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QALYS WHEN HEALTH VARIES OVER TIME:
AN ANALYSIS OF MODEL IDENTIFICATION AND

PARAMETER ESTIMATION FROM TIME TRADE-OFF
AND STANDARD GAMBLE SCORES

KRISTIAN SCHULTZ HANSEN AND LARS PETER ØSTERDAL

Abstract. In the �rst part of the paper, we consider various
QALY (quality-adjusted life year) models in situations where health
varies over time, and provide a theoretical analysis of model iden-
ti�cation and parameter estimation from time trade-o¤ and stan-
dard gamble scores. We investigate deterministic and probabilistic
models, and consider �ve di¤erent families of discount factors in
all. The second part of the paper contains a discussion of some
recurrent themes from related literature. Among other things,
we question the standard gamble method as a �gold standard�in
health preference measurement, re-examine the role of constant-
proportional trade-o¤, and discuss so-called double discounting of
QALYs. We also argue that it is not a matter of choosing between
time trade-o¤ and standard gamble procedures, since both types
of scores are generally needed in order to be able to disentagle risk
aversion from discounting. More broadly, we �nd that conclusions
drawn from the analysis of models involving chronic health states
only may not necesssarily apply to situations where health varies
over time. One reason is that risk aversion and discounting may
collapse to the same thing when all health states are chronic.
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1. Introduction

Quality-adjusted life years (QALYs) have been developed to measure
health related aspects of a person�s well-being. In much of the litera-
ture on QALY measurement, in particular the theoretically oriented,
attention has been restricted to chronic health states (e.g. Pliskin al.,
1980; Gafni and Torrance, 1984; Miyamoto and Eraker 1985, 1988;
Johannesson et al. 1994; Bleichrodt et al., 1997; Cairns and van der
Pol, 1997; Miyamoto et al., 1998; Miyamoto 1999; Bleichrodt, 2002;
Østerdal 2002).
Restricting attention to chronic health states is indeed very power-

ful: For instance, elegant axiomatic characterizations of QALY models
can be established under expected utility or rank-dependent utility as-
sumptions (Miyamoto et al. 1998, Miyamoto 1999), and it is a useful
simpli�cation for an axiomatic approach to justice in health care re-
source allocation (Østerdal, 2002).
For some empirical applications, models where health states are as-

sumed to be chronic may be su¢ ciently rich. This is the case in sit-
uations where we aim to assess the value of a health care service that
remedies a permanent handicap, or if we aim to assess the value of pro-
longing life at some �xed state of well-being. In practice, however, we
often consider medical conditions where health states vary over time.
In recent years, a number of papers have explicitly addressed health

preference measurement in situations where health varies over time.
Among others, Lipscomb (1989), Stiggelbout et al. (1994), Richardson
et al. (1996), Cher et al. (1997), Kuppermann et al. (1997), Krabbe
and Bonsel (1998), Treadwell (1998), MacKeigan et al. (2003) and
Spencer (2003) consider non-chronic health pro�les. Among the many
di¤erent issues analyzed in these papers, a common theme has been to
test the validity of the additivity assumption over time, which is usually
assumed in QALY models, using stated preference experiments. The
present paper is closely related to the above-mentioned contributions,
but our focus is di¤erent.
The purpose of this paper is twofold. In the �rst part of the paper

(Sections 2 and 3), we present a uni�ed approach to health prefer-
ence measurement in situations where health states not necessarily are
chronic. This serves as an overview of QALY models that we also hope
could useful for future empirical work. We distinguish between deter-
ministic models and models where uncertainty is explicit, and consider
four di¤erent types of discounting (�ve in all with a special variant
discussed in Section 3.5). In each case we specify the type of empirical
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information that is necessary (and su¢ cient) for estimating the para-
meters in the model. We focus on procedures using either standard
gamble (SG) scores, time trade-o¤ (TTO) scores or a combination; the
type of empirical data usually collected in this type of health economic
assessments.
In Section 2, we consider four deterministic models with exponen-

tial, polynomial, proportional and hyperbolic discounting respectively,
and describe how parameters can be estimated with TTO techniques
(Sections 2.1-2.4).
In Section 3, we go on to models where uncertainty is explicit and

describe how parameters can be estimated with a combination of TTO
and SG scores for each of the discounting models (Sections 3.1-3.4). In
Subsection 3.5 we also consider a �fth type of discounting related to
work by Johannesson et al. (1994). In this case, we initially restrict
attention to chronic health states and then discuss possible generaliza-
tions of the model to situations with non-chronic health states.
Knowing the theoretical relationship between TTO and SG scores

and between the time horizon and TTO scores, the models can, in
principle, be identi�ed from plots of the empirical relationship between
these �gures. We derive such theoretical relationships, and provide
some numerical examples suggesting that, even assuming that one of
the above-mentioned discounting models is �true�, although it theo-
retically is possible to identify the model from TTO and/or SG scores
only, in practice it is likely to be extremely di¢ cult.
The second part of the paper (Section 4) contains a discussion based

on the above-mentioned �ndings, and challenge some conclusions ob-
tained in previous literature. Among other things, we question the SG
method as a �gold standard�for parameter estimation, re-examine the
role of constant-proportional trade-o¤, and discuss so-called �double
discounting of QALYs�.
Overall, we argue that results drawn from theoretical analysis of

models involving only chronic health states may not necessarily apply
to situations where health is allowed to vary over time, hence restrict-
ing attention to chronic health states may blur some important aspects
of QALY modeling. One important di¤erence, among others, is that
although risk aversion and discounting generally are distinct phenom-
ena, these two e¤ects cannot be disentangled in some of the most widely
used models involving only chronic health states; a point which, to our
knowledge, has received little attention (if any) in the literature.
Section 5 mentions two important limitations of our analysis, and in

relation to this speculates on directions for future research.
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2. QALY as utility of deterministic health profiles

