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Abstract

This paper suggests a simple approximation procedure for the as-
sessment of productivity scores with respect to fuzzy production plans.
The procedure has a clear economic interpretation and all the neces-
sary calculations can be performed in a spreadsheet making it highly
operational.
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1 Introduction

Several authors have recognized the need to introduce some kind of data un-
certainty into the linear programming models of Data Envelopment Analysis
(DEA) since these non-parametric frontier models are extremely sensitive to
measurement errors and outliers, see e.g. Färe, Grosskopf and Lovell [5]. A
straightforward approach seems to be to represent the input and output data
as intervals or, more generally, as fuzzy sets.
There are several ways to handle fuzzy data in connection with DEA. The

main approach seems to be to transform fuzzy DEA into crisp DEA for given
level sets, see e.g. Triantis and Girod [12], Kao and Liu [7], Entani et al. [4]
and León et al. [9]. Another possibilistic approach treats the constraints of
the DEA programs as fuzzy events, see e.g. Lertworasirikul et al. [10] while
a third approach considers only pairwise dominance of fuzzy data, see e.g.
Triantis and Vanden Eeckaut [14] and Triantis et al. [13].
In the present paper yet another approach is introduced. Based on a

simple procedure for approximation of the DEA scores in the crisp case a
generalized procedure for fuzzy production data is developed. The main
advantage is the operationability since all calculations can be performed in a
spreadsheet and, in any case, do not involve fuzzy programming. Moreover,
the entire procedure (with its resulting crisp productivity scores) has an
economic interpretation parallel to the original interpretation of the DEA
scores.
The paper is organized as follows: In Section 2, the procedure is motivated

by looking at the crisp case. Section 3, introduces the basic model. Section 4,
defines a suitable fuzzy index and disclose some of its properties. The entire
procedure is presented and discussed in Section 5. Section 6 closes with final
remarks.

2 Motivation - the crisp case

Consider the standard DEA model as introduced by Charnes, Cooper and
Rhodes [1] where the productivity score of production plan (or DMU) i is
found by solving the program:
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max
u,v≥0

u · yi
v · xi

s.t.
u · yr
v · xr ≤ 1, r = 1, . . . , i, . . . , k,

where x is a vector of inputs and y is a vector of outputs for the set of k
production plans.
As noticed in [1] this program can be transformed into a linear program-

ming problem by fixing either the input or the output side, i.e. v · xi = 1
or u · yi = 1. Clearly, the linear programming version is easier to solve and
is known as the CCR model (implicitly assuming constant returns to scale
in production). However, it is easy to see that a simple approximation to
the solution of the above non-linear fractional programming problem can be
found as follows:
Let, for (positive) output h and (positive) input j, weights uh and vj be

such that
vj
uh
= max

r

yhr
xjr
.

Clearly, the weights û = (0, . . . , 0, uh, 0, . . . , 0) and v̂ = (0, . . . , 0, vj, 0, . . . , 0)
constitute a feasible solution since

û · yr
v̂ · xr ≤ 1, ∀ r = 1, . . . , k.

Moreover, the value of the objective function

yhi
xji
/max

r

yhr
xjr

is obviously smaller than the optimal value of the fractional programming
problem.
As such, the (CCR) productivity score can be approximated from be-

low by considering the ratio matrix [yhr/xjr], normalize (each column) with
maxr

yhr
xjr

and then select the most favorable (maximal) normalized ratio

for each production plan (DMU). The procedure therefore has a clear eco-
nomic interpretation and all the necessary calculations can be performed in
a spreadsheet making it highly operational.
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This type of approximation is analysed in detail in Despić [3] where it is
demonstrated by several simulations that it is indeed a good approximation,
in particular, in case of limited substitution possibilities among input and
outputs. The aim of the present paper is therefore to generalize this simple
and operational procedure to the assessment of productivity of fuzzy pro-
duction plans. While [3] goes on to develop a comprehensive fuzzy linguistic
framework, the present paper takes a more direct approach.

