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Abstract
This paper studies an application of a Darwinian theory of portfolio
selection to stocks listed in the Dow Jones Industrial Average (DJIA).
We analyze numerically the long-run outcome of the competition of
fix-mix portfolio rules in a stock market with actual DJIA dividends.
In the model seemingly rational strategies can do very poorly against
seemingly irrational strategies. Moreover, the interaction of strategies
can lead to stochastic time series of asset prices that do not converge.
The simulations also show that the evolutionary portfolio rule dis-
covered in Hens and Schenk-Hoppé (2004) will eventually hold total
market wealth in competition with fix-mix portfolio rules derived from
mean-variance optimization, maximum growth theory and behavioral
finance. According to this evolutionary rule, portfolio weights should
be proportional to the expected relative dividends of the assets. As
an implication asset prices converge to expected relative dividends.
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1 Introduction

Recent empirical and experimental work has done a lot to undermine the
long sustained belief in market rationality (see e.g. the surveys by Campbell
(2000), Hirshleifer (2001) and De Bondt (1999)). These important find-
ings have initiated a new behavioral paradigm for finance that—according
to many researchers in the field—might replace or at least complement tra-
ditional finance. It is currently believed that thinking in terms of excess
volatility, irrational exuberance, market risk and loss aversion will soon sub-
stitute the cornerstones of traditional finance, mean-variance analysis, arbi-
trage pricing and the efficient market hypothesis. While the fight of the ratio-
nal and the behavioral finance paradigm is in its decisive stage, we argue that
a third paradigm, evolutionary finance, should not be omitted. Thinking in
terms of strategies, market selection and mutation seems to be very appro-
priate for finance. In this view, for example, a stock market is understood
as a heterogeneous population of frequently interacting portfolio strategies
in competition for market capital. Market selection is perhaps most severe
in these markets and innovations, respectively mutations, occur frequently.

The aim of our paper is to contribute to a Darwinian theory of portfolio
selection. This theory views asset markets as being stratified according to
the portfolio rules that investors use to manage wealth. The building blocks
of the model are therefore strategies but not the individual investor, i.e. for
each strategy all wealth being managed by that strategy is added up. This
is analogous to Darwin’s view according to which the species but not the in-
dividual animal counts for evolution. The strategies considered in this paper
are the mean-variance rule, the growth-optimal rule, the CAPM rule, näıve
diversification, prospect theory based rules and a relative-dividends rule. In
our model the impact of any such rule on market prices is proportional to
the amount of wealth managed by the rule.

In a Darwinian model two forces are at work: one reducing the variety of
species and one increasing it. In our model the first such force is the endoge-
nous return process acting as a market selection mechanism that determines
the evolution of wealth managed by the portfolio rules. That is to say, if
some rule has gained wealth because it has managed to buy low and to sell
high then other rules must have lost an equal amount of wealth. Secondly,
any system of portfolio rules that is selected by the market selection process
is checked for its evolutionary stability, i.e. it is checked whether the inno-
vation of a new portfolio rule with very little initial wealth can grow against
the incumbent rule.

The Darwinian theory of asset markets seems to describe very well a mod-
ern asset market in which most of the available capital is invested by dele-
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gated management. Indeed investors typically choose funds by the portfolio
rules, also called “styles,” according to which the money is invested. Style
consistency appears nowadays to be one of the most important features in
monitoring fund managers.

A long time ago Friedman (1953) and Fama (1965) have already recog-
nized the power of evolutionary ideas in finance. Using these ideas they
argued that the market naturally selects for the rational strategies. As an
effect market selection would lead to market efficiency. This specific outcome
of the market selection process could not be sustained in general. For ex-
ample De Long, Shleifer, Summers, and Waldmann (1990) show that under
specific circumstances noise traders can earn a higher average rate of return
than rational arbitrageurs. While this example has been very influential in
the debate for behavioral finance it has some shortcomings that should be
removed. In particular it is based on the model of overlapping generations
which implies that market selection has no bite. Indeed in De Long, Shleifer,
Summers, and Waldmann (1990)’s example every strategy is renewed with
fresh capital in every period. In our model every strategy will have to con-
tinue investing with the wealth it has generated in the previous period so
that the market selection process has more bite. Still we are able to show
that seemingly rational strategies, like mean-variance optimization, can do
very poorly against seemingly irrational strategies, like näıve diversification
according to which wealth is distributed equally among the investment op-
portunities.

Some considerable progress in the field of evolutionary finance has been
made since Friedman (1953) and Fama (1965). This progress was made pos-
sible due to a formalization of evolutionary reasoning based on new decision
models like quantifier systems, for example, using computer simulations and
advanced mathematical techniques. Many time series properties of asset
prices have found an explanation by evolutionary reasoning (Arthur, Hol-
land, LeBaron, Palmer, and Taylor (1997), LeBaron, Arthur, and Palmer
(1999), Brock and Hommes (1997), and Lux (1994) among others). These
results have also received very good recognition in practitioners’ news let-
ters (Mauboussin (1997)). Our paper contributes to this evolutionary asset
pricing theories by showing that the market selection process studied here
can also generate the phenomenon of stochastic time series of asset prices
that do not converge. The interaction of strategies can lead to endogenous
volatility in returns without any convergence of asset prices. While the asset
price dynamics in the standard evolutionary asset pricing models is complex
and hence not easy to interpret, the explanation of the time series properties
of asset prices arising in our model is quite simple. In our model it is the
endogenous change in the wealth shares that generates and amplifies fluctu-
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ations in asset prices. A particular example with two strategies is given in
which for both strategies market prices turn to the disadvantage of a strategy
as its market share becomes large. Thus the more wealth is managed by a
strategy, the higher is the growth potential of the other strategy—eventually
leading to a reversed evolution of market shares.

In the area of portfolio theory the seminal work of Blume and Easley
(1992) has laid the foundations for a series of papers (Sandroni (2000),
Blume and Easley (2001), Sciubba (1999), Hens and Schenk-Hoppé (2004),
Evstigneev, Hens, and Schenk-Hoppé (2002), Amir, Evstigneev, Hens, and
Schenk-Hoppé (2004), Evstigneev, Hens, and Schenk-Hoppé (2003)) devel-
oping a variety of evolutionary portfolio models. This theory provides a
framework in which the market selection hypothesis put forward by Fried-
man and Fama can be studied. It turns out that as long as there are excess
returns there still exist strategies that can gain market wealth at the expense
of the existing strategies. Moreover, there is one strategy, the evolutionary
portfolio rule discovered in Hens and Schenk-Hoppé (2004), that eliminates
all excess returns and that cannot be driven out of the market by any other
strategy that is adapted to the information revealed by the history of the
states.

