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Abstract

The paper discusses the dynamics of in
ation and money
growth in a stochastic framework, allowing for double unit roots
in the nominal variables. It gives some examples of typical I(2)
'symptoms' in empirical I(1) models and provides both a non-
technical and a technical discussion of the basic di�erences be-
tween the I(1) and the I(2) model. The notion of long-run and
medium-run price homogeneity is discussed in terms of testable
restrictions on the I(2) model. The Brazilian high in
ation period
of 1977:1-1985:5 illustrates the applicability of the I(2) model and
its usefulness to address questions related to in
ation dynamics.
JEL classi�cation: C32, E41, E31.
Keywords: Cointegrated VAR, Price Homogeneity, Cagan Model,

Hyper In
ation

1 Introduction1

The purpose of this paper is to give an intuitive account of the cointe-
grated VAR model for I(2) data and to demonstrate that the rich struc-
ture of the I(2) model is particularly relevant for the empirical analyses
of economic data characterized by highly persistent shocks to the growth
rates. Such data are usually found in applications of economic models
explaining the determination of nominal magnitudes. For example, the
explicit assumption of a nonstationary error term in some models of
money demand during periods of high or hyper in
ation (Cagan, 1956,
Sargent, 1977), implies that nominal money and prices are I(2). Thus,

1Useful comments from Michael Goldberg, S�ren Johansen, and Mikael Juselius
are gratefully acknowledged. The article was produced with �nacial support from
the Danish Social Sciences Research Council.
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the empirical analysis of such models would only make sense in the I(2)
model framework.
However, as argued in Juselius and Vuojesevic (2003), prices in hyper-

in
ationary episodes should not be modelled as an I(2) but rather as an
explosive root process. Though such episodes are (almost by de�ni-
tion) short they are usually preceded by periods of high in
ation rates
for which the I(2) analysis is more adequate. Even though in
ationary
shocks in such periods are usually large, it is worth stressing that the
(double) unit root property, as such, is not related to the magnitude but
the permanence of shocks. Therefore, we may equally well �nd dou-
ble unit roots in prices during periods of low in
ation rates, like the
nineties, and not just in periods of high in
ation rates like the seventies.
But, while the persistence of shocks determine whether price in
ation
is I(1) or I(0), the magnitude of in
ationary shocks is probably much
more indicative of a risk for hyper in
ation. High in
ation periods are,
therefore, particularly interesting as they are likely to contain valuable
information about the mechanisms which subsequently might lead to
hyper-in
ation.
The empirical application to the Brazilian high-in
ation period of

1977-1985 o�ers a good illustration of the potential advantages of using
the I(2) model and demonstrates how it can be used to study impor-
tant aspects of the in
ationary mechanism in periods preceding hyper
in
ation.
The Cagan hyper in
ation model is �rst translated into set of testable

empirical hypotheses on the pulling and pushing forces described by the
cointegrated I(2) model in AR and MA form. The paper �nds strong
empirical support for one of the hypothetical pulling forces, the Ca-
gan money demand relation with the opportunity cost of holding money
measured by a combination of CPI in
ation and currency depreciation
in the black market. The Cagan's � coe�cient, de�ning the average
in
ation rate at which government can gain maximum seignorage, is
estimated to be approximately 40-50% which is usually considered to
describe hyper in
ation. Thus, it seems likely that the seed to the sub-
sequent Brazilian hyper in
ation episode can be found in the present
data. This is further supported by the �nding that (1) there is a small
explosive root in the VAR model, (2) the condition for long-run price ho-
mogeneity was strongly violated, and (3) the CPI price in
ation showed
lack of equilibrium correction behavior. The latter is associated with
the widespread use of wage and price indexation, which prohibited mar-
ket forces to adjust back to equilibrium after a price distortion. As a
consequence domestic price in
ation gained momentum as a result of
increasing in
ationary expectations in the foreign exchange market.
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The organization of the paper is as follows: Section 2 discusses
money growth and in
ation in a Cagan type of high / hyper in
ation
model framework. Section 3 reformulates the high in
ation problem in
a stochastic framework allowing for double unit roots in the nominal
variables. Section 4 discusses typical 'symptoms' in the VAR analysis
when incorrectly assuming that the data are I(1) instead of I(2) and
gives a �rst intuitive account of the basic di�erence between the I(1)
and the I(2) analysis. Section 5 de�nes formally the I(2) model in the
AR and the MA form, discusses the role of deterministic components
in the I(2) model and introduces the two-step procedure for determin-
ing the two cointegration rank indices. Section 6 gives an interpretation
of the various components in the I(2) model and illustrates with the
Brazilian data. Section 7 discusses long-run and medium-run price ho-
mogeneity and how these can formulated as testable restrictions on the
I(2) model. Section 8 presents the empirical model for money growth,
currency depreciation and price in
ation in Brazil. Section 9 concludes.

2 Money growth and in
ation

It is widely believed that the growth in money supply in excess of real
productive growth is the cause of in
ation, at least in the long run.
The economic intuition behind this is that other factors are limited in
scope, whereas money in principle is unlimited in supply (Romer, 1996).
Generally, the reasoning is based on equilibrium in the money market
so that money supply equals money demand:

M=P = L(R; Y r); (1)

where M is the money stock, P the price level, Y r real income, R an
interest rate, and L(�) the demand for real money balances. In a high
(and accelerating) in
ation period, the Cagan model for hyper in
ation
predicts that aggregate money demand is more appropriately described
by :

M=P = L(�e; Y r); L�e < 0; LY r > 0 (2)

where �e is expected in
ation.
The latter model (2) is chosen as the baseline model in the subsequent

empirical analysis of the Brazilian high in
ation experience in the seven-
ties until the mid eighties. The data consists of money stock measured
as M3, the CPI price index, the black market spot exchange rate, and
the real industrial production and covers the period 1977:1,...,1985:5.
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Figure 1. Nominal M3, CPI, and exchange rates in levels and
di�erences.

The graphs of the data in levels and di�erences (after taking logs)
gives a �rst indication of the order of integration. The growth rates
of all three nominal variables in Figure 1 exhibit typical I(1) behavior,
implying that the levels of the variables are I(2). In contrast the graphs
of the log of the industrial production in levels and di�erences in Figure
2 do not suggest I(2) behavior: The smooth behavior typical of I(2)
variables is not present in the level of industrial production and the
di�erenced process looks signi�cantly mean-reverting.
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Figure 2. The graphs of industrial production in levels and di�erences
(upper part), M3 and exchange rate both de
ated with CPI (middle
panel), and the black and white market exchange rate in levels and

di�erences (lower panel).

The middle part of Figure 2 demonstrates how real money stock
(lnM3 - lnCPI ) and real exchange rates (lnLexch - lnCPI ) have evolved
in a nonstationary manner and increasingly so after 1981. Figure 2,
lower panel compares the levels and the di�erences of the o�cial and
black market exchange rate. While the o�cial rate seems to have stayed
below the black market rate for some periods the graphs show that the
two major devaluations brought the two series back to the same level.
Thus, it seems likely that the black market exchange rate is a good proxy
for the 'true' value of the Brazilian currency in this period.
When data are nonstationary, the Cagan model can be formulated

as a cointegrating relation, i.e.:

(M=P )t � L(�et ; Yt) = vt (3)

where vt is a stationary process measuring the deviation from the steady-
state position at time t.
The stationarity of vt implies that whenever the system has been

shocked it will adjust back to equilibrium and is, therefore, essential for
the interpretation of (3) as a steady-state relation. If vt is nonstation-
ary as explicitly assumed in Sargent (1977) money supply has deviated
from the steady-state value of money demand. As this case generally
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implies a double unit root in the data, the choice of the I(2) model for
the econometric analysis seems natural. Therefore, when addressing em-
pirical questions related to the mechanisms behind in
ation and money
growth in a high or hyper in
ation regime we need to understand and
interpret the I(2) model .

3 Formulating the economic problem in a stochas-

tic framework2

Cointegration and stochastic trends are two sides of the same coin: if
there are cointegration relations there are also common stochastic trends.
Therefore, to be able to address the transmission mechanism of monetary
policy in a stochastic framework it is useful �rst to consider a conven-
tional decomposition into trend, T ; cycle, C; and irregular component,
I; of a typical macroeconomic variable.