In this section we consider deterministic QALYmodels. LetA denote
a collection of possible health states with typical elements a and a0.
The health state of an individual may be described by a variety of
information on physical and mental well-being, for example the ability
to walk, see, hear, ability to solve puzzles etc. We assume that A
contains a health state a� called �perfect health�and a health state a0

called �dead�.
An individual is born at time zero and lives for a �nite number of

years t � 0. A health pro�le is a map l on the non-negative reals taking
values in A where l(s) 6= a0 for all s < t and l(s) = a0 for all s � t.
Let L be a collection of possible health pro�les, and let % be pref-

erence relation (a complete and transitive binary relation) on L repre-
senting individual preference for health pro�les. A real-valued function
q on L is a representation of the preference relation % on health pro�les
if

(2.1) l % l0 , q(l) � q(l0);
for all l; l0 2 L. Let u be a real-valued health state index on A: In
QALY models, it is assumed that preferences are separable over time1

and that there exists a real-valued function v on A� R such that

(2.2) q(l) =

Z t

0

v(l(s); s)ds:2

Suppose that v(a; s) = u(a)�(s) for some functions u and �; where
0 � u � 1 and 0 < � � 1:3 In addition, assume that u(a0) � u(a) �
u(a�) for all a and u(a0) < u(a�): Without loss of generality we nor-
malize u such that u(a0) = 0 and u(a�) = 1. Then for any life time t
and health state a there is exactly one non-negative real number h(t; a)
between zero and t such thatZ h(t;a)

0

u(a�)�(s)ds =

Z t

0

u(a)�(s)ds:

1The reasonableness of this assumption depends on the interpretation of the
health states. For empirical tests and discussions, see the papers cited in the
Introduction.

2The integrals we consider in this paper are well-de�ned under mild technical
assumptions; see Grodal (2003, ch. 12 and 13).

3For a characterization of this class of functions in terms of conditions on the
preference relation, see Grodal (2003, section 13.3).
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In words, h(t; a) is the number of years at a� (perfect health) that gives
the same utility as t years at health state a, and is referred to as the
time trade-o¤ index de�ned for chronic health states.
We focus on the most commonly used discounting functions; expo-

nential discounting: �(s) = cs, 0 < c < 1 (Section 2.1), polynomial
discounting: �(s) = sz, �1 < z < 0 (Section 2.2), proportional dis-
counting: �(s) = 1

1+vs
, 0 < v (Section 2.3), and hyperbolic discounting:

�(s) = (1 + vs)�w=v, 0 < v;w (Section 2.4).
In Figure 1, examples of each type of discounting is given where

parameters have been selected such that the curves intersect at s = 10:
We have �(s) = 0:9s (black curve); �(s) = s�0:4576 (gray curve); �(s) =
(1 + 0:1868s)�1 (dashed curve) and �(s) = (1 + 4s)�1:1349=4 (dotted
curve).

s 50403020100
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1.4

1.2

1

0.8
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0

Figure 1. Four types of discounting.

The plausibility of various structural forms can be assessed by eval-
uating underlying axioms which in certain combinations give rise to dif-
ferent functional forms of individual health related utility (e.g. Miyamoto
and Eraker, 1989; Bleichrodt and Johannesson, 2001). However this
line of analysis is beyond the scope of the present paper. In the follow-
ing, our focus is parameter estimation and model identi�cation directly
from TTO scores.
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2.1. Exponential discounting. With exponential discounting the QALY
has the form

(2.3) q(l) =

Z
u(l(s))csds;

for some health state index u and 0 < c < 1. The question is how to
estimate the function u and the discounting parameter c from empirical
data. We may estimate the discounting parameter c using TTO scores
(involving only chronic health states). Let a be a health state such
that 0 < h(t; a) < t. We then have the following relationZ h(t;a)

0

csds =

Z t

0

u(a)csds;

where u(a) and c are unknown. This equation reduces to

(2.4)
�
ch(t;a) � 1

�
= u(a)

�
ct � 1

�
:

For 0 < t < t0 we obtain by substitution�
ch(t;a) � 1

� h
ct
0 � 1

i
=
h
ch(t

0;a) � 1
i �
ct � 1

�
:

From two empirical estimates bh(t; a) and bh(t0; a) wemay then determine
c numerically. For example if bh(1; a) = 0:5 and bh(2; a) = 0:9 thenbc �= 0:67.
It remains to estimate the health state index u(a). From (2.4),

u(a) =
1� ch(1;a)
1� c ;

so in our example, bu(a) �= 0:55: The derivation above is similar to those
o¤ered by Olsen (1994), Cher et al. (1997) and Martin et al. (2000)
and also applied in recent studies by Gyrd-Hansen (2002) and Stavem
et al. (2002).
Solving (2.4) for h(t; a) gives

h(t; a) =
ln (1 + u(a)(ct � 1))

ln c
:

Clearly we have u(a)t > h(t; a) for any 0 < c < 1 and u(a)t ! h(t; a)
for c! 1. In fact for 0 < u < 1, h(t; a) is strictly concave in t, since

h0t(t; a) = u
ct

1 + u(ct � 1) ;

is positive and
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h00tt(t; a) = �uct (ln c)
�1 + u

(1 + uct � u)2
;

is negative. Plots of h(t; a) against t are depicted in Appendix A for
selected values of u (and di¤erent types of discounting, see below). We
comment on the �gures in the last part of Section 2.4.