While the theoretical papers on evolutionary portfolio selection derive
asymptotic results in idealized markets, the point of this paper is to apply the
evolutionary ideas to stocks from the Dow. The portfolio choice considered
in our paper is the decision how to allocate wealth among shares yielding
a dividend as observed in the Dow data. We focus attention on dynamic
portfolio strategies. That is to say we view a modern capital market, like the
stocks in the Dow, as a heterogenous population of dynamic portfolio strate-
gies. These strategies interact repeatedly via the market mechanism and are
thereby competing for market capital. Instead of considering all theoretically
possible dynamic portfolio rules we take a more pragmatic point of view here
and restrict attention to fix-mix rules. A fix-mix rule holds certain portfolio
weights constant for a long period. Hence if market prices fluctuate a fix-mix
rule has to adjust the number of shares it holds so as to keep the proportions
of wealth in its portfolio constant. Many institutional investors follow simple
fix-mix rules. Some of them because they have committed to manage third
parties’ money according to a certain asset allocation1, some because they

1In many prospects of mutual funds some asset allocation, e.g. 60% technology stock
and 40% bricks-and-mortar stocks, is proposed as an optimal investment rule so that the
investors would feel cheated if these proportions fall out of balance. Also hedge funds
for example commit to certain strategies in order to increase credibility and to reduce
monitoring costs.
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believe that fix-mix is an optimal behavior in volatile markets2 and some
because they use trading strategies derived from some clever reasoning like
contrarian behavior that in essence are fix-mix rules3. As Evstigneev, Hens,
and Schenk-Hoppé (2002) have demonstrated in the case of short-lived assets,
the simple evolutionary fix-mix rule considered in this paper is not only able
to outperform any other simple portfolio strategy but it will also dominate
any general portfolio strategy given it is adapted to the price process. Hence,
even though this paper considers the more general case of long-lived assets,
it may be argued that the restriction to simple fix-mix rules does not restrict
the outcome of the market selection process.

Since from the market selection point of view the market interaction of the
various portfolio rules is decisive, we cannot simply do an empirical study of
the relative performance of fix-mix rules on a given return path. This would
ignore the impact one strategy has on its competitors4. Hence we have to rely
on simulations in order to show the would-be performance of various portfolio
rules that are interacting in a market with Dow dividends. It turns out that
the best fix-mix strategy for exogenous returns, the growth optimal portfo-
lio, also called the maximum growth strategy (Hakansson 1970), is no longer
the best performing strategy once market interaction is taken into account.
Our simulations show that in competition with fix-mix rules derived from
mean-variance-optimization, maximum growth theory and from behavioral
finance the evolutionary finance rule discovered in Hens and Schenk-Hoppé
(2004) will eventually hold total market wealth. According to this simple
rule, hereafter denoted by λ∗, the portfolio weights should be proportional to
the expected relative dividends of the assets. Note that the portfolio weights
used by the evolutionary strategy are based solely on fundamentals, ignoring
any price fluctuations! As it turns out, in the long run as its wealth share
grows, prices will stop fluctuating and settle down on the relative expected
dividends of the assets because eventually only the single surviving evolu-
tionary rule will determine market prices. This is of course a very strong

2Suppose for example that prices follow a random walk, an often hold assertion, then
fix-mix means that on average one buys cheap and sells high. Indeed it can be shown that
with idealized returns expected utility maximizers with constant relative risk aversion will
choose fix-mix strategies (see for example Campbell and Viceira (2002)).

3Following a contrarian behavioral strategy, like that of De Bondt and Thaler (1985)
for example, one sells those stocks that have gone up and buys those that went down,
which is also the main feature of fix-mix rules.

4Note that we are not claiming that individual traders have a huge impact on market
prices. From an evolutionary point of view the strategy according to which market capital
is managed is crucial, it is not important whether fund X or fund Y or both are using this
strategy. Hence it may be that a certain commonly used strategy like the mean-variance-
rule has a huge impact while no individual fund has any impact on market prices.
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prediction. Our simulations show that even though the final proceeds of the
evolutionary process are huge (one gathers total market wealth), one might
have to wait very long before this happens. However, even a very modest in-
vestor will be pleased with the growth of the market share of the evolutionary
rule. Starting from equal grounds, after 8 periods the evolutionary rule has
doubled its market share for the first time and it takes another 50 periods to
double it once more. And starting from a market share of only 0.1% which
is 1% of the others’ market shares, the first doubling of the evolutionary
rule’s market shares happens after only 4 periods, the second doubling after
17 periods and the third doubling after 40 periods and after 50 periods it
has reached 10 times its initial market share. Hence in contrast to the well
known critique on the maximum growth literature, put forward for example
by Rubinstein (1991), the convergence of the process is much faster when
prices are endogenous. It should also be noted that every run of the simula-
tion looks pretty much the same. Indeed, the variance over the different runs
of the simulations is negligible. Based on 30 runs we found that the variance
of the market shares averaged over all periods is only 0.36%.

In passing we would like to mention that for the case of long-lived assets
considered here, so far the theoretical literature has not been able to prove
what our simulations show: the global convergence of the evolutionary pro-
cess towards a situation in which all wealth is managed by the evolutionary
rule λ∗.5 Hence our “application” of the evolutionary portfolio theory also
hints at new theoretical results. Recently, Evstigneev, Hens, and Schenk-
Hoppé (2003) have shown that in the set of all adapted strategies λ∗ is the
unique evolutionary stable strategy. This is to say if λ∗ holds all market
wealth then every mutant strategy that enters the market with a small frac-
tion of wealth will driven out of the market. Moreover only λ∗ has this
property, i.e. every strategy different from λ∗ can be driven out by some
other strategy. This results may help to explain why rational markets like
those in which prices are equal to relative dividends are more stable than ir-
rational markets in which prices depart from their fundamental values. Also
this result shows that if the market selection process converges then it has
to converge to λ∗, giving some theoretical foundation for the simulations in
which λ∗ is the single survivor.