X = T � C � I
and allow the trend to be both deterministic, Td; and stochastic, Ts; i.e.
T = Ts�Td; and the cyclical component to be of long duration, say 6-10
years, Cl, and of shorter duration, say 3-5 years, Cs; i.e. C = Cl � Cs:
The reason for distinguishing between short and long cycles is that a
long/short cycle can either be treated as nonstationary or stationary
depending on the time perspective of the study. For example, the graph
of the trend-adjusted industrial production in Figure 5, lower panel,
illustrates long cycles in the data that were found nonstationary by the
statistical analysis.
An additive formulation is obtained by taking logarithms:

x = (ts + td) + (cl + cs) + i (4)

where lower case letters indicate a logarithmic transformation. Even if
the stochastic trends are of primary interest for the subsequent analyses,
a linear time trend is needed to account for average linear growth rates
typical of most economic data.

3.1 Stochastic and deterministic trends

As an illustration of a trend-cycle decomposition we consider the follow-
ing vector of variables xt = [m; p; s

b; yr]t; t =1977:1,...,1985:5; where m
is the log of M3, p is the log CPI, sb is the log of black market exchange
rate, and yr is the log of industrial production. All variables are treated

2This section draws heavily on Section 4 in Juselius (1999a)
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as stochastic and will be modelled, independently of whether they are
considered endogenous or exogenous in the economic model.
A stochastic trend describes the cumulated impact of all previous

permanent shocks on a variable, i.e. it summarizes all the shocks with
a long lasting e�ect. This is contrary to a transitory shock, the e�ect of
which cancels either during the next period or over the next few periods.
For example, the income level of a household can be thought of as the
cumulation of all previous permanent income changes (shocks), whereas
the e�ect of temporary shocks, like lottery prizes, will not cumulate as
it is only a temporary change in income.
If in
ation rate is found to be I(1), then the present level of in
ation

can be thought of as the sum of all previous shocks to in
ation, i.e.

�t =
tP
i=1

"i + �0: (5)

Because the e�ect of transitory shocks disappears in the cumulation a
stochastic trend, ts; is de�ned as the cumulative sum of previous perma-
nent shocks, ts;t =

Pt
i=1 "i: The di�erence between a linear stochastic

and a linear deterministic trend is that the increments of a stochastic
trend change randomly, whereas those of a deterministic trend are con-
stant over time. Figure 3 illustrates three di�erent stochastic trends
measured as the once cumulated residuals from the money, price and
exchange rate equations.
A representation of prices is obtained by integrating (5) once, i.e.

pt =
tP
s=1

�s =
tP
s=1

sP
i=1

"i + �0t+ p0: (6)

Thus, if in
ation is I(1) with a nonzero mean (as most studies �nd),
prices are I(2) with a linear trend. Figure 4 illustrates the twice and
once cumulated residuals from the CPI price equation of the VAR model
de�ned in the next section.
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Figure 3. The graphs of the cumulated residuals from the money, price,
and exchange rate equations of the estimated VAR.
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Figure 4. The graphs of the twice and once cumlated residuals from
the price equation.

3.2 A trend-cycle scenario

Given the set of variables discussed above, one would expect (at least)
two autonomous shocks u1;t and u2;t, of which u1;t is a nominal shock
and u2;t is a real shock. If there are second order stochastic trends in the
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data it seems plausible that they have been generated from the nominal
shocks. We will, therefore, tentatively assume that the second order
long-run stochastic trend ts in (4) is described by the twice cumulated
nominal shocks,

Pt
s=1

Ps
i=1 u1i: The long cyclical components cl in the

data will then be described by a combination of the once cumulated
nominal shocks,

Pt
i=1 u1i; and the once cumulated real shocks,

Pt
i=1 u2i:

This allows us to distinguish empirically between the long-run stochastic
trend in nominal levels,

Pt
s=1

Ps
i=1 u1i; the medium-run stochastic trend

in nominal growth rates,
Pt

i=1 u1i; and the medium-run stochastic trend
in real activity,

Pt
i=1 u2i: Figure 5 illustrates.

1977 1978 1979 1980 1981 1982 1983 1984 1985

­.05

0

trad m3

1977 1978 1979 1980 1981 1982 1983 1984 1985
­.005

0

.005
D trad m3

1977 1978 1979 1980 1981 1982 1983 1984 1985
­.2

0

.2 tren d adY

Figure 5. The graphs of trend-adjusted M3 in levels and di�erences
(upper and lower panel) and trend-adjusted industrial production

(lower panel).

The trend-cycle formulation below illustrates the ideas:

2664
mt

pt
sbt
yrt

3775 =
2664
c1
c2
c3
0

3775� tP
s=1

sP
i=1

u1i

�
+

2664
d11 d12
d21 d22
d31 d32
d41 d42

3775�Pt
i=1 u1iPt
i=1 u2i

�
+

2664
g1
g2
g3
g4

3775 [t]+stat.comp.
(7)

The deterministic trend component, td = t; is needed to account for
linear growth trends present in the levels of the variables. If g4 = 0 and
d41 = 0 in (7), then

Pt
i=1 u2;i is likely to describe the long-run trend
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in industrial production. In this case it may be possible to interpretPt
i=1 u2;i as a "structural" unit root process (cf. the discussion in King,

Plosser, Stock and Watson (1991) on stochastic versus deterministic real
growth models).
If, on the other hand, g4 6= 0; then it seems plausible that the long-

run real trend can be approximated by a linear deterministic time trend.
In this case

Pt
i=1 u2;i is likely to describe medium-run deviations from

the linear trend, i.e. the long business cycle. The graph of the trend-
adjusted industrial production in the lower panel of Figure 5 illustrates
such a long cycle starting from the long upturn from 1977-1980:6 and
ending with the downturn 1980:6-1984. Note also the shorter cycles of
approximately a year's duration imbedded in the long cycle.
Therefore, the possibility of interpreting the second stochastic trend,Pt
i=1 u2;i; as a long-run structural trend depends crucially on whether

one includes a linear trend in (7) or not.
The trend components of mt; pt; st; and yt in (7) can now be repre-

sented by:

mt= c1
PP

u1i+d11
P
u1i+d12

P
u2i+g1t+ stat: comp:

pt = c2
PP

u1i+d21
P
u1i+d22

P
u2i+g2t+ stat: comp

st = c3
PP

u1i+d31
P
u1i+d32

P
u2i+g3t+ stat: comp

yt = +d41
P
u1i+d42

P
u2i+g4t+ stat: comp

(8)

If (c1; c2; c3) 6= 0; then fmt; pt; stg � I(2): If, in addition, c1 = c2 = c3
then

mt � pt=(d11 � d21)
P
u1i+(d12 � d22)

P
u2i+(g1 � g2)t+stat:comp:

pt � st=(d21 � d31)
P
u1i+(d22 � d32)

P
u2i+(g2 � g3)t+stat:comp:

mt � st=(d11 � d31)
P
u1i+(d12 � d32)

P
u2i+(g1 � g3)t+stat:comp:

yt= +d41
P
u1i +d42

P
u2i +g4t+stat:comp:

(9)
The real variables are at most I(1) but, unless (g1 = g2); (g2 = g3); and
(g1 = g3); they are I(1) around a linear trend. Figure 5 illustrates the
trend-adjusted behavior of real M3 and industrial production.
Long-run price homogeneity among all the variables implies that both

the long-run stochastic I(2) trends and the linear deterministic trends
should cancel in (9). But, even if overall long-run homogeneity is re-
jected, some of the individual components of fmt� pt; pt� st; mt� stg
can, nevertheless, exhibit long-run price homogeneity. For example, the
case (mt � pt) � I(1) is a testable hypothesis which implies that money
stock and prices are moving together in the long-run, though not neces-
sarily in the medium-run (over the business cycle).
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The condition for long-run and medium-run price homogeneity is
fc11 = c21; and d11 = d21g; i.e. that the nominal shocks u1t a�ect
nominal money and prices in the same way both in the long run and
in the medium run. Because the real stochastic trend

P
u2i is likely

to enter mt but not necessarily pt; testing long-run and medium-run
price homogeneity jointly is not equivalent to testing (mt � pt) � I(0):
Testing the composite hypothesis is more involved than the long-run
price homogeneity alone.
It is important to note that (mt� pt) � I(1) implies (�mt��pt) �

I(0); i.e. long-run price homogeneity implies a stationary spread between
price in
ation and money growth. In this case the stochastic trend in
in
ation is the same as the stochastic trend in money growth. The
econometric formulation of long-run and medium-run price-homogeneity
in the I(2) model will be discussed in Section 7.
When overall long-run price homogeneity holds it is convenient to

transform the nominal system (8) to a system consisting of real variables
and a nominal growth rate, for example:

2664
mt � pt
st � pt
�pt
yt

3775 =
2664
d11 � d21 d12 � d22
d21 � d31 d22 � d32

c21 0
d41 d42

3775�Pt
i=1 u1;iPt
i=1 u2;i

�
+

2664
g1 � g2
g2 � g3
0
g4

3775 [t] + :::
(10)

Given long-run price homogeneity all variables are at most I(1) in
(10). The nominal growth rate (measured by �pt; �mt; or �st) is only
a�ected by the once cumulated nominal trend,

Pt
i=1 u1;i; but all the

other variables can (but need not) be a�ected by both stochastic trends,Pt
i=1 u1;i and

Pt
i=1 u2;i.