2.2. Polynomial discounting. With polynomial discounting the QALY
function has the form

(2.5) q(l) =

Z
u(l(s))szds;

where �1 < z < 0.
Polynomial discounting has been studied by Harvey (1986) in dis-

crete time. This utility structure satis�es a generalized form of con-
stant proportional trade-o¤. Given a health pro�le l and d > 0 let ld
be the health pro�le obtained from stretching out or contracting l such
that the health state obtained at time s in l is obtained at time ds in
ld, i.e. ld(s) = l(ds); s � 0: The ranking of two lives does not depend
on the unit measuring life years: l % l0 if and only if ld % l0d for all
d > 0:
For a health state a we haveZ h(t;a)

0

szds =

Z t

0

u(a)szds;

which reduces to

1

z + 1
(h(t; a))z+1 =

1

z + 1
u(a)tz+1;

or

(2.6) h(t; a) = u(a)
1

z+1 t:

We therefore have h(t; a) = h(1; a)t, or u(a) = (h(1; a))z+1.
Since h(t; a) is linear in t it is not possible to extract information on

discounting from estimates of h(t; a) for varying t. In other words, the
parameter z cannot be derived from time-trade o¤ scores involving only
chronic health states. For the purpose of estimating z, we can make use
of non-chronic health pro�les. A parameter estimation technique is the
following: Let a be an arbitrary health state for which 0 < h(1; a) < 1,
and let l be the health pro�le composed of one year in health a� followed
by one year in health state a. In addition, let lw be the health pro�le
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with w life years in health state a followed by 2�w life years at health
state a�. Now, if w is such that lw � l thenZ 1

0

sz1ds+

Z 2

1

sz(h(1; a))z+1ds =

Z w

0

sz(h(1; a))z+1ds+

Z 2

w

sz1ds;

which after some calculations reduces to

(2.7) 1 + (h(1; a))z+1
�
2z+1 � 1

�
= (h(1; a))z+1wz+1 +

�
2z+1 � wz+1

�
;

where z is the unknown parameter. If the number w that satis�es
lw � l and h(1; a) are determined empirically, the solution to (2.7) can
then be found numerically. For example if bh(1; a) = 1

2
and bw = 0:75

then bz �= �0:16 and bu(a) �= 0: 56:
As it will be clear in the following sections, the case of polynomial

discounting is the only discounting model we examine where the func-
tion h is not strictly concave in t - see Appendix A. (We comment
further on this in Section 2.4).

2.3. Proportional discounting. Proportional discounting has been
used by for instance by Herrnstein (1981) and Mazur (1987). See Har-
vey (1994) for a characterization. In this case the utility of a health
pro�le l is

q(l) =

Z
u(l(s))(1 + vs)�1ds;

where v > 0. For a health state a we haveZ h(t;a)

0

(1 + vs)�1ds =

Z t

0

u(a)(1 + vs)�1ds;

which reduces to

(2.8) ln(vh(t; a) + 1) = u ln(tv + 1):

We may elicit v from two estimates h(t; a) and h(t0; a). By (2.8) we
have

ln(vh(t; a) + 1) = u(a) ln(tv + 1);

and
ln(vh(t0; a) + 1) = u(a) ln(t0v + 1):

Thus
ln(vh(t; a) + 1)

ln(tv + 1)
=
ln(vh(t0; a) + 1)

ln(t0v + 1)
:

For example, if bh(1; a) = 0:5 and bh(2; a) = 0:9 then by solving the
equation numerically we get bv �= 1:04 and then bu(a) �= 0:59.
Solving (2.8) for h(t; a) yields
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h(t; a) =
(tv + 1)u � 1

v
;

which is strictly concave in t.

2.4. Hyperbolic discounting. With hyperbolic discounting the QALYs
are given by

q(l) =

Z
u(l(s))(1 + vs)�w=vds;

where v; w > 0. The special case v = w is proportional discounting (cf.
Section 2.3). As with polynomial discounting, hyperbolic discounting
entails discount rates that decline over time (see Loewenstein and Pr-
elec, 1992, for an axiomatic study). Note that if v tends to zero, the dis-
counting function converges to exponential discounting with discount
rate w, i.e. limv!0(1 + vs)

�w=v = e�wt.
For a health state a we haveZ h(t;a)

0

(1 + vs)�w=vds =

Z t

0

u(a)(1 + vs)�w=vds;

which for w=v 6= 1 after some calculations4 reduces to
(2.9)

�
(1 + vh(t; a))(�w=v+1) � 1

�
= u(a)

�
(1 + tv)(�w=v+1) � 1

�
:

We may elicit v and w from three estimates h(t; a); h(t0; a) and
h(t00; a). From the equation system�

(1 + vh(t; a))(�w=v+1) � 1
�
= u(a)

�
(1 + tv)(�w=v+1) � 1

�
;�

(1 + vh(t0; a))(�w=v+1) � 1
�
= u(a)

�
(1 + t0v)(�w=v+1) � 1

�
;�

(1 + vh(t00; a))(�w=v+1) � 1
�
= u(a)

�
(1 + t00v)(�w=v+1) � 1

�
;

where u(a); w and v are unknown we obtain by substitution�
(1 + vh(t; a))(�w=v+1) � 1

�
=

�
(1 + vh(t00; a))(�w=v+1) � 1

�
[(1 + vt00)(�w=v+1) � 1]

�
(1 + tv)(�w=v+1) � 1

�
;

and�
(1 + vh(t0; a))(�w=v+1) � 1

�
=

�
(1 + vh(t00; a))(�w=v+1) � 1

�
[(1 + vt00)(�w=v+1) � 1]

�
(1 + t0v)(�w=v+1) � 1

�
:

For completeness, it remains to consider the special case v = w. In
principle, if there is no solution to the above equation system for which
v 6= w we should test the data with the proportional discounting model
(for this case, see Section 2.3). For example, assume that bh(1; a) = 0:40;
4Note that

R
(1 + vs)�w=vds = (1�vs)(�w=v+1)

(�w=v+1)v ; v 6= w.
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bh(2; a) = 0:75 and bh(3; a) = 1:08: Solving these equations numerically
yields bv �= 4 and bw �= 2: From this we have bu(a) �= 0:5:5
For any pair v,w the TTO index h(t; a) is strictly concave in t: solving

(2.9) for h(t; a) gives

h(t; a) = �
1�

�
1 + u (1 + tv)

�w+v
v � u

� v
�w+v

v
:

We have

h0t(t; a) =
�
1 + u (1 + tv)

v�w
v � u

� w
v�w

u (1 + tv)�
w
v ;

which is positive, and after some calculations we obtain

h00tt(t; a) =
�
1 + u (1 + tv)

v�w
v � u

� 2w�v
v�w

u (1 + tv)�
w+v
v w (�1 + u) ;

which is negative. In Figures 2-4 h(t; a) appears to be linear in t.
Indeed, if w < v (as we have assumed in Figures 2-4) h is almost
linear: the second order derivatives are small and converging to zero
when t tends to in�nity.6 If w > v, h(t; a) has an upper bound; however
convergence may be extremely slow.7

For the purpose of identifying a suitable family of discounting func-
tions for a given application, �gures like those depicted in Appendix
A can be useful. We give three examples that aim to illustrate the
curvature of h(�; a) for di¤erent types of discounting. For example, if a
plot of empirical estimates bh(t; a) for di¤erent values of t gives approx-
imately a straight line, it may indicate that polynomial or hyperbolic
discounting models are well suited. If bh(t; a) clearly shows a strictly
concave relationship, we may wish to select exponential, proportional
or hyperbolic discounting.

5It is relevant to note that there is a di¢ culty here using numerical procedures.
Non-valid solutions to the above pair of equations for which v = w are likely to
appear, depending on the choice of initial guess values. It is beyond the scope of
this paper to study general properties of this sort of equation systems; here we shall
only notice that our experience with selected estimates has been that a solution for
which v = w is likely to appear using numerical methods to solve the equation
system, at least if the initial guess value is far from the valid solution.

6For example if u(a) = 0:5; v = 4 and w = 1:1349 we have h00tt(1; a) �= �0:023,
h00tt(10; a)

�= �0:00071 and h00tt(100; a) �= �0:000015:
7For example if u(a) = 0:5; v = 1 and w = 1:1 then h(t; a) converges toward

1023:0; but we have h(10; a) �= 2:0871, h(1000; a) �= 16:624, h(1010; a) �= 393:8 and
h(1030; a) �= 1012:8 etc.
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It is also worth noticing that concavity of h(�; a) does not follow from
discounting. For example, the discounting function

�(s) =

�
s�0:5; 0 � s � 1
s�0:25; 1 < s

is continuous and strictly decreasing in s but the associated TTO index
h(�; a) is not concave in t. Concavity of h(�; a) is therefore a special
property shared by any of the discounting functions studied in this
paper. Unfortunately, this shared feature makes it more di¢ cult to
identify a model from empirical TTO scores. Hence if empirical TTO
scores seem to follow a strictly convex curve, neither of the standard
families of discounting functions are likely to provide a good �t to the
data, and some non-standard discounting function could be needed.

3. QALY as expected utility of health lotteries

In order to deal explicitly with uncertainty, we consider a health lot-
tery which is a map p on L taking values in the unit interval; where
p(l) 6= 0 for a �nite number of health pro�les l and where all probabil-
ities sum to unity: Let P denote the set of all �nite health lotteries on
L. Thus we may view L as the set of degenerate health lotteries with
unit probability attached to a single health pro�le.
In this section, let %P be a preference relation on P representing

individual preference for lotteries over health pro�les.
Let supp(p) = fl 2 L j p(l) 6= 0g denote the support of p. Under

expected utility assumptions (see Kreps, 1988, Theorem 5.15), there
exists a real-valued function q on L and a real-valued function Q on P
such that for any p; p0 2 P ,

(3.1) p %P p0 , Q(p) � Q(p0);

where

(3.2) Q(p) =
X

l2supp(p)

p(l)q(l);

and where q is unique up to a positive a¢ ne transformation. In words,
this is an expected utility representation on health pro�les. However,
usually we are interested in more than that: expected utility on A
(the set of health states), not L (the set of health pro�les). More
precisely, we may assume that there is a function v (or derive existence
from assumptions imposed on %P ) such that (3.2) holds with q(l) =
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v(l(s); s)ds which gives

(3.3) Q(p) =
X

l2supp(p)

p(l)

Z
v(l(s); s)ds

or equivalently

Q(p) =

Z X
a2supp(p(ajs))

p(ajs)v(l(s); s)ds;

where p(ajs) =
P

l2supp(p)jl(s)=a p(l) is the probability of health state a at
time s for health lottery p. In the following, we assume that preferences
over health lotteries can be represented by a function Q of the form
(3.3). This model can be interpreted as risk neutrality over discounted
deterministic health pro�les or short �risk neutrality over QALYs�; see
Subsection 3.5 and Section 4 for a discussion of this assumption. We
have risk aversion over (discounted deterministic) QALYs if the ex-
pected utility increases from replacing a lottery over (discounted de-
terministic) QALYs by its expectation, i.e. there is a function v and a
strictly concave function f such that (3.2) holds with