3 Fuzzy productivity ratios

Consider a finite set of fuzzy production plans (or DMU’s) denoted by F =
{F1, . . . , Fk} where each production plan transforms a finite number of fuzzy
inputs {I1, . . . , Im} into a finite number of fuzzy outputs {O1, . . . , On}, i.e.
Fi = (Ii, Oi), for i = 1, . . . , k. For the sake of simplicity each fuzzy input and
output is given by a triangular fuzzy number.
In general, consider a triangular fuzzy number A = (x; a, b, c) where 0 <

a ≤ b ≤ c, and let for α ∈ [0, 1], Aα = {x ∈ R|A(x) ≥ α} be the α-level
set associated with A. Since Aα = [a(α), c(α)] where a(α) = inf Aα and
c(α) = supAα, the triangular fuzzy number A may also be represented by
intervals

A(α) = [a(α), c(α)] = [(b− a)α+ a,−(c− b)α+ c] for all α ∈ [0, 1].
In particular, A(1) = b is called the kernel and A(0) = [a, c] is called the
support of the fuzzy number.
Now, let each fuzzy input j = 1, . . . ,m be given by triangular fuzzy num-

ber Ij = (x; aj, bj, cj). Likewise, let each fuzzy output h = 1, . . . , n be given
by a triangular fuzzy number Oh = (y; dh, eh, fh). Thus, the k× (m+n) data
matrix is given by

(I ij, O
i
h), i = 1, . . . , k, j = 1, . . . ,m, h = 1, . . . , n.

Triangular fuzzy numbers seem to fit very well with practical applications
since the kernel may be interpreted as the crisp value that has actually been
measured and the support may be interpreted as a kind of confidence interval
with the minimum value as the most pessimistic estimate and the maximum
value as the most optimistic estimate of the ‘true’ value.
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Now, invoking the assumption of constant returns to scale all fuzzy pro-
duction plans can be compared through the k×mn fuzzy productivity ratio
matrix given by ⎡⎢⎢⎢⎢⎣

O11
I11

. . .
O11
I1m

. . . O1n
I11

. . . O1n
I1m

...
...

Ok1
Ik1

. . .
Ok1
Ikm

. . . Okn
Ik1

. . . Okn
Ikm

⎤⎥⎥⎥⎥⎦ .
Denote by

Ril =
Oih
I ij
=
(y; dih, e

i
h, f

i
h)

(x; aij, b
i
j, c

i
j)
,

fuzzy productivity ratio l = 1, . . . ,mn of DMU i = 1, . . . , k.
Since division performed at each α-level yields the correct form of the op-

eration of division (see e.g. Kaufmann and Gupta [8]), the fuzzy productivity
ratios are determined by intervals

Ril(α) =
�
r̂il(α), ř

i
l(α)
=
=

^
(eih − dih)α+ dih
−(cij − bij)α+ cij

,
−(f ih − eih)α+ f ih
(bij − aij)α+ aij

�
∀ α ∈ [0, 1].

The economic interpretation of such ratios is straightforward: The kernel
(α = 1) can simply be interpreted as the usual crisp productivity ratio (eih/b

i
j)

while the support (α = 0) is given by the interval from the worst possible
ratio (when output has its lowest value and input has its highest value, i.e.
dih/c

i
j) to the best possible ratio (when output has its highest value and input

its lowest value, i.e. f ih/a
i
j).

The fuzzy ratios Ril may also be approximated linearly as triangular fuzzy
numbers

Ril ≈ (z;
dih
cij
,
eih
bij
,
f ih
aij
), i = 1, . . . , k, l = 1, . . . ,mn.

However, as demonstrated in Giachetti and Young [6] this approximation
may yield substantial errors, see also Example 1 below.