The case (mt�pt�yt) � I(0); i.e. the inverse velocity of circulation is
a stationary variable, requires that d11�d21�d41 = 0; d12�d22�d42 = 0
and g1 � g2 � g4 = 0: If d11 = d21 (i.e. medium run price homogeneity),
d22 = 0 (real stochastic growth does not a�ect prices), d41 = 0 (medium-
run in
ationary movements do not a�ect real income), and d12 = d42;
thenmt�pt�yt � I(0). In this case real money stock and real aggregate
income share one common trend, the real stochastic trend

P
u2i: The

stationarity of money velocity, implying common movements in money,
prices, and income, would then be consistent with the conventional mon-
etarist assumption as stated by Friedman (1970) that "in
ation always
and everywhere is a monetary problem". This case would correspond to
model (1) in Section 2.
The case (mt�pt�yt) � I(1); implies that the two common stochas-

tic trends a�ect the level of real money stock and real income di�erently.
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Cagan's model of money demand in a high (hyper) in
ation period sug-
gests that the nonstationarity of the liquidity ratio is related to the
expected rate of in
ation Et(�pt+1): The latter is generally not observ-
able, but as long as Et(�pt+1)��pt is a stationary disturbance, one can
replace the unobserved expected in
ation with actual in
ation without
loosing cointegration. The condition that fEt(�pt+1)��ptg � I(0)
seems plausible considering that f�pt+1 ��ptg � I(0) when pt � I(2):
It amounts to assuming that fEt(�pt+1)��pt+1g � I(0); i.e. agents'
in
ationary expectations do not systematically deviate from actual in-

ation. Therefore, from a cointegration point of view we can replace the
expected in
ation with the actual in
ation:

mt � pt � yt + a1�pt � I(0); (11)

or, equivalently:

(mt � pt � yt) + a2�st � I(0):
where under the Cagan model a1 > 0; a2 > 0:

4 Diagnosing I(2)

VAR models are widely used in empirical macroeconomics based on the
assumption that data are I(1) without �rst testing for I(2) or checking
whether a near unit root remains in the model after the cointegration
rank has been imposed. Unfortunately, when the data contains a double
unit root essentially all inference in the I(1) model is a�ected. To avoid
making wrong inference it is, therefore, important to be able to diagnose
typical I(2) symptoms in the I(1) VAR model.
For the Brazilian data, the unrestricted VAR model was speci�ed as:

�xt = �1�xt�1 +�xt�2 + �1t+ �0 + �pDp83:8t + �sQst + "t;
"t � Np(0;
 ); t = 1; :::; T

(12)

where xt = [mt; pt; s
b
t ; y

r
t ]; mt = ln(M3); pt = ln(CPIt); s

b
t = ln(Exch

b
t); y

r
t =

ln(industrial production); t =1977:1,...,1985:5, � = ��0; �1 = ��1; �01 =
��01; and (�1; �0;�p;�s;
) are unrestricted. The estimates have been
calculated using CATS for RATS, Hansen and Juselius (1994). Misspec-
i�cation tests are reported in the Appendix.
The data are distinctly trending and we need to allow for linear

trends both in the data and in the cointegration relations when test-
ing for cointegration rank (Nielsen and Rahbek, 2000). The industrial
production, yrt ; exhibits strong seasonal variation and we include 11 sea-
sonal dummies, Qst; and a constant, �0 in the VAR model. Finally, the
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graphs of the di�erenced black market exchange rate and nominal M3
money stock exhibited an extraordinary large shock at 1983:8, which
was accounted for by an unrestricted impulse dummy Dp83:8t = 1 for
t = 1983:8 and 0 otherwise. A permanent shock to the changes corre-
sponds to a level shift in the variables, which may or may not cancel in
the cointegration relations. To account for the latter possibility the shift
dummy, Ds83:8t = 0 for t = 1983:8 and 1 otherwise, was restricted to be
in the cointegration relations. It was found to be insigni�cant (p-value
0.88) and was left out.
The I(1) estimation procedure is based on the so called R-model in

which the short-run e�ects have �rst been concentrated out:

R0t = ��
0R1t + "t: (13)

where R0t and R1t are de�ned by:

�xt|{z}
I(1)

= B̂11�xt�1| {z }
I(1)

+ const+B13Dpt + R0t|{z}
I(0)

(14)

and
xt�1|{z}
I(2)

= B̂21�xt�1| {z }
I(1)

+ const+B23Dpt + R1t|{z}
I(2)

: (15)

Dpt is a catch-all for all the dummy variables. If xt � I(2) then �xt �
I(1) and (14) is a regression of an I(1) process on its own lag. Thus,
the regressand and the regressor contain the same common trend which
will cancel in regression. This implies that R0t � I(0); even if xt � I(2):
On the other hand equation (15) is a regression of an I(2) variable, xt�1;
on an I(1) variable, �xt�1: Because an I(2) trend cannot be canceled by
regressing on an I(1) trend, it follows that R1t � I(2):
Therefore, when xt � I(2) (13) is a regression of an I(0) variable

(R0t) on an I(2) variable (R1t): Under the (testable) assumption that
"t � I(0); either �0R1t = 0 or �0R1t � I(0) for the equation (13) to
hold. Because the linear combination �0R1t transforms the process from
I(2) to I(0), the estimate �̂ is super-super consistent (Johansen, 1992).
Even though � is precisely estimated in the I(1) model when data are
I(2), the interpretation of �0xt as a stationary long-run relation has to
be modi�ed as will be demonstrated below.
It is easy to demonstrate the connection between �0~xt�2 and �

0R1t
by inserting (15) into (13) :
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R0t=��
0R1t + "t

��0(~xt�1 �B2�xt�1) + "t
=�(�0~xt�1 � �0B2�xt�1) + "t
=�(�0~xt�1| {z }

I(1)

� !0�xt�1| {z })
I(1)| {z }

I(0)

+ "t (16)

where ! = �0B2: It appears that the stationary relations �
0R1t consists

of two components �0~xt�1 and !
0�xt�1 both of which are generally I(1).

The stationarity of �0R1t is, therefore, a consequence of cointegration
between �0~xt�1 � I(1) and !0�xt�1 � I(1):
Thus, when data are I(2), �0i~xt � I(1); while �0iR1t � I(0) for at least

one i; i = 1; :::; r: It is, therefore, a clear sign of double unit roots (or,
alternatively, a unit root and an explosive root) in the model when the
graphs of �0i~xt exhibits nonstationary behavior whereas �

0
iR1t looks sta-

tionary. As an illustration we have reported the graphs of all four coin-
tegration relations (of which �01R1t and �

0
2R1t are stationary) in Figures

6-9. The upper panels contain the relations, �0i~xt; and the lower panels
the cointegration relations corrected for short-run dynamics, �0iR1t:

V1`  * Zk(t)

1977 1978 1979 1980 1981 1982 1983 1984 1985
58.8

60.0
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68.4

V1`  * Rk(t)

1977 1978 1979 1980 1981 1982 1983 1984 1985
­3

­2

­1

0

1

2

3

4

Figure 6. The graphs of �01xt (upper panel) and �
0
1R1t (lower panel).
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V2`  * Zk(t)
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Figure 7. The graphs of �02xt (upper panel) and �
0
2R1t (lower panel).
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Figure 8. The graphs of �03xt (upper panel) and �
0
3R1t (lower panel).
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V4`  * Zk(t)
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Figure 9. The graphs of �04xt (upper panel) and �
0
4R1t (lower panel).

