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Two agents negotiate, according to the Nash bargaining solution, over the
allocation of a single (divisible) commodity (or multiple commodities with
fixed ordinal preferences). It has been shown that in this situation agents
find dominant to report their least risk averse utility functions. This result
depends crucially on the fact that in this kind of “distortion game,” agents
have been restricted to report risk-averse utility functions. This paper studies
the distortion game originated when agents are also allowed to claim non
risk-averse utility functions. Contrasting with previous literature, we find
multiple Nash equilibria, multiple payoff outcomes and the existence of a
first-mover advantage.

1 Introduction

1.1 Motivation

When two persons bargain it is often the case that they have no incentives to
reveal their true preferences.1 Nevertheless, standard bargaining procedures
∗I would like to acknowledge valuable discussions with Leonid Hurwicz and Marcel

Richter. I also want to thank Beth Allen, Yakar Kannai and Luis Sánchez-Mier for their
comments. All remaining errors are mine.

1Examples of this simple fact can be seen in every day negotiations. A buyer might
be willing to pay a high price for a commodity, but actually pretend to be uninterested in
order to obtain a better deal.
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assume complete knowledge of the agents’ utility functions. This issue is
addressed in the literature by defining a “distortion game” in which agents
strategically report utility functions and the outcome of the negotiation is
determined by applying, for example, the Nash bargaining solution concept.

Up to now, the reports of agents have been restricted to very particular
families of utility functions. This is acceptable if the distortion game is in-
terpreted as a mechanism used by an arbitrator in order to obtain, despite
untruthful reports, an outcome with desirable properties. We think that dis-
tortion games can also be used to model situations in which no arbitrator is
used. In this setting, it is not reasonable to require from agents to report
within a specific class (e.g. concave) of functions.

The main contribution of this paper is to analyze the case in which the re-
ported utility functions are not restricted to be risk-averse. We see no reason
for an agent that does not restrain from misrepresenting his utility function
to limit himself to risk averse claims. It is even more important to analyze
this case taking into account that the conclusions deduced from this work
differ substantially from the previous literature. In particular, instead of a
unique dominant strategy equilibrium, we find multiple Nash equilibria. In
fact, a continuum of Pareto optimal allocations can be supported by Nash
equilibrium strategies. Finally, as we are not anymore in a dominant Nash
strategy equilibrium, the issue of who plays first becomes relevant.

1.2 Literature Overview

The simplest distortion game2 that has been studied is that one in which two
risk averse agents bargain over the distribution of a single (divisible) com-
modity. The simplicity of this example includes two aspects: First, when
considering just a single commodity, the ordinal preferences of the agents are
unique, and so cannot be misrepresented. Thus, the strategic possibilities
of the agents are limited to choose the cardinal utility function representing
their ordinal preferences. Second, it is well known that as an agent becomes

2The distortion game technique was first used by Kurz [11] in reference to a taxation
game in Aumann and Kurz [1].
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less risk averse, his Nash bargaining outcome actually improves.3 The fact
that bargainers can only claim to have concave (risk averse) utility functions
leads to the existence of a dominant strategy equilibrium: agents claim the
least risk averse strategy among those admissible by the distortion game.

Following the spirit of the last paragraph, Crawford and Varian [4] (for the
single commodity case), and Kannai [7] (for multiple commodities) find dom-
inant strategies for risk averse agents with fixed ordinal preferences. They
show that it is optimal for agents to report their least concave (linear in the
single commodity case) representation of their ordinal preferences. If only
one commodity is distributed, these reports lead to equal division of the com-
modity.

In this work, despite not existing a dominant strategy, we characterize the
set of Nash equilibria of the distortion game. To achieve this we proceed
as follows: Proposition 1 gives an explicit method of how to manipulate the
utility possibility set, the set of utility vectors over which Nash b argaining
will be applied. Then, Proposition 2 recalls a property of Nash Bargaining4

that puts a lower bound (in terms of the reported utilities) to the worst
possible result of the negotiation for either agent. Proposition 3 character-
izes the Nash equlibria of the distortion game if the UPS is convex. Finally,
Proposition 4 characterizes the allocations that can result from agents play-
ing Nash equilibria. It is particularly appealing that the method of proof is
constructive in the sense that we explicitly describe how agents can improve
their outcome if they are not playing a Nash equilibrium.

