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Abstract

The present paper considers rationing problems interpreted as e.g.

bankruptcy problems or taxation problems. We demonstrate that

among the continuous and order-preserving rationing methods, the

proportional method is the only rationing method that preserves in-

equality in both gains and losses.

Keywords: Rationing, inequality preservation, taxation, manipulation, pro-

portional method.

JEL classification: C71, D31, H24.

Corresponding author: Lars Peter Østerdal, Institute of Economics, Uni-

versity of Copenhagen, Studiestraede 6, 1455 Copenhagen K, Denmark.

E-mail: Lars.P.Osterdal@econ.ku.dk

Acknowledgements: We would like to thank Juan D. Moreno-Ternero and

Bezalel Peleg for helpful comments.

1



1 Introduction

The present paper considers rationing problems as synonymous with bankrupt-

cy and cost allocation problems, see e.g. Moulin (2002). With respect to

solution methods for such rationing problems we shall focus on axioms of

inequality preservation well-known from income inequality theory, see e.g.

Moyes (1989, 1994). In terms of the rationing model, inequality preserva-

tion in gains (losses) means that whenever one claims vector is more equally

distributed than another, in the sense of Lorenz-domination, then the corre-

sponding gains (losses) vector is also more equally distributed.

We consider rationing methods that are continuous and order-preserving

in the sense that gains and losses are ordered like the ordering of claims, and

demonstrate that the proportional method is the only rationing method that

preserves inequality in both gains and losses.

As noticed in Young (1987, 1988) the rationing model has a dual inter-

pretation in terms of taxation where the sum of the taxes collected should

equal a given revenue constraint. In this case the interpretation of inequality

preservation is that when pre-tax incomes become more equally distributed

then both post-tax incomes and taxes must become more equally distributed

as well. Our result therefore also concerns a characterization of the flat tax

by inequality preservation.

Inequality preservation may also be construed in terms of manipulability:

If a given rationing method is inequality preserving in both gains and losses,

then no lower coalition (ranking players according to claims) may gain by

equalizing or spreading their claims respectively in the sense of the Lorenz

ordering. Our result therefore relates to earlier results characterizing the pro-

portional method by non-manipulability in Moulin (1987) and Chun (1988)

who consider arbitrary reallocations, and to de Frutos (1999) and Ju (2003)

who consider manipulation by merging and splitting of claims resulting in a

variable number of agents.
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2 The model

A rationing problem is given by a monetary value E > 0 that has to be

shared among a fixed number n ≥ 3 of agents with non-negative claims

c = (c1, . . . , cn) where E ≤ C, and C = c1 + . . .+ cn.
Given a rationing problem (c, E), a solution is a vector x ∈ Rn

+ such that

x1 + . . .+ xn = E and 0 ≤ xi ≤ ci for all i. A rationing method is a function
ϕ that assigns to every rationing problem a unique solution x = ϕ(c, E). For

example, the proportional method is defined as ϕPk (c, E) = ckE/C for k =

1, . . . , n. We restrict attention to rationing methods meeting the following

two (standard) requirements:

Continuity. A rationing method is continuous if it is continuous on

every subdomain {(c, E)|c ∈ Rn
+, 0 ≤ E ≤ C}.

Order-preservation. A rationing method is order-preserving if ci ≤
cj implies ϕi(c, E) ≤ ϕj(c, E) and ci − ϕi(c, E) ≤ cj − ϕj(c, E), for all

i, j ∈ {1, ..., n}.

Order-preservation was introduced in Aumann and Maschler (1985) and sim-

ply means that gains and losses should be ordered like the claims.1

Note that order-preservation implies the natural property of “equal treat-

ment of equals” (ETE), i.e. ci = cj ⇒ ϕi(c, E) = ϕj(c, E).

Let c and cI be (weakly) increasingly ordered claims vectors with C = C I

(where C I = cI1 + ...+ c
I
n), then c Lorenz dominates c

I if

c1 + . . .+ ck ≥ cI1 + . . .+ cIk, k = 1, . . . , n− 1,
Lorenz domination induces a partial ordering written as c �L cI. In

economic terms, c �L cI can be interpreted as the claims of cI being more
1In terms of the tax model order-preservation means that post-tax incomes as well as

the taxes themselves should be ordered like the pre-tax incomes.
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spread out (more unequally distributed) than the claims of c. Use of the

Lorenz ordering in economics dates back to the beginning of the 20’th century,

see e.g. Dalton (1920). Marshall and Olkin (1979) provide an elaborate

mathematical treatment.