Among the graphs in Figures 6 and 7 �01~xt and �
0
2~xt exhibit distinctly

nonstationary behavior whereas the graphs of the corresponding �0iR1;t
look reasonably stationary. This is strong evidence of double roots in
the data. As all the remaining graphs seem de�nitely nonstationary, this
suggests r = 2 and at least one I(2) trend in the data.
Another way of diagnosing I(2) behavior is to calculate the charac-

teristic roots of the VAR model for di�erent choices of the cointegration
rank r. When xt � I(2) the number of unit roots in the characteristic
polynomial of the VAR model is s1+2s2; where s1 and s2 are the number
of autonomous I(1) and I(2) trends respectively and s1 + s2 = p� r.
The characteristic roots contain information on unit roots associated

with both � and �; whereas the standard I(1) trace test is only related to
the number of unit roots in the � matrix. If the data are I(1) the number
of unit roots (or near unit roots) should be p� r; otherwise p� r + s2:
Therefore, if for any reasonable choice of r there are still (near) unit
roots in the model; it is a clear sign of I(2) behavior in at least some of
the variables. Because the additional unit root(s) are related to �xt�1;
i.e. belong to the matrix � = I � �1, lowering the value of r does not
remove the s2 additional unit root associated with the I(2) behavior.
In the Brazilian nominal model there are altogether p� k = 4� 2 =

8 eigenvalue roots in the characteristic polynomial which are reported
below for r = 1; :::; 4. Unrestricted near unit roots are indicated with
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bold face.

V AR(p)1:002 0:97 0:90 0:90 0:38 0:33 0:06 0:06
r = 3 1:0 1:002 0:91 0:91 0:38 0:33 0:06 0:06
r = 2 1:0 1:0 0:99 0:86 0:38 0:32 0:09 0:07
r = 1 1:0 1:0 1:0 1:001 0:61 0:33 0:09 0:00

In the unrestricted model two of the roots are very close to the unit
circle, one is larger than unity possibly indicating explosive behavior,
the other is a stable near unit root. In addition there is a complex
pair of two fairly large roots. The presence of an unstable root can be
seen in the graph of the �rst cointegration relation �01~xt in Figure 6:
The equilibrium error in the `steady-state' relation in levels grows in an
unstable manner at the end of the period, but is `compensated' by a
similar increase in the in
ation rate, so �01R1;t looks stationary. This
suggests that the seed to the Brazilian hyper in
ation in the subsequent
period can already be found in the present data.
However, the explosive part of the root is very small and might not

be statistically signi�cant. In such a case we would expect the unstable
root to disappear when restricting the rank. We notice that for r = 3 and
r = 1 the explosive root is still left in the model, whereas for r = 2 it has
disappeared. Independently of the choice of r; a near unit root remains
in the model consistent with I(2), or moderately explosive, behavior.
Therefore, we continue with r = 2 and disregard the possibility of an
explosive root in the econometric analysis. Subsequently we will use
the empirical results to demonstrate where in the model the seed to the
subsequent hyper in
ationary behavior can be found.
In most cases a graphical inspection of the data is su�cient to de-

tect I(2) behavior and it might seem meaningless to estimate the I(1)
model when xt is in fact I(2): However, a variety of hypotheses can be
adequately tested using the I(1) procedure with the caveat that the in-
terpretation of the cointegration results should be in terms of CI(2; 1)
relations, i.e. relations which cointegrated from I(2) to I(1), and not
from I(1) to I(0). One of the more important hypotheses which can be
tested is the long-run price homogeneity of � to be discussed in Section
7.

5 De�ning the I(2) model

It is useful to reformulate the VAR model de�ned in the previous section
in acceleration rates, changes and levels:

�2xt = ��xt�1 +�xt�1 + �pDp;t + �sQs;t + �0 + �1t+ "t;
"t � Np(0;
 ); t = 1; :::; T

(17)
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where � = �(I � �1) and �1 = ��1:0 is restricted to lie in sp(�) (cf.
Section 5.3).

5.1 The AR formulation

The hypothesis that xt is I(2) is formulated in Johansen (1992) as two
reduced rank hypotheses:

� = ��0 , where �; � are p� r (18)

and
�0?��? = ��

0; where �; � are (p� r)� s1: (19)

The �rst condition is the usual I(1) reduced rank condition associated
with the variables in levels, whereas the second condition is associated
with the variables in di�erences. The intuition is that the di�erenced
process also contains unit roots when data are I(2). Note, however, that
(19) is formulated as a reduced rank condition on the transformed �:
The intuition behind this can be seen by pre-multiplying (17) with �?
(and post-multiplying by �?): This makes the levels component ��

0xt�2
disappear and reduces the model to a ((p � r) � (p � r))-dimensional
system of equations in �rst- and second order di�erences. In this system
the hypothesis of reduced rank of the matrix �0?��? is tested in the
usual way. Thus, the second reduced rank condition is similar to the
�rst except that the reduced rank regression is on the p � r common
driving trends. Using (19) it is possible to decompose �? and �? into
the I(1) and I(2) directions:

�? = f�?1; �?2g and �? = f�?1; �?2g; (20)

where �?1 = �?(�
0
?�?)

�1� and �?;1 = �?(�
0
?�?)

�1� is p � s1; �?2 =
�?�? and �?2 = �?�? is p � s2; and �?; �? are the orthogonal com-
plements of � and �; respectively. Note that the matrices �?1; �?2; �?1;
and �?2 are called �1; �2; �1 and �2 in the many papers on I(2) by Jo-
hansen and coauthors. The reason why we deviate here from the simpler
notation is that we need to distinguish between di�erent � and � vec-
tors in the empirical analysis and, hence, use the latter notation for this
purpose.
While the I(1) model is only based on the distinction between r coin-

tegrating relations and p� r non-cointegrating relations, the I(2) model
makes an additional distinction between s1 I(1) trends and s2 I(2) trends.
Furthermore, when r > s2; the r cointegrating relations can be divided
into r0 = r�s2 directly stationary CI(2; 2) relations (cointegrating from
I(2) to I(0)) and s2 polynomially cointegrating relations. This distinction
will be illustrated in Section 6 based on the Brazilian data.
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5.2 The moving average representation

The moving average representation of (17) describes the variables as a
function of stochastic and deterministic trends, stationary components,
initial values and deterministic dummy variables. It is given by:

xt = C2
tP
s=1

sP
i=1

"i + C2
1
2
�0t

2 + C2�p
tP
s=1

sP
i=1

Dpi + C2�s
tP
s=1

sP
i=1

Qsi

+C1
tP
s=1

"s + C1�p
tP
s=1

Dps + C2�s
tP
s=1

Qss + (C1 +
1
2
C2)�0t+ 
1t

+Yt + A+Bt; t = 1; :::; T

(21)

where Yt de�nes the stationary part of the process, A andB are functions
of the initial values x0; x�1; :::; x�k+1; and the coe�cient matrices satisfy:

C2 = �?2(�
0
?2	�?2)

�1�
0

?2; �0C1 = ��0�C2; �0?1C1 = ��0?1(I�	C2)
(22)

where 	 = ���0�+ I � �1 and the shorthand notation � = �(�0�)�1 is
used: See Johansen (1992, 1995).

We denote e�?2 = �?2(�0?2	�?2)�1 so that
C2 = e�?2�0?2 (23)

i:e: the C2 matrix has a similar reduced rank representation as C1 in the
I(1) model. It is, therefore, natural to interpret �

0
?2��"i as the second

order stochastic trend that has a�ected the variables xt with weights e�?2:
However, the C1 matrix cannot be decomposed similarly. It is a more
complex function of the AR parameters of the model and the C2 matrix
and the interpretation of the parameters �?1 and �?1 is less intuitive.
The MA representation (22) together with (23) can be used to obtain

ML estimates of the stochastic and deterministic trends and cycles and
their loadings in the intuitive scenario (8) of Section 3. This will be
illustrated in Section 6.

