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Abstract

Sets consisting of finite collections of prices and endowments such that total resources are con-
stant, or collinear, or approximately collinear, can always be viewed as subsets of some equilibrium
manifold. The additional requirement that such collections of price-endowment data are compatible
with some individual preference rankings is reduced to the existence of solutions to some set of
linear inequalities and equalities. This characterization enables us to give simple proofs of the con-
tractibility of the set whose elements are finite equilibrium data collections compatible with given
individual preference rankings and the path-connectedness of the set made of finite equilibrium data
set.

1. Introduction

A recent development of the theory of general equilibrium deals with the falsifiability issue which, for
Brown and Matzkin, is equivalent to the existence of a finite number of endowment vectors and price
systems that cannot all belong to some equilibrium manifold associated with preferences satisfying
standard assumptions [5]. These authors prove the existence of such sets by way of examples. But, the
mere possibility of falsifying a theory as advocated by Popper says little about how easily this result
can be achieved. The fact that the set made of the finite collections of data that do not belong to any
equilibrium manifold is not empty gives no information about its size assessed by, for example, its
Lebesgue measure in bounded subsets. This size may in fact be so small that it would be practically
impossible to design tests that could falsify the theory.

We start this paper by showing that finite data sets such that total resources are constant, or collinear,
or even only approximately collinear, are always included in some equilibrium manifold. This property
is comparable with a recent result by Snyder who shows that, if the number of consumers is larger than
or equal to the number of goods, the theory of general equilibrium imposes no restrictions on finite data
sets consisting of total resources and equilibrium prices—equilibrium prices being associated here with
some individual endowments that are compatible with the total resources [7]. Our result conveys the
intuition that finite collections of data that are not included in any equilibrium manifold make up a set
that is certainly not large—even if the idea of relative smallness is not rigorously defined and developed
in the current paper—since the set does not contain approximately collinear total resources.

Therefore, given a finite data set made of endowment vectors and their associated price system,
there is a good chance that there exists an equilibrium manifold that contains these data. In such a
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case, there exists at least one utility function per consumer such that the associated equilibrium manifold
contains all the elements of the data set. The indirect utility functions associated with these direct utilities
determine the consumers’ rankings of the price-income pairs associated with the price-endowment data
set, the income being simply the value of the endowments for the associated price system. Therefore,
every consumer ranks the price-income data associated with a data set belonging to some equilibrium
manifold.

But the equilibrium manifold that contains the data set is, when it exists, rarely unique. Therefore,
for each consumer, different rankings may be associated with a given equilibrium data set. Knowing
these rankings is often an important issue in applied welfare economics. Therefore, the information that
some rankings are incompatible with the equilibrium condition is particularly important. This leads us
to strengthen the philosophically oriented problem considered by Brown and Matzkin of determining
whether a set of data belongs to some equilibrium manifold into the more restrictive, policy oriented
question of whether a given price-endowment data set is compatible with some given individual rankings
of the associated price-income data. Note that a set of price-endowment data that would be incompatible
with all possible rankings cannot be contained in any equilibrium manifold.

We show in this paper that the problem of determining whether a set of price-endowment data—
actually, we express these data as price-income distribution-total resource data—is compatible with
given individual rankings of the associated price-income data can be reduced to the existence of solutions
to some set of linear inequalities and equalities. A practical consequence of this linearity property is
the relatively modest computational complexity of the problem. But linearity has other consequences as
well. For example, at the purely theoretical level, it enables us to give simple proofs of global topological
properties like the contractibility of data sets compatible with given individual preference rankings and
the path-connectedness of finite equilibrium data sets.

We have attempted to make this paper as much self-contained as possible. Several results of this
paper depend on properties that come under the general heading of the theory of revealed preferences.
These properties are gathered in the Appendix. We either provide proofs or make appropriate references
to the literature.

The paper is organized as follows. In Section 2, we recall the main assumptions and definitions, and
set the notation. Section 3 is devoted to the property that there are no restrictions on datasets if total
resources are constant, or collinear, or almost collinear. Section 4 addresses the equivalence between the
compatibility of data sets with specified preference orderings and the existence of solutions to some set
of linear equalities and inequalities. Section 5 deals with the contractibility of data sets compatible with
some specified preference orderings and with the resulting path-connectedness of equilibrium data sets.
An Appendix contains the most technical aspects of some proofs as well as the properties of revealed
preference theory used in the paper.

2. Definitions, assumptions and notation

Goods and prices

There is a finite number ` of goods. Let p = (p1, p2, . . . , p`−1, p`) ∈ R`
++ be the price vector. We

normalize the price vector p by picking the `-th commodity as the numeraire, which is equivalent to
setting p` = 1. Let S denote the set of strictly positive normalized price vectors.
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Consumers and their utility functions

There is a finite number m ≥ 2 of consumers. A consumer is characterized by the consumption set
X = R`

++, an endowment vector ωi ∈ X and a utility function ui : X → R.
We assume that consumer i’s utility function ui belongs to the class U of smooth maps from X into

R that satisfy the following properties whose mathematical and economic interpretation are standard:
1) Dui(xi) ∈ X for any xi ∈ X (smooth monotonicity); 2) the condition yT D2ui(xi) y ≥ 0 and
yT Dui(xi) = 0 with xi ∈ X has the only solution y = 0 ∈ R` (smooth strict quasi-concavity); 3)
u−1

i (a) is closed in R` for any a ∈ R (necessity of strictly positive consumption of every commodity).
We denote by Ω = Xm the set of endowments of all consumers.

Individual demand functions

Given the utility function ui ∈ U, the demand of consumer i for the price vector p ∈ S and the income
wi > 0 is fi(p, wi) = arg maxui(xi) subject to the budget constraint p ·xi ≤ wi. The demand function
fi : S×R++ → R`

++ is not only smooth but satisfies several other properties, one of them being Walras
law (namely the identity p · fi(p, wi) = wi), another one the symmetry and negative definiteness of the
Slutsky matrix. For details, see e.g. [4]. Note that we do not need more than Walras law in this paper.