It is important to mention other distortion games analyzed in the literature.
In particular, papers by Sobel [15], [16],5 and Kibris [9] study the multiple
commodity case when the ordinal preferences are not fixed. In this instance,
the set of Nash equilibria has not been characterized. It is necessary to re-
strict agents to report linear utility functions in order to characterize Nash
equilibrium outcomes. In particular, Sobel [15] gives a “non-pathological ex-
ample” of non-linear Nash equilibria.

3The first references that prove this are Kihlstrom, Roth and Schmeidler [10](for two
agents), and Nielsen [14] (for multiple agents).

4This property is known in the literature as symmetric monotonicity [15] or midpoint
dominance [17].

5In this particular work the bargaining concept used is the utilitarian solution.
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2 Notation and the Environment

Consider an environment with two agents and n commodities. Without loss
of generality assume there is one (divisible) unit of each commodity so that
the aggregate endowment is described by the vector ~1 = (1, . . . , 1) ∈ Rn. Let
the complete preorders �1 and �2 denote the agents’ continuous, convex and
strictly monotone preferences over the set X = [0, 1]n. Let u1 and u2 denote
the von Neumann-Morgenstern utility functions of the agents. Normalize
the original utility functions so that ui(~0) = 0 and ui(~1) = 1 for i = 1, 2.
As the Nash bargaining solution satisfies invariance under positive affine
transformations, there is no loss of generality in using this normalization.
Define:

U = {u : X → [0, 1] | u(~0) = 0, u(~1) = 1, u continuous, strictly increasing}.

Ui = {u ∈ U | u represents �i} for i = 1, 2.

Assume that ui ∈ Ui for i = 1, 2. Notice that concavity of ui is not required.

Given two utility functions u1, u2 ∈ U the utility possibility set (UPS) is
given by

UPS(u1, u2) = {(v, w) ∈ [0, 1]2 | ∃x ∈ X s.t. v ≤ ũ1(x) and w ≤ ũ2(~1− x)}.

The set UPS(u1, u2) is not necessarily convex. The Pareto frontier of this
set is described by the function h : [0, 1]→ [0, 1] where for any given level of
utility v ∈ [0, 1]

h(v) = max{ũ2(~1− x) | x ∈ X and ũ1(x) = v}.
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The following lemma describes the properties of the function h. For com-
pleteness, the proof is given in the appendix.

Lemma 1 Given two utility functions u1, u2 ∈ U, the function h that de-
scribes the Pareto frontier of the set UPS(u1, u2) satisfies h(0) = 1, h(1) = 0,
and is strictly decreasing (thus invertible). Furthermore, if u1 and u2 are
(strictly) concave, then h is (strictly) concave.

An immediate implication of the lemma is that the UPS generated by two
concave utility functions is a convex set.6 (See Billera and Bixby [2] or Chip-
man and Moore [3].)

Our objective is to study a bargaining problem generated by the strategic
choice of a utility function representing fixed ordinal preferences. For exam-
ple, suppose that agent 1 is interested in changing the UPS Pareto frontier
by reporting utility function ũ1 ∈ U instead of the real u1.7 In particular,
assume that his intention is to transform the Pareto frontier into one that is
characterized by the equation w = h̃(v). We claim that if agent 1 knows the
function h describing the original Pareto frontier, then he is able to report
a utility function that achieves the desired transformation. Furthermore,
the explicit formula for ũ1 is given. As a byproduct, the proposition also
shows that any continuous, strictly decreasing function h̃ once normalized,
is a possible description of some UPS Pareto frontier. This is an important
difference with the case in which agents are restricted to report concave util-
ity functions.

Proposition 1 Assume that h̃ is a strictly decreasing (hence invertible) con-
cave function such that h̃(0) = 1 and h̃(1) = 0. Then agent 1 can transform
the original UPS Pareto frontier into h̃ by claiming that his (unchanged)
ordinal preferences are represented by the utility function

6Concavity of the utility functions is essential for Lemma 1 to hold in an environment
with more than two players. Kannai and Mantel [8] provide a three player counterexample
in which agents with continuous, convex and strictly monotone preferences never generate
a convex UPS, no matter the utility functions used to represent the ordinal preferences.

7From now on, ui will be used to denote the true utility functions of the agents.
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ũ1(x) = h̃−1(h(u1(x))).