(3.4) q(l) = f

�Z
v(l(s); s)ds

�
:

Let p[t; a; �] be a health lottery where, with probability �, health
state a is experienced for t years followed by death and, with probability
1 � �; immediate death occurs. A standard gamble index de�ned on
chronic health states is then a map g on R+ � A taking values in the
unit interval; such that p[t; a�; g(t; a)] �P p[t; a; 1] for all a and t.
Suppose, as in Section 2, that there is u and � such that v(a; s) =

u(a)�(s), where 0 < � � 1 and 0 = u(a0) � u(a) � u(a�) = 1: In
this case, it is easy to verify that g is well-de�ned and uniquely deter-
mined (i.e. we can talk about the standard gamble index). In addition,
we have Q(p[t; a�; g]) = g

R t
0
�(s)ds and Q(p[t; a; 1]) =

R t
0
u(a)�(s)ds =

u(a)
R t
0
�(s)ds; i.e. g(t; a) = u(a) for all t. In words, under the con-

ditions outlined above, the SG estimate does not depend on the time
horizon and is equal to the health state index. In the following we
therefore leave out time as argument in the standard gamble function
and write g(a) � g(1; a):
In this section, our interest is again the following special cases: ex-

ponential discounting (Section 3.1), polynomial discounting (Section
3.2), proportional discounting (Section 3.3) and hyperbolic discounting
(Section 3.4). In addition, we consider a speci�c form of discounting
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derived from an assumption of constant-proportional risk posture over
exponentially discounted life years (Section 3.5).

3.1. Exponential discounting. We have (3.2) with q(l) =
R
u(l(s))csds.

The discounting parameter c can be estimated using TTO information
on deterministic life pro�les as outlined in Section 2.1. Alternatively,
the discounting parameter c can be elicited from a comparison of the
time trade-o¤ and standard gamble estimate. Let a be a health state
and t a life time where 0 < g(a) < 1 and 0 < h(t; a) < t. Then from
(2.4) and the fact that g(a) = u(a) we have

(3.5)
�
ch(t;a) � 1

�
= g(a)

�
ct � 1

�
;

where c is the unknown.
For example if bh(1; a) = 0:5 and bg(a) = 0:55, we obtain bc �= 0:67:

However, the �rst possibility contradicts h(1; a) 6= g(a) and we there-
fore �nd that bc �= 0:67 is the discounting parameter. Thus, even a
quite small di¤erence between the SG and TTO score is an indication
of substantial discounting. Or, the other way around, substantial dis-
counting gives only rise to quite small di¤erences in the SG and TTO
scores.
In Appendix B, plots of h(t; a) against u(a) are depicted for selected

values of t. It is interesting to note that the relative distance between
h(t; a) and u(a)t increases in t for all types of discounting except for
polynomial discounting where the distance is una¤ected by t (see Sec-
tion 3.2 below).

3.2. Polynomial discounting. We have (3.2) with q(l) =
R
u(l(s))szds.

The discounting parameter z can be estimated using TTO information
on chronic life pro�les as in Section 2.2. Alternatively, the discounting
parameter z can be elicited from a comparison of TTO and SG scores.
Let a be a health state and t a life time where 0 < g(a) < 1 and
0 < h(t; a) < t. Then from (2.6) and the fact that g(a) = u(a) we have

(3.6) h(t; a) = g(a)
1

z+1 t;

where z is the unknown. Isolating z gives

z =
ln g(a)

lnh(1; a)
� 1:

For example, if bh(1; a) = 0:5 and bg(a) = 0:55 then bz �= �0:14.
Miyamoto and Eraker (1985) and Miyamoto (2000) show how the

discounting parameter can be derived from information on �certainty
equivalents� which is the amount of life time in some (non-perfect)
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health state a which is equally good as some lottery with �xed prob-
abilities of either perfect health at some positive amount of time or
immediate death. The certainty equivalence method has also been
used by Stiggelbout et al. (1994) and by Martin et al. (2000) for both
exponential and polynomial discounting.

3.3. Proportional discounting. With proportional discounting we
have (3.2) with q(l) =

R
u(l(s))(1+vs)�1ds. The discounting parameter

v can be estimated using TTO information on chronic life pro�les as
in Section 2.2. Alternatively, v can be elicited from a comparison of
TTO and SG scores. Let a be a health state and t a life time where
0 < g(a) < 1 and 0 < h(t; a) < t. Then from (2.8) and the fact that
g(a) = u(a) we have

(3.7) ln(vh(t; a) + 1) = g(a) ln(tv + 1);

which may be solved numerically for v: For example if bh(1; a) = 0:5
and bg(a) = 0:55 then bv �= 0:50.
3.4. Hyperbolic discounting. With the hyperbolic discounting fam-
ily we have (3.2) with q(l) =

R
u(l(s))(1 + vs)�w=vds; where v; w > 0.

