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Abstract. We show that the order of integration of a vector au-
toregressive process is equal to the difference between the mul-
tiplicity of the unit root in the characteristic equation and the
multiplicity of the unit root in the adjoint matrix polynomial. The
equivalence with the standard I(1) and I(2) conditions (Johansen,
1996) is proved and polynomial cointegration discussed in the gen-
eral setup.

1. Introduction

An autoregressive process is integrated of order d, if its characteristic

equation has d roots at z = 1 and the remaining lie outside the unit

circle. This is not true in the multivariate case, because the order of

integration of a vector autoregressive processes is not established by

the multiplicity of the unit root in the characteristic equation. For this

reason, some extra conditions are needed in order to write down the

moving average representation. Johansen (1988, 1992) imposes neces-

sary and sufficient conditions on the parameters of the autoregressive

process and derives the corresponding moving average representation

for I(1) and I(2) processes. His work is related to Engle and Granger

(1987), who start from the moving average representation of an I(1)

process which exhibits cointegration and derive the corresponding error

correction model; unfortunately the proof of the Granger Representa-

tion Theorem is not correct (see Johansen (2005a) for a counterexample

to Lemma 1). Other proofs of the same theorem are based on the Smith
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form of a matrix polynomial (see Engle and Yoo (1991), Ahn and Rein-

sel (1990) and Haldrup and Salomon (1998)) and on the Jordan rep-

resentation of the companion form (see Archontakis (1998) and Bauer

and Wagner (2003)). Other relevant papers in this area are Gregoire

and Laroque (1993) and Gregoire (1999), who discuss polynomial coin-

tegration in a very general setup and Neusser (2000), who points out

some interesting algebraic properties of the I(1) model. An attempt

to characterize explicitly the polynomial cointegration properties of an

I(d) process from its autoregressive representation is la Cour (1998).

See Johansen (2005a) for an exhaustive survey of the mathematical re-

sults concerning the representation theory and Johansen (2005b) for an

application of similar ideas to fractional integration and cofractionality.

In this paper we study the I(d) multivariate case and show that

one can determine the order of integration of a vector autoregressive

process as the difference between the multiplicity of the unit root in

the characteristic equation and the multiplicity of the unit root in the

adjoint matrix polynomial. This result arises from observing that the

reduced rank of the characteristic polynomial at z = 1 translates into

a zero versus non zero statement about the adjoint matrix polynomial.

This then allows to write the inverse in such a way that the order of

the pole at the unit root becomes explicit, resembling what happens in

the univariate case.

The paper is organized as follows: in section 2 we introduce the

VAR(k) model and the standard definitions of integration and cointe-

gration and in section 3 we prove the main Theorem on I(d) processes.

In section 4 we show the equivalence with the standard I(1) and I(2)

conditions (Johansen, 1996) and in section 5 we discuss polynomial

cointegration. The last section contains some concluding remarks.

2. VAR(k) model and standard definitions

Consider the p−dimensional autoregressive model

(2.1) Xt = Π1Xt−1 + Π2Xt−2 + · · ·+ ΠkXt−k + εt,

or Π(L)Xt = εt and εt is an i.i.d. process.

Definition 2.1. The process Xt = C(L)εt is stationary if C(z) =∑∞
i=0 Ciz

i converges for |z| < 1 + δ for some δ > 0; it is I(0) when it

is stationary and C(1) 6= 0; it is I(d), d > 0, if ∆dXt is I(0).
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Cointegration and polynomial cointegration are defined as follows

Definition 2.2. The I(d) process Xt is cointegrated if there exists β

such that β′Xt is I(b) with b < d. It is polynomially cointegrated if there

exists βk for k = 0, · · · , d− 1, such that
∑d−1

k=0 β′k∆
kXt is stationary.