In the next section we briefly recall the evolutionary portfolio model of
this paper. Section 3 shows how to apply this model to a market with divi-
dends taken from the Dow. Section 4 presents the results and section 5 tries

5For the case of short-lived assets, global convergence to the evolutionary rule has
been demonstrated under very general conditions (Amir, Evstigneev, Hens, and Schenk-
Hoppé 2004).
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to provide some intuitive explanation of the observed phenomena. Section 6
concludes.

2 An Evolutionary Stock Market Model

We consider a financial market with K ≥ 1 long-lived assets k = 1, ..., K
in unit supply, each paying an uncertain dividend Dk

t ≥ 0 at any period in
time t = 0, 1, ... . Dividends pay off a perishable consumption good, as in the
seminal paper by Lucas (1978).

Normalizing the price of the consumption good to one in all periods in
time, an investor’s wealth in terms of the numeraire is given by

wi
t+1 =

K∑
k=1

(
Dk

t+1 + pk
t+1

)
θi

t,k (1)

(θi
t,1, ..., θ

i
t,K) denotes investor i’s portfolio and pk

t is asset k’s price in period
t. They are determined by

θi
t,k =

λi
t,k wi

t

pk
t

and pk
t =

I∑
i=1

λi
t,k wi

t = λt,k wt (2)

where λi
t,k is investor i’s budget share assigned to the purchase of asset k.

Prices are determined by equating each asset’s market value with the invest-
ment in that asset (supply is normalized to one).

Assume all investors consume the same fraction of their wealth in all
periods in time. Denoting the budget share allocated to consumption by
λ0 > 0, one has

Dt =
K∑

k=1

Dk
t = λ0

I∑
i=1

wi
t = λ0 Wt (3)

Then (1) defines an equation for investors’ market shares ri
t = wi

t/Wt:

ri
t+1 =

K∑
k=1

(
λ0 dk

t+1 +
I∑

j=1

λj
t+1,k rj

t+1

)
λi

t,k ri
t∑I

j=1 λj
t,k rj

t

(4)

where dk
t+1 = Dk

t+1/Dt+1 denotes asset k’s relative dividend payoff. It is
assumed that at least one asset pays a dividend, Dt+1 > 0. The last equation
is linear in rt+1 = (r1

t+1, ..., r
I
t+1). Its solution is given by

rt+1 = λ0

⎛
⎝Id −

[
λi

t,kr
i
t

λt,krt

]k

i

Λt+1

⎞
⎠

−1 [
K∑

k=1

dk
t+1

λi
t,kr

i
t

λt,krt

]
i

(5)
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where ΛT
t+1 = (λT

t+1,1, ..., λ
T
t+1,K) ∈ R

I×K denotes the matrix of budget shares
in period t + 1.

Equation (5) governs the evolution of market shares for given trading
strategies of investors. It is referred to as the market selection process.

Dividend payoffs are determined by the states of nature revealed up to
and including time t + 1. The state of nature ωt ∈ S (where S is a finite set)
is governed by a stationary stochastic process. The relative dividend dk

t =
dk

t (ω
t), where the observed history of states is denoted by ωt = (ω0, ..., ωt).

A trading strategy is a sequence of budget shares λi
t = (λ0, λ

i
t,1, ..., λ

i
t,K)

with λ0 +
∑K

k=1 λi
t,k = 1. λi

t can depend on all past observations but neither
on current market-clearing prices nor on other investors’ current strategies.

The evolution of market shares is well-defined if no bankruptcy occurs
and markets always clear. If short sales are allowed, bankruptcy would be
prevalent because equilibrium is only temporary in our approach.

The following conditions, which include the absence of short selling, en-
sure (5) to be well-defined. Suppose that for all t, λi

t,k ≥ 0 (for all i, k) and

there is an investor with rj
t > 0 such that λj

t,k > 0 for all k. Then (5) is a

well-defined map on the simplex ∆I = {r ∈ R
I | ri ≥ 0,

∑
i r

i = 1}. For
a proof see Evstigneev, Hens, and Schenk-Hoppé (2003, Proposition 1). Eq.
(5) generates a (non-autonomous) random dynamical system on ∆I . For any
initial distribution of wealth w0 ∈ R

I
+, (5) defines the path of market shares

on the event tree with branches ωt. The initial distribution of market shares
is given by (ri

0)i = (wi
0/W0)i.

The wealth of a strategy i in any period in time can be derived from her
market share and the aggregate wealth, defined by (3), as

wi
t+1 =

Dt+1(ω
t+1)

λ0

ri
t+1 (6)

The further analysis is restricted to the case of simple strategies and i.i.d.
dividends. We make the following assumptions.

(B.1) Simple strategies, i.e. λi ∈ ∆K+1 for all i = 1, ..., I and λi
0 = λ0.

(B.2) I.i.d. dividend payments dk
t (ω

t) = dk(ωt), for all k = 1, ..., K and
the state of nature ωt follows an i.i.d. process.

3 Evolutionary Investment

In this section we derive and motivate an evolutionary investment rule λ∗

which was first discovered in Hens and Schenk-Hoppé (2004) in a simpler
model. This portfolio rule is the only candidate for a rule that can attract
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all market wealth. That is to say, supposing the market selection process
(5) converges, then the portfolio rule that conquers the whole market has to
be the evolutionary investment rule λ∗. It is important to point out that in
all our simulations convergence of the process was obtained if λ∗ is among
the set of strategies. We also give an interpretation of the evolutionary
investment rule λ∗ in terms of the well-known growth optimal portfolio rule
(Hakansson 1970). It turns out that λ∗ is the growth optimal portfolio rule
in a population of rules which generates prices equal to λ∗.

To this end we analyze the market selection process close to the one-owns-
all states, i.e. we investigate the local dynamics close to the vertices of the
simplex of market shares. We make the non-redundancy assumption

(C) Absence of redundant assets, i.e. the matrix of relative dividend pay-
ments (dk(s))k=1,...,K

s∈S has full rank.
Under this assumption one-owns-all states are the only deterministic

steady states of the market selection process (Evstigneev, Hens, and Schenk-
Hoppé 2003). The local dynamics close to a one-owns-all state is governed
by the linearization of the original dynamics. We give a heuristic derivation
here and refer the reader to Evstigneev, Hens, and Schenk-Hoppé (2003) for
the correct mathematical approach.