If c and cI are two distributions for which C = C I, ck = cIk for k W= i, j,
ci ≤ cj and cIi ≤ cIj then if ci < cIi we say that c

I is obtained from c by an

equalizing bilateral transfer and c is obtained from cI by a spreading bilateral

transfer. For arbitrary c and cI where C = C I, it is well-known that cI can

be obtained from c by a finite sequence of equalizing and spreading bilateral

transfers.

3 Inequality preserving rationing

A rationing method ϕ is:

Inequality Preserving in Gains (IPG) if, for any E and cI �L c
that ϕ(cI, E) �L ϕ(c, E).

Inequality Preserving in Losses (IPL) if, for any E and cI �L c
that cI − ϕ(cI, E) �L c− ϕ(c, E).

The immediate interpretation of these axioms relates to inequality preser-

vation (as indicated by the names). However, due to order-preservation, they

may also be construed in terms of manipulation: Suppose some lower coali-

tion of agents (in terms of the size of their claims relative to the other players’)

equalize their claims leading to a new claims vector that Lorenz dominates

the original claims. Now, IPG requires that such a reallocation is not disad-

vantageous for this coalition. Consequently, if a rationing method satisfies

IPG then it cannot be manipulated by any lower coalition spreading their

claims (without changing the rank of the agents). Likewise, IPL concerns a

spread of claims: If a rationing method satisfies IPL then its solution cannot

be manipulated by any lower coalition equalizing their claims. Hence, if a

4



rationing method satisfies both IPG and IPL then no lower coalition can

manipulate the solution by spreading or equalizing their claims.2 Note that

the axiom of No-Advantageous-Reallocation (NAR) used in Moulin (1987)

and Chun (1988) concerns reallocations within arbitrary coalitions. In this

sense, IPL and IPG together are weaker than NAR.3

Theorem: A continuous and order-preserving rationing method ϕ satisfies

IPG and IPL if and only if ϕ is the proportional method.

Proof: It is straightforward to show that the proportional method satisfies

IPG and IPL. We prove sufficiency. We let E and C be fixed, and consider

the restriction of ϕ to the domain {c | c1 ≤ . . . ≤ cn, c1 + . . .+ cn = C} and
demonstrate below (Steps 1-5) that a method ϕ satisfying IPG and IPL on

this domain is the proportional method. The theorem then follows immedi-

ately since E,C and the order of claims was arbitrarily chosen. Moreover,

when IPG and IPL are invoked we implicitly use order-preservation.

Step 1: First we claim that for any 1 ≤ k ≤ n−2, the gains (ϕ1(c, E), ...,ϕk(c, E))
depend only on (c1, ..., ck).

Indeed, let 1 ≤ k ≤ n − 2 and let c and cI be two claims vectors with
C = C I where ci = cIi, i = 1, . . . , k. Since ci = cIi, i = 1, . . . , k, cI can be

obtained from c by a finite sequence of equalizing and spreading bilateral

transfers between agents {k + 1, ..., n}. It is therefore sufficient to show that
an equalizing or spreading bilateral transfer between agents {k + 1, ..., n}
leaves the gains of agents {1, ..., k} unchanged. Hence, assume that cI is
obtained from c by either such transfer.

2Concerning the rationing model, axioms of inequality preservation were originally

introduced in Hougaard and Thorlund-Petersen (2001) where it was demonstrated that the

Constrained-Equal-Awards method satisfies IPG and the Constrained-Equal-Loss method

satisfies IPL whereby the Talmud method satisfies neither.
3We do, however, focus on order-preserving methods which is not the case in Moulin

(1987) and Chun (1988).

5



Consider an arbitrary h where 1 ≤ h ≤ k, and an equalizing transfer.

By IPG we have ϕ1(c
I, E) + ... + ϕh(c

I, E) ≥ ϕ1(c, E) + ... + ϕh(c, E). By

IPL we have (cI1 − ϕ1(c
I, E)) + ...+ (cIh − ϕh(c

I, E)) ≥ (c1 − ϕ1(c, E)) + ...+

(ch − ϕh(c, E)). If h = 1 we have ϕ1(c
I, E) = ϕ1(c, E), hence assume that

1 < h. Likewise by IPG and IPL we get that ϕ1(c
I, E) + . . .+ ϕh−1(cI, E) =

ϕ1(c, E) + . . . + ϕh−1(c, E), implying that ϕh(cI, E) = ϕh(c, E). Hence

(ϕ1(c, E), ...,ϕk(c, E)) = (ϕ1(c
I, E), ...,ϕk(cI, E)) which proves the claim.