The price-endowment equilibrium pairs

The price vector p ∈ S is an equilibrium price vector for the vector of individual endowments ω =
(ω1, ω2, . . . , ωm) ∈ Ω and utility profile u ∈ Um if there is equality of aggregate supply and demand
for that price vector: ∑

i

fi(p, p · ωi) =
∑

i

ωi. (1)

The pair (p, ω) ∈ S × Ω is then said to be a price-endowment equilibrium or also an equilibrium pair
(for the utility profile u ∈ Um).

The set E(u) consists of the price-endowment equilibria (p, ω) ∈ S × Ω associated with the utility
profile u = (u1, u2, . . . , um) ∈ Um. The set E(u) is then a dimension m` smooth submanifold of S×Ω
whose global structure (pathconnectedness, simple connectedness, contractibility, and diffeomorphism
with a Euclidean space for example) is investigated in [1], [3] and [2]. It follows from these global
properties that not all dimension m` smooth manifolds can be identified with equilibrium manifolds of
exchange economies.

Equilibrium triples or the price–income distribution–total resource equilibria

Since we want to highlight the role of total resources and income distributions in the properties of
equilibrium data sets, we introduce a different parametrization of the set of equilibria by way of prices,
income distributions and total resources.

Let w = (w1, w2, . . . , wm) ∈ Rm
++ denote the income distribution between the m consumers mak-

ing up the economy.
We define a feasible triple or a price-income distribution-total resource equilibrium as a triple

(p, w, r) ∈ S × Rm
++ ×X such that the equality

w1 + w2 + · · ·+ wm = p · r (2)

is satisfied. We denote by B the subset of S × Rm
++ ×X consisting of feasible triples.
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We define an equilibrium triple for the utility profile u ∈ Um as the triple (p, w, r) ∈ S×Rm
++×X

that satisfies the equality ∑
i

fi(p, wi) = r. (3)

Equilibrium triples extend to the case of variable total resources r ∈ X the price-income equilibria
considered in [4]. It follows from Walras law that an equilibrium triple is feasible. We denote by
E(u)[T ] the set of T two by two distinct equilibrium triples for the utility profile u ∈ Um.

Relationship between (price,endowment) equilibria and equilibrium triples

It is obvious that if the pair (p, ω) ∈ S × Ω where ω = (ωi) is a price-endowment equilibrium in the
sense that equation (1) is satisfied, then the triple b =

(
p, w, r

)
where wi = p · ωi for 1 ≤ i ≤ m,

and r =
∑

i ωi is an equilibrium triple. Therefore, this defines a smooth map from the set of price-
endowment equilibria into the set of equilibrium triples.

Conversely, given the equilibrium triple b = (p, w, r) for the utility profile u = (ui) ∈ Um, then
any pair (p, ω) where ω = (ωi) satisfies the equalities

∑m
i=1 ωi = r and p ·ωi = wi for i = 1, 2, . . . ,m,

is a price-endowment equilibrium for the same utility profile.
The concept of equilibrium triple presents the advantage over the price-endowment equilibrium

of making more apparent the associated income distribution and total resources. From now on, we
consider only equilibrium triples instead of price-endowment equilibria unless the contrary is explicitely
specified.

Configurations of equilibrium data

A configuration of T triples is a T -tuple G = (bt)1≤t≤T where bt = (pt,wt, rt) ∈ S × Rm
++ ×X . We

denote by B[T ] (resp. E(u)[T ]) the set of configurations G whose components are feasible triples (resp.
equilibrium triples for the utility profile u = (u1, . . . , um) ∈ Um) that are two by two distinct.

The utility profile u = (ui) ∈ Um is said to rationalize the configuration G—the configuration G is
then said to be rationalizable—if the configuration G belongs to E(u)[T ].

Rationalizable configurations and associated rankings

Let G =
(
(pt,wt, rt)

)
1≤t≤T

∈ E(u)[T ] be a configuration rationalized by the utility profile u = (ui) ∈
Um. Let xt

i = fi(pt, wt
i) where fi : S × R++ → X is the demand function associated with the utility

function ui ∈ U. The utility levels ui(xt
i) with t varying from 1 to T are not necessarily distinct. Let

us sort, for example, these utility levels in ascending order. This enables us to define a preorder �i of
the set T = {1, 2, . . . , T} for consumer i with 1 ≤ i ≤ m by the condition that t �i t′ is equivalent to
ui(xt

i) ≤ ui(xt′
i ).

The preorder�i of the set T (or of any arbitrary set) is a binary relation that is complete (i.e., t �i t′

or t′ �i t for any t and t′ in T), reflexive (t �i t for any t ∈ T), transitive (t �i t′ and t′ �i t′′ imply
t �i t′′ for t, t′ and t′′ ∈ T). An order is a preorder that is antisymmetric (i.e., t �i t′ and t′ �i t imply
t = t′). We say that the strict order ≺i is a refinement of the preorder �i if t ≺i t′ implies t �i t′. Note
that, for any preorder, there exists at least one order that is a refinement of the preorder.

We define the ranking profile of the m consumers for the configuration G by the m-tuple � = (�i)
with i = 1, 2, . . . ,m. In case the ranking profiles are all strict, we write ≺ = (≺i).
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One of our goals in this paper is to characterize the configurations G that can be rationalized by
utility functions u = (ui) ∈ Um that are compatible with given (pre)order profiles.

3. Variability of total resources and falsifiability

The main result of this section is the following

Theorem 1. Let G = (bt)1≤t≤T ∈ B[T ] be a configuration such that the total resources rt are collinear
for all t. Then, the configuration G is rationalizable by some utility profile u ∈ Um.

Proof. See Section B of the appendix.

Proposition 2. The set of configurations in B[T ] that are rationalizable contains in its interior the
configurations with collinear total resources.