Suppose one strategy, say strategy j, owns the market wealth. The invest-
ment strategy, λj then determines prices in this case. One has pk

t = λj
kWt,

and pk
t+1 = λj

kWt+1. Under this assumption, (1) and (2) yield

ri
t+1 =

K∑
k=1

Dk
t+1(ω

t+1) + pk
t+1

Wt+1

λi
k wi

t

pk
t

=
K∑

k=1

(
Dk

t+1(ω
t+1)

Wt+1

+ λj
k

)
λi

k wi
t

λj
k Wt

=
K∑

k=1

(
λ0 dk(ωt+1)

λi
k

λj
k

+ λi
k

)
ri
t =

(
1 − λ0 + λ0

K∑
k=1

dk(ωt+1)
λi

k

λj
k

)
ri
t

where (6) implies that λ0 dk(ωt+1) = Dk
t+1(ω

t+1)/wj
t+1 = Dk

t+1(ω
t+1)/Wt+1.

The exponential growth rate of strategy i’s market share at λj-prices can
be inferred from this equation. It is given by

gλj(λi) = E ln

[
1 − λ0 + λ0

K∑
k=1

dk(s)
λi

k

λj
k

]
(7)

where E denotes expected value with respect to the distribution on the set
of states of nature S.

Evstigneev, Hens, and Schenk-Hoppé (2003) show the following result.
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Theorem 1 The portfolio rule λ∗, defined by

λ∗
k = (1 − λ0) Edk(s), k = 1, ..., K (8)

is the only investment strategy that is locally stable against any other portfolio
rule. More precisely, gλ∗(λ) < 0 and gλ(λ

∗) > 0 for all λ �= λ∗.

Hence supposing the evolutionary process of wealth converges, it can
only converge to λ∗. The above result assumes that investment strategies are
distinct across investors. How can one analyze the case in which, for instance,
more than one investor adopts the λ∗ strategy? Fortunately, even the general
case of investors pursuing the same portfolio rule is straightforward: Since
the relative wealth shares of two investors with the same investment rule
is fixed over time, it is equivalent to assume that investors with the same
strategy set up a fund with claims equal to their initial share.

The implications on the asset prices are immediate from Theorem 1. Ac-
cording to the strategy λ∗ one has to divide wealth across assets proportional
to the present expected value of their (relative) future dividend payoffs. The
discounting rate is the inverse of the saving rate 1 − λ0. If the λ∗ portfolio
rule manages all market wealth then all asset prices are given by this vector
of fundamental values.

In the long run only the λ∗ strategy is present in the market. Thus the
λ∗-investors hold all wealth and asset prices are given by their fundamen-
tal values. Since only λ∗-investors survive, all surviving investors hold the
market portfolio.

The following corollary shows the relation of the strategy λ∗ to the growth
optimal portfolio.

Corollary 1 The portfolio rule λ∗
k = (1 − λ0) Edk(s) is the growth optimal

investment strategy in a population where itself determines the asset prices,
i.e.

λ∗ = arg max
µ∈∆K+1:µ0=λ0

E ln

(∑
k

dk(s) + λ∗
k

λ∗
k

µk

)
.

The proof of Corollary 1 is analogously to Theorem 1.
Before turning to the application we point out that one implication of

equation (7) is that under-diversification is fatal for investment. Supposing
some strategy does not use all assets it can easily be driven out by any
completely diversified strategy. In particular the illusionary diversification
rule according to which one puts equal weights on all assets can drive out
sophisticated rules based on some optimization criterion like for example the
mean-variance rule.
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Corollary 2 Suppose some incumbent rule λj with λj
k = 0 for some asset

k has conquered the market. Then any portfolio rule λi with λi
k > 0 for all

k grows against λj, i.e. gλj(λi) > 0. (In fact the growth rate is arbitrarily
large.)

4 Application to the Dow

In this section we apply the general evolutionary portfolio theory model out-
lined above to dividend data from the Dow Jones Industrial Average. To this
purpose we consider the total dividends paid by 21 stocks from the Dow in
the years 1981 to 2001 (Appendix A lists the data). Those years and stocks
have been selected in order to obtain a complete data set. For other stocks
and years, the necessary data were not available. We interpret the data in
terms of our model as follows.

First we assume that the 21 years are 21 realizations of a stochastic
dividend process. The data reveal that the total dividends of each stock
follow some growth path. Each date t = 1, ..., 21 is thus identified with a
state s = 1, ..., 21. Each row of the matrix in Appendix A collects the total
dividend payoff Dk(s) of all assets k = 1, ..., 21 for one realization of the
exogenous state of nature. Each column contains the dividend payoff of the
respective asset across different states. In the simulation relative dividends
are applied, i.e. according to the model every entry in a particular row is
normalized by the sum of that row.

All portfolio strategies considered have to devote the same proportion of
wealth to cash holdings. It is assumed to be 1% (i.e. λ0 = 0.01).

We consider two types of portfolio rules. Those based solely on (exoge-
nous) dividends and those based on (endogenous) returns. Of the first type
is the behavioral finance rule which Benartzi and Thaler (1998) have called
illusionary diversification

λillu
k = (1 − λ0)

1

K
, k = 1, ..., K.

According to this rule budget shares are set equal for all risky assets. Benartzi
and Thaler (1998) found that surprisingly many investors use this näıve rule.
Of the first type is also the evolutionary portfolio rule discovered in Hens
and Schenk-Hoppé (2004):

λ∗
k = (1 − λ0) E

(
Dk∑K
j=1 Dj

)
= (1 − λ0)

∑
s∈S

ps
Dk(s)∑K
j=1 Dj(s)

, k = 1, ..., K.
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The evolutionary rule presumes that agents calculate expected values cor-
rectly. It is however well known from behavioral finance that actual deci-
sions of investors are based on perceived probabilities that may not coincide
with the probabilities governing the relevant stochastic process. To allow for
this behavioral distortion, Tversky and Kahnemann (1992) have suggested a
certain transformation function α : [0, 1] → [0, 1] that overstates small prob-
abilities and understates high probabilities. This function is known as the
cumulative prospect theory. We have used the cumulative prospect theory
function as suggested by Tversky and Kahnemann (1992) to create a second
behavioral finance rule based on the portfolio rule λ∗. That is to say the
portfolio rule based on cumulative prospect theory is given by

λcpt
k = (1 − λ0)

∑
s∈S

α(ps)
Dk(s)∑K
j=1 Dj(s)

, k = 1, ..., K.