Again, the discounting parameters can be found as outlined in Sec-
tion 2.4. We may also, slightly simpler, make use of both SG and TTO
scores. Let a be a health state and t a life time where 0 < g(a) < 1
and 0 < h(t; a) < t. Then from (2.9) and the fact that g(a) = u(a) for
v 6= w we have�

(1 + vh(t; a))(�w=v+1) � 1
�
= g(a)

�
(1 + tv)(�w=v+1) � 1

�
;

where v and w are unknown parameters. For a health state a0 where
0< g(a0) < 1 and g(a0) 6= g(a) we likewise have�

(1 + vh(1; a0))(�w=v+1) � 1
�
= g(a0)

�
(1 + v)(�w=v+1) � 1

�
;

which is su¢ cient to determine v and w numerically. For completeness,
it remains to consider the special case v = w: In this case, discounting
is proportional, see Section 3.3.
For example, assume that bh(1; a) = 0:5, bg(a) = 0:55;bh(1; a0) = 0:77

and bg(a0) = 0:80. Then
0:55

�
(1 + v)(�w=v+1) � 1

�
=
�
(1 + 0:5v)(�w=v+1) � 1

�
;

and

0:80
�
(1 + v)(�w=v+1) � 1

�
=
�
(1 + 0:77v)(�w=v+1) � 1

�
:
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Solving the equations numerically yields bv �= 7:03 and bw �= 1:56.
The equation system is simpler than that derived from TTO scores
only (Section 2.4).8

3.5. Constant-proportional risk posture over exponentially dis-
counted life years. Following Johannesson et al. (1994) we restrict
attention to chronic health states and consider constant-proportional
risk posture over exponentially discounted life years. We give a sepa-
rate treatment of this form of discounting to give another illustration
of the implications of restricting attention to chronic health states. We
have (3.2) with

q(l) =

�
u(a)

Z t

0

csds

�r
;

where a = l(s); 0 � s � t; and 0 < c; r < 1: We then have

(3.8) q(l) = (u(a))r(

Z t

0

csds)r:

or

q(l) = eu(a)(Z t

0

csds)r;

where eu(a) = (u(a))r for all a:
What is the underlying discounting factor? We look for a function

�(s) satisfying Z t

0

�(s)ds = (

Z t

0

csds)r:

for all t > 0 where c and r are �xed parameters. Since (
R t
0
csds)r =

( c
t�1
ln c
)r and

@( c
s�1
ln c
)r

@s
= r(

ct � 1
ln c

)r�1cs;

we obtain

�(s) = r(
cs � 1
ln c

)r�1cs:

When we restrict attention to chronic health states, this approach is
therefore equivalent to the model (3.2) with a rather peculiar family of
discounting functions.

8In this case there are also non-valid solutions to the equation system (for whichbv = bw) that should be ruled out if obtained by a numerical procedure (see footnote
5).
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We now turn to the case where health may vary over time. If we wish
to preserve the property of constant-proportional risk posture (Pliskin
et al., 1980) over exponentially discounted life years we have (3.2) with

(3.9) q(l) =

Z eu(l(s))r(cs � 1
ln c

)r�1csds;

for (not necessarily chronic) health pro�les l. With (3.9) the SG index
g can then be used as health utility index eu. Assume therefore that eu
is known in (3.9). We can then estimate r and c from a combination of
SG and TTO scores. Let a be a health state where 0 < g(a) < 1 and
let 0 < h(t; a) < t: Then

g(a)

Z t

0

r(
ct � 1
ln c

)r�1csds =

Z h(t;a)

0

r(
ct � 1
ln c

)r�1csds:

Which reduces to

g(a)(
ct � 1
ln c

)r = (
ch(t;a) � 1
ln c

)r;

or

r =
ln g(a)

ln (1� ch(t;a))� ln (1� ct) :

For some health state a0 6= a with 0 < h(t; a0) < t we then have

ln g(a)

ln (1� ch(t;a))� ln (1� ct) =
ln g(a0)

ln (1� ch(t;a0))� ln (1� ct) :

This equation may then be solved numerically. For example if bh(1; a) =
0:5, bg(a) = 0:55;bh(1; a0) = 0:77 and bg(a0) = 0:80 then bc �= 0:88 andbr �= 0:90.
We have

h(t; a) =
ln
�
1 + (g(a))

1
r ct � (g(a)) 1r

�
ln c

;

which gives

h0t(t; a) = (g(a))
1
r

ct

1 + (g(a))
1
r ct � (g(a)) 1r

;

which is positive and after some calculations we obtain

h00tt(t; a) = (ln c) c
t (g(a))

1
r � (g(a)) 2r�

1 + (g(a))
1
r ct � (g(a)) 1r

�2 ;
which is negative. We therefore �nd that h(t; a) is also strictly concave
in t.
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Another approach is to consider a model (3.2) with

(3.10) q(l) =

�Z eu(l(s))csds�r ;
for (not necessarily chronic) health pro�les l. In this case, we give up
constant-proportional risk-posture over exponentially discounted life
years, and obtain a model that is not of the form (3.3) but captures
a (polynomial) form of risk aversion over (exponentially) discounted
QALYs. We provide some further discussion of this type of models in
the following Section 4.

4. Discussion of related literature

To avoid misunderstandings, we recall that risk aversion now relates
to the curvature of the transformation f when we have a representation
(3.4), whereas discounting relates to the functional form of � in a model
which can either of the type (3.3) or (3.4).9

4.1. Is SG the gold standard? In the literature, some authors have
claimed that QALYs are utilities while others have disputed this. In
this paper, the QALY q (or Q) represents a preference relation on the
space of (lotteries over) health pro�les, and as such the QALY is by
construction a utility in the health space.
In the literature, the SG method has often been referred to as the

�gold standard�. Drummond et al. (1997), for example, write in their
book that �A utility, in our context, is a von Neumann-Morgenstern
utility. So all QALYs that are formed from preferences measured in
any other way other than with a standard gamble, by de�nition, can
not be utilities.�(p. 183). The authors do not explicitly formulate the
model that underlies this conclusion, and it is interesting to elaborate
on this using the framework in Section 3. First, suppose that the utility
representation is of the form (3.3), a model with risk neutrality over
QALYs. In this case, the utility function may be estimated fully with
TTO scores only. Once the discounting factor has been determined
(from TTO scores with varying time horizon) the health state index
is not equal to the TTO score but uniquely determined by it which is
su¢ cient for our purpose. In fact, contrary to the TTO score, the SG
scores cannot be used for eliciting discount factors and as such they are

9Of course, even more complex models can be considered. However, for the
present discussion these models are su¢ ciently rich to address the basic relations-
ship between discounting and risk aversion.
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typically less useful than TTO scores.10 On the other hand, suppose
that risk neutrality over QALYs is not necessarily assumed and the
underlying model more generally is (3.4) for some strictly increasing
concave function f .11 Typically, it would then be assumed that f is a
member of some parametric family with one of two free parameters that
can be estimated with SG scores. However, the shape of the function
v is not related to preferences over lotteries and possible risk aversion,
and v is naturally estimated from TTO scores. To sum up, regardless
of the exact form of the model, TTO scores are indeed relevant also in
an expected utility framework.