Proof. Let G = (pt,wt, rt) be a configuration such that the total resources rt are collinear for all t.
It follow from Theorem 1 that there exists some utility profile u = (ui) ∈ Um that rationalizes the
configuration G. Let xt

i = fi(pt, w
)
i where fi is the demand function associated with the utility function

ui.
Let us now show that if the configuration G′ = (p

′t,w
′t, r

′t) is close enough to G, then G′ is also
rationalizable. Define for i ≥ 2 the element x

′t
i = fi(p

′t, w
′t
i ). By construction, the T price-consumption

pairs (p
′t, x

′t
i ) for every i ≥ 2 are rationalized by the utility function ui. Define

x
′t
1 = r′ −

∑
i≥2

x
′t
i .

It follows from the continuity of the demand functions fi that the x
′t
1 can be made arbitrarily close to xt

1

by choosing G′ close enough to G. It then suffices to apply Proposition 1 of the appendix to G′ close
enough to G to conclude that the T -tuple (p

′t, x
′t
1 ) also satisfies SARP and, therefore, can be rationalized

by some utility function u′1.

It then follows from Proposition 2 that any configuration where the total resources depart little from
being collinear is also rationalizable. In other words, a data set that would not be rationalizable requires
that the directions defined by the vectors of total resources vary significantly. Such data cannot be
generated by an economy that is undergoing proportional or quasi-proportional growth.

Remark 1. The proof of Proposition 2 actually proves that the set of rationalizable configurations is
open.

4. Compatibility of equilibrium configurations and individual rankings

Let G = (bt) ∈ E[T ] with bt = (pt,wt, rt) be a configuration made of T equilibrium triples. The main
result of this section is the following characterization by a set of linear equalities and inequalities of the
compatibility of the configuration G ∈ E[T ](u) (where the utility profile u varies in Um) with the strict
ranking profile ≺ = (≺i).
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A system of linear equalities and inequalities

Theorem 3. There exists a utility profile u = (u1, u2, . . . , um) ∈ Um compatible with the strict ranking
≺ = (≺i) of the configuration G if and only if the set of solutions

{
(xt

i)
}

, with 1 ≤ i ≤ m and
1 ≤ t ≤ T , of the following system LP (G, ≺) of linear equalities and inequalities is nonempty:

LP (G, ≺) :


pt′ · xt

i > wt′
i whenever t′ ≺i t; (L1)

pt · xt
i = wt

i ; (L2)∑
i x

t
i = rt. (L3)

Proof. The condition is necessary. Let xt
i = fi(pt, wt

i). Equality (L3) follows from the equilib-
rium condition. Equality (L2) follows from Walras law. Inequality (L1) then follows from inequality
ui(xt′

i ) < ui(xt
i).

The condition is sufficient. Pick some arbitrary consumer i. We use equality (L2) to substitute pt · xt
i to

wt
i in inequality (L1). The collection of inequalities (L1) implies that the data (pt, xt

i) are well-ranked
for the ordered index set (T,≺i) = {ti1 ≺i ti2 ≺i · · · ≺i tiT } in the sense of Definition A.3 of
the Appendix. It then suffices to apply Proposition A.10 of the Appendix to rationalize these data by
some utility function ui ∈ U with the property that the strict inequality ui(xt′

i ) < ui(xt
i) is equivalent

to t′ ≺i t. It then suffices to do this for every consumer. Equality (L3) implies that the equilibrium
condition is satisfied for every t varying from 1 to T .

Extension to nonstrict rankings

Theorem 3 can be applied to assess the compatibility of configuration G with the ranking profile � =
(�i) that is not necessarily strict by considering strict ranking profiles ≺ = (≺i) that are refinements of
the ranking profile � = (�i) as follows from:

Lemma 4. Let � = (�i) be some not necessarily strict ranking profile of the configuration G associated
with the utility profile u = (ui) ∈ Um. Then, for any strict ranking refinement ≺ = (≺i) of � = (�i),
there exists a utility profile u′ = (u′i) ∈ Um such that the configuration G belongs to E[T ](u′) and the
induced ranking profile coincides with ≺ = (≺i).

Proof. This is essentially Proposition A.11 of the Appendix.

Given the ranking profile � = (�i), it then suffices to apply Theorem 3 to any refinement ≺ = (≺i)
to check the compatibility of the configuration G with the ranking profile � = (�i).

Remarks on the size of these linear problems

The linear system whose solution set is LP (G, ≺) has m `T real unknowns and m `T +` T +mT (T +
1)/2 constraints (including the sign constraints). For a given economy, m and ` are constant and the
only variable parameter is the number T of equilibrium data. The number of unknowns is linear and
the number of constraints quadratic in T . This situation is similar to the one observed by Varian [9]
for Afriat’s inequalities in the case of one consumer). But, at variance with Afriat’s set of inequalities
whose solution is practically impossible for T large because of the size of the problem, the set of in-
equalities and equalities in Theorem (3) decomposes into T smaller linear subproblems which makes
finding solutions far more tractable.

6



The number of unknowns of each subproblem is then equal to `m while the number of constraints
varies from m` + ` + m to m ` + ` + mT depending on the value of t and of the ranking profile ≺.
The average value of the number of constraints is therefore equal to m` + ` + mT/2. Both average and
maximal values are linear in T . This makes each one of the linear subproblems far more tractable than
the general problem, an advantage that more than compensates the fact that there exist T such problems.

5. Application: topological properties of sets of equilibrium triples

We apply the characterisation given by Theorem 3 to the proof of the contractibility of subsets made
of configurations that are compatible with given rankings, properties that we then apply to proving the
pathconnectedness of the set of equilibrium configurations, i.e., configurations that are subsets of some
equilibrium manifold.

Contractibility of the set
(
E[T ]

∣∣≺)
Proposition 5. The set

(
E[T ]

∣∣≺)
is contractible.

Proof. See Section C of the Appendix.

Application to the pathconnectedness of the set of equilibrium triples

Lemma 6. We have
E[T ] =

⋃
≺

(
E[T ]

∣∣≺)
.

Proof. Obvious.

Lemma 7. The intersection ⋂
≺

(
E[T ]

∣∣≺)
is not empty.