If the transfer is spreading, all inequalities are reversed and the same

conclusion is obtained.

Step 2: Likewise, we claim that for any 3 ≤ k ≤ n, the gains (ϕk(c, E), ...,ϕn(c, E))
depend only on (ck, ..., cn).

Let c and cI be two claims vectors with C = C I where ci = cIi, i = k, . . . , n.

Since ci = c
I
i, i = k, . . . , n, c

I can be obtained from c by a finite sequence of

equalizing and spreading bilateral transfers between agents {1, ..., k−1}. It is
therefore sufficient to show that an equalizing or spreading bilateral transfer

between agents {1, ..., k− 1} leaves the gains of agents {k, ..., n} unchanged.
Hence, assume in the following that cI is obtained from c by either equalizing

or a spreading bilateral transfer.

Consider an arbitrary h where k ≤ h ≤ n, and an equalizing trans-

fer. By IPG, ϕ1(c
I, E) + . . .+ ϕh(c

I, E) ≥ ϕ1(c, E) + . . .+ ϕh(c, E). By IPL,

(cI1−ϕ1(cI, E))+ . . .+(cIh−ϕh(cI, E)) ≥ (c1−ϕ1(c, E))+ . . .+(ch−ϕh(c, E)).
Since cI1 + . . . + c

I
h = c1 + . . . + ch we get ϕ1(c

I, E) + . . . + ϕh(c
I, E) =

ϕ1(c, E)+. . .+ϕh(c, E). Likewise by IPG and IPL we get that ϕ1(c
I, E)+. . .+

ϕh−1(cI, E) = ϕ1(c, E)+ . . .+ϕh−1(c, E), implying that ϕh(cI, E) = ϕh(c, E).

Hence (ϕk(c, E), ...,ϕn(c, E)) = (ϕk(c
I, E), ...,ϕn(cI, E)) which proves the

claim.

If the transfer is spreading, all inequalities are reversed and the same

conclusion is obtained.

Step 3: We now claim that for 1 ≤ k ≤ n− 2, if for h < k, ϕh = ϕPh , then

we have ϕk = ϕPk .
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By contradiction: Assume that for some claims vector c there is k such

that ck > 0, ϕh = ϕPh for all h < k and ϕk(c, E) W= ϕPk (c, E).

Since ϕh = ϕPh for all h < k, then since C is fixed, let

ĉ = (c1, . . . , ck−1,
ck + ...+ cn
n− k + 1 , ...,

ck + ...+ cn
n− k + 1 ).

Consequently, ϕ(ĉ, E) = ϕP (ĉ, E) by ETE.

Now, let (c1, ...ck−1) be fixed. By Step 1, ϕk depends only on ck (written

ϕk(ck)) and define ek(ck) ≡ ϕPk (c, E) − ϕk(c, E), i.e. the excess of player k

relative to proportional allocation.

It was shown above that ek(
ck+...+cn
n−k+1 ) = 0 and by ETE ϕk(ck−1) =

ϕk−1(ck−1) = ϕPk−1(ck−1), i.e. ek(ck−1) = 0 (with the convention that ck−1 = 0

if k = 1). By continuity of ϕ, ek(ck) is continuous in ck, hence there is

ck−1 ≤ cIk ≤ cIIk ≤ ck+...+cn
n−k+1 such that ek(c

I
k) = ek(c

II
k) = 0 and either ek(ck) > 0

for all cIk < ck < c
II
k or ek(ck) < 0 for all c

I
k < ck < c

II
k. In the following we

restrict attention to the case ek(ck) > 0 for all c
I
k < ck < c

II
k; the other case

can be dealt with in a similar manner.

We claim that cIIk W= ck+...+cn
n−k+1 . Indeed, assume to the contrary that c

II
k =

ck+...+cn
n−k+1 , and consider the distribution

c = (c1, .., ck−1, cIIk −
1

n− k [c
II
k − cIk], . . . , cIIk −

1

n− k [c
II
k − cIk], cIIk + [cIIk − cIk]).

By Step 2, ϕn depends only on E, C and cn and define en(cn) ≡ ϕPn (c, E)−
ϕn(c, E). By ETE we have ϕk(c, E) = ... = ϕn−1(c, E) < ϕPk (c, E), hence

en(cn) < 0 for all cn where c
II
k < cn < c

II
k + (n− k)(cIIk − cIk).