3. Poles, order of integration and multiplicities

The characteristic polynomial of (2.1) is the p× p matrix function

Π(z) = Ip −
k∑

i=1

Πiz
i,

and the characteristic equation is defined as |Π(z)| = 0, where |Π(z)| =
det(Π(z)) is a polynomial of degree n ≤ kp, |Π(z)| = ∑n

i=0 diz
i. From

|Π(0)| = 1 it follows that zero is not a root of the characteristic equa-

tion. Let nr be the number of distinct roots zi, each with multiplicity

mi; the determinant can thus be written as

(3.1) |Π(z)| = dn

nr∏
i=1

(z − zi)
mi = (z − 1)mg(z),

where g(1) 6= 0 and 1 ≤ m ≤ n.

Assumption 3.1. The only unstable root is at z = 1; that is |Π(z)| = 0

implies zi = 1 or |zi| > 1.

Evaluating the characteristic polynomial at the roots of the char-

acteristic equation we get reduced rank matrices; at the unit root we

write Π(1) = −αβ′, where α and β are p×r matrices of full rank r < p.

The inverse is defined as the adjoint matrix Πa(z) = Adj(Π(z)) di-

vided by the determinant

(3.2) Π(z)−1 =
Πa(z)

|Π(z)| , z 6= {1, · · · , znr}.

Since Π(z) has reduced rank at the roots of the characteristic equation,

(3.2) is not defined at z = {1, · · · , znr}. These singularities are known

to be poles but at the moment nothing can be said about their order.

Proposition 3.2. If Assumption 3.1 holds, then Xt is I(d) if and only

if Π(z)−1 has a pole of order d at z = 1.

Proof. By definition Xt is I(d) if ∆dXt = C(L)εt with C(z) =∑∞
i=0 Ciz

i convergent for |z| < 1+ δ for some δ > 0 and C(1) 6= 0; then

Π(z)−1 = C(z)/(1− z)d has a pole of order d at z = 1.
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Now consider the numerator in (3.2) at z = 1: when we evaluate the

adjoint matrix polynomial at the unit root we have that1

Πa(1) = 0p when r < p− 1,

because the determinant of any p−1×p−1 minor extracted from Π(1)

is zero and

Πa(1) 6= 0p when r = p− 1,

because there is at least one non singular p− 1× p− 1 minor in Π(1).

It follows that z−1 can be factored out a times from Πa(z), for some

a > 0 when r < p− 1 and for a = 0 when r = p− 1; consequently we

have that

Πa(z) = (z − 1)aH(z),

where H(1) 6= 0p and a ≥ 0.

The only way of having a pole at z = 1 in (3.2) is if Πa(z) goes to

zero at a slower rate than |Π(z)|. Equivalently, we could say that it

must be the case that a < m.

This is exactly what Theorem 3.3 below makes precise.

Theorem 3.3. If Assumption 3.1 holds, the order of integration of Xt

is equal to

d = m− a,

where H(1) 6= 0p in Πa(z) = (z − 1)aH(z) and m is the multiplicity of

the unit root in the characteristic equation.

Proof. Assume that a = m− d and H(1) 6= 0p; then

Π(z)−1 =
Πa(z)

|Π(z)| =
H(z)

(z − 1)dg(z)
,

from which we see that Π(z)−1 has a pole of order d at z = 1; thus Xt

is I(d) by Proposition 3.2. Assume now that Xt is I(d); by Proposition

3.2 it follows that Π(z)−1 has a pole of order d at z = 1. Then (z −
1)(d−1)Π(z)−1 is not defined at z = 1 and G(z) = (z−1)dΠ(z)−1 is such

that G(1) 6= 0p. This defines H(z) = Πa(z)/(z − 1)(m−d) which implies

a = m− d and H(1) = g(1)G(1) 6= 0p.

Thus the order of integration of the process is simply equal to the

multiplicity of the unit root in the characteristic equation minus the

multiplicity of the unit root in the adjoint matrix polynomial. We know

how to calculate the roots of a polynomial; then it is clear that we can

1We use 0p for the p× p zero matrix and Ip for the identity matrix of the same
dimension. For non square matrices we write both the row and column indexes.
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find m, the number of roots at z = 1 in (3.1) and mij, the number

of roots at z = 1 in entry i, j of Πa(z). Then a = minij mij and the

process is integrated of order d = m− a.

