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Abstract

In recent years, there has been increased interest in setting up guidelines for carrying out
cost-effectiveness analysis of medical interventions, and some such guidelines have indeed been
established. In the paper, we present a model of information retrievement and use in which we can
studie the role of guidelines. The main result, which is a version of the well-known theorem of
Blackwell (1948), shows that in cases where there are sufficiently many decisions to be made on the
basis of the information obtained, there can be no objective ranking of methods, except the trivial
one stating that more information is better than less. The consequence is that guidelines, and the
very detailed version known as the reference case approach, may have administrative advantages
but can be harmful when considered as an aid towards better decisions.
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JEL classification: I19, D81

1. Introduction

In the course of the last decade, the use of cost-effectiveness analysis as an aid

to decision making in health care has been steadily increasing, with the effect that not

only a large number of such analyses have been carried out, but also the discussion of

methods and foundations has been growing. Among the issues which have been debated

is the possibility of drawing up guidelines for carrying out a cost-effectiveness analysis.

Such guidelines have indeed been established various time intervals, and the trend toward

towards greater detailedness of guidelines has in the last years been evident, possibly as a

1 Communication with: Hans Keiding, Institute of Economics, Studiestraede 6, DK-Copenhagen K,
Denmark.

E-mail:Hans.Keiding@econ.ku.dk
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response to the demand from the pharmaceutical industry wanting exact instructions as to

which documentation has to be presented, partly by authorities wanting a clear description

of the information to be demanded from producers wanting to market a new drug.

In many cases, the scientific community has been invited to participate in drawing up

guidelines, so that the cost-effectiveness analyses which are made in accordance with the

guidelines are those that are “best” from a purely theoretical point of view. The question

of whether such scientifically correct guidelines can at all be found seems not to have

attracted much, if any, attention. However, a similar question has been asked long ago in

another field, which however is related, namely that of finding the “correct” accounting

standards, rules for how the accounts of a company should be drawn up and presented. As

pointed out by Demski (1973), such correct accounting standards simply do not exist.

What is behind this seemingly paradoxical situation – that science cannot point to

the right way of doing cost-effectiveness analysis – is a problem which was considered by

statistical information theory even earlier. Indeed, one of the main results of this theory,

known as Blackwell’s theorem (Blackwell, (1951)), says that if a decision maker has to

choose an act with uncertain consequences, and she has a choice of different methods

for obtaining information prior to this choice, then the only ranking of such information

services which does not depend on the preferences of the decision maker is the simple, but

unfortunately quite trivial rule: “More information is better than less”. In other words,

there can be no method for collecting and presenting information which is superior to all

other methods no matter how the decision maker looks at the outcomes.

It might be argued that this dependence of the guidelines on the decision maker which

has to use the information in her decisions is not a real problem; guidelines are indeed

established by specified decision makers (public health care organizations, NICE, and

others). However, in what follows we can actually sharpen the statement of Blackwell’s

theorem slightly, so that it will apply even when the decision maker and her preferences

are uniquely specified, as long as there are sufficiently many alternative actions to choose

among – as will indeed be the case when the decision maker is in charge of a national

health care system. So, even in this case, there is no theoretical foundation of guidelines

considered as “golden standard” or best practice. Guidelines may be convenient or useful

for many other purposes, but alas, they cannot be the last of science. This puts the field

of cost-effectiveness analysis in contrast to other parts of medical decision making, where

“golden standards” and “best practices” may be both useful and meaningful. Our approach

does indeed explain why this is so.

The paper is structured as follows: In Section 2, we introduce the statistical

information theory and explain the relation to cost-effectiveness analysis. This section

ends with a formulation and proof of the version of Blackwell’s theorem which is tailored

to our purpose. In Section 3, we connect the abstract result on information methods
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to the case at hand, cost-effectiveness analysis, and we show why guidelines cannot be

scientifically well-founded here, although it may well be so in other fields of medical

decision making. We close the paper with some comments in Section 4.