Proof. The idea of the proof is to define a configuration G̃ ∈ E[T ] that is compatible with all ranking
profiles ≺.

Step 1. Let u ∈ U be some arbitrary utility function. Let x1, x2, . . . , xt, . . . , xT be T distinct consump-
tion bundles in X yielding the same utility level (i.e., u(x1) = u(x2) = · · · = u(xt) = · · · = u(xT )).
Let pt be the supporting price vector of xt for t = 1, 2, . . . , T .

The strict inequality pt · xt < pt · xt′ for t 6= t′ follows from the strict quasi-concavity of the utility
function u combined with xt 6= xt′ (and u(xt) = u(xt′)).

Step 2. These inequalities imply as a special case the inequalities

pt · xt < pt · xt′ for 1 ≤ t ≺i t′ ≤ T

for any order ≺i of T = {1, 2, . . . , T}. are satisfied. In other words, the T elements (pt, xt) ∈ S ×X
are well-ranked in the sense of Definition A.3 of the Appendix.
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Step 3. Let G̃ be the configuration defined by the collection of triples (p̃t, w̃, r̃t) where p̃t = pt, w̃t
i =

p̃t · xt, and r̃t = mxt for t varying from 1 to T . Let also u = (u, u, . . . , u) denote the utility profile
associated with each consumer having u ∈ U as utility function.

Let f : S×R++ → X be the demand function associated with the utility function u. Then, we have
f(pt, pt · xt) = xt for t = 1, 2, . . . , T . Define x̃t

i = xt for all i and t. The following inequalities and
equalities 

p̃t′ · x̃t
i > w̃t′

i for all i and t′ 6= t;

p̃t · x̃t
i = w̃t

i for all i;∑
i

xt
i = r̃t;

are then satisfied for all order profiles ≺ = (≺i). It then follows from Theorem 3 that the configuration
G̃ is compatible with the ranking ≺ = (≺i) for any order profile ≺.

We can now prove:

Proposition 8. The set E[T ] is pathconnected.

Proof. The set E[T ] is the union of the path-connected sets
(
E[T ]

∣∣≺)
for all order profiles ≺ = (≺i).

These sets have a non empty intersection by Lemma 7. Let G̃ be some element of the intersection
∩π

(
E[T ]

∣∣≺)
. It then suffices to join the configurations G ∈

(
E[T ]

∣∣≺)
and G′ ∈

(
E[T ]

∣∣≺′) to the element
G̃ by two continuous paths contained in

(
ET ]

∣∣≺)
and

(
ET ]

∣∣≺′) respectively to define a continuous path
in E[T ] linking the two configurations G and G′.
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A. Properties of price-consumption data and revealed preference theory
This part is devoted to recalling a few properties of revealed preference theory and to establishing properties of finite sets of
price-consumption data (pt, xt

i) ∈ S×X , with t varying from 1 to T , i denoting some arbitrarily chosen consumer, properties
that play a crucial role in the proofs of the main results of this paper.

The strong axiom of revealed preferences
The set of data {(p1, x1

i ), (p
2, x2

i ), . . . , (p
T , xT

i )} satisfies the strong axiom of revealed preferences or SARP if, for every
integer n ≤ T and every subset

{t1, t2, . . . , tn} ⊂ {1, 2, . . . , T},
the inequalities

pt1 · (xt2
i − xt1

i ) ≤ 0 , pt2 · (xt3
i − xt2

i ) ≤ 0 , . . . , ptn−1 · (xtn
i − x

tn−1
i ) ≤ 0

imply either
xt1

i = xtn
i or ptn · (xt1

i − xtn
i ) > 0.

This set of data satisfies the strong version of SARP if, in addition to SARP, we have xt
i 6= xt′

i whenever pt 6= pt′ [6].

Rationalization of price-consumption data
The utility function ui : X → R rationalizes the set of price-consumption data {(p1, x1

i ), (p2, x2
i ), . . . , (pT , xT

i )} if

ui(x
t
i) = max ui(xi) subject to pt · xi ≤ pt · xt

i

for t = 1, 2, . . . , T .
If the set of data {(p1, x1

i ), (p
2, x2

i ), . . . , (p
T , xT

i )} satisfies the strong version of SARP, one can easily derive from [6]
that these data can be rationalized by a utility function ui ∈ U. (In [6], the domain of the utility function ui is restricted to a
compact subset of the strictly positive orthant X = R`

++ instead of being the full set X; it then suffices to extend the domain
of the function ui to X while satisfying the conditions characterizing the elements of U.)

Openness of the set of price-income data satisfying SARP
First, let us identify the Cartesian product ST ×X [T ] with the set of T -tuples`

(p1, x1
i ), (p

2, x2
i ), . . . , (p

T , xT
i )

´
with distinct coordinates x1

i , x2
i , . . . , xT

i , and let S denote the subset of ST ×X [T ] made of the T -tuples that satisfy SARP.

We reformulate SARP as follows. Let σ be some ordered subset {j1, j2, . . . , jn} of T = {1, 2, . . . , T}. We define Fσ as the
subset of ST ×X [T ] consisting of the T -tuples`

(p1, x1
i ), . . . , (p

t, xt
i), . . . , (p

T , xT
i )

´
that satisfy the following inequalities where n ≤ T :

pj1 · xj1
i ≤ pj1 · xj2

i ,

pj2 · xj2
i ≤ pj2 · xj3

i ,

. . . ≤ . . . ,

pjn−1 · xjn−1
i ≤ pjn−1 · xjn

i ,

pjn · xjn
i ≤ pjn · xj1

i .

Define S as the set of ordered subsets of {1, 2, . . . , n} with at least two elements. Define F =
S

σ∈S Fσ . Then, the set
S of T -tuples of ST ×X [T ] that satisfy SARP is the complement of the set F:

S = ST ×X [T ] \ F.

This reformulation of SARP enables us to give a very short proof of the following:
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Proposition A. 1. The set S is open in ST ×X [T ].