4.2. The role of constant proportional trade-o¤. In a paper dis-
cussing the SG method, Gafni (1994) argues (p. 211) that the SG
method requires constant proportional trade-o¤.12 However, this claim
seems be incorrect: In any model of the form (3.3) with v(a; s) =
u(a)�(s); a large family of models for which constant proportional
trade-o¤ not necessarily is satis�ed, the SG scores can be substituted
directly for the health state index. Generally, it is useful to distin-
guish between the underlying model and the particular method used
for parameter estimation. The SG method can be useful for parameter
estimation in any model, if SG scores otherwise are considered reliable
and e¢ ciently elicited (an empirical question to be answered case by
case depending on the alternatives available). Of course, it may not be
the case that the SG estimate can be used directly as a health state
index, as for example in case of risk aversion over QALYs. This is also
the case for the TTO scores which must be transformed depending on
the speci�c family of discounting models used, but it is nevertheless an
equally informative score.
Broome (1993) claimed in a critique of the axioms introduced by

Pliskin et al. (1980) that constant proportional trade-o¤ rules out
any discounting of future QALYs and is out of place at the level of a
general theory. We do not wish to comment on the appropriate level
of generality in health economic theory; it should be noted, however,
that the constant proportional trade-o¤ is consistent with the family
of polynomial discounting functions, a property that might be useful
in applications. Indeed, the constant-proportional trade-o¤ axiom is

10However, the discounting factor can be derived from �certainty equivalents�as
those mentioned in section 3.2.

11Perhaps this more general model �ts better with the discussion in their section
6.2.2.

12This conditions means that for each health state a there exists a number �
such that t years in a is equivalent to �t years in perfect health a� for all t > 0.
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powerful and has strong implications. On the other hand, it is rather
easily understood and is simple to test in stated preference experiments.
The family of polynomial discounting factors may be su¢ ciently rich
for some purposes, but this clearly depends on expectations about the
nature and quality of available empirical data.

4.3. Double discounting of QALYs. It was demonstrated in the
previous sections that under discounting the ratio between the TTO
score and the time horizon is not the same as the health state index, and
the TTO score must be adjusted for in a way that depends on the type
and degree of discounting. If an external discounting factor is used, but
the TTO score/time horizon ratio nevertheless is used as a health state
index, the values are underestimated for TTO scores strictly between
zero and the time horizon. The number of QALYs is accordingly also
lower relative to the situation where the same discounting and the
correct health index is used. This phenomenon is referred to as �double
discounting of QALYs�.
Krahn and Gafni (1993) argue that discounting QALYs may result in

double discounting both in case of the SG and the TTOmethod because
time preference is already incorporated in utility assessment (p. 413-
414). Since the SG score is not a¤ected by discounting in models of the
form (3.3) with v(s; a) = u(a)�(s) (which usually underlies empirical
work), in case of the SG method double discounting seems to refer to
other types of biases unrelated to above-mentioned type of bias. For
instance respondents may not act in accordance with expected utility.
In this case, however, �double discounting�is perhaps a misleading label
to this phenomenon because the SG estimates are biased because of
reasons that have nothing to do with the problem of discounting twice.
The problem with double discounting is not the use of an external

discounting factor in conjunction with TTO based health indices, but
the failure of adjusting the TTO score/time horizon ratio before using
it as health index. In e¤ect, not doing so would tend to underestimate
bad health states and overestimate good health states because the rela-
tive distance between h(t; a) and u(a)t decreases in u(a), as illustrated
in Figures 5-7 in Appendix B. It makes little sense, however, to attempt
adjusting for double discounting by reducing or even eliminating dis-
counting, which seems to be the idea in a recent paper by MacKeigan
et al. (2003).13

13In this study, the authors aim to determine the magnitude of the double dis-
counting e¤ect by comparing an undiscounted holistic TTO score (obtained from
the evaluation of a non-chronic health pro�le) to composite scores (obtained from
separate evaluations of chronic health states) explicitly discounted by 0%, 3% or
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4.4. TTO, SG, or both? There is a large and growing literature
examining the relative advantages of TTO and SG methods, usually
taking departure in data gathered from questionnaire studies, with the
aim of investigating which method is �best�. For selected references, see
Dolan (2000).
In a recent paper, for example, Gyrd-Hansen (2002) reports a study

where time preferences were elicited through TTO scores and also with
certainty equivalence scores. It was predicted, and richly con�rmed ex-
perimentally, that the discount rate elicited through TTO scores would
be lower than those elicited through the certainty equivalence scores,
since the latter incorporate risk as opposed to the TTO method. From
this it was concluded that the TTO method is the most troublesome
(compared to the certainty equivalence method). We agree that the
fact that the SG method may incorporate risk aversion with respect
to discounted quality-adjusted life years is likely to explain the diver-
gence between discount factors estimated from these two methods, but
propose an alternative conclusion from this observation: We need both
TTO and SG estimates to identify risk aversion and sort it out from
discounting. If we allow for, and expect, risk aversion the TTO scores
are not less useful than SG scores.
Broome (1993) also criticizes the SG method for not providing the