2. Cost-effectiveness analysis as an information service

In the present section, we briefly introduce the background for our model, which is

the approach to the theory of information introduced by Marschak, Blackwell, and others;

a more detailed exposition of this theory can be found e.g. in Hirshleifer and Riley (1992).

The model introduced pertains to all decision making under uncertainty, but we keep the

discussion as close as possible to our principal application, which is cost-effectiveness

analysis, showing as we proceed how the abstract concepts fit in with our overall purpose.

We consider a situation where a decision maker – which in our application may

be a health care organization deciding upon the best way of treating the patients under

their responsibility – has to make a decision which is subject to some uncertainty. This

uncertainty will be modelled in a very simple way, since we assume that there is a finite

set of uncertain states,

S = {s1, . . . , sn},

each of which affect the results of the treatment. The choices of the decision maker is

given by a set A of decisions; for our purposes, a decision is a function a : S → X ,

taking each uncertain state s ∈ S to an outcome a(s) in a space of possible outcomes (to

be specified later). In our application to health care, a decision is a particular treatment

of patients (which may be a procedure in hospital or the administration of a particular

medical drug); the effects of such treatments are usually not fully known, and neither

are their costs. In our present case, we have assumed that there are some identifiable

but random factors which are behind this uncertainty, which is indeed a simplification as

compared with reality where the uncertainty about future consequences of a treatment tend

to have a more complex nature. However, this simple structure allows us to obtain some

results which hopefully give insight into the more complicated reality.

We shall assume that the decision maker has initial beliefs about the likelihood of

each of the underlying states s1, . . . , sn influencing outcome of the decisions, formulated

as a (“prior”) probability distribution (P (σ1), . . . , P (σp)). Also, the decision cares about

the consequences obtained, meaning that she has a utility function U : X → R assigning

utility or degree of satisfaction to each possible outcome. Relying only on the initial

beliefs, standard decision making under uncertainty calls for the choice of decision which
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maximizes expected utility

EP [U ◦ a] =
n∑

i=1

P (σi)U(a(si))

over all decisions a ∈ A. This behavior may not correspond fully to what decision makers

in health care organizations actually do, but it is at least in line which what they pretend

to do.

In our discussion so far, there has been no mentioning of information; decisions

were based on assessments of probabilities but not on any observation; to allow for

this – and thereby formally introducing “evidence-based medicine” into the model, we

should add the option of collecting and processing of information before the decision is

made, which is what cost-effectiveness analysis is about.In particular, following the recent

guidelines of NICE (2004), information about the medical effects of a treatment should be

gathered, if possible by a randomized clinical trial, which should also contain observations

about health-related quality of life, and the information should be collected and processed

according the specified rules. What the guidelines specify, is an information method, that

is a procedure for collecting date and producing a signal (in our case, a report of the

cost-effectiveness analysis, containing relevant cost-effectiveness ratios as well as other

ingredients (such as sensitivity analysis, confidence limits etc.)

In our simplified formal world, an information method is a pair (Σ, p), where

Σ = {σ1, . . . , σm} is a finite set if siugnals, and p is a system of conditional probabilities

p(σj |si), for j = 1, . . . , m, i = 1, . . . , n, interpreted as the probability that signal σj

is reported given that the true state of nature is si. Thus, in our model the information

obtained reveals the true state of nature only partially, since there is a random error to be

taken into account. This approach is in line with the usual approach to the treatment of

uncertainly in cost-effectiveness analysis, cf. e.g. Drummond and McGuire (2002).

Given any observed signal σj , the decision maker may compute posterior probabilities

P ∗(·|σj) of the states of nature using Bayes’ formula,

P ∗(si|σj) =
p(σj |si)P (si)

P (σj)
,

where P (σj) =
∑n

h=1 p(σj |sh)P (sh) is the probability of observing the signal σj .