As mentioned in Section 2, the crisp scores of DEA (using the CCRmodel)
can be approximated from below by a procedure where, for each productivity
ratio, a maximal (benchmark) ratio is found across the set of production plans
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(that is, for each column in the ratio matrix) and by dividing each column
with its respective maximal ratio a normalized productivity ratio matrix is
obtained.
Mimicking this procedure for fuzzy production data we may define the

maximal (benchmark) ratio for each column of the fuzzy productivity ratio
matrix by

Rmaxl (α) = [r̂maxl (α), řmaxl (α)] =}
maxi=1,...,k

F
(eih−dih)α+dih
−(cij−bij)α+cij

k
,maxi=1,...,k

F
−(f ih−eih)α+f ih
(bij−aij)α+aij

k]
,

for all α ∈ [0, 1] and l = 1, . . . ,mn.
In terms of production economics, such maximal benchmarks (or pseudo

units) represent a combination of the best performance that has been ob-
served with respect to kernel and support for each possible fuzzy productiv-
ity ratio. Consequently, such benchmarks may not represent data from an
existing production unit (cf. Example 1 below).1

Unfortunately, normalizing each column in the fuzzy productivity ratio
matrix by dividing with the respective maximal ratios (for example defined
like Rmaxl above) may result in fuzzy efficiency scores without a sound eco-
nomic interpretation, as demonstrated by the following example:

Example 1: Consider the following fuzzy data matrix (Table 1) where each
fuzzy input and output is given by triangular fuzzy numbers.

Table 1: Fuzzy data

DMU no. Input 1 Input 2 Output 1 Output 2
1 (x; 2, 3, 6) (x; 5, 7, 8) (y; 4, 6, 7) (y; 5, 6, 7)
2 (x; 2, 4, 5) (x; 1, 5, 6) (y; 6, 8, 9) (y; 6, 7, 7)
3 (x; 5, 6, 7) (x; 4, 5, 5) (y; 8, 9, 9) (y; 10, 10, 11)
4 (x; 3, 5, 6) (x; 3, 6, 7) (y; 5, 7, 8) (y; 8, 9, 10)
5 (x; 1, 2, 2) (x; 3, 4, 4) (y; 4, 6, 7) (y; 5, 6, 6)
6 (x; 3, 4, 4) (x; 1, 2, 2) (y; 3, 4, 5) (y; 4, 5, 6)

1To compare observed production data with extreme performance of pseudo units is in
the spirit of non-parametric efficiency analysis (like DEA) where the efficient frontier of the
production function is estimated from observed production data by adding assumptions
of convexity and returns to scale. Thereby observed production data are often compared
to efficient combinations of existing productions when assessing the DEA efficiency score,
see e.g. [5].
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By the fuzzy data in Table 1, the fuzzy productivity ratios can be ob-
tained. In Table 2 below the linear approximation is used for simplicity:

Table 2: Approximated fuzzy productivity ratios

DMU no. O1/I1 O1/I2 O2/I1 O2/I2
1 (z; 0.66, 2, 3.5) (z; 0.5, 0.86, 1.4) (z; 0.83, 2, 3.5) (z; 0.63, 0.86, 1.4)
2 (z; 1.2, 2, 4.5) (z; 1, 1.6, 9) (z; 1.2, 1.75, 3.5) (z; 1, 1.4, 7)
3 (z; 1.14, 1.5, 1.8) (z; 1.6, 1.8, 2.25) (z; 1.43, 1.66, 2.2) (z; 2, 2, 2.75)
4 (z; 0.83, 1.4, 2.66) (z; 0.71, 1.17, 2.66) (z; 1.33, 1.8, 3.33) (z; 1.14, 1.5, 3.33)
5 (z; 2, 3, 7) (z; 1, 1.5, 2.33) (z; 2.5, 3, 6) (z; 1.25, 1.5, 2)
6 (z; 0.75, 1, 1.66) (z; 1.5, 2, 5) (z; 1, 1.25, 2) (z; 2, 2.5, 6)

The approximated maximal ratio for each column, Rmaxl , is respectively:

(z; 2, 3, 7), (z; 1.6, 2, 9), (z; 2.5, 3, 6) and (z; 2, 2.5, 7).