5.3 Deterministic components in the I(2) model

It appears from (21) that an unrestricted constant in the model is con-
sistent with linear and quadratic trends in the data. Johansen (1992)
suggested the decomposition of the constant term �0 into:

�0 = �
0 + 
1 + 
2;

where
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� 
0 is a constant term in the stationary cointegration relations,

� 
1 is the slope coe�cient of linear trends in the variables, and

� 
2 is the slope coe�cient of quadratic trends in the variables.

Quadratic trends in the levels of the variables is consistent with linear
trends in the growth rates, i.e. in in
ation rates, which generally does
not seem plausible (not even as a local approximation). Therefore, the
empirical model will be based on the assumption that the data contain
linear but no quadratic trends, i.e. that 
2 = 0:
Similar arguments can be given for the dummy variables. An unre-

stricted shift dummy, such as Ds83:8t; in the model is consistent with a
broken quadratic trend in the data, whereas an unrestricted blip dummy,
such as Dp83:8t = �Ds83:8t; is consistent with a broken linear trend in
the data. Thus, a correct speci�cation of dummies is important as they
are likely to strongly a�ect both the model estimates and the asymptotic
distribution of the rank test.
In many cases it is important to allow for trend-stationary relations

in the I(2) model (Rahbek, Kongsted, and J�rgensen, 1999). In this case
�1t 6= 0 and the vector �1 needs to be decomposed in a similar way as
the constant term:

�1 = �
0�0 + �1 + �2;

where

� �0 is the slope coe�cient of a linear trend in the cointegration
relations,

� �1 is the slope coe�cient of quadratic trends in the variables, and

� �2 is the slope coe�cient of cubic trends in the variables.

Since the presence of deterministic quadratic or cubic trends are not
very plausible we will assume that �1 = �2 = 0.

5.4 The determination of the two rank indices

The cointegration rank r can be determined either by the two-step es-
timation procedure in Johansen (1995) based on the polynomial cointe-
gration property of �0xt, or by the FIML procedure in Johansen (1997)
based on the CI(2; 1) property of �0xt and �

0
?1xt: The idea of the two-

step procedure is as follows: The �rst step determines r = r based on
the trace test in the standard I(1) model and the estimates �̂ and �̂: The
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Table 1: Testing the two rank indices in the I(2) model

p-r r FIML test procedure: Q(s1; r) Q(r) �i
4 0 323:87

[0:00]
220:09
[0:00]

149:68
[0:00]

99:01
[0:00]

95:91
[0:00]

0.43

3 1 141:95
[0:00]

73:89
[0:02]

51:69
[0:08]

44:16
[0:04]

0.24

2 2 48:92
[0:05]

24:14
[0:47]

19:67
[0:25]

0.12

1 3 13:40
[0:34]

7:29
[0:32]

0.05

s2 4 3 2 1 0

second step determines s1 = s1 by solving the reduced rank problem for
the matrix (�̂0?��̂?): The practical procedure is to calculate the trace
test for all possible combinations of r and s1 so that the joint hypothesis
(r; s1) can be tested using the procedure in Paruolo (1996).
Based on a broad simulation study Nielsen and Rahbek (2003) show

that the FIML procedure has better size properties than the two-step
procedure. The estimates here are, therefore, based on the FIML proce-
dure using the new version 2.0 of CATS for RATS developed by Jonathan
Dennis.

Table 1 reports the test of the joint hypothesis (r; s1) with the 95%
quantiles of the simulated distribution given in brackets. They are de-
rived for a model with a linear trend restricted to be in the cointegra-
tion space. The test procedure starts with the most restricted model
(r = 0; s1 = 0; s2 = 4) in the upper left hand corner, continues to the
end of the �rst row (r = 0; s1 = 4; s2 = 0), and proceeds similarly row-
wise from left to right until the �rst acceptance. The �rst acceptance
is at (r = 1; s1 = 1; s2 = 1) with a p-value of 0.08. However, the case
(r = 2; s1 = 1; s2 = 1) is accepted with a much higher p-value 0.47 and
will be our preferred choice. As a matter of fact, the subsequent results
will demonstrate that the second relation plays a crucial role in the price
mechanisms which led to hyper in
ation.
To improve the small sample properties of the test procedures, a

Bartlett correction can be employed (Johansen, 2000). Even though it
signi�cantly improves the size of the cointegration rank, the power of
the tests is generally very low for I(2) or near I(2) data.
The Paruolo procedure delivers a correct size asymptotically, but

does not solve the problem of low power. Because economic theory is
often consistent with few rather than many common trends, a reversed
order of testing might be preferable from an economic point of view.
However, in that case the test will no longer deliver a correct asymptotic
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size.
Furthermore, when the I(2) model contains intervention dummies

that cumulate to trends in the DGP , standard asymptotic tables are no
longer valid. For example, an unrestricted impulse dummy, like Dp83.8 t,
will cumulate to a broken linear trend in the data. The asymptotic
distributions for the I(2) model do not account for this feature. Since
the null of a unit root is not necessarily reasonable from an economic
point of view, the low power and the impact of the dummies on the
distributions can be a serious problem. This can sometimes be a strong
argument for basing the choice of r and s1 on prior information given by
the economic insight as well as the statistical information in the data. As
demonstrated in Section 4 such information can be a graphical inspection
and the number of (near) unit roots in the characteristic polynomial of
the VAR.
For the present choice of rank (r = 2; s1 = 1; s2 = 1) the character-

istic roots of the V AR model became

1:0 1:0 1:0 0:89 0:39 0:06 �0:09 �0:32
leaving a fairly large root in the model. Therefore, another possibility
would have been to choose r = 2 ; s1 = 0; s2 = 2:

6 Interpreting the I(2) structure

It is no easy task to give the intuition for the di�erent levels of integration
and cointegration in the I(2) model and how they can be translated into
economically relevant relationships. Table 2 illustrates the I(2) decompo-
sition of the Brazilian data, which is based on the following assumptions
(anticipating the subsequent results):

mt � I(2); pt � I(2); sbt � I(2); yrt � I(1)

and
r = 2| {z }

r0=1;r1=1

; and p� r| {z }
s1=1;s2=1

= 2

The left hand side of Table 2 illustrates the decomposition of xt into
two � and two �? directions corresponding to r = 2 and p� r = 2. This
decomposition de�nes two stationary polynomially cointegrating rela-
tions, �01xt+!

0
1�xt and �

0
2xt+!

0
2�xt; and two nonstationary relations,

�0?1xt � I(1) and �0?2xt � I(2): Note that �0?1xt is cointegrating from
I(2) to I(1), and can become I(0) by di�erencing once, whereas �0?2xt is
not cointegrating at all and, thus, can only become I(0) by di�erencing
twice.
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Table 2: Decomposing the data vector using the I(2) model

The �; �? decomposition of xt The �; �? decomposition
r = 2

[�0:1xt| {z }
I(1)

+ !0:1�xt| {z }
I(1)

] � I(0) �1:short-run adjustment coe�cients

[�0:2xt| {z }
I(1)

+ !0:2�xt]| {z }
I(1)

� I(0) �2: short-run adjustment coe�cients

s1 = 1 �0?1xt � I(1) �0?1
Pt

i=1 "i: I(1) stochastic trend

s2 = 1 �0?2xt � I(2) �0?2
Pt

s=1

Ps
i=1 "i: I(2) stochastic trend

When r > s2 the polynomially cointegrating relations can be further
decomposed into r0 = r � s2 = 1 directly cointegrating relations, �00xt;
and r1 = r � r0 = s2 = 1 polynomially cointegrating relations, �01xt +
�0�xt; where � is a p� s2 matrix proportional �?2:
The right hand side of Table 2 illustrates the corresponding decom-

position into the � and the �? directions, where �1 and �2 measure
the short-run adjustment coe�cients associated with the polynomially
cointegrating relations, whereas �?1 and �?2 measure the loadings to
the �rst and second order stochastic trends.
Both �0xt and �

0
?1xt are CI(2; 1) but they di�er in the sense that

the former can become stationary by polynomial cointegration, whereas
the latter can only become stationary by di�erencing. Thus, even in the
I(2) model the interpretation of the reduced rank of the matrix � is that
there are r relations that can become stationary either by cointegration
or by multi-cointegration, and p�r relations that only become stationary
by di�erencing.
Thus, the I(2) model can distinguish between the CI(2; 1) relations

between levels f�0xt; �0?1xtg; the CI(1; 1) relations between levels and
di�erences f�0xt�1 + !0�xtg; and �nally the CI(1; 1) relations between
di�erences f�0?1�xtg: As a consequence, when discussing the economic
interpretation of these components, we need to modify the generic con-
cept of "long-run" steady-state relations accordingly. We will here use
the interpretation of
� �00xt as a static long-run equilibrium relation;
� �01xt + �0�xt as a dynamic long-run equilibrium relation,
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Table 3: Unrestricted estimates of the I(0), I(1), and I(2) directions of
� and �

m p sb yr

The stationary cointegrating relations

�̂0 1.00 -0.07 -0.91 -1.22

�̂1 -0.67 1.00 -0.06 0.37
� -4.87 -3.78 -5.48 -0.30

The adjustment coe�cients
�̂0 0.04 -0.03 0.17 0.01
�̂1 0.10 0.04 0.11 -0.01

The nonstationary relations

�̂?1 4.54 0.46 -3.99 6.69

�̂?2 0.52 0.40 0.58 -0.03
The common stochastic trends

�̂?1 0.038 -0.007 -0.012 0.122
�̂?2 -0.053 -0.078 -0.016 -0.023
�̂" 0.016 0.010 0.054 0.028

� �0?1�xt as a medium-run equilibrium relation:

As mentioned above the parameters of Table 2 can be estimated ei-
ther by the two-step procedure or by the FIML procedure. Paruolo
(2000) showed that the two-step procedure gives asymptotically e�cient
ML estimates. The FIML procedure solves just one reduced rank prob-
lem in which the eigenvectors determine the space spanned by (�; �?1);
i.e. the p � s2 I(1) directions of the process: Independently of the esti-
mation procedure, the crucial estimates are f�̂; �̂?1g; because for given
values of these it is possible to derive the estimates of f�; �?1; �?2; �?2g
and, if r > s2; to further decompose � and � into � = f�0; �1g and
� = f�0; �1g:
The parameter estimates in Table 3 are based on the two-step pro-

cedure for r = 2, s1 = 1; and s2 = 1. We have imposed identifying
restrictions on two cointegration relations by distinguishing between the
directly stationary relation, �00xt; and the polynomially cointegrated re-
lation, �01xt+��xt; where � is proportional to �?2: Note, however, that
this is just one of many identi�cation schemes which happen to be pos-
sible because r � s2 = 1: In Section 8 we will present another identi�ed
structure where both relations are polynomially cointegrating.

The b�0?1xt relation is a CI(2; 1) cointegrating relation which only
can become stationary by di�erencing. We interpret such a relation as
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a medium long-run steady-state relation. The estimated coe�cients ofb�?1 suggest a �rst tentative interpretation:
�yrt = 0:60�s

b
t � 0:68�mt

i.e. real industrial production has increased in the medium run with the
currency depreciation relative to the growth of money stock.
The estimate of �?2 determines the stochastic I(2) trend �̂

0
?2��"̂i =

��bu2i; where "̂i is the vector of estimated residuals from (17) and bu2t =
�̂0?2"̂t: Permanent shocks to money stock relative to price shocks, to
black market exchange rates and to industrial production seem to have
generated the I(2) trend in this period. The standard deviations of the
VAR residuals are reported in the bottom row of the table.
The estimate of �?1 describes the second I(1) stochastic trend,

Pbu2i =b�0?1P "̂i. The coe�cient to real industrial production has by far the
largest weight in b�?1 suggesting that it measures an autonomous real
shock. This is consistent with the hypothetical scenario (7) of Section 3.

1977 1978 1979 1980 1981 1982 1983 1984 1985
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1977 1978 1979 1980 1981 1982 1983 1984 1985

­.01
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Figure 10. The graphs of the estimated I(2) trend in the upper panel,
the nominal I(1) trend (i.e. the di�erenced I(2) trend) in the middel

panel and the real I(1) trend in the lower panel.

Figure 10, upper panel, shows the graph of the I(2) stochastic trend,
�̂0?2

PP
"̂i; where �̂?2 is from Table 3. The graph in the middle panel

is the di�erenced I(2) trend and the graph in the lower panel is the real
stochastic trend given by

P
"̂y;i:
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The vector �̂?2 describes the weights ci; i = 1; ::; 4 of the I(2) trend in
the scenario (7) of Section 3 for the Brazilian variables. Nominal money,
prices and exchange rates have large coe�cients of approximately the
same size, whereas the coe�cient to real income is very small. This
suggests that only the nominal variables are I(2) consistent with the
assumption behind the scenario in (7).

7 Nominal growth in the long run and the medium

run3

The notion of price homogeneity plays an important role for the analysis
of price adjustment in the long run and the medium run. Both in the
I(1) and the I(2) model, long-run price homogeneity can be de�ned
as a zero sum restriction on �: Under the assumption that industrial
production is not a�ected by the I(2) trend, long-run price homogeneity
for the Brazilian data can be expressed as:

�0i = [ai;�!iai;�(1� !i)ai; �; �]; i = 1; :::; 2;
�0?1= [b;�!3b;�(1� !3)b; �];
�0?2= [c; c; c; 0]:

(24)

where � and �?1 de�ne CI(2; 1) relations and �?2 de�ne the variables
which are a�ected by the I(2) trends. Overall price homogeneity is
testable either as a joint hypothesis of the �rst two conditions or as a
single hypothesis of the last condition in (24) (see, Kongsted, 2004). The
�rst condition in (24) describes price homogeneity between the levels of
the nominal variables. It can be easily tested in the standard I(1) model
as a linear hypothesis on � either expressed as R0�i = 0; i = 1; 2; :::; r,
where for the Brazilian data R0 = [1; 1; 1; 0; 0] or, equivalently, as � =
H' where ' is a (p1� 1)� r matrix of free coe�cients and

H =

266664
1 0 0 0

�1�1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

377775 :
The hypothesis of price homogeneity was strongly rejected based on

a LR test statistic of 41.9, asymptotically distributed as �2(2): We note
that the �rst three coe�cients of �̂1 in Table 3 do not even approximately
sum to zero, whereas those of �̂0 are much closer to zero.
The �̂?2 estimates in Table 3 suggest that nominal money stock

and black market exchange rate have been similarly a�ected by the I(2)

3This Section draws heavvily on Section 2 in Juselius (1999b)
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trend, whereas the CPI price index has a smaller weight. Furthermore,
the coe�cient to industrial production is close to zero, consistent with
the hypothesis that the latter has not been a�ected by the I(2) trend.
This can be formally tested based on the LR procedure (Johansen, 2004)
as an hypothesis that industrial production is I(1). The test, distributed
as �2(1), was accepted based a test statistic of 1.30 and a p-value of
0.25.
In the I(2) model, there is the additional possibility of medium-

run price homogeneity de�ned as homogeneity between nominal growth
rates. This is, in general, associated with real variables being I(1). For
example, if (m� p) � I(1) and (sb� p) � I(1); then (�m��p) � I(0)
and (�sb � �p) � I(0) and there is medium-run price homogeneity in
the sense of nominal growth rates being pairwise cointegrated (1, -1).
Hence, a rejection of long-run price homogeneity implies a rejection of
homogeneity between the nominal growth rates. We note that the �rst
three coe�cients of �̂?1 in Table 3 do not even roughly sum to zero
consistent with the rejection of long-run price homogeneity.
The previous section demonstrated that the levels component, �xt�2

and the di�erences component, ��xt�1 in (17) are closely tied together
by polynomial cointegration. In addition ��xt�1 contains information
about �0?�xt�1; i.e. about the medium long-run relation between growth
rates. Relying on results in Johansen (1995) the levels and di�erence
components of model (17) can be decomposed as:

��xt�1 +�xt�1=(��)�
0�xt�1| {z }
I(0)

+(��0��?1 + �?1)�
0
?1�xt�1| {z }
I(0)

+(��0��?2)�
0
?2�xt�1| {z }
I(1)

+�1 �
0
1xt�1| {z }
I(1)

+�0 �
0
0xt�1| {z }
I(0)

(25)

where �� = �(�0�)�1 and �� is similarly de�ned. The � matrix is de-
composed into three parts describing di�erent dynamic e�ects from the
growth rates, and the � matrix into two parts describing the e�ects from
the stationary relation, �00xt�1; and the nonstationary relation, �

0
1xt�1.