Having now the updated probabilities over states of nature, conditional on the observed

signal σj , the choice of the decision maker must be the decision which maximizes

EP∗(·|σj)[U ◦ a] =
n∑

i=1

P ∗(si|σj)U(a(si))
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over all a ∈ A. This optimal decision, given the signal σj , is denoted a[σj ]. The

overall expected value (of taking optimal decisions, contingent on the observed signals)

of the optimal decision, denoted a[σj ], will depend on the signal observed; before actually

carrying out the observation, we may evaluate the potential gains in expected utility as

V (Σ, p;U) =
m∑

j=1

P (σj)EP (·|σj)[U ◦ a[σj ]] − EP [U ◦ a],

that is the difference between the ex ante expected utility with and without the information

method. We call V (Σ, p;U) the value of the information method (at the utility function

U ).

Example. The following simple example may serve to illustrate the approach. Suppose

that we have to decide about the use of a medical drug in another country; there are trhe

different brands, to be denoted I, II and III, all produced locally. Each of these drugs may

turn out to be cheap or expensive, effective or ineffective. These attributes are connected

with the industrial environment in the country, so all the brands share the condition.

However, the consequences of the conditions differ among the brands.

In our formal setting, we have four possible states (combinations of cheap versus

expensive and effective versus ineffective), and there are three decisions (choice of brand).

It is assumed that the utility function of the decision maker has the following form:

(eff,exp) (eff,cheap) (ineff,exp) (ineffective,cheap)

I 10 10 10 10

II 20 5 15 0

III 12 14 8 6

Furthermore, it is known that each state has the same prior probability 1/4.

Given these data, the expected utility of each decision can be computed. For brand I

it is
1
4
× 10 +

1
4
× 10 +

1
4
× 10 +

1
4
× 10 = 10,

and by the same method the expected utility of the other decisions are computed to be also

10. All decisions are equally good in this case.

We may now consider the value for the decision maker of information; suppose

that the decision maker is offered the information method which consists in revealing

(with no error) whether drugs in the country are cheap or expensive. We may then check

the situation for the decision maker with each of the two possible signals. If the signal

is “expensive”, then only the first and the third columns matter, and each column has
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(conditional) probability 1/2. Expected utility of I is still 10, but II yields

1
2
× 20 +

1
2
× 15 = 17.5

which is the best possible. If the signal is “cheap”, expected utilities are

I: 10, II: 2.5, III: 10,

and best decision is I or III.

To find the value of this information method, we need to check the gain for the decision

maker from using it, that is the expected value of the best result at each possible signal,

amounting to
1
2
× 17, 5 +

1
2
× 10 = 13.75

minus expected utility of the best choice without information, which was 10; we have

therefore that the value of this information method is 13.75 − 10 = 3.75.

In similar way, we may compute the value of other possible information methods,

for example the method which exactly reveals whether medicin produced in the country

is effective or ineffective. This value can be computed to 1.5, meaning that it is less

advantageous to the decision maker than the method that we considered first. We may

also complute the value of complete revelation of state; having access to this method,

the decision maker may choose in each state the brand yielding the best result, and the

expected utility becomes i

1
4
× 20 +

1
4
× 14 +

1
4
× 15 +

1
4
× 10 = 17.25,

so that the value of complete information is 7.25.

The value of information, as derived above, depended on the utility function U of the

decision maker. Consequently, the choice if information method, if indeed such a choice

is open to the decision maker, will in its turn depend on the utility function. In the case we

have in mind, where an information method is a particular way of collecting and presenting

data on different medical interventions, this means that the method for performing these

operations should be chosen in accordance with the desires and goals of the decision

maker. Simple and acceptable as this sounds, it does carry a controversial message,

namely that it is in general impossible to prescribe a single such method, independently

of the decision maker who is going to use the results. In other word, ranking different

methods of performing cost-effectiveness analysis seems not in general possible without

recourse to a concrete decision maker, so that guidelines which are applicable to all users
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cannot be constructed in a scientific way. In the following we give the precise formulation

of this result.

For this, we need the notion that one information method is more informative that

another. Let (Σ, p), (Σ̂, p̂) be information methods, with |Σ| = m, |Σ̂| = m̂. Then (Σ, p)
is more informative than (Σ̂, p̂) if for each signal σ̂ĵ ∈ Σ̂ such that P̂ (·|σ̂ĵ) 
= 0, there are

nonnegative numbers rĵ,1, . . . , rĵ,m with
∑m

j=1 rĵ,j = 1 such that

P̂ (·|σ̂ĵ) =
m∑

j=1

rĵ,jP (·|σj).