Hence, dividing each column with the associated maximal ratio yields the
normalized productivity ratio matrix [Ril/R

max
l ]. For each fuzzy production

plan a fuzzy productivity score may now be defined by selecting, from the
normalized ratio matrix, the largest kernel and support across the normalized
ratios, i.e. the score of production plan i is the triangular fuzzy number

P (Fi) = (z;max
l
{ dih/c

i
j

maxi{dih/cij}
},max

l
{ eih/b

i
j

maxi{eih/bij}
},max

l
{ f ih/a

i
j

maxi{f ih/aij}
}),

yielding:

Table 3: Fuzzy productivity scores

DMU no. Triangular fuzzy scores
1 (z; 0.13, 0.66, 1.75)
2 (z; 0.2, 0.8, 5.63)
3 (z; 0.29, 0.9, 1.41)
4 (z; 0.22, 0.6, 1.66)
5 (z; 0.42, 1, 3.5)
6 (z; 0.29, 1, 3.13)

Now, the kernels (0.66, 0.8, 0.9, 0.6, 1, 1) can be directly compared to the
Farrell productivity score that results from DEA using the CCR model on
the crisp data set given by the kernels of the fuzzy data matrix. The DEA
scores are,

(0.66, 0.98, 1, 0.86, 1, 1).
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As mentioned in Section 2, the procedure above yields a lower estimate.
However, notice that the fuzzy scores, as such, have no clear economic

interpretation because the normalization may result in meaningless fuzzy
ratios. For example, consider DMU no. 5, where the ratio (z; 2, 3, 7) is divided
by itself (as maximal ratio) yielding ratio (z; 0.29, 1, 3.5). Clearly, this new
ratio is meaningless: For example, the value (2/7 =) 0.29 is interpreted as
the normalized ratio related to the scenario where the ratio Ril is at its lowest
value while the maximal ratio Rmaxl is at its highest value (the worst possible
case) - but this is not a possible scenario since we speak about the same
production plan.
Moreover, as demonstrated in [6], the linear approximation of non-linear

operations like product and division may generally lead to substantial errors.
In the present case, with fuzzy data as given in Table 1, the errors related
to the approximated fuzzy productivity ratios also prove to be significant.
To pick an extreme case; for DMU 2, ratio R2, the upper bound of the 0.5
α-level is 87 % off the true value. 2

Consequently, instead of dividing each column with the maximal ratio (which
may be one of the existing ratios), a fuzzy index (to be defined in Section
4) will be used to compare each ratio to the maximal ratio yielding a (crisp)
productivity score larger than or equal to 1. This score can be interpreted as
the relative improvement potential of the given fuzzy production plan along
the lines of the standard interpretation of the DEA scores in the crisp case.

4 An index ranking fuzzy numbers

There is a large literature on indexes ranking fuzzy numbers, see e.g. Wang
and Kerre [15] for a recent survey. For this particular application, however,
it is chosen to define an index in line with the ‘spirit’ of DEA in the sense
that the index compares each fuzzy number relatively to the maximal fuzzy
number associated with the set of alternatives. As such, the index is related
to indices defined in Liou and Wang [11] and Choobineh and Li [2].
In general, consider a finite set of normalized fuzzy numbers

A = {A1, . . . , An},

and let Ai be represented by the α-levels Ai(α) = [ai(α), ci(α)] for all α ∈
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[0, 1]. Further, let

Amax = [amax(α), cmax(α)] = [ max
i=1,...,n

{ai(α)}, max
i=1,...,n

{ci(α)}]

for all α ∈ [0, 1].
Now, define the following index:

J(Ai) = λťi + (1− λ)t̂i, λ ∈ [0, 1]
where

ťi =
8 1
0

cmax(α)

ci(α)
dα, t̂i =

8 1
0

amax(α)

ai(α)
dα.

