges which fill the whole range between

stagnation and exponential growth.8 Since this case does not seem investigated

in the literature, we shall spell it out here. The optimality criterion is the catching-

up criterion: a feasible path (K̂, Â, ĉ, û)∞t=0 is catching-up optimal if

lim
t→∞ inf

µZ t

0

ĉ1−θ − 1
1− θ

dτ −
Z t

0

c1−θ − 1
1− θ

dτ

¶
≥ 0

for all feasible paths (K,A, c, u)∞t=0.
Let p be the shadow price of knowledge in terms of the capital good. Then,

the value ratio x ≡ pA/K is capable of being stationary in the long run. Indeed,

as shown in the appendix, the first order conditions of the problem lead to:

ẋ =
γLAϕ−1

1− α
{(α− s)xu− [σ + (1− α)(1− ϕ)]u+ (1− α)(1− ϕ)}x, (7)

where s is the saving rate = 1− cL/Y ; further,

u̇ =
γLAϕ−1

1− α

·
−(1− s)xu+ σu+

1− α

α
σ

¸
u, and (8)

ṡ =
γLAϕ−1

1− α

·
−(1

θ
− s)αxu− (1− α)σu+ (1− α)σ +

(1− α)2u̇/u

γLAϕ−1

¸
(1− s). (9)

Provided θ > 1, this dynamic system has a unique stationary state:

x∗ =
σθ

α(θ − 1) > 0, u
∗ =

σ + α(1− ϕ)
θ

θ−1σ + α(1− ϕ)
∈ (0, 1), s∗ = σ + 1− ϕ

θ
£
σ
α + 1− ϕ

¤ ∈ (0, 1
θ
).

(10)

The resulting paths for A,K, Y and c feature regular growth with positive damp-

ing coefficient:

A(t) =
£
A(0)1−ϕ + (1− ϕ)γ(1− u∗)Lt

¤ 1
1−ϕ = A(0) (1 + µt)

1
1−ϕ ,

7The Jones (1995) model also includes a negative duplication externality in R&D, which is
not relevant for our discussion. Convergence of this model is shown in Arnold (2006).

8The entire spectrum of regular growth patterns can alternatively be obtained in an elemen-
tary version of the Jones (1995) model with no capital, but two types of (immobile) labor, i.e.,
unskilled labour in final goods production and skilled labour in R&D.
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where µ ≡ (1− ϕ)γ(1− u∗)LA(0)ϕ−1 > 0;

K(t) =

µ
1− α

γx∗(u∗L)α

¶ 1
1−α

A(0)
σ+1−ϕ
1−α (1 + µt)

σ+1−ϕ
(1−α)(1−ϕ) ,

Y (t) = (u∗L)
1−2α
1−α

µ
1− α

γx∗

¶ α
1−α

A(0)
σ+α(1−ϕ)

1−α (1 + µt)
σ+α(1−ϕ)
(1−α)(1−ϕ) .

Finally, c(t) = (1− s∗)Y (t)/L.9

When 0 < ϕ < 1 (the “standing on the shoulders” case), the damping coeffi-

cient β = 1−ϕ < 1, i.e., knowledge features more-than-arithmetic growth.When

ϕ < 0 (the “fishing out” case), the damping coefficient is 1−ϕ > 1, and knowledge

features less-than-arithmetic growth. In the intermediate case, ϕ = 0, knowledge

features arithmetic growth.10 More interesting is perhaps the path of Y to which

the path of c is proportional. We see that Y features more-than-arithmetic growth

if and only if σ > (1−2α)(1−ϕ). A sufficient condition for this is that 12 ≤ α < 1;

it is interesting that ϕ > 0 is not needed. Notice also that the capital-output ratio

features arithmetic growth always, i.e., independently of the size relation between

the parameters. Indeed, K/Y = [K(0)/Y (0)] (1 + µt). This is like in Hartwick’s

rule (Hartwick, 1977). A mirror image of this is that the marginal product of

capital always approaches zero for t → ∞, a property not surprising in view of

ρ = 0.

4 Summary and Conclusion

Our proposed concept of regular growth has the following advantages: (1) The

concept allows researchers to get rid of the largely arbitrary knife-edge restric-

tion, which underlies both standard neoclassical and endogenous growth models.

(2) Since the resulting dynamic process has one more degree of freedom com-

pared to exponential growth, it is at least as plausible in empirical terms. (3)

The concept covers a continuum of dynamic processes which fill the whole range

between exponential growth and complete stagnation, a range which may deserve

more attention in view of the likely future demographic development in the world.

(4) Finally, as our analysis of zero population growth in the Jones (1995) model

shows, falling growth rates need not mean that economic development grinds to

a halt.
9The usual transversality conditions require θ > (σ+1−φ)/ [σ + α(1− φ)], which we assume

satisfied (see the appendix). This condition is slightly stronger than the requirement θ > 1.
10The coefficient µ could be called the growth momentum.
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5 Appendix

This appendix derives the results reported for Case 4 in Section 3. The Hamil-

tonian for the control problem in Case 4 is:

H =
c1−θ − 1
1− θ

L+ λ1(Y − cL) + λ2γA
ϕ(1− u)L,

where Y = AσKα(uL)1−α, and λ1 and λ2 are the co-state variables associated

with physical capital and knowledge, respectively. Necessary first order conditions

(see Seierstad and Sydsaeter, 1987, p. 234) for an interior solution are:

∂H

∂c
= c−θL− λ1L = 0, (11)

∂H

∂u
= λ1(1− α)

Y

u
− λ2γA

ϕL = 0, (12)

∂H

∂K
= λ1α

Y

K
= −λ̇1, (13)

∂H

∂A
= λ1σ

Y

A
+ λ2ϕγA

ϕ−1(1− u)L = −λ̇2. (14)

Combining (11) and (13) gives the Keynes-Ramsey rule

ċ

c
=
1

θ
αAσKα−1(ul)1−α. (15)

Given the definition p = λ2/λ1, (12), (13) and (14) yield

ṗ

p
= αAσKα−1(ul)1−α − σγAϕ−1uL

1− α
− ϕγAϕ−1(1− u)L. (16)

Let x ≡ pA/K. Log-differentiating x w.r.t. time and using (12), (6), (5) and (4)

give (7). Log-differentiating (12) w.r.t. time, using (16), (5), (4) and (6), gives

(8). Finally, log-differentiating 1 − s ≡ cL/Y, using (15), (4), (6) and (5), gives

(9).

Due to non-concavity of the maximized Hamiltonian, not all the Arrow suf-

ficiency conditions (Seierstad and Sydsaeter 1987, p. 236) hold, and so far we

have found no alternative set of sufficient conditions satisfied. Yet, at least

the transversality conditions, limt→∞ λ1(t)K(t) = 0 and limt→∞ λ2(t)A(t) = 0,

can be shown to hold along the unique regular growth path if (and only if)

θ > (σ + 1− ϕ)/ [σ + α(1− ϕ)] .
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