The second type of portfolio rules that we consider are those based on
returns. Since we only want to consider simple portfolio rules, i.e. those
with time independent budget shares, we have to choose some prices that
remain constant in the computation of the returns. In order not to base
the second type of portfolio rules on some unreasonable prices we give them
the advantage of allowing them to use the prices that eventually will emerge
in the evolutionary process. Since we are mainly interested in the long run
behavior of the process, these are the prices that determine the long run
returns. As proven for the case of short-lived assets in Evstigneev, Hens, and
Schenk-Hoppé (2002), our simulations in the case of long-lived assets show
that those prices are given by λ∗. Hence we give the return based portfolio
rules the advantage of knowing the λ∗-prices.

One of the most prominent examples of return based portfolio rules is
the mean-variance rule suggested by Markowitz (1952). This rule is certainly
one of the cornerstones of traditional finance. The interest rate is set to zero
because the price of the consumption good is identical in all periods. We
denote it by

λµ−σ(λ∗).

The mean-variance model has always been criticized for using a risk mea-
sure, the variance, that has too many undesirable features. For example, it is
well known that mean-variance optimization does not necessarily agree with
first order stochastic dominance. Several alternatives, like semi-variance and
Value-at-Risk for example, have been suggested in the course of this dis-
cussion. A recent concept is conditional Value-at-Risk, CVaR, which is one
possible coherent risk measure as Artzner, Delbaen, Eber, and Heath (1997)
have argued. The CVaR takes the expectation of the returns below some
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quantile of the return distribution. The quantile is usually chosen to the
5%-level. Based on this idea and the general assumptions made above, we
generate the portfolio rule

λCV aR(λ∗).

The third portfolio rule based on returns is the growth optimal portfolio
(Hakansson 1970). This portfolio strategy maximizes the expected growth
rate of wealth on a given return process. In its most general form this portfo-
lio strategy is allowed to adapt to the endogenous fluctuations of the returns.
It then maximizes the expected logarithm of the returns, which is also known
as the Kelly rule, Kelly (1956). In this most general from it is clearly unbeat-
able in view of the long run perspective taken here. However, in this general
form it is quite difficult to actually compute this rule. One way of interpret-
ing the results of this paper is to say that with endogenous returns there is a
simple short-cut to determine a simple portfolio rule that eventually coincides
with the Kelly rule: Using λ∗ and thus simply dividing wealth proportional
to the expected relative dividends. That is to say (cf. Corollary 1)

λgop(λ∗) = λ∗.

The alternative growth optimal strategy is then the one based on equal prices

λgop(1).

Appendix B collects the portfolio rules that have been computed accord-
ing to the various strategies outlined so far. One apparent observation is that
the portfolio strategies based on endogenous returns are under-diversified.
The mean-variance-strategy only uses 8, the CVaR-strategy only uses 6 and
the growth optimal portfolio only uses 1 out of the 21 assets! As Hens and
Schenk-Hoppé (2004) have shown in the case of short lived assets, under-
diversification is fatal for survival in the market selection process, see Corol-
lary 2. Therefore, we do the mean-variance rule yet another favor and make
it completely diversified by devoting to any asset at least the smallest posi-
tive budget share occurring in the under-diversified portfolio6. This ad hoc
diversification rule is often used in praxis:

λµ−σ
ε (λ∗)

Thus all together we consider the market selection process given by equa-
tion (5) when it is run by these 8 portfolio rules.

6Note that our notion of being completely diversified does not coincide with an intu-
itive notion of complete diversification, like naive diversification, according to which your
portfolio has equal shares in every strategy.
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5 Simulation Results

5.1 Rational Strategies can be driven out by Irrational
Strategies

Friedman (1953) and Fama (1965) argued that the market naturally selects
for the rational strategies. On the other hand De Long, Shleifer, Summers,
and Waldmann (1990) showed that under specific circumstances noise traders
can earn a higher average rate of return than rational arbitrageurs. In this
section we demonstrate that at a first approximation the claim of De Long,
Shleifer, Summers, and Waldmann (1990) can be given good support in
our model. We consider the fix-mix mean-variance portfolio rule λµ−σ(1)
in competition with the illusionary diversification rule λillu

k = (1 − λ0)/K,
k = 1, .., K.

Figure 1 shows a typical run of the evolution of market shares over time
for a sample path of the dividend process. Starting with an initial distribu-
tion of wealth in which 90% of the wealth is in the hands of the mean-variance
rule, after only 10 periods the illusionary portfolio rule has conquered more
than 90% of the market wealth. Thus the illusionary diversification rule
quickly drives out the mean-variance rule. Moreover, after only 15 periods
the illusionary portfolio rule will hold almost all market wealth. Note that
we have even given the mean-variance rule rational expectations because we
allowed it to be based on the prices that will eventually prevail in the market
selection process. An intuition for this result is that the mean-variance rule is
under-diversified while the illusionary diversification rule is completely diver-
sified. Evstigneev, Hens, and Schenk-Hoppé (2003) have shown that under-
diversified rules cannot be evolutionary stable, but that they can perform as
badly as in this example is still surprising.

5.2 Stochastic Time Series of Asset Prices

Our next example shows that the market selection process studied here can
also generate stochastic time series of asset prices that do not converge. While
the asset price dynamics in the standard evolutionary asset pricing models
is complex and therefore not straightforward to interpret, the explanation
of excess volatility arising in our model is quite simple. In our model it is
the endogenous change in the wealth shares that generates the fluctuations
in asset prices. In an example with two strategies—the mean-conditional-
value at risk strategy λCV aR(λ∗) and the illusionary diversification rule λillu—
the following phenomenon occurs. As the wealth share of the first strategy
increases, it turns market prices to its disadvantage giving the second strategy
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Figure 1: An irrational rule driving out a seemingly rational rule. Evolution
of market shares: illusionary diversification rule (broken line) and mean-
variance rule for λillu-prices (bold line).

a higher potential for growth. And the same holds true when the second
strategy’s wealth share increases. Note that in our model relative asset prices
qk
t are the wealth average of the strategies in the market:

qk
t =

I∑
i=1

λi
kr

i
t.