right answer (to the health state index) in case of risk aversion over
QALYs. In the example he provides, health state preferences are of
the form (3.10), with r = 0:5 and with no discounting of deterministic
health pro�les. Johannesson (1995), on the other hand, argued in the
comment to Broome�s paper that the health state index and the para-
meter r can be derived from a combination of SG and TTO scores, and
outlined a procedure similar to that in Section 3.2. However, Johan-
nesson�s argument relies on the assumption of chronic health states,
using the fact that in this case the model can be restated in the form
(3.8).
With non-chronic health there is an important di¤erence between

risk aversion and discounting, and typically neither the risk parameter
r nor the discounting parameter(s) are known from the outset and must
be estimated from observations as with the health state index. Again,
we need both TTO and SG estimates: TTO scores can be used for
estimating the discounting factor and the health state index, and SG
estimates can be used to identify the risk parameter.

5%. The 0% discounted composite scores were closest to the undiscounted holistic
score, but, contrary to what seems to be the messsage by the authors, this has not
much to do with double discounting. (It is, for example, the expected outcome
when health states are relatively similar and discounting is not too large.)
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When all health states are chronic, risk aversion and discounting may
be exactly the same thing. One illustration was given in Section 3.5.
However, to the best of our knowledge, it has not been fully recognized
in the literature that this is only a special feature of models with chronic
health states that does not carry over to models where health is allowed
to vary over time.

5. Final remarks

In this paper, we have outlined an overview of QALY models and
derived procedures for parameter estimation from the most commonly
used type of data in QALY studies. The models deal with varying
health states, but with one exception (Section 2.2), procedures in-
volving only comparisons of certain health pro�les with chronic health
states can be devised. In relation to this, some considerations about
model identi�cation were also provided.
Of course, the choice of model and number of free parameters should

re�ect the availability and quality of data. In any case, however, time
preference is an integral part of preference for health pro�les and ac-
cordingly the estimation of discount factors is an integral part of health
preference measurement. We hope that the present survey has con-
tributed to a further elaboration of the implications of this point for
the use of TTO and SG based procedures.
Finally, we mention two important limitations of our analysis. First,

many experiments have indicated that respondents�judgements of prob-
ability are not linear in probability (see e.g. Kahneman and Tver-
sky, 1979; Camerer, 1995; Gonzalez and Wu, 1999). In this paper we
have restricted attention to deterministic situations or expected utility
models. Wakker and Stiggelbout (1995) and more recent papers by
Bleichrodt and Pinto (2000) and Bleichrodt, Pinto and Wakker (2001)
have developed procedures that might be combined with methods out-
lined in Section 3, but an investigation of this is beyond the scope of
the present paper (see also Miyamoto, 2000, and Bleichrodt, 2002).
Second, in many applications TTO and SG scores are obtained from

a group of respondents and the scores are aggregated in some way to
form the preferences of one �representative� individual. We have not
addressed methods for this, besides the trivial point that the TTO
and SG scores we have assumed to be available could be interpreted
as the mean or median of a sample of scores. One may also have
TTO scores for more time spans than necessary and some systematic
method for averaging or sorting out scores could be relevant. In order
to deal with this, we will need to know the theoretical relationships
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between scores and parameters as investigated in this paper, but for
statistical analysis of �noisy�empirical data, random utility extensions
of the present framework would seem useful.
The micro-econometrics of the QALY appears to be largely unex-

plored, and we suggest that development of random utility QALY
models and relevant statistical methods for model identi�cation and
parameter estimation in this speci�c context would be an interesting
area for future research.
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Appendix A. Plots of h(t; a) against t

To provide some illustrative plots of h(t; a) against t for di¤erent
types of discounting, we use the same parameters as in the examples
in Figure 1. Here, we also consider constant-proportional risk posture
over exponentially discounted life years with c = 0:95 and r = 0:8286
such that the discount factor is equal to the other discount factors at
s = 10.
The black curve is the case of exponential discounting (c = 0:9), gray

curve is polynomial discounting (z = �0:4576); dashed curve is propor-
tional discounting (v = 0:1868); dotted curve is hyperbolic discounting
(v = 4, w = 1:1349) and dot-dashed curve is constant-proportional risk
posture over exponentially discounted life years (c = 0:95, r = 0:8286).
We consider three cases: u = 0:1 (Figure 2), u = 0:5 (Figure 3) and

u = 0:9 (Figure 4).

t 50403020100

2

1.5

1

0.5

0

Figure 2. Plot of h(t; a) against t; u(a) = 0:1:
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Figure 3. Plot of h(t; a) against t; u(a) = 0:5:
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Figure 4. Plot of h(t; a) against t; u(a) = 0:9:

Appendix B. Plots of h(t; a) against g(a)

This appendix contains plots of h(t; a) against g(a) (= u(a)):We use
the same parameters as in Figure 1 and Appendix A: Again we have
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exponential discounting (black curve), polynomial discounting (gray
curve); proportional discounting (dashed curve), hyperbolic discount-
ing (dotted curve) and constant-proportional risk-posture over expo-
nentially discounted life years (dot-dashed curve): The thick black curve
illustrates h(t; a) = tu(a):
We consider t = 1 (Figure 5), t = 10 (Figure 6) and t = 50 (Figure

7).
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Figure 5. Plot of h(1; a) against g(a):
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Figure 6. Plot of h(10; a) against g(a):
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Figure 7. Plot of h(50; a) against g(a):
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