An equivalent formulation of this condition is that there is an (m̂ × m) matrix R with all

column sums 1 such that

P̂ = RP,

where P̂ is the (n×m̂)-matrix with characteristic element P̂ (si|σ̂ĵ), P the (n×m) matrix

with characteristic element P (si|σj), and R is (m̂×m) with elements rĵ,j , ĵ = 1, . . . , m̂,

j = 1, . . . , m.

The following is a formulation of the classical result by Blackwell (1948) adapted

to our situation. We work with classes of acceptable utility functions which are more

restricted than what is usually seen in the formulations of Blackwell’s theorem, where it

is usual to allow all possible utility functions. However, the present version can still be

proved by classical techniques; the proof given below follows that of Bielinska-Kwapisz

(2003).

Theorem 1. Let (Σ, p), (Σ̂, p̂) be information methods, letU be a set of utility functions,

A a set of actions such that for all vectors q ∈ R
n, there are U ∈ U , a, a′ ∈ A such that

U(a(si)) = qi, U(a′(si)) = 0, i = 1, . . . , n. Then the following are equivalent:

(i) (Σ, p) is more informative than (Σ̂, p̂),
(ii) V (Σ, p;U) ≥ V (Σ̂, p̂;U) for all U ∈ U .

Proof: (ii)⇒(i): Suppose on the contrary that V (Σ, p;U) ≥ V (Σ̂, p̂;U) for all U ∈ U
but that (Σ, p) is not more informative than (Σ̂, p̂); then by definition we have that there

is a signal σ̂ĵ∗ of the information method (Σ̂, p̂) with P̂ (·|σ̂ĵ∗) 
= 0 such that

P̂ (·|σ̂ĵ∗) /∈ conv({P (·|σj)|j = 1, . . . , m}.

By separation of convex sets, there must then be q ∈ R
n, q 
= 0, such that

q · P̂ (·|σ̂ĵ∗) =
n∑

i=1

qiP̂ (si|σ̂ĵ∗) = λ > 0,

q · P (·|σj) ≤ 0, all σ ∈ Σ.
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Now we use the assumption on U and A to find U ∈ U and a1, a2 ∈ A such that

U(a1(si)) = qi, U(a2(si)) = 0, i = 1, . . . , n; in the following we assume that A contains

only these two acts. Then for each σ ∈ Σ we have that

maxa∈AEP (·|σ)[U ◦ a] = max{P (·|σ) · q, P (·|σ) · 0} = P (·|σ) · 0 = 0

since P (·|σ) · q ≤ 0 for each σ. It follows that

V (Σ, p;U)+maxa∈AEP [U ◦ a]

=
m∑

j=1

P (σj)maxa∈AEP (·|σj)[U ◦ a] = 0.

Assessing the value of the information method (Σ̂, p̂) similarly, we get

V (Σ̂,p̂;U) + maxa∈AEP [U ◦ a]

=
m̂∑

ĵ=1

P̂ (σ̂ĵ)maxa∈AE
P̂ (·|σ̂ĵ)

[U ◦ a] =
m̂∑

ĵ=1

P̂ (σ̂ĵ)max{P̂ (·|σ̂ĵ) · q, P̂ (·|σ̂ĵ) · 0}

≥ P̂ (σ̂ĵ∗)(̂(P )(·|σ̂ĵ∗) · q) +
∑
ĵ �=ĵ∗

P̂ (σ̂ĵ)[̂(P )(·|σ̂ĵ) · 0] = P̂ (σ̂ĵ)λ > 0.

It follows that V (Σ̂, p̂;U) > V (Σ, p;U), a contradiction, showng that (i) must hold.

(i)⇒(ii): We have that for each signal σ̂ĵ ∈ Σ̂ such that P̂ (·|σ̂ĵ) 
= 0, there are

nonnegative numbers rĵ,1, . . . , rĵ,m witn
∑m

j=1 rĵ,j = 1 such that

P̂ (·|σ̂ĵ) =
m∑

j=1

rĵ,jP (·|σj).