Example 1 (Johansen, 1992): Consider the model

−
(

1 2

2 4

)
Xt +

(
0 1

2
1
2

2 + δ

)
∆Xt +

(
0 −1

2
1
2
−1

)
∆2Xt = εt,

with characteristic polynomial

Π(z) =

(
−1 −2 + z

2
(1− z)

−2 + z
2
(1− z) −3 + δ(1− z)− z2

)
,

and characteristic equation

|Π(z)| = −(1− z)(δ + 1− z +
z2

4
(1− z)).

Assumption 3.1 is satisfied if δ = 0 or δ ≥ 3. When δ ≥ 3, m = 1 and

g(z) = δ + 1− z + z2

4
(1− z) is such that g(1) = δ. Since Πa(1) 6= 0 we

have that a = 0 and d = m = 1. When δ = 0, m = 2 and g(z) = 1+ 1
4
z2

is such that g(1) = 5
4
; then Πa(1) 6= 0 implies d = 2.

Example 2 (Paruolo, 1996): Consider the model

Xt =




0 0 1
2

0 1 0
1
2

0 2


 Xt−1 +




0 0 −1
2

0 0 0

−1
2

0 −1


 Xt−2 + εt,

with characteristic polynomial

Π(z) =




1 0 − z
2
(1− z)

0 1− z 0

− z
2
(1− z) 0 (1− z)2


 ,

and characteristic equation

|Π(z)| = (1− z)3(1− z2

4
).

Then Assumption 3.1 is satisfied, m = 3 and g(z) = 1− z2

4
is such that

g(1) = 3
4
; the adjoint matrix polynomial is

Πa(z) =




(1− z)3 0 z
2
(1− z)2

0 (1− z)2(1− z2

4
) 0

z
2
(1− z)2 0 1− z


 ,

from which it is easily seen that a = 1 and thus that d = m − a = 2;

thus the process is integrated of order 2.
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4. Equivalence with the standard I(1) and I(2) conditions

We want to prove the equivalence with the standard conditions in

Johansen (1996) and derive the explicit expression of H(1). We intro-

duce the following notation: let A⊥ be the orthogonal complement of

an m × n matrix A of rank n < m, let Ā = A(A′A)−1 and write the

Taylor expansion of Π(z) at z = 1 as

Π(z) = Π(1) + Π̇(1)(z − 1) +
Π̈(1)

2
(z − 1)2 + (z − 1)3Π3(z).

The order of integration is established (Johansen, 1996) by some re-

duced and full rank conditions on specific matrices: Xt is I(1) if and

only if |Π(1)| = 0 and |α′⊥Π̇(1)β⊥| 6= 0; similarly, the I(2) condition

states that the order of integration is two if and only if |Π(1)| = 0,

|α′⊥Π̇(1)β⊥| = 0 and |α′2θβ2| 6= 0 where θ = Π̈(1)
2

+ Π̇(1)β̄ᾱ′Π̇(1),

α2 = α⊥ξ⊥, β2 = β⊥η⊥, α′⊥Π̇(1)β⊥ = ξη′ and ξ, η are p− r× s matrices

of full rank s < p − r. Using (3.1) and Theorem 3.3 we rewrite the

identity Π(z)Πa(z) = Πa(z)Π(z) = |Π(z)|Ip as

(4.1) Π(z)H(z) = (z − 1)dg(z)Ip

and H(z)Π(z) = (z − 1)dg(z)Ip. At z = 1 they read αβ′H(1) =

H(1)αβ′ = 0p and mean that

H(1) = β⊥ζdα
′
⊥,

for some p− r × p− r matrix ζd of rank 0 < rd ≤ p− r.

Proposition 4.1 (I(1) case). A necessary and sufficient condition for

|α′⊥Π̇(1)β⊥| 6= 0 is that

a = m− 1

in Πa(z) = (z − 1)aH(z) and H(1) 6= 0p. The explicit expression for

H(1) is

H(1) = g(1)β⊥(α′⊥Π̇(1)β⊥)−1α′⊥.

Proof. Assume a = m−1 so that d = 1; differentiate (4.1) at z = 1

to get Π̇(1)H(1)− αβ′Ḣ(1) = g(1)Ip and thus

α′⊥Π̇(1)β⊥ζ1 = g(1)Ip−r.