Proof: The value that the new function takes at v ∈ [0, 1] is

max
ũ1(x)=v

u2(~1− x) = max
h̃−1(h(u1(x)))=v

u2(~1− x) = max
h(u1(x))=h̃(v)

u2(~1− x).

Using the fact that the maximizer x ∈ X is Pareto optimal we conclude that

max
h(u1(x))=h̃(v)

u2(~1− x) = max
u2(~1−x)=h̃(v)

u2(~1− x) = h̃(v).

The transformation applied to u1 so that it transforms into ũ1 is h̃−1◦h. This
is a monotone transformation because it is the composition of two strictly
decreasing functions8, so the preferences of agent 1 remain unchanged. �

3 The Distortion Game

The question now is what happens if both agents act strategically and the
outcome is determined by Nash bargaining. We use the utility vector (0, 0)
as the threat point in case of disagreement. If the UPS is not convex, then
the outcome of the distortion game is decided by the toss of a coin: each
agent has equal probability of being allocated the aggregate output.

Next, we formally describe the distortion game.

Definition 1 Let S be a nonempty convex subset of R2 and let d = (d1, d2) ∈
S. Define the Nash bargaining utility vector [13] as

NB(S, d) = argmaxv∈S, v≥d(v1 − d1)(v2 − d2).

Convexity of S implies that NB(S, d) is always a singleton.

8As h̃ is strictly decreasing, its inverse also has this property.
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Definition 2 The distortion game is a non-cooperative game in which
agents report utility functions ũ1, ũ2 ∈ U1 ×U2. If UPS(ũ1, ũ2) is convex,
there must exist a vector x ∈ X such that

NB(UPS(ũ1, ũ2), (0, 0)) = (ũ1(x), ũ2(~1− x)).

The payoffs of the game are given by the vector ψ ∈ R2 defined as:

ψ(ũ1, ũ2) =

 (u1(x), u2(~1− x)) if UPS(ũ1, ũ2) is convex

(1
2
, 1

2
) otherwise

Notice that because ordinal preferences are known, there is no need to specify
a tie-breaking mechanism as in Sobel [15]: although there may be more than
one outcome that generates utility vector ψ(ũ1, ũ2), all of them generate the
same utility when evaluated in the true utility functions. Thus, the distor-
tion game is well defined.

An appealing property of the Nash bargaining solution is that the outcome
guarantees a certain amount (1

2
) of the 0-1 normalized (reported) utilities to

the parties involved. This characteristic helps the agents to be in some sense
protected against misrepresentation of utilities by their opponents. This
property has been known in the literature as symmetric monotonicity (Sobel
[15]) or midpoint dominance axiom (Thomson [17]). Actually, it was Sobel
who first discovered its relevance for distortion games. The next proposition
indicates that Nash bargaining satisfies this property. Although Sobel proved
it first, in the appendix we follow Moulin’s proof because it does not use risk
sensitivity considerations.

Proposition 2 (Sobel [15], Moulin [12]) For any pair of utility functions
u1, u2 ∈ U, then NB(UPS(u1, u2), (0, 0)) ≥ 1

2
.

The previous result gives a lower bound for an agent’s payoff in “reported
utility units”. One might suspect that when agents only manage to obtain
this lower bound, it is because they are at a Nash equilibrium of the distor-
tion game. Indeed, the following proposition proves that guess is correct.
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4 Characterization of Nash Equilibria

4.1 Nash Equilibrium Strategies

We will now characterize the set of Nash equilibria in the distortion game.
The first case we consider is Nash equilibrium strategies (u∗1, u

∗
2) such that

UPS(u∗1, u
∗
2) is not a convex set. In this case, the conditions needed to reach

this potentially inefficient equilibrium are:

1. u∗1(x) ≥ 1
2

implies that u2(~1− x) ≤ 1
2
.

2. u∗2(x) ≥ 1
2

implies that u1(~1− x) ≤ 1
2
.

In this case, neither agent has any incentive to “convexify” the UPS because
the opponent’s strategy implies, by Proposition 2, that this kind of deviation
will not be an improvement. In a sense, agents were too greedy with their
claims and this precluded an agreement. On the other hand, notice that if
agents are truthful and play this kind of Nash equilibrium, the outcome will
be ex-ante efficient.

Proposition 3 Assume UPS(u∗1, u
∗
2) is convex. Then, the pair (u∗1, u

∗
2) is a

Nash equilibrium of the distortion game if and only if

1. NB(UPS(u∗1, u
∗
2), (0, 0)) = (1

2
, 1

2
).