Hence with time independent strategies λi price fluctuations can only result
from wealth fluctuations.

Figure 2 shows the evolution of market shares over time for one sample
path of the dividend process. Starting with initial wealth at 40% wealth
in the hands of the mean-conditional-value at risk rule, the wealth process
cycles irregularly between 35% and 48% of wealth for this rule and has not
yet converged after 1000 periods.
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Figure 2: Non-convergence of the market selection process. Evolution of
market shares: illusionary diversification rule (broken line) and CVaR rule
(bold line).

5.3 Single Survivor Hypothesis

In this subsection we now include λ∗ in the simulations. Given the dividend
matrix and the strategies described above, we have carried out simulations
of the market selection process with different initial wealth shares for λ∗ and
different number of periods. It turns out that λ∗ satisfies the single survivor
property first defined in Blume and Easley (1992). On almost all paths the
wealth of λ∗ grows at a faster rate than the wealth of any other strategy that
we considered.

Figure 3 shows the evolution of market shares over time for one sample
path of the dividend process. Starting with equal initial wealth, after 100
periods the evolutionary portfolio rule λ∗ has conquered 50% of the market
wealth. We can see from Figure 3 that the market share of λ∗ increases
steadily from 10% to 50% while the other strategies’ market shares have a
clear downward trend although some of them initially increase. Note that
after less than 10 periods λ∗ has doubled its market share for the first time
and that after less than 60 periods it has doubled it again.

Figure 4 shows the mean market shares, averaged over 30 runs. Equal
initial wealth is given to each of the 10 strategies described above. Each run
was conducted for 100 periods.
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Figure 3: Evolution of market shares: Typical sample path.

Numerical studies show that the standard deviation of each strategies
market share from the mean in anyone period is quite small with a maximum
value of 3% and an average value of only 0.36%.

Figure 5 reports the prices that are implied by the evolution of market
shares. It is astonishing to see that prices converge quite rapidly to their
rational values which are determined by λ∗. Exxon Mobil Corp. is the com-
pany with the highest price as it pays out the highest relative dividend on
average.

Figure 6 depicts the evolution of market shares when λ∗ starts with a
comparative disadvantage. Initially it has only 0.1% of total wealth. This
figure displays an interesting population dynamics. As long as λ∗ is small,
its behavioral finance variation λcpt drives out the other strategies. However,
λ∗ grows steadily and eventually drives out and replaces λcpt. Note that the
chart of λ∗ is S-shaped. While λ∗ is small it grows slowly, then it has a
rapid take off and eventually—when more and more competitors get close
to extinction—it slows down again. Even though λ∗ needs some time to
conquer a considerable share of the market, starting from the 0.1% level it is
able to double its share more rapidly than starting from the 10% level. After
4 periods is has doubled for the first time, after 17 periods it has doubled for
the second time and after 40 periods it has doubled for the third time. All
other strategies only play a minor role in this dynamics.

This subsection has demonstrated that a rational investor should choose
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Figure 4: Evolution of average market shares: Average taken over 30 runs.

the strategy λ∗. He will then drive out any other strategy. Hence, even
though some seemingly rational strategies may do worse than some irra-
tional strategies, the true rational strategy will always do better than any ir-
rational strategy. In this sense Friedman (1953) and Fama (1965) are right—
eventually asset prices are as in an efficient market. They are determined
only by expected relative dividends.

6 Some Intuition for the Results

To provide some intuition for the striking results obtained in the previous
section, it is instructive to recall the results of the theoretical literature.
This literature considers an investment problem with stationary dividends
in which the returns at any point in time are completely re-invested for the
next period. The starting point was Breiman (1961)’s observation that the
best strategy for repeatedly betting on the occurrence of a finite number
of states is to divide the wealth placed on these bets proportional to the
probabilities of occurrence of the states. This rule has thus been called
betting your beliefs. That is to say, if one holds fixed these proportions then,
by the Law of Large Numbers, you will maximize the expected growth rate
of your wealth. Note that taking the long run perspective, risk does not
matter because any short run under-performance can still be recovered in
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Figure 5: Convergence of relative stock prices as time elapses for one run.
Each sample path is the time series of one firm’s stock price.

the long run. This point of view on the risk involved in portfolio formation is
common to all papers on evolutionary portfolio theory. The next step in this
literature was to consider a market for the bets on the various states. Thus
if demand for any one bet were high then the price for this bet will be high
and one might argue that one should rather go for the other bets that offer
a more attractive return. However, as Blume and Easley (1992) have shown,
this is not true. The best portfolio rule is still to bet your beliefs. In Breiman
(1961) (as well as in Blume and Easley (1992)) bets can be identified with
states because they consider a complete set of Arrow-securities. Evstigneev,
Hens, and Schenk-Hoppé (2002) have generalized the set up of Blume and
Easley (1992) to allow for any complete or incomplete asset structure. As
these authors show, the correct generalization of betting your beliefs is then
to divide income proportionally to the expected payoffs of the securities. A
major shortcoming of the literature so far was the assumption of short-lived
assets. According to this assumption the asset is liquidated after having
paid off and an identical asset is born. Wealth is assumed to be perishable so
that it can only be transferred to later periods by investing once more in the
exogenously supplied assets. Sandroni (2000) and Blume and Easley (2001)
present the first models of this literature with long-lived assets allowing the
important feature of capital gains. However, these authors assume a complete
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Figure 6: Evolution of market shares: Initial market share of λ∗ is 0.1%.
Initially the behavioral finance rule λcpt performs best. λ∗’s market share
grows steadily. Eventually λ∗ drives out and replaces λcpt. All other rules
play a minor role.

security market and moreover they restrict attention to portfolio rules being
generated by expected utility maximizers. This paper has a model with long-
lived assets and a general security market. Moreover, portfolio rules need not
be generated by expected utility maximization. As it turns out, the wealth
process converges to the evolutionary portfolio rule λ∗ and therefore capital
gains converge to the dividend payoffs. Hence the strategy being best suited
to the dividends will eventually also profit most from the capital gains. Note
that only the evolutionary rule λ∗ found in Hens and Schenk-Hoppé (2004)
has this property so that in the long run this strategy has the highest expected
growth rate.