Proof. The number of ordered subsets σ of the finite set T = {1, 2, . . . , T} is finite. The set Fσ for a given ordered σ is
defined by weak inequalities; it is therefore closed in ST ×X [T ]. The set F is then closed as a finite union of closed sets, and
S is open as the complement of a closed set.

Corollary A. 2. With (p1, p2, . . . , pT ) ∈ ST arbitrarily given, the set of T -tuples (x1
i , x

2
i , . . . , x

T
i ) ∈ Xm for which the

T -tuple
`
(p1, x1

i ), (p
2, x2

i ), . . . , (p
T , xT

i )
´

satisfies SARP is open in Xm.

Proof. The intersection
S ∩ (p1, p2, . . . , pT )×X [T ]

is open in {(p1, p2, . . . , pT )} ×X [T ] because S is open. The projection

{(p1, p2, . . . , pT )} ×X [T ] → X [T ]

is a homeomorphism, and the image of S∩ (p1, p2, . . . , pT )×X [T ] is therefore open in X [T ]. We conclude by observing that
this image coincides with the set of T -tuples (x1

i , x
2
i , . . . , x

T
i ) ∈ X [T ] for which the T -tuple`

(p1, x1
i ), (p

2, x2
i ), . . . , (p

T , xT
i )

´
∈ ST ×X [T ]

satisfies SARP.

Remark 2. Proposition A.1 and its corollary seem to be new.

Well-ranked data set for a specified ordered index set
Definition A. 3. The data (pt, xt

i) indexed by the ordered set (T, <) = {1 < 2 < · · · < T} are well-ranked if the inequalities

pt · xt
i < pt · xt′

i (4)

are satisfied for 1 ≤ t < t′ ≤ T .

Note that the property of being well-ranked is a property of the data set and of its indexation by the ordered set (T, <).
Definition A.3 obviously extends to any finite “abstract” set (I,≺) equipped with the order relation ≺. Note also that well-
ranked data are necessarily two by two different.

In the following proposition, we consider two ordered sets (I,≺) and (I ′,≺′). The ordered set (I ′,≺′) is an ordered
subset of the ordered set (I,≺) if I ′ ⊂ I and the restriction of the order ≺ of I to I ′ coincide with the order ≺′ of I ′. In such
a case, we simplify the notation by simply writing (I ′,≺) for the ordered subset.

Proposition A. 4. Let (pt, xt
i) be a set of data that are well-ranked for the ordered index set (I,≺). Then, the subset of data

(pt, xt
i) indexed by the ordered subset (I ′,≺) is also well-ranked.

Proof. Obvious.

An important application of the property of being well-ranked is the following:

Proposition A. 5. Any set of well-ranked data for the ordered index set (I,≺) can be rationalized by some utility function
ui ∈ U.

Proof. It suffices that we prove that the set of well-ranked data satisfies the strong version of SARP. There is no loss of
generality in assuming (I,≺) = (T, <) = {1 < 2 < · · · < T}.

First, let us show that pt 6= pt′ implies xt
i 6= xt′

i . The inequality pt 6= pt′ implies t 6= t′. Without loss of generality, we
can assume t < t′. It then follows from the data being well-ranked that the strict inequality pt ·xt

i < pt ·xt′
i is satisfied, which

implies that xt
i and xt′

i must be different.
Let us now prove that the set of well-ranked data satisfies SARP. Assume that we have

pt1 · xt1
i ≥ pt1 · xt2

i , pt2 · xt2
i ≥ pt2 · xt3

i , . . . , ptn−1 · xtn−1
i ≥ ptn−1 · xtn

i

and let us show that, if xt1
i 6= xtn

i , the strict inequality

ptn · xtn
i < ptn · xt1

i

10



is satisfied.
The data being well-ranked for the ordered index set (T, <) = {1 < 2 < · · · < T}, inequality pt1 · xt1

i ≥ pt1 · xt2
i

is possible only if t2 ≤ t1 and, therefore, implies the inequality t2 ≤ t1. Similarly, inequality pt2 · xt2
i ≥ pt2 · xt3

i implies
t3 ≤ t2, and this goes on up to the last inequality, which implies tn ≤ tn−1. By the transitivity of the order relation ≤, the
sequence of inequalities

tn ≤ tn−1 ≤ · · · ≤ t2 ≤ t1

yields the inequality tn ≤ t1. We cannot have tn = t1 because xtn
i and xt1

i are different. We therefore have tn < t1; the strict
inequality

ptn · xtn
i < ptn · xt1

i

follows again from the data being well-ranked.

Proposition A. 6. Let (pt, xt
i) with t = 1, 2, . . . , T be a set of data two by two different (i.e., (pt, xt

i) 6= (pt′ , xt′
i ) for t 6= t′)

rationalized by a utility function ui ∈ U and such that the inequalities

ui(x
1
i ) ≤ ui(x

2
i ) ≤ · · · ≤ ui(x

T
i )

are satisfied. Then these data are well-ranked for the ordered index set (T, <) = {1 < 2 < · · · < T}.

Proof. Let t be arbitrary between 1 and T . For any t′ > t, we have ui(x
t
i) ≤ ui(x

t′
i ). This implies the inequality pt · xt

i ≤
pt · xt′

i . This inequality is strict for t 6= t′ because the utility function ui is strictly quasi-concave and xt
i 6= xt′

i .

Remark A. 1. The concept of well-ranked data is due to Varian [9].

Strongly ranked data set for a specified ordered index set
The utility function whose existence is established in Proposition A.5 does not guarantee us that the utility levels ui(x

t
i) are

ranked in increasing orders, i.e., that the inequalities

ui(x
1
i ) ≤ ui(x

2
i ) ≤ · · · ≤ ui(x

T
i ) (5)

are satisfied even for data that are well-ranked for the ordered index set (T, <). This leads us to strengthen the concept of
well-ranked data set with respect to an ordered index set as follows:

Definition A. 7. The data (pt, xt
i) indexed by the ordered set (T, <) = {1 < 2 < · · · < T} are strongly ranked if, in addition

to being well-ranked, they satisfy the inequality

pt+1 · xt
i ≤ pt+1 · xt+1

i

for every t 6= T .