2. ψ(u∗1, u
∗
2) ≥ 1

2
.

Proof: First, suppose that (u∗1, u
∗
2) is a Nash equilibrium of the distortion

game. Clearly, ψ(u∗1, u
∗
2) ≥ 1

2
so that the agents do not want to deviate

to the coin outcome. Now, suppose that NB(UPS(u∗1, u
∗
2), (0, 0)) 6= (1

2
, 1

2
).

Without loss of generality, assume that NB2((u∗1, u
∗
2), (0, 0)) > 1

2
. We will

show that agent 1 can improve his payoff by choosing ũ1 in such a way that
the Pareto frontier of the set UPS((ũ1, u

∗
2), (0, 0)) is linear. Proposition 1

implies that this can be done by setting ũ1(x) = 1 − h(u∗1(x)) where h is
defined as the function that describes the original Pareto frontier (see Sec-
tion 2). To show the previous claim, consider the Pareto optimal allocations
(x∗,~1 − x∗) and (x̃,~1 − x̃) such that ψ(u∗1, u

∗
2) = (u∗1(x∗), u∗2(~1 − x∗)) and
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ψ(ũ1, u
∗
2) = (ũ1(x̃), u∗2(~1 − x̃)). We know that u∗2(~1 − x∗) > u∗2(~1 − x̃) = 1

2
.

Then, if u∗1(x∗) ≥ u∗1(x̃), allocation (x,~1− x) would Pareto dominate alloca-
tion (x̃,~1− x̃), a contradiction. We conclude that agent 1 increases his payoff
by choosing utility function ũ1.

For the converse, suppose (u∗1, u
∗
2) is not a Nash equilibrium of the dis-

tortion game but conditions 1 and 2 hold. Then, without loss of gener-
ality, assume there exists ũ1 ∈ U1 a better option for agent 1. Because
ψ(u∗1, u

∗
2) ≥ 1

2
, agent 1 will have incentives to deviate only if UPS(u′1, u

∗
2)

is also convex. Let (x∗,~1 − x∗) and (x̃,~1 − x̃) be allocations that gen-
erate utility vectors NB(UPS(u∗1, u

∗
2), (0, 0)) and NB(UPS(ũ1, u

∗
2), (0, 0))

respectively. Agent 1 is better off, so u1(x∗) < u1(x̃). As u∗1 ∈ U1, we
have u∗1(x̃) > u∗1(x∗) = NB1(UPS(u∗1, u

∗
2), (0, 0)) = 1

2
. Now, by Proposi-

tion 2 u∗2(~1 − x̃) = NB2(UPS(ũ1, u
∗
2), (0, 0)) ≥ 1

2
. But then, the product

u∗1(x̃)u∗2(~1 − x̃) would be strictly greater than 1
4
, contradicting the fact that

the vector generated by Nash bargaining was (1
2
, 1

2
). �

Finally, we conclude that if agents are in a Nash equilibrium of the distor-
tion game and the UPS constructed with the reported utilities is convex,
then the Pareto frontier of the UPS must be linear. Let us emphasize that
unlike the case where onle concave utility functions are admissible, a linear
Pareto frontier does not imply linear reported utilities. A possible case of a
Nash equilibrium is constituted by truth-telling agents, one risk averse and
the other one risk loving, compounding into a linear Pareto-frontier.

Corollary 1 Assume UPS(u∗1, u
∗
2) is convex. If the pair (u∗1, u

∗
2) is a Nash

equilibrium of the distortion game then the Pareto frontier of UPS(u∗1, u
∗
2)

must be linear.

Proof: Suppose that h(v) 6= 1 − v. Then UPS(u∗1, u
∗
2) must contain a util-

ity pair (v, w) such that v + w > 1. Without lost of generality, assume
w > v. Convexity implies that

(
w/(1 +w− v), w/(1 +w− v)

)
is an element

of the UPS as it is a linear combination of (v, w) and (1, 0). Furthermore,
v + w > 1 implies that w/(1 + w − v) > 1

2
. But we know that the util-

ity vector generated by Nash bargaining must be (1
2
, 1

2
). Thus the vector(

w/(1 + w − v), w/(1 + w − v)
)
≤ 1

2
, a contradiction. �
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4.2 Nash Equilibrium Outcomes

Given that ordinal preferences are fixed, the allocation generating the Nash
bargaining utility vector will always be Pareto optimal. Nevertheless, if the
game is decided by throwing a coin, the outcome is (possibly) inefficient. In
what follows, we characterize which Pareto optimal allocations can arise as
the result of Nash equilibrium of the distortion game. We conclude that in
this setting agents may arrive to multiple of efficient allocations. The only
condition for a Pareto optimal allocation to be supported as a Nash equi-
librium outcome is that both agents actually prefer their outcome to the
(expected) utility generated by throwing a coin.