Therefore, if a[σ̂ĵ ] is the optimal decision given σ̂ĵ , then

E
P̂ (·|σ̂ĵ)

U(a[σ̂ĵ ]) =
n∑

i=1

P̂ (si|σ̂ĵ)U(a[σ̂ĵ ](si)) =
n∑

i=1

m∑
j=1

rĵ,jP (si|σj)U(a[σ̂j ](si))

=
m∑

j=1

rĵ,j

n∑
i=1

P (si|σj)U(a[σ̂j ](si)) ≤
m∑

j=1

rĵ,j

n∑
i=1

P (si|σj)U(a[σj ](si))

=
m∑

j=1

rĵ,jEP (·|σj)U(a[σj ])
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where we have used that a[σj ] maximizes EP (·|σj)[U ◦ a]. Multiplying by P̂ (σ̂ĵ) =∑n
i=1 p̂(σ̂ĵ |si)P (si), and summing over ĵ, we get that

m̂∑
ĵ=1

n∑
i=1

p̂(σ̂ĵ |si)P (si)EP̂ (·|σ̂ĵ)
U(a[σ̂ĵ ])

≤
m̂∑

ĵ=1

n∑
i=1

p̂(σ̂ĵ |si)P (si)
m∑

j=1

rĵ,jEP (·|σj)U(a[σj ])

=
m̂∑

ĵ=1

n∑
i=1

m∑
j=1

Prob{σj , σĵ |si}P (σi)EP (·|σj)U(a[σj ])

=
m∑

j=1

n∑
i=1

p(σj |si)P (σi)EP (·|σj)U(a[σj ]) =
m∑

j=1

P (σj)EP (·|σj)U(a[σj ]),

and it follows that V (Σ, p;U) ≥ V (Σ̂, p̂;U).

3. Conditions for meaningfulness of guidelines

In the previous section, we established a version of Blackwell’s theorem tailored to

our problem, dealing with cost-effectiveness analysis in general and rules for conducting

such analyses in particular. In the present section, we draw the lines from the abstract world

of information systems to the more relevant context of guidelines for cost-effectiveness

analysis – as well as to guidelines for other aspects of medical decision making.

For this, we take a closer look on the conditions on U and A stated in the theorem,

which state that there is a rather large supply (in terms of utility levels achieved in the

different states of nature) of decisions which are in principle available. We now consider

cases where this richness of action possibilities is a consequence of the underlying structure.

Such a case is provided by the environment in which cost-effectiveness analysis is

carried out. We outline briefly its theoretical background (or rather, one possible theoretical

background, as there may be several, cf. e.g. Brouwer and Koopmanschap (2000)): We

consider medical interventions (in a broad sense) in a society with M individuals, each

characterized by a vector (xi, hi) describing current consumption of commodities and

current state of health; the consumption part of the vector in its turn is a vector describing

consumption of each of the l goods available, xi = (xi1, . . . , xil), and similarly the health

component has the form hi = (hi1, . . . , hiK), where hik measures the kth characteristic

of health (which may be ability to move around, or ability to hear, or some other aspect
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of health). An intervention is described by the change (�xi,�hi) which it causes in the

state (of consumption and health) of the individual i, for i = 1, . . . , m.

In the standard approach (cf. e.g. Hansen, Hougaard, Keiding, Østerdal (2004)) it is

assumed that each individual i has a utility function ui defined on the consumption-health

pairs (xi, hi), and the decision maker or society assesses allocations ((x1, u1), . . . , (xm, um))
in accordance with a social welfare function S defined on m-tuples of utility levels, so that

allocations are judged by the achieved value

U((x1, u1), . . . , (xm, um)) = (S(u1(x1, h1), . . . , um(xm, hm)),

an approach often termed as “welfarist”. In our present setup, we do not insist that

allocations are ranked exactly in this way, but only that the decisions in society are made

in accordance with a utility function of the type Ŝ((x1, h1), . . . , (xm, hm)). Since an

intervention is described as a change (from status-quo) in interventions, it follows that may

think of the decision maker’s utility function as defined directly on these the outcomes of

the interventions, changes of allocation, namely by

U((�x1,�h1), . . . , (�xm,�hm)

= Ŝ((x1 + �x1, u1 + �h1), . . . , (xm + �xm, hm + �hm))

− Ŝ((x1, u1), . . . , (xm, um)).