A set of indexed data can be well-ranked without being strongly ranked. The following proposition reflects the additional
information associated with strongly ranked data.

Proposition A. 8. Let (pt, xt
i) be strongly ranked data for the ordered index set (T, <) = {1 < 2 < · · · < T}. Then, the

strict inequalities
ui(x

1
i ) < ui(x

2
i ) < · · · < ui(x

T
i ) (6)

are satisfied for any utility function ui ∈ U that rationalizes these data.

Proof. It follows from the definition of strongly ranked data sets that the inequality

pt · xt−1
i ≤ pt · xt

i

is satisfied for t 6= 1. It then follows from xt−1
i 6= xt

i that we have

ui(x
t−1
i ) < ui(x

t
i)

for t 6= 1.

By Proposition A.5, any well-ranked data set is rationalizable by some utility function ui ∈ U. The ranking of the commodity
bundles xt

i is then independent of the utility function ui ∈ U. In the next proposition, we see that, if well-ranked data are not
always strongly ranked, it is nevertheless possible to embed these well-ranked data into a larger set of strongly ranked data.
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Proposition A. 9. Any set of well-ranked data for the ordered index set (T, <) = {1, 2, . . . , T} can be embedded into some
larger set of strongly ranked data for some ordered index set (J,≺) (with T ⊂ J), with 1 being the smallest element of (J,≺).

Proof. The proof works by induction on T , the number of well-ranked data. For T = 1, there is nothing to prove because any
data set of one element is well-ranked and strongly ranked.

Induction argument for T arbitrary. The induction hypothesis can be stated as follows: any set of T well-ranked data (pt, xt
i)

for the ordered index set (T, <) = {1 < 2 < · · · < T} can be embedded into a larger set of strongly ranked data for the
ordered index set (J,≺) whose smallest element is the element 1, the smallest element of the set I . This property is assumed
to be satisfied for T − 1, and we establish that it is then true for T .

Let therefore T well-ranked data (pt, xt
i) for the ordered set (T, <) = {1 < 2 < · · · < T}. It follows from Proposition

4 that the T − 1 data (pt, xt
i) indexed by the ordered subset (I ′, <) = {2 < 3 < · · · < T} are also well-ranked. Therefore,

by the induction assumption, we can embed these T − 1 data into a larger set of strongly ordered data with an ordered index
set (J ′,≺) whose smallest element is the element 2 ∈ (I ′, <).

One checks readily that these strongly ranked data and the pair (p1, x1
i ) of the original data set define a set of data that are

well-ranked for the ordered set (J ′′,≺) = {1} ∪ (J ′,≺) with 1 ≺ t for t ∈ J ′.
Let us show that these data are either strongly ranked for the ordered index set (J ′′,≺) or that we can find an additional

pair (pA12 , xA12
i ) such that the data set consisting of (p1, x1

i ), (pA12 , xA12
i ), and the subsequent (pt, xt

i) for t ∈ J ′ are strongly
ranked for the ordered index set (J,≺) = {1 ≺ A12 ≺ 2} ∪ (J ′,≺).

If the inequality p2 · x1
i ≤ p2 · x2

i is satisfied, then the full data set is clearly strongly ranked for the ordered index set
(J ′′,≺) and there is nothing more to prove. (It suffices to take (J,≺) = (J ′′,≺), and to observe that 1 is the smallest
element of both index set (T, <) and (J,≺).)

Assume now that the inequality p2 · x1
i > p2 · x2

i is satisfied. Define ε = inf2≤t≤T p1 · (xt
i − x1

i ). Let us show that there
exists some xA12

i ∈ R`
++ that satisfies the following equalities:

p1 · xA12
i = p1 · x1

i + ε/2 , p2 · xA12
i ≤ p2 · x2

i (7)

The set
{xi ∈ X | p2 · xi ≤ p2 · x2

i }
is convex and bounded from below by 0, contains elements arbitrarily close to 0, and also contains the point x2

i . The image
of this set by the linear map xi → p1 · xi is therefore an interval of the form (0, A]. Now p1 · x2

i belongs to this interval as
the image of the point x2

i . This implies that p1 · x1
i + ε/2 also belongs to this interval by the definition of ε, which proves the

existence of some point xA12
i satisfying the above equalities and inequalities.

Set pA12 = p1. Let us now show that the set consisting of (p1, x1
i ), (pA12 , xA12

i ), and of the data (pt, xt
i) for t ∈ J ′

is strongly ranked with the respect to the ordered index set (J,≺) = {1 < A12 < 2} ∪ (J ′,≺). By construction, we have
p1 · x1

i ≤ p1 · xA12
i = p1 · x1

i + ε/2 and pA12 · xA12
i = p1 · xA12

i = p1 · x1
i + ε/2 < pA12 · xt

i for t ≥ 2, which proves that
these data are indeed well-ranked. The inequality

pA12 · x1
i = p1 · x1

i ≤ p1 · x1
i + ε/2 = p1 · xA12

i = pA12 · xA12
i

and the inequality
p2 · xA12

i ≤ p2 · x2
i

are satisfied by construction. These inequalities combined with the strong ranking of the data for t ≥ 2 imply that these data
are strongly ranked for the ordered index set (J,≺) = {1 < A12 < 2 < · · · < T}. Note that the element 1 is the smallest
element of the ordered set (J,≺).

Proposition A. 10. Any set of well-ranked data (pt, xt
i) for the ordered index set (T, <) = {1 < 2 < · · · < T} is

rationalizable by a utility function ui ∈ U for which the strict inequalities

ui(x
1
i ) < ui(x

2
i ) < · · · < ui(x

T
i )

are satisfied.