Then g(1) 6= 0 implies |ζ1| 6= 0, |α′⊥Π̇(1)β⊥| 6= 0 and ζ1 = g(1)(α′⊥Π̇(1)β⊥)−1,

and thus the I(1) condition is satisfied.

Assume now the I(1) condition holds and suppose d = m − a > 1;

differentiating (4.1) at z = 1 we get α′⊥Π̇(1)β⊥ζd = 0p−r; since ζd 6= 0p−r

this contradicts |α′⊥Π̇(1)β⊥| 6= 0 and implies m− a = 1.
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In the next proposition we consider the I(2) case:

Proposition 4.2 (I(2) case). A necessary and sufficient condition for

α′⊥Π̇(1)β⊥ = ξη′ and |α′2θβ2| 6= 0, where ξ and η are p−r×s matrices of

full rank s < p−r, θ = Π̈(1)
2

+Π̇(1)β̄ᾱ′Π̇(1), α2 = α⊥ξ⊥ and β2 = β⊥η⊥
is that

a = m− 2

in Πa(z) = (z − 1)aH(z) and H(1) 6= 0p. The explicit expression for

H(1) is

H(1) = g(1)β2(α
′
2θβ2)

−1α′2.

Proof. Assume a = m − 2 so that d = 2; the first derivative

of Π(z)H(z) = H(z)Π(z) = (z − 1)2g(z)Ip implies α′⊥Π̇(1)β⊥ζ2 =

ζ2α
′
⊥Π̇(1)β⊥ = 0p−r and thus |ζ2||α′⊥Π̇(1)β⊥| = 0; if |α′⊥Π̇(1)β⊥| 6= 0

then ζ2 = 0p−r contradicts H(1) 6= 0p; thus |α′⊥Π̇(1)β⊥| = 0, α′⊥Π̇(1)β⊥ =

ξη′ where ξ and η are p − r × s matrices of full rank s < p − r and

ζ2 = η⊥ψξ′⊥ for some p−r−s×p−r−s matrix ψ of rank 0 < t ≤ p−r−s;

then H(1) becomes

H(1) = β⊥η⊥ψξ′⊥α′⊥ = β2ψα′2.

Note that the first derivative of (4.1) provides the equality

(4.2) β′Ḣ(1) = ᾱ′Π̇(1)H(1).

The the second derivative of (4.1) implies

(4.3) α′⊥Π̈(1)H(1) + 2α′⊥Π̇(1)Ḣ(1) = 2g(1)α′⊥.

Using Ip = β⊥β̄′⊥ + β̄β′ we see that α′⊥Π̇(1)Ḣ(1) = ξη′β̄′⊥Ḣ(1) +

α′⊥Π̇(1)β̄β′Ḣ(1) = ξη′β̄′⊥Ḣ(1) + α′⊥Π̇(1)β̄ᾱ′Π̇(1)H(1) by (4.2). Thus

(4.3) becomes

(4.4) α′⊥

[
Π̈(1)

2
+ Π̇(1)β̄ᾱ′Π̇(1)

]
H(1) + ξη′β̄′⊥Ḣ(1) = g(1)α′⊥.

Pre and post multiplying (4.4) respectively by ξ′⊥ and ᾱ2, we see that

(4.5) α′2θβ2ψ = g(1)Ip−r−s.

Then |ψ| 6= 0, |α′2θβ2| 6= 0 and ψ = g(1)(α′2θβ2)
−1 follow from g(1) 6=

0 and the I(2) condition is satisfied.

Assume now the I(2) condition holds and suppose d = m − a > 2;

(4.5) becomes

α′2θβ2ψ = 0p−r−s

and ψ 6= 0p−r−s contradicts |α′2θβ2| 6= 0 and implies m− a = 2.
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These two equivalences allow us to understand the standard I(1) and

I(2) conditions as imposing a particular shape to the adjoint matrix

polynomial, which in turn ensures that the pole at the unit root has

order one or two; in these cases the principal part of the Laurent expan-

sion of (3.2) around z = 1 consists of one or two terms and translates

into a moving average representation which involves the cumulation

(or the double cumulation) of the stationary process that generates the

stochastic trends.