Let us finally compare the evolutionary portfolio rule λ∗ with the CAPM
rule, λCAPM . According to the CAPM, a passive buy and hold strategy,
one should hold a fixed fraction of the market portfolio. In the notation of
this paper, this would translate to having the demand aCAPM

t,k = γt, where

γt = (
∑

k pk
t )

−1 is some positive scalar. In terms of budget shares the CAPM
strategy is given by λCAPM

t,k = γtp
k
t , k = 1, ...K.

The first observation is that in a rational and risk neutral market, λ∗

would actually coincide with the CAPM rule because in such a market asset
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prices are determined by discounted expected dividends, i.e. pk = 1
rf

Edk,

k = 1, ..., K, where rf denotes the risk free rate of interest. As λ∗ gains total
market wealth, prices converge to the rational and risk neutral valuation and
thus λ∗ and the CAPM rule will eventually coincide. Hence while λ∗ exploits
the wealth of other strategies it will never be able to drive out the CAPM
rule. In a sense, the CAPM rule is a imitation strategy that mimics the best
performing strategy in the long run.

It is noteworthy that, similar to contrarian strategies from behavioral
finance, the evolutionary portfolio rule eventually eliminates the market
anomaly from which it lives. As long as pk �= 1

rf
Edk, k = 1, ..., K there

are excess returns and hence λ∗ can grow at the expense of the existing ones.
In the limit, as the distribution of wealth concentrates on λ∗, these excess
returns are removed.

7 Conclusions

Our simulations have shown that in competition with fix-mix rules derived
from mean-variance-optimization, from maximum growth theory and from
behavioral finance, the evolutionary portfolio rule discovered in Hens and
Schenk-Hoppé (2004) will eventually hold total market wealth. According to
this simple rule the portfolio weights should be proportional to the expected
relative dividends of the assets. This rule may be interpreted as a CAPM rule
which fixes budget shares according to the expected market capitalization
and then rebalances according to these fixed weights as prices fluctuate. For
sufficiently patient investors, like pension funds or insurance companies for
example, this rule promises very high proceeds. On a long horizon risk is
limited – the standard deviations of the average position of the market share
are very small and almost constant over time. Risk will however matter if
the investor is subject to shocks that require to liquidate some of its wealth
at unforeseen periods. An important and also very interesting extension of
this work is to introduce such liquidity shocks in the evolutionary process of
market selection.
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A The Dividend Process

Figure 7 depicts the evolution of relative dividends-per-share over time. Some
firms apply dividend smoothing and distribute an almost constant stream
of dividends while other firms’ dividend payments vary considerably. The
dividends are adjusted for buy backs. In the simulations we have identified
each year with a state of the world and then we have drawn such states
independently and identically distributed according to a uniform distribution.
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Figure 7: The relative dividend process for the DJIA (21 states).

AT&T roughly pays about one third of the total dividends in 1981-1984
(states 1-4). Exxon Mobil Corp. has a roughly constant share of 15-20% of
the total dividend payments over the entire period.

Company Name (Ticker Symbol): ALCOA Inc. (AA), American Express
Co. (AXP), AT&T Corp. (T), Boeing Co. (BA), Caterpillar Inc. (CAT),
Coca-Cola Co. (KO), Dupont Co. (DD), Eastman Kodak Co. (EK), Exxon
Mobil Corp. (XOM), General Electric Co. (GE), General Motors Corp. (GM),
Hewlett Packard Co. (HPQ), International Business Machines Corp. (IBM),
International Paper Co. (IP), J.P. Morgan Chase & Co. (JPM), McDonalds
Corp. (MCD), Merck & Co. (MRK), Minnesota Mining & Manufacturing
Co. (MMM), Phillip Morris Co. (MO), Procter & Gamble Co. (PG), United
Technologies Corp. (UTX).
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AA AXP T BA CAT KO DD
1981 0.1168 0.1440 3.7699 0.1349 0.2010 0.2669 0.4130
1982 0.1304 0.1777 4.2293 0.1298 0.2011 0.2755 0.4890
1983 0.1152 0.1905 4.2011 0.1196 0.1869 0.2848 0.5102
1984 0.0783 0.2014 4.4768 0.1083 0.1099 0.2905 0.4817
1985 0.0741 0.2081 1.7295 0.1011 0.0892 0.2706 0.5240
1986 0.0703 0.2166 0.9664 0.1104 0.0345 0.2735 0.5140
1987 0.0695 0.2100 0.9118 0.1228 0.0324 0.2658 0.4912
1988 0.0660 0.2072 0.8091 0.1330 0.0306 0.4638 0.4916
1989 0.0669 0.1917 0.7359 0.1352 0.0439 0.2528 0.5106
1990 0.1311 0.2013 0.6961 0.1451 0.0653 0.2647 0.5542
1991 0.1397 0.2275 0.7334 0.1716 0.0638 0.2891 0.5785
1992 0.0760 0.2364 0.7745 0.1700 0.0600 0.3172 0.5634
1993 0.0655 0.2442 0.8240 0.1603 0.0283 0.3479 0.5572
1994 0.0632 0.2335 0.7875 0.1509 0.0271 0.3920 0.5331
1995 0.0611 0.2133 0.7912 0.1439 0.0385 0.4257 0.5276
1996 0.0651 0.1836 0.8368 0.1371 0.0958 0.4449 0.4793
1997 0.0883 0.1645 0.8005 0.1430 0.1090 0.4704 0.4757
1998 0.0609 0.1512 0.7657 0.1991 0.1208 0.4958 0.5008
1999 0.0897 0.1401 0.7399 0.1908 0.1353 0.5007 0.5240
2000 0.0944 0.1280 0.9398 0.1701 0.1410 0.5006 0.4788
2001 0.1276 0.1285 1.0200 0.1539 0.1411 0.5144 0.4473