Proof. These data being well-ranked for the ordered index set (T, <) = {1 < 2 < · · · < T}, it follows from Proposition
A.9 that they can be embedded into a larger set of strongly ranked data indexed by some ordered indexed set (J, <), with
(T, <) ⊂ (J,≺). The strict inequalities of the Proposition then follow from the fact that the order of T is the restriction of the
order of J .
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Proposition A. 11. Let (pt, xt
i) with t = 1, 2, . . . , T a set of data two by two different (i.e., (pt, xt

i) 6= (pt′ , xt′
i ) for t 6= t′)

rationalized by some utility function ui ∈ U and such that the weak inequalities

ui(x
1
i ) ≤ ui(x

2
i ) ≤ · · · ≤ ui(x

T
i )

are satisfied. Then these data can be rationalized by a utility function ũi ∈ U such that the strict inequalities

ũi(x
1
i ) < ũi(x

2
i ) < · · · < ũi(x

T
i )

are satisfied.

Proof. By Proposition A.6, the data are well-ranked for the ordered index set (T, <) = {1 < 2 < · · · < T}. It then follows
from Proposition A.10 that there exists a utility function ũi ∈ U that rationalizes the T pairs (pt, xt

i) (for t = 1, . . . , T ) and
such that the strict inequalities

ũi(x
1
i ) < ũi(x

2
i ) < · · · < ũi(x

T
i )

are satisfied.

Application to increasing sequences of commodity bundles
The following proposition and its corollary can easily be proved directly. We prove them here as straightforward consequences
of the concept of strongly ordered data.

Proposition A. 12. Let x1
i , x2

i , . . . , xT
i be a strictly increasing sequence of elements in X = R`

++. Let p1, p2, . . . , pT be
arbitrarily chosen price vectors. The data (pt, xt

i) are strongly ranked for the ordered index set (T, <) = {1 < 2 < · · · < T}.

Proof. The (vector) inequality xt
i < xt′

i for t < t′ implies the strict inequality pt · xt
i < pt · xt′

i , which proves that these data
are well-ranked for the ordered index set (T, <) = {1 < 2 < · · · < T}. The inner product of the inequality xt

i < xt+1
t with

the price vector pt+1 yields the strict inequality pt+1 · xt
i < pt+1 · xt+1

i , which proves that these data are strongly ranked.

Corollary A. 13. Let x1
i , x2

i , . . . , xT
i be a strictly increasing sequence of elements in X = R`

++. Let p1, p2, . . . , pT be
arbitrarily chosen price vectors. There exists a utility function ui ∈ U that rationalizes the data (pt, xt

i) with t = 1, 2, . . . , T .
In addition, the inequality ui(x

1
i ) < ui(x

2
i ) < · · · < ui(x

T
i ) is always satisfied.

Proof. Follows directly from Proposition A.12 combined with Proposition A.8.

B. Proofs of rationalisability of configurations with collinear and quasi-col-
linear total resources

Proof of Theorem 1
Let (pt, wt, rt) be a collection of T two by two distinct price-income distribution-total resource triples. The idea is to show
that there exist commodity bundles xt

i ∈ X and utility functions ui ∈ U for i varying from 1 to m and t from 1 to T such that
we have xt

i = fi(p
t, wt

i) (where fi is the demand function associated with the utility function ui) and
P

i xt
i = rt.

Step 1: Constant total resources and some strict inequalities (generic case)
We first assume that the following additional property is satisfied:

wt
i

pt · r 6=
wt′

i

pt′ · r
(8)

for all t, t′, and i. Define

xt
i =

wt
i

pt · r r.

By construction, all the vectors xt
i for a given i are collinear with the positive vector r ∈ R`

++. It follows from inequalities
(8) that the xt

i’s are all distinct for any given i. It then suffices to apply Lemma 13 to conclude that, for every i, the T pairs
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(pt, xt
i) satisfy SARP. This implies for every i between 1 and m the existence of a utility function ui such that the equality

xt
i = fi(p

t, wt
i) is satisfied. In addition, it follows from the formula defining xt

i that we haveX
i

xt
i =

P
i wt

i

pt · r r = r,

from which follows that the equality X
i

fi(p
t, wt

i) = r = rt

is satisfied for t varying from 1 to T . This proves that such price-income distribution-total resource triples are indeed equilib-
rium triples for suitably defined utility functions.

Step 2: Constant total resources with no restrictions
The following step is to deal with situations where, for some consumer i, there exist t and t′ such that the equality

wt
i

pt · r =
wt′

i

pt′ · r

is satisfied with pt 6= pt′ .

Because of this equality, the commodity bundles xt
i =

wt
i

pt · r r and xt′
i =

wt′
i

pt′ · r
r are not good candidates for our

construction because they are equal while the candidate “supporting” price vectors pt and pt′ are different. The idea is
therefore to perturb xt

i and xt′
i in such a way that the perturbed sequence x1

i , x2
i , . . . , xT

i remains totally ordered, and the
equalities

P
i xt

i = rt are satisfied for all t’s.

x1
i

x2
i

xT−1
i

xT
i

∆0

∆

xt
i = xt′

i

x
′t
i

x
′t
′

i

pt · xt
i = wt

i

p
′t · x′t

i = w
′t
i

0 1

2

Figure 1: Perturbation of the collection {xt
i} for 1 ≤ t ≤ T

In order to do that, consider the line ∆0 that passes through the origin and that is collinear with the vector r ∈ X . Let ∆
be a line parallel to the line ∆0 and sufficiently close to ∆0 for the following property to be satisfied. The intersection points
x
′t
i and x

′t′
i of ∆ with the budget hyperplanes pt · xt

i = wt
i and pt′ · xt′

i = wt′
i are distinct and, if we define x

′t′′
i = xt′′

i

for t′′ 6= t, t′, the sequence x
′1
i , . . . , x

′T
i is completely ordered. That this property is satisfied follows from the fact that

the sequence x1
i , x2

i , . . . , xT
i is already fully ordered, with the elements xt

i and xt′
i being identical, and the new sequence is

obtained by just perturbing those two identical elements; the elements x
′t
i and x