Clearly, J(Amax) = 1 and J(Ai) ≥ 1, ∀i, with strict inequality if Ai W=
Amax.
As such, the fuzzy index J(·) can be interpreted as follows: For each

level set of a given fuzzy number the factor necessary to scale the smallest
(largest) value to the smallest (largest) value of the corresponding level set of
the maximal fuzzy number is found and t̂i (ťi) is the average of those factors
over all level sets. Now, the index value is found as a weighted average of
ťi and t̂i. The weight λ can be considered as exogeneously chosen by the
analyst and indicates whether the overall focus is pessimistic or optimistic,
i.e. relates to the left (λ = 0) or right spred (λ = 1) of the triangular fuzzy
productivity ratios.
The index J(·) induces a natural ordering of the set A where Ai � Aj ⇔

J(Ai) ≤ J(Aj). The relations 1 and ∼ are defined as Ai � Aj ∧ ¬Aj � Ai
and Ai � Aj ∧ Aj � Ai, respectively.

4.1 Properties of J(·)
The first obvious property of index J(·) is the following:
Proposition 1: Consider two fuzzy numbers Ai, Aj W= Amax where for all
α ∈ [0, 1], Aj = [βai(α), βci(α)], then

J(Aj) =
1

β
J(Ai).

9



Proof: Clearly, t̂j = t̂i/β and ťj = ťi/β. 2

Moreover, the following properties will turn out to be convenient.

P1: (Dominance) If for any pair Ai, Aj that ai(α) ≥ aj(α) for all α ∈ [0, 1]
and ci(α) ≥ cj(α) for all α ∈ [0, 1] with strict inequality for at least one
α−level, then Ai 1 Aj.
Loosely speaking, dominance ensures that if one fuzzy number is located

to right of another fuzzy number then this fuzzy number should be preferred.

P2: (Pairwise symmetric spread) Let A = {Ai, Aj} where Ai = (x; ai, bi, ci)
and Aj = (x; a

j, bj, cj) are two triangular fuzzy numbers with bi = bj, aj =
ai − 6 and cj = ci + 6, 6 > 0. Then Ai 1 Aj.
Loosely speaking, pairwise symmetric spread ensures that increased un-

certainty leads to lower preference. In this sense, production plans are not
rewarded for being associated with uncertain data measurement.

Proposition 2: The ordering induced by index J(·) satisfies P1 and P2.
Proof: P1 follows from ťi ≤ ťj and t̂i ≤ t̂j, where at least one of the

inequalities is strict. P2 follows from ťi < t̂j and t̂i = ťj = 1. 2

Remark: Note that if |A| > 2 then P2 is not necessarily satisfied. Thus,
the index J(·) does not satisfy [Ai � Aj on A ⇔ Ai � Aj on Â] where
Ai, Aj ∈ A ∩ Â for A and Â being two arbitrary sets of fuzzy numbers.2

5 Using the fuzzy index J(·) to obtain pro-
ductivity scores

Recall that the fuzzy productivity ratio matrix is given by

Ril(α) =
�
r̂il(α), ř

i
l(α)
=
=

^
(eih − dih)α+ dih
−(cij − bij)α+ cij

,
−(f ih − eih)α+ f ih
(bij − aij)α+ aij

�
∀ α ∈ [0, 1],

2Note also, that since the ordering is induced by an index it satisfies central properties
like completeness (for all Ai, Aj ∈ A, Ai � Aj or Aj � Ai) and transitivity (for all
Ai, Aj , Ah ∈ A, [Ai � Aj , Aj � Ah] ⇒ Ai � Ah).
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for i = 1, . . . , k and l = 1, . . . ,mn.
Moreover, the maximal (benchmark) ratio for each column of the fuzzy

productivity ratio matrix is given by

Rmaxl (α) = [r̂maxl (α), řmaxl (α)] =}
maxi=1,...,k

F
(eih−dih)α+dih
−(cij−bij)α+cij

k
,maxi=1,...,k

F
−(f ih−eih)α+f ih
(bij−aij)α+aij

k]
,

for all α ∈ [0, 1] and l = 1, . . . ,mn.
Thus, for for each DMU (i = 1, . . . , k) and each fuzzy productivity ratio