5. Polynomial cointegration

The results of the previous section can thus be interpreted as al-

ternative proofs of the Granger Representation Theorem in the I(1)

and I(2) cases: the order of integration is established by Theorem

3.3, the explicit expression for H(1) indicates the directions in which

cointegration is to be found, and the restrictions implied by (4.1) and

its derivatives define the (polynomial) cointegration properties of the

process. In the I(2) case, for example, we write the inverse of Π(z) as

Π(z)−1 =
H(z)

(z − 1)2g(z)
, z 6= {1, · · · , znr},

where H(1) 6= 0p and g(1) 6= 0, and H(z) as

H(z) = H(1) + Ḣ(1)(z − 1) + (z − 1)2H2(z).

From the calculations in the proof of Proposition 4.2, we have that

H(1) = β⊥η⊥ψξ′⊥α′⊥, |ψ| 6= 0,(5.1)

β′Ḣ(1) = ᾱ′Π̇(1)H(1).(5.2)

Thus the polynomial cointegration properties of the process are the

following:

Proposition 5.1. Let Xt be I(2) and β1 = β̄⊥η; then β′Xt and β′1Xt

are I(1), and β′Xt + ᾱ′Π̇(1)∆Xt is I(0).

Proof. From (5.1) we have that β′H(1) = 0r×p and β′1H(1) = 0s×p;

thus the functions β′Π(z)−1 and β′1Π(z)−1 have a pole of order one at

z = 1 and correspond to β′Xt and β′1Xt being I(1). Using (5.2) it is

easy to see that the function
{

β′ + (1− z)ᾱ′Π̇(1)
}

Π(z)−1 has no pole

at z = 1 and corresponds to β′Xt + ᾱ′Π̇(1)∆Xt being I(0).



9

The only polynomial cointegrating relation that involves the levels

and reduces the order of integration from two to zero is:

β′Xt + ᾱ′Π̇(1)∆Xt.

Note that (5.1) and Ip = β̄β′ + β̄1β
′
1 + β̄2β

′
2 imply H(1) = β̄2β

′
2H(1);

thus the coefficient of the pole in (1−z)Π(z) is actually β̄2β
′
2H(1). This

means that there are terms in ᾱ′Π̇(1)∆Xt which do not help eliminate

the non stationarity of β′Xt and thus are not needed. Thus the minimal

choice is to take

β′Xt + ᾱ′Π̇(1)β̄2β
′
2∆Xt

as in Johansen (1992).

Now consider a process integrated of order d. The Taylor expansion

of Π(z) is

Π(z) =
d−1∑
n=0

Π(n)(1)

n!
(z − 1)n + (1− z)dΠd(z)

and translates into
d−1∑
n=0

Π(n)(1)
(−1)n

n!
∆nXt + Πd(L)∆dXt = εt

in terms of the stochastic process. Since ∆dXt is I(0) and Πd(L) is a

finite order polynomial, Πd(L)∆dXt is stationary.

Then
∑d−1

n=0 Π(n)(1) (−1)n

n!
∆nXt is also stationary. The polynomial

cointegrating relation that involves the levels and reduces the order

of integration from d to zero is simply

β′Xt + ᾱ′Π̇(1)∆Xt − ᾱ′
Π̈(1)

2
∆2Xt + · · · − (−1)d−1ᾱ′

Π(d−1)(1)

(d− 1)!
∆d−1Xt.

The difficulties arise when we want to find the minimal representa-

tion (see la Cour, 1998, for the I(3) case). Further investigation is still

needed to find a tractable solution in the general case.

6. Conclusion

This paper has extended the way we understand the order of inte-

gration in the univariate case to vector autoregressive processes. It has

shown that there exists a very natural representation of the inverse of

the characteristic polynomial, in which the order of the pole at the

unit root is explicit. This result significantly simplifies the proof of the

Granger Representation Theorem in the I(1) and I(2) cases.
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