The matrices in brackets correspond to the adjustment coe�cients.
The interpretation of the �rst component in (25), (��)�0�xt�1; is

that prices not just adjusting to the equilibrium error between the price
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levels, �0xt�2; but also to the change in the equilibrium error, �0�xt�1.
Under long-run price homogeneity it would have represented a homoge-
neous e�ect in in
ation rates.
The second component, (��0��?1 + �?1)�

0
?1�xt�1; corresponds to

a stationary medium long-run relation between growth rates of nominal
magnitudes. Because of the rejection of long-run price homogeneity, this
represents a non-homogeneous e�ect in nominal growth rates.
The third component, (��0��?2)�

0
?2�xt�1; and the fourth com-

ponent, �1�
0
1xt; are both I(1) relations which combine to a stationary

polynomial cointegration relation, �1(�
0
1xt�1 + �

0�xt�1) � I(0); where
�1�

0 = (��0��?2)�
0
?2.

The long-run matrix � is the sum of the two levels components mea-
sured by:

� = �0�
0
0 + �1�

0
1:

Hypothetically, the � matrix is likely to satisfy the condition for long-run
price homogeneity in a regime where in
ation is under control. Thus,
the lack of price homogeneity is likely to be the �rst sign of in
ation
running out of control.
The growth-rates matrix � is the sum of the three di�erent compo-

nents measured by

� = (��)�0 + (��0��?1 + �?1)�
0
?1 + (��

0��?2)�
0
?2:

The � matrix is, however, not likely to exhibit medium-run price ho-
mogeneity, even under the case of long-run price homogeneity. This is
because R0� = 0 implies R0�?2 6= 0: The intuition is as follows: When
�0xt � I(0); a non-homogeneous reaction in nominal growth rates is
needed to achieve an adjustment towards a stationary long-run equilib-
rium position. Therefore, medium-run price homogeneity interpreted as
a zero sum restriction of rows of � would in general be inconsistent with
overall long-run price homogeneity.
Table 4 reports the estimates of � = �(I � �1) = �0?��? and

� = ��0: We notice that the coe�cients of each row do not sum to
zero. Next section will show that the di�erence is statistically signi�-
cant. The diagonal elements of the � matrix are particularly interesting
as they provide information of equilibrium correction behavior, or the
lack of it, of the variables in this system. We notice a signi�cant posi-
tive coe�cient in the diagonal element of the domestic prices, which in a
single equation model would imply accelerating prices. In a VAR model
absence of equilibrium correction in one variable can be compensated
by a su�ciently strong counteracting reaction from the other variables
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in the system. It is noticeable that the only truely market determined
variable, the black market exchange rate, is signi�cantly equilibrium-
correcting variable, whereas money stock is only borderline so.
Section 3 demonstrated that the unrestricted characteristic roots of

the VAR model contained a small explosive root, which disappeared
when two unit roots were imposed. Nevertheless, the positive diagonal
element of prices suggest that the spiral of price increases which subse-
quently became hyper in
ation had already started at the end of this
sample.

8 Money growth, currency depreciation, and price

in
ation in Brazil

Long-run price homogeneity is an important property of a nominal sys-
tem and rejecting it is likely to have serious implications both for the
interpretation of the results and for the validity of the nominal to real
transformation. The empirical analysis of Durevall (1998) was based on
a nominal to real transformation without �rst testing its validity. We will
here use the I(2) model for the empirical investigation of the money-price
spiral without having to impose invalid long-run price homogeneity.

8.1 Identifying the � relations

The estimates of �0; �1 and � in Table 3 are uniquely identi�ed by the
CI(2; 2) property of �00xt: However, other linear combinations of �0 and
�1 may be more relevant from an economic point of view, but these will
be I(1) and will, therefore, have to be combined with the di�erenced
I(2) variables to become stationary.
To obtain more interpretable results three overidentifying restrictions

have been imposed on the two � relations (see johansen and Juselius,
1994). The LR test of overidentifying restrictions, distributed as �2(3)
became 1:41 and the restrictions were accepted based on a p-value of
0.70. The estimates of the two identi�ed relations became:

�c01;txt=mt�1 � sbt�1 � yrt�1 � 0:005
(�2:5)

trend

�c02;txt= pt�1 � 0:64
(18:3)

(mt�1 � yrt�1)� 0:008
(�2:5)

trend
(26)

The �rst relation is essentially describing a trend-adjusted liquidity ratio,
except that the black market exchange rate is used instead of the CPI
as a measure of the price level. The liquidity ratio with CPI instead of
the exchange rate was strongly rejected. This suggests that in
ationary
expectations were strongly a�ected by the expansion of money stock and
that these expectations in
uenced the rise of the black market nominal
exchange rate.

29



Both relations need a linear deterministic trend. The estimated trend
coe�cient of the �rst relation in suggests that 'the liquidity ratio' grew
on average with 6% (0.005�12 � 100) per year in this period. The
second relation shows that prices grew less than proportionally with
the expansion of M3 money stock relative to industrial production af-
ter having accounted for an average price increase of approximately 9%
(0.008�12� 100) per year.

1977 1978 1979 1980 1981 1982 1983 1984 1985
2.4

2.6

2.8

3.0

Lm3­Lcpi­LY

1977 1978 1979 1980 1981 1982 1983 1984 1985
5.50

5.75

6.00

6.25 Lm3­Lexc­LY

Figure 11. The graphs of inverse velocity with CPI as a price variable
(upper panel) and with nominal exchange rate (lower panel).

The graphs in Figure 11 of the liquidity ratio based on the nomi-
nal exchange rate and on the CPI index, respectively, may explain why
nominal exchange rates instead of domestic prices were empirically more
relevant in the �rst relation. It is interesting to note that the graphs
are very similar until the end of 1980, whereafter the black market ex-
change rate started to grow faster than CPI prices. Thus, the results
suggest that money stock grew faster than prices in the crucial years
before the �rst hyper in
ation episode, but also that the depreciation
rate of the black market currency was more closely related to money
stock expansion. This period coincided with the Mexican moratorium,
the repercussions of which were strongly and painfully felt in the Brazil-
ian economy. The recession and the major decline of Brazilian exports
caused the government to abandon its previous more orthodox policy of
�ghting in
ation by maintaining a revalued currency and, instead, en-
gage in a much looser monetary policy. For a comprehensive review of
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the Brazilian exchange rate policy over the last four decades, see Bobomo
and Terra (1999).
Under the assumption that the black market exchange rate is a fairly

good proxy for the `true' value of the Brazilian currency, the following
scenario seems plausible: The expansion of money stock needed to �-
nance the recession and devaluations in the �rst case increased in
ation-
ary expectations in the black market, which then gradually spread to
the whole domestic economy. Because of the widespread use of wage
and price indexation in this period there were no e�ective mechanisms
to prevent the accelerating price in
ation.