′t′
i can therefore be compared to all the other

elements of the sequence provided the perturbation is small enough. In addition, thanks to the choice of the direction of the
line ∆, these two elements are themselves ordered.
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The next step is to find another consumer j and to perturb the corresponding sequence x1
j , x2

j , . . . , xT
j , so that the total

resources remain constant. Therefore, we pick arbitrarily some consumer j, and define the new sequence x
′1
j , x

′2
j , . . . , x

′T
j by

x
′t
j = xt

j + (xt
i − x

′t
i ) , x

′t′
j = xt′

j + (xt′
i − x

′t′
i ) , x

′t′′
j = xt′′

j

with t′′ 6= t, t′.
Using the same line of reasoning as above, we observe that the perturbation that defines the consumption bundles of

consumer i can be made small enough for the new sequence to be also fully ordered and the already distinct elements to remain
distinct through the perturbation. In addition, the total resources are then, by construction, equal to the vector r . Overall,
this construction reduces by at least one unit the number of non distinct commodity bundles. It then suffices to iterate this
construction for every consumer i and pairs (t, t′) such that xt

i = xt′
i . Eventually, one gets for each consumer a collection of

ordered sequences of T elements that sum up to the vector of total resources r ∈ X . One then concludes with the application
of Lemma 13.

Step 3: Collinear total resources
Assume now that total resources are collinear instead of being constant. It then suffices to reproduce the same line of reasoning
as in the case of constant total resources.

C. Proof of Proposition 5
The topological space Z is said to be contractible if there exists a continuous map h : Z × [0, 1] → Z that satisfies the
following properties: 1) h(., 1) is the identity map of Z, i.e., h(., 1) = idZ ; 2) h(z, 0) = z0 ∈ Z for z ∈ Z and some z0 ∈ Z.
The intuition behind this definition is that a contractible space can be continuously deformed into a point, here the point z0.

A related idea is the one of a deformation retract subset Z0 of Z. By definition, the topological subspace Z0 is a
deformation retract of Z if there exists a continuous map h : Z × [0, 1] → Z that satisfies the following properties: 1) h(., 1)
is the identity map of Z, i.e., h(., 1) = idZ ; 2) h(z, 0) ∈ Z0 for z ∈ Z; 3) h(z, 0) = z for all z ∈ Z0. If the subspace Z0 is a
deformation retract of Z, the spaces Z and Z0 are said have the same homotopy type. If Z0 is contractible, one easily shows
that Z is also contractible. (First, contract Z to Z0, and then Z0 to a point.)

It is intuitively clear (and this can evidently be established rigorously) that a contractible space is pathconnected and
simply connected (i.e., every closed simple path can be deformed continuously into a point). For details, see [8].

Lemma 9. Let G =
`
(pt, wt, rt)

´
∈

`
E[T ]

˛̨
≺

´
and G∗ =

`
(pt, w∗t, r∗t)

´
∈

`
E[T ]

˛̨
≺

´
. Then, for any real number

λ ∈ [0, 1], the configuration G(λ) = λG + (1− λ)G∗ belongs to
`
E[T ]

˛̨
≺

´
.

Proof. It suffices to observe that the equalities and inequalities in Theorem 3 that characterize elements of the set
`
E[T ]

˛̨
≺

´
are linear with respect to xt

i and wt
i .

We now define special configurations that belong to the set
`
E[T ]

˛̨
≺

´
for a given ranking profile ≺ = (≺i). Let

ti1 ≺i ti2 ≺i · · · ≺i tiT .

Let (λti1
, λti2

, . . . , λtiT
) be a strictly increasing sequence of strictly positive (real) numbers:

0 < λti1
< λti2

< · · · < λtiT
.

Let τi ∈ X be some strictly positive vector. Define the vector x∗t
i = λtτi ∈ X . The sequence x∗t

i satisfies the strict
(vector) inequalities

x
∗ti1
i < x

∗ti2
i < · · · < x

∗tiT
i .

Let p = (pt), with pt ∈ S for t = 1, 2, . . . , T . Define w∗t
i = pt · x∗t

i for 1 ≤ i ≤ m, w∗t = (w∗t
i ), and r∗t =

P
i x∗t

i .
We denote by G∗(p) the configuration (pt, w∗t, r∗t).

Lemma 10. The configuration G∗(p) = (pt, w∗, r∗) belongs to
`
E[T ]

˛̨
≺

´
for any p = (pt) ∈ ST .

Proof. It follows from Corollary A.13 of the Appendix that the pairs (pt, x∗t
i ) for i fixed and t varying from 1 to T can be

rationalized by some utility function ui ∈ U for any price vectors pt with t = 1, 2, . . . , T . Let u = (ui) ∈ Um be the utility
profile defined by varying i from 1 to m. The configuration G∗(p) = (pt, w∗t, r∗t) then belongs to

`
E[T ]

˛̨
≺

´
.

Remark 3. A consequence of Lemma 10 is that the set
`
E[T ]

˛̨
≺

´
is not empty.
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Proof of the contractibility property
Proof. Let X0 be the subset of

`
E[T ]

˛̨
≺

´
consisting of the configurations G∗(p) where the price sequence p = (p1, p2, . . . , pT )

is varied in ST . The map p → G∗(p) is continuous. The inverse map is the projection (pt, wt, rt) → p = (pt). These two
maps are continuous, which proves that X0 is homeomorphic to Sm and is therefore contractible as a Cartesian product of
contractible spaces.

We now define the map h :
`
E[T ]

˛̨
≺

´
× [0, 1] →

`
E[T ]

˛̨
≺

´
by

h(G, λ) = λG + (1− λ)G∗(p)

where p = (pt) is fixed. This map is clearly continuous. In addition, h(G, 1) = G, h(G, 0) = G∗(p) ∈ X0, and for
G = G∗(p), it comes h(G∗(p), λ) = G∗(p). The set X0 is therefore a deformation retract of

`
E[T ]

˛̨
≺

´
by the map h. The

set X0 being contractible, the set
`
E[T ]

˛̨
≺

´
itself is contractible.
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