EK XOM GE GM HPQ IBM IP
1981 0.5164 2.3484 0.6700 0.8741 0.0240 2.0080 0.1398
1982 0.5438 2.4925 0.6869 0.7018 0.0259 1.9436 0.1395
1983 0.5147 2.3071 0.6732 0.6645 0.0266 1.8186 0.1285
1984 0.4674 2.1290 0.6784 0.7104 0.0318 1.7923 0.1156
1985 0.4296 2.0372 0.6912 1.1325 0.0364 1.8633 0.1085
1986 0.3889 1.8333 0.7173 1.1370 0.0401 1.9008 0.1020
1987 0.3638 1.7187 0.6986 1.0981 0.0370 1.7814 0.0918
1988 0.3506 1.6465 0.7215 1.0224 0.0368 1.6269 0.0907
1989 0.3423 1.6378 0.7205 0.9455 0.0394 1.4883 0.0936
1990 0.3502 1.5874 0.7980 1.0598 0.0459 1.4849 0.1009
1991 0.3395 1.6514 0.8777 1.0234 0.0534 1.4510 0.0957
1992 0.3216 1.6863 0.8821 0.5760 0.0595 1.3732 0.0922
1993 0.3064 1.6853 0.9075 0.6490 0.0863 1.3035 0.0971
1994 0.2916 1.6113 0.9557 0.4811 0.1012 0.4141 0.0923
1995 0.2395 1.5482 1.0417 0.4705 0.1185 0.2801 0.0889
1996 0.2192 1.5089 1.1101 0.5321 0.1435 0.2369 0.0950
1997 0.2033 1.4719 1.1505 0.5772 0.1698 0.2663 0.1098
1998 0.2027 1.4434 1.2193 0.5791 0.1902 0.2799 0.1080
1999 0.1925 1.3572 1.3238 0.4696 0.2114 0.2821 0.1035
2000 0.1784 1.8605 1.4534 0.4331 0.2059 0.2785 0.1324
2001 0.1664 1.8694 1.6490 0.3951 0.1948 0.2836 0.1365
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JPM MCD MRK MMM MO PG UTX
1981 0.0595 0.0297 0.1781 0.3288 0.1995 0.2811 0.1757
1982 0.0695 0.0368 0.1891 0.3382 0.2402 0.3017 0.1873
1983 0.0919 0.0419 0.1835 0.3331 0.2671 0.3012 0.1744
1984 0.1033 0.0462 0.1678 0.3089 0.2913 0.2970 0.1657
1985 0.1115 0.0520 0.1665 0.2958 0.3093 0.2966 0.1633
1986 0.1095 0.0565 0.1653 0.2834 0.3368 0.3059 0.1583
1987 0.1029 0.0568 0.1839 0.2720 0.3896 0.2938 0.1388
1988 0.1300 0.0574 0.2053 0.2605 0.4591 0.2856 0.1125
1989 0.1369 0.0585 0.2879 0.2744 0.5106 0.2721 0.1155
1990 0.1484 0.0621 0.3509 0.3119 0.5941 0.2806 0.1227
1991 0.1778 0.0697 0.3920 0.3384 0.7067 0.3343 0.1326
1992 0.2007 0.0735 0.4426 0.3394 0.8315 0.3731 0.1392
1993 0.2065 0.0757 0.5017 0.3305 0.9560 0.3715 0.1245
1994 0.2131 0.0893 0.5213 0.3200 1.0169 0.3773 0.1185
1995 0.2204 0.0913 0.6068 0.3148 1.0523 0.4015 0.1007
1996 0.3920 0.0908 0.6171 0.3166 1.1779 0.4256 0.1010
1997 0.4481 0.0875 0.6522 0.3029 1.3060 0.4534 0.1000
1998 0.4332 0.0885 0.7292 0.3131 1.3887 0.4751 0.1040
1999 0.4323 0.0814 0.7622 0.3001 1.3478 0.4946 0.1069
2000 0.4442 0.0839 0.8205 0.2855 1.3745 0.5152 0.1118
2001 0.6967 0.0857 0.8542 0.2803 1.3739 0.5483 0.1182
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B Portfolio Rules

The following table reports the budget shares for the investment strategies
applied in this paper. The budget shares are normalized with (1 − λ0) for
convenience. Rounding errors may prevent shares from adding up to one.

Weights (%) λµ−σ(λ∗) λCV ar(λ∗) λ∗ λgop(1) λillu λcpt(λ∗)
UTX 0.00 0.00 1.28 0.00 4.76 2.82
PG 0.00 0.00 3.63 0.00 4.76 4.70
MO 0.00 27.45 7.81 0.00 4.76 6.58

MMM 0.00 0.00 3.02 0.00 4.76 4.08
MRK 0.46 0.00 4.31 0.00 4.76 5.64
MCD 91.01 0.00 0.68 0.00 4.76 2.19
JPM 0.00 0.00 2.35 0.00 4.76 3.45
IP 0.00 0.00 1.04 0.00 4.76 2.51

IBM 0.07 18.56 10.97 0.00 4.76 7.52
HPQ 3.79 0.00 0.90 0.00 4.76 2.51
GM 0.22 18.22 7.31 0.00 4.76 6.58
GE 0.10 0.00 9.28 0.00 4.76 7.21

XOM 0.00 17.26 17.25 99.99 4.76 8.46
EK 3.44 0.00 3.17 0.00 4.76 5.02
DD 0.00 4.26 5.02 0.00 4.76 5.96
KO 0.91 9.71 3.61 0.00 4.76 5.02
CAT 0.00 0.00 0.86 0.00 4.76 2.51
BA 0.00 0.00 1.43 0.00 4.76 3.13
T 0.00 4.54 13.33 0.01 4.76 8.15

AXP 0.00 0.00 1.90 0.00 4.76 3.45
AA 0.00 0.00 0.85 0.00 4.76 2.51
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Selection of Financial Trading Strategies: Global Stability,” Mathematical
Finance, 12, 329–339.

Fama, E. (1965): “The Behavior of Stock Market Prices,” Journal of Busi-
ness, 38, 34–105.

Friedman, M. (1953): Essays in Positive Economics. University of Chicago
Press, Chicago.

Hakansson, N. (1970): “Optimal Investment and Consumption Strategies
Under Risk for a Class of Utility Functions,” Econometrica, 38, 587–607.

Hens, T., and K. R. Schenk-Hoppé (2004): “Evolutionary Stability
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