8.2 Dynamic equilibrium relations

This scenario can be further investigated by polynomial cointegration.
In the I(2) model �0xt � I(1) has to be combined with the nominal
growth rates to yield a stationary dynamic equilibrium relation. The
two identi�ed relations, �01;1xt and �

0
1;2xt in (26) need to be combined

with nominal growth rates to become stationary. Table 5 reports various
versions of the estimated dynamic equilibrium relations.
The �rst dynamic steady-state relation corresponds essentially to Ca-

gan's money demand relation in periods of hyper in
ation. However, the
price level is measured by the black market nominal exchange rate and
the opportunity cost of holding money is measured both by the CPI
in
ation and by the currency depreciation. The coe�cient to in
ation
corresponds to Cagan's � coe�cient which de�nes the average in
ation
rate (1=�) at which the government can obtain maximum seignorage.
The present estimate suggests average in
ation rates of an order of mag-
nitude of 0.40-0.50 which corresponds to the usual de�nition of hyper
in
ation periods.
The second relation is more di�cult to interpret from a theoretical

point of view but seems crucial for the mechanisms behind the increas-
ingly high in
ation of this period and the hyper in
ation of the subse-
quent periods. Eq. (3) shows that the `gap' between prices and `excess'
money as measured by �01;2xt is cointegrated with changes in money
stock and prices, but not with currency depreciation. Eq. (4) combines
�01;2xt with money growth, �m; and price in
ation, �p; Eq. (5) with
�p and Eq. (6) with �m: Although both nominal growth rates are
individually cointegrating with �01;2xt, there is an important di�erence
between them: The relationship between money growth and the rela-
tion �01;2xt suggests error-correcting behavior in money stock, whereas
the one between price in
ation and �01;2xt indicates lack error-correcting
behavior in prices. The latter would typically describe a price mech-
anism leading ultimately to hyper in
ation unless counterbalanced by
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Table 4: The unrestricted parameter estimates

The estimated � = �0?��?matrix
�mt �pt �sbt �yrt

�2mt : -1.07 -0.06 0.00 0.02
�2pt : -0.02 -0.55 0.01 -0.01
�2sbt : -0.42 0.42 -0.92 0.03
�2yrt : -0.13 0.20 0.04 -1.32

The estimated � = ��0 matrix
mt�1 pt�1 sbt�1 yrt�1 trend

�2mt : �0:03
(�1:7)

0:11
(7:5)

�0:05
(�3:3)

0:00
(0:4)

-0:001
(�6:6)

�2pt : �0:05
(�5:1)

0:03
(3:3)

0:03
(3:1)

0:05
(4:8)

0:00
(0:1)

�2sbt : 0:11
(1:9)

0:15
(2:8)

�0:19
(�3:9)

�0:15
(�2:6)

0:002
(4:2)

�2yrt : 0:02
0:7

-0:01
�0:3

�0:01
�0:5

-0:02
�0:6

�0:00
(�0:1)

Table 5: Estimates of the polynomially cointegrated relations

The dynamic equilibrium relations �0xt + !
0�xt

�̂
0
1;1xt !1;1�mt !1;2�pt !1;3�s

b
t

(1) 1.0 �0:62
(1:1)

2:52
(3:4)

0:59
(2:7)

(2) 1.0 - 2:02
(3:4)

0:53
(2:5)

�̂
0
1;2xt !2;1�mt !2;2�pt !2;3�s

b
t

(3) 1.0 �5:80
(67)

�11:32
(9:9)

�0:34
(1:0)

(4) 1.0 �6:02
(7:1)

�11:38
(10:0)

-

(5) 1.0 � �16:57
(15:4)

-

(6) 1.0 �11:42
(12:4)

- -
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other compensating measures, such as currency control.

8.3 The short-run dynamic adjustment structure

The in
ationary mechanisms will now be further investigated based on
the estimated short-run dynamic adjustment structure. Current as well
as lagged changes of industrial production were insigni�cant in the sys-
tem and were, therefore, left out. Thus, real growth rates do not seem to
have had any signi�cant e�ect on the short-run adjustment of nominal
growth rates which is usually assumed to be the case in a high in
ation
regime. Furthermore, based on a F-test the lagged depreciation rate was
also found insigni�cant in the system and was similarly left out. Table 6
reports the estimated short-run structure of the simpli�ed model. Most
of the signi�cant coe�cients describe feed-back e�ects from the dynamic
steady-state relations de�ned by Eq. (2) and Eq. (4) in Table 5 and the
medium-run steady-state relation between growth rates, �0?1�xt de�ned
in Table 3. It is notable that the residual correlations are altogether
very small, so that interpretation of the results should be robust to lin-
ear transformations of the system.
The short-run adjustment results generally con�rm the previous �nd-

ings. Price in
ation has not been equilibrium correcting in the second
steady-state relation, whereas the growth in money stock has been so in
both of the two dynamic steady-state relations. The depreciation of the
black market exchange rate has been equilibrium correcting to the �rst
steady-state relation measuring the liquidity ratio relation and has been
strongly a�ected by the second price 'gap' relation. Furthermore, it has
reacted strongly to changes in money stock con�rming the above inter-
pretation of the important role of in
ationary expectations (measured
by changes in money stock) for the currency depreciation rate.
After the initial expansion of money stock at around 1981 (which

might have been fatal in terms of the subsequent hyper in
ation expe-
rience) money supply seems primarily to have accommodated the in-
creasing price in
ation. The lack of equilibrium correction behavior in
the latter was probably related to the widespread use of wage and price
indexation in this period. Thus, the lack of market mechanism to cor-
rect for excessive price changes allowed domestic price in
ation to gain
momentum as a result of high in
ationary expectations in the foreign
exchange market.

9 Concluding remarks

The purpose of this paper was partly to give an intuitive account of the
cointegrated I(2) model and its rich (but also complicated) statistical
structure, partly to illustrate how this model can be used to address
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important questions related to in
ationary mechanisms in high in
ation
periods. The empirical analysis was based on data from the Brazilian
high in
ation period, 1977:1-1985:5. An additional advantage of this pe-
riod was that it was succeeded by almost a decade of hyper-in
ationary
episodes. The paper demonstrates empirically that it is possible to un-
cover certain features in the data and the model which at an early stage
may suggest a lack of control in the price mechanism. Thus, a violation
of two distinct properties, price homogeneity and equilibrium correction,
usually prevalent in periods of controlled in
ation, seemed to have a high
signal value as a means to detect an increasing risk for a full-blown hyper
in
ation. The paper demonstrates that:

1. prices started to grow in a non-homogeneous manner at the begin-
ning of the eighties when the repercussions of the Mexican mora-
torium strongly and painfully hit the Brazilian economy. The ex-
pansion of money stock needed to �nance the recession and the
subsequent devaluations increased in
ationary expectations in the
black market, which then spread to the whole domestic economy.

2. the widespread use of wage and price indexation in this period
switched o� the natural equilibrium correction behavior of the
price mechanism. Without other compensating control measures
which might have dampened in
ationary expectations, it was not
possible to prevent price in
ation to accelerate.

Acknowledgement 1 Useful comments from Michael Goldberg are grate-
fully acknowledged. The paper was produced with �nancial support from
the Danish Social Sciences Research Councel.

10 Appendix A: Misspeci�cation diagnostics

The univariate normality test in Table A.1 is a Jarque-Bera test, dis-
tributed as �2(2): The multivariate normality test is described in Doornik
and Hansen (1995) distributed as �2(8). The AR-test is the F-test de-
scribed in Doornik (1996), page 4. P-values are in brackets.
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Table 6: Dynamic adjustment and feed-back e�ects in the nominal sys-
tem

Ref. Regressors: Eq.: �mt �pt �sbt
�mt�1 0:33

(4:2)
0:11
(2:4)

0:91
(2:7)

�pt�1 0:59
(5:6)

0:76
(12:1)

�

Table 5 (2) (�̂1;1x� ŵ1;1�x)t�1 �0:03
(�2:3)

�0:03
(�2:9)

0:08
(1:9)

Table 5 (4) (�̂1;2x� ŵ1;2�x)t�1 0:06
(6:4)

0:02
(4:3)

0:06
(2:0)

Table 3 �̂
0
?1�xt +0:008

(�2:2)
�0:005
(2:1)

-

1.0
Residual correlations: -0.02 1.0

0.08 -0.12 1.0

Table 7: Misspeci�cation tests

Univariate misspeci�cation tests
yr sb m p

Normality,�2(2) 0:66
(0:72)

1:71
(0:43)

0:36
(0:84)

1:67
(0:43)

AR(1) 0:19
(0:66)

0:00
(0:95)

0:03
(0:87)

1:27
(0:26)

Skewness -0.13 0.21 0.09 -0.21
Kurtosis 3.06 3.29 2.62 3.27

Multivariate misspeci�cation tests
Normality, �2(8) 4.43 (0.82)
AR(1) 5.59 (0.99)
AR(4) 62.21 (0.54)
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Figure A.1: Residual autocorrelograms and crosscorrelograms with
95% con�dence bands.
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Figure A.2: Residual histograms for the four equations.

Figure A.1 shows the residual auto-correlograms and cross-correlograms
of order 10 for all four equations. Figure A.2 shows the residual his-
tograms compared to the normal distribution for all equations. Both
�gures have been produced with the program Me2, described in Omtzigt
(2003)
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