(l = 1, . . . ,mn) we get index value

J(Ril) = λ
8 1
0

řmaxl (α)

řil(α)
dα + (1− λ)

8 1
0

r̂maxl

r̂il
dα,

and the productivity score P (Fi) of fuzzy production plan Fi is consequently
defined as

P (Fi) = min
l
{J(Ril)}.

These scores can be interpreted along the lines of the DEA score in the crisp
case: For each production plan we select the ratio for which the utilization is
most favorable compared relatively to the best performer with respect to this
particular ratio (which may be a pseudo unit just like reference units may
be pseudo units in DEA). In other words, a score on 1.2 can be interpreted
as a need to increase the utilization with 20 pct in order to be as productive
as the benchmark.

Example 1 continued: Recall the fuzzy data matrix in Table 1 and assume
that the analyst is neither optimistic nor pessimistic when considering the
fuzzy productivity ratios, i.e. λ = 0.5 when using the index J(·) of Section 4.
Thus, for example, the index value of the first fuzzy ratio for the first

DMU, R11, is found as

J(R11) =
1

2

X8 1
0

(7− α)/(α+ 1)

(7− α)/(α+ 2)
dα+

8 1
0

(2α+ 4)/2

(2α+ 4)/(6− 3α)dα
~
= 1.97.

Similarly, we obtain the index values in Table 4 below:

Table 4: Index values for each ratio
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DMU no. J(R1) J(R2) J(R3) J(R4)
1 1.97 2.94 1.91 3.27
2 1.56 1.24 1.81 1.70
3 2.32 1.41 1.97 1.38
4 2.31 1.97 1.74 1.73
5 1.00 1.65 1.00 1.93
6 3.15 1.06 2.52 1.00

Consequently, the productivity scores for each fuzzy production plan,
P (·), are given in Table 5, where also the scores arising from the crisp data
set given by the kernels are presented and compared.

Table 5: Comparison of productivity scores for fuzzy and crisp production data

DMU no. Scores, fuzzy data Scores, crisp data ∆ in %-points
1 1.91 1.50 41
2 1.24 1.25 -1
3 1.38 1.11 27
4 1.73 1.67 6
5 1.00 1.00 0
6 1.00 1.00 0

For DMU’s 1-4 the adding of uncertain data in form of triangular fuzzy
numbers (with the crisp data as kernels) has resulted in adjustments of the
productivity score. The adjustments may go in both directions: For DMU
2 the score has improved slightly while for DMU 1,3 and 4 the uncertainty
has lead to an increased improvement potential. In particular, it can be
noted that DMU 1 and 3, are affected by the fuzziness introduced since
the improvement potential has increased with 41 and 27 percentage points
respectively.
For example, consider DMU no. 1. In this case the large difference be-

tween the crisp and the fuzzy score relates to a large left-spread of R13 com-
pared to the left-spread of Rmax3 . Considering crisp data, the best perfor-
mance of DMU 1 is found w.r.t. ratio R1 and R3 (since for example R

1
3 = 2

and Rmax3 = 3 making 3/2 = 1.50 = minl{R1l /Rmaxl }, cf. kernel values in
Table 5). Now, introducing fuzziness, the fuzzy score is related to ratio R3.
Since R13 = [(α+5)/(6−3α), (7−α)/(2+α)] has a relatively large left-spread
compared to Rmax3 (α) = [0.5α+ 2.5, 6/(α+ 1)] the value of t̂1 becomes quite
large (t̂1 = 2.25) while the value of ť1 = 1.56 is close to the crisp value. As
we assume that λ = 0.5 we obtain (as the average of these two values) fuzzy
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score 1.91 - see also Table 6 below.
Now, in order to get an impression of the role of parameter λ we consider

the index values for DMU 1, for extreme values of λ.