Now, consider the distribution

cI = (c1, .., ck−1, cIk, c
II
k, ..., c

II
k, c
II
k + [c

II
k − cIk]).

Since e(cIk) = 0 and en(c
II
k+ [c

II
k− cIk]) < 0, and ϕh = ϕPh for all h < k we have

ϕh(c
I, E) < ϕPh (c

I, E) for all k < h < n. However, for the distribution

cII = (c1, .., ck−1, cIk, c
II
k +

[cIIk − cIk]
n− k , ..., cIIk +

[cIIk − cIk]
n− k ),
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obtained from widetildecI by equalizing the claims among agents {k+1, ..., n}
we have ϕh = ϕPh for all h ≤ k. By ETE and the fact that en(cn) < 0 for all
cIIk < cn < C − c1 − ...− ck−1 − (n− k)cIk we have ϕh > ϕPh for all h > k — a

contradiction.

Therefore, let cIIk <
ck+...+cn
n−k+1 . In the following let c

II
k be the highest ck for

which there exists a pair (cIk, ck) satisfying ek(c
I
k) = 0, ek(ck) = 0, ek(ĉk) > 0,

for all cIk < ĉk < ck. Hence, if cn < C − c1 − ... − ck−1 − (n − k)cIIk we have
en(cn) = 0. Now consider the distribution

c = (c1, .., ck−1, cIIk − ε, ..., cIIk − ε, C − c1 − ...− ck−1 − (n− k)(cIIk − ε)).

Then we can select ε sufficiently small such that cIIk > c
II
k− ε > cIk and for the

distribution

cI = (c1, .., ck−1, cIIk − ε,
(n− k − 1)(cIIk − ε) + C − c1 − ..− ck−1 − (n− k)(cIIk − ε)

n− k ,

...,
(n− k − 1)(cIIk − ε) + C − c1 − ...− ck−1 − (n− k)(cIIk − ε)

n− k ),

obtained from c by equalizing the claims of agents {k + 1, ..., n} we have
ck + ...+ cn
n− k + 1 <

(n− k − 1)(cIIk − ε) + C − c1 − ...− ck−1 − (n− k)(cIIk − ε)

n− k
< C − c1 − ...− ck−1 − (n− k)cIIk.

By ETE we have ϕk(c, E) = ... = ϕn−1(c, E) < ϕPk (c, E), and ϕn(c, E) >

ϕPn (c, E). However, for the distribution c
I since

ck + ...+ cn
n− k + 1 < cIn < C − c1 − ...− ck−1 − (n− k)cIIk,

we have en(c
I
n) = 0 hence by ETE ϕh(c

I, E) = ϕPh (c
I, E) for all h > k. But

then ϕk(c
I, E) W= ϕPk (c

I, E), i.e. agent k is the only agent for which the gain is

not equal to proportional allocation — a contradiction. We therefore conclude

that ϕk(c, E) = ϕPk (c, E) for all c and E, 1 ≤ k ≤ n− 2.
Step 4: We now claim that if ϕk = ϕPk for all 1 ≤ k ≤ n− 2, then ϕn = ϕPn .
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By Step 2, ϕn depends only on E, C and cn. If ϕn W= ϕPn then there

is c = (c1, ..., cn) and E such that ϕn(c, E) W= ϕPn (c, E). Now, define c− =
c1+...+cn−1

n−1 , and consider the distribution cI = (c−, ..., c−, cn). By ETE ϕ1(cI, E) =

... = ϕn−1(cI, E), and because ϕn(cI, E) = ϕn(c, E) W= ϕPn (c, E), we have

ϕ1(c
I, E) W= ϕP1 (c

I, E) contradicting Step 3.

Step 5: Finally, by Step 3, for 1 ≤ h ≤ n− 2 we have ϕh(c, E) = ϕPh (c, E)

for all c and E, and by Step 4, ϕn(c, E) = ϕPn (c, E) for all c and E. Hence

ϕn−1 = ϕPn−1(c, E) for all c and E. We therefore have ϕ = ϕP which concludes

the proof. 2

Remark: The characterizations based on inequality preservation found in

Moyes (1989, 1994) restrict attention to tax methods where the post-tax

income of agent i is independent of the other agents pre-tax incomes. For

example, in this context, Moyes (1989) shows that an axiom similar to IPG

uniquely characterizes linear tax methods (Theorem 2.1).
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