To make this setup fit with our model of the previous section, we assume that

the changes in allocation are subject to random displacements, so that (�xi,�hi)
depend on the state of nature sh, h = 1, . . . , m, so that an intervention takes the form

(�xi(sh),�hi(sh))m
i=1

n
h=1. In our application, the uncertainty mainly pertains to the

effects of the medical treatment; the draw on material ressources may of course also

be subject to randomness, although to a smaller extent. What does distinguish the two

commodity and health components is however the possibility of compensation payments

(between individuals and from outside); in the statement of our main result below we

assume effects, positive or negative, on the health components of the individuals, may be

offset by suitable money compensations.

Theorem 2. LetAbe a set of interventions of the forma = (�xi(sh),�hi(sh))m
i=1

n
h=1

depending on an uncertain state of nature, which contain also the zero intervention (“do

nothing”), and let U be a set of utility functions of the decision maker. Assume that

(i) A allows for all possible money compensations of health effects: For each inter-

vention ((�x1,�h1), . . . (�xm,�hm)), state sh, and each commodity allocation

(x̄1, . . . , x̄m), the set A contains an intervention a′ such that

a′(sh) = ((�x1(sh) + x1,�h1(sh)), . . . (�xm(sh) + xm,�hm(sh))),
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(ii) each U ∈ U , U is monotonic in the commodity components and the marginal rate of

substitution between commodity and and health (of any individual) is bounded (from

above and below).

If the cost-effectiveness methodology (Σ, p) is better than (Σ̂, p̂) for all U ∈ U , then (Σ, p)
is a more detailed version of (Σ̂, p̂) (in the sense of being more informative).

Proof: The theorem is basically a reformulation of Theorem 1 and all that is needed is

to show that A contains interventions such that for each vector q = (q1, . . . , qm) ∈ R
m,

there is an intervention (�x′
i(sh),�h′

i(sh))m
i=1

n
h=1) with

U(�xi(sh),�hi(sh))m
i=1) = qh, each h.

But this follows easily from the assumptions (i) and (ii), which together show that there

is an intervention, constructed from the original one combined with suitable commodity

displacements in each state, such that the final utility level in each state corresponds to the

vector q. The result now follows immediately.

It may be noticed that our assumptions in Theorem 2 are stronger than what is really

needed; indeed, we need not compensate everybody, what matters is only that some

compensations can be made which make up for any loss and gain that the decision maker

would experience from the uncompensated intervention. Also, it suffices to consider very

small displacements since what mattered in Theorem 1 was not the absolute values of the

utilities in each state but only their relative values.

4. Discussion

The implications for practice of the results are that guidelines for cost-effectiveness

are of dubious value., at least when considered as a source of information. Given that the

assumptions of Theorem 2 are reasonably weak and seem satisfied in practical situations

where cost-effectiveness analysis is performed, the conclusion is that there can be no

“best” way of setting up such an analysis. The reference case approach, specifying that

observations on medical and other outcomes of an intervention should be carried out

according to a standardized scheme, may have administrative merits but it has no scientific

basis. The only rule that can be stated is that more detailed observation is better than less

detaild information, which indeed is trivial.

Why, then, are guidelines so widespread and estimated? Again, Theorem 2 points to

an answer: For purely medical interventions, the setup differs considerably from that of

cost-effectiveness analysis, since there is no economic component, and obviously monetary

transfers make no change in the medical outcome. In such cases, information methods
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may indeed by ranked to an extent which permits a choice of a best one, singled out as

reference case.

What makes perfect sense in one context doesn’t however necessarily work in another.

Guidelines may be useful in medical practice and misleading in economic practice. The

arguments of the present paper should indicate that this is indeed the case.
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