Table 6: Values J(·) related to DMU 1, for extreme values of λ
DMU no. 1 Scores, λ = 1 Scores, λ = 0
J(R1) 1.69 2.25
J(R2) 3.21 2.67
J(R3) 1.56 2.25
J(R4) 3.48 3.06

As it appears in Table 6, focussing on the right-spread (λ = 1), the
score of DMU 1 will be 1.56 which is better than the score 1.91 obtained
for λ = 0.5 (cf. Table 5). Note that the score is related to ratio R3 in both
cases. However, if focus is set on the left-spread (λ = 0), then the score is
2.25, but this time it is also related to ratio R1. In other words, focussing on
the right-spread the ratio ‘closest’ to the maximal ratio is R3 while focussing
on the left-spread the ratios R1 and R3 are equally ‘close’ to their maximal
ratio. 2

5.1 Indexes for fuzzy numbers and the operation of
division

It is important to notice that using indices like J(·), or indeed any non-trivial
index where the left and right spread of the membership function plays a role,
rankings are not necessarily preserved by the operation of division. To be
more specific, dividing all outputs with the same input yields some ranking of
the productivity ratios according to the index values but dividing all outputs
with another input may yield a different ranking according to the (new) index
values. At first sight, this seems to make the present fuzzy approach incom-
patible with the economics of productivity analysis. However, the dominance
property, as shown in Section 4.1, is crucial in this connection: Knowing that
the index respects dominance relations we know that the ranking will only
change slightly and not violate dominance. Loosely speaking, the problem
occurs because division change the spread of the membership functions and
since the index relates to all level sets the rankings may change when divi-
sion by different fuzzy numbers change the spread of the ratios differently
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- clearly, this is not the case in a crisp framework where division is order
preserving. Consider Example 2 below.

Example 2: For simplicity we focus of the right spread of the membership
function, i.e. λ = 1 using index J(·). When bmax = cmax = 20 we have that
Fi ∼ Fj when bi = 3, ci = 5 and bj = cj = 3.737. Now, dividing these data
by fuzzy number F̂ where â = 2 and b̂ = 5, we get that J(Fi) = 18.54 <
18.73 = J(Fj), i.e. preferences are now strict, Fi 1 Fj. 2

6 Final remarks

The present approach provides a simple approximation of (crisp) productivity
scores for fuzzy production data. What is needed in addition to the usual
crisp production data of DEA is basically a confidence interval related to
the measurement of each input and output. Ideally, specific membership
functions can be used to describe the relation between the actually observed
data and their confidence intervals but this relation may be approximated by
triangular fuzzy numbers (as in the present exposition - and indeed, in the
fuzzy DEA literature in general).
Contrary to other approaches to fuzzy DEA (as cited in the Section 1),

the present approach does not use fuzzy programming techniques (or fuzzy
dominance relations) but only the well defined operation of division and
a specific index for the ranking of fuzzy numbers. Since an index is used
the procedure results in crisp productivity scores directly comparable with
the usual DEA scores. As illustrated by Example 1 above, this comparison
between scores related to fuzzy data and scores related to crisp data, provides
the analyst with an immediate impression of the impact of data uncertainty
on the improvement potential of specific DMU’s.
At first sight, it seems that the implicit aggregation process of the index

greatly simplifies the performance evaluation compared to the often over-
whelming amount of information contained in sets of fuzzy scores for certain
parameter values or pairwise degrees of fuzzy dominance for the entire set
of DMU’s, that are the results of the known approaches. However, in order
to further understand the role played by fuzziness for particular DMU’s the
analyst will have to relate the index values to the original fuzzy productivity
ratios and the maximal ratios. Hence, complexity is to a certain extent still
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inherent in the evaluation process.
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