Proposition 4 A Pareto optimal allocation (x∗,~1− x∗) can be supported as
a Nash equilibrium outcome of the distortion game if and only if u1(x∗) ≥ 1

2

and u2(~1− x∗) ≥ 1
2
.

Proof: Let u∗2 ∈ U2 be such that u∗1(1 − x∗) = 1
2
. Let h : [0, 1] → [0, 1]

describe the Pareto frontier of UPS(u1, u
∗
2). Define u∗1(x) = 1 − h(u1(x)).

Proposition 1 implies u∗1 ∈ U1. The new Pareto frontier is linear so we
have that NB(UPS(u∗1, u

∗
2), (0, 0)) = (1

2
, 1

2
). Finally, because by assump-

tion ψ(u∗1, u
∗
2) ≥ 1

2
, Proposition 3 implies that (u∗1, u

∗
2) is a Nash equilibrium

supporting the allocation (x∗,~1− x∗). �

5 Implications of the Results

Assume that one of the two bargainers is strictly more risk averse than his
opponent. When agents are only allowed risk-averse claims, the unique out-
come of the distortion game will be biassed in favor of the more risk-averse
agent: the closer an agent is to being risk-neutral, the less room he has to
manipulate his utility function. We now present an example to illustrate our
point.

Two agents are deciding the allocation of two commodities. The true utility
functions over X are u1(x) = (x1x2)

1
4 and u2(x) = (x1x2)

1
2 . The true Pareto

frontier is then described by the function h(v) = 1 − v2. The utility vector

generated by Nash bargaining and the true utility functions is (
√

1
3
, 2

3
). The
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corresponding outcome is given by the allocation (1
3
ω, 2

3
ω) where ω represents

the aggregate output.

If agents can only report risk-averse utility functions, in the dominant strat-
egy equilibrium agent 2 remains being truthful (notice that this utility fuc-
tion is already linear along the diagonal) while agent 1 chooses ũ1(x) =

h̃−1(h(u1(x))) = (x1x2)
1
2 to represent his preferences. Symmetry then im-

plies that the new utility vector will be (1
2
, 1

2
) and equal division of both

goods will occur. This outcome is biassed in favor of the agent that was able
to lie about his utility function.

Now let us analyze what happens if agents are allowed to report utility func-
tions that are not concave. In this case, the set of Pareto optimal allocations
that arise from Nash equilibrium is

{(αω, (1− α)ω) ∈ X ×X | α ∈ [
1

4
,
1

2
]}.

We observe that the outcome selected by the dominant strategies implied
by the concavity restriction lies, in this particular case, on one end of the
interval. The more risk-averse agent is clearly aided by the procedure used
to determine the final allocation.

Although in our environment we must still select an outcome among many,
at least the chosen outcome will not invariably favor more risk-averse agents.
In our setting the outcome of the negotiation will depend much more on the
bargaining abilities of the parties unlike the previous model where agents
had a predetermined result, independent of their level of risk aversion.

Another important implication from the results is that they clearly point
towards a first-mover advantage. If one of the agents is able to credibly com-
mit to a strategy, that party is in position to decide which Pareto optimal
allocation is used. The midpoint dominance axiom (Propostition 2) trans-
forms a report ũ1 into a non-agreement threat unless the bargaining outcome
assigns at least a certain amount of utility (namely the utility obtained from
allocations x ∈ X such that ũ1(x) = 1

2
) to agent i. This kind of advantage

is not present when agents are restricted to claim concave utility functions
because the order of play is not important when dominant strategies exist.
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Appendix: proofs

Lemma 1 Given two utility functions u1, u2 ∈ U, the function h that describes the Pareto
frontier of the set UPS(u1, u2) satisfies h(0) = 1, h(1) = 0, and is strictly decreasing (thus
invertible). Furthermore, if u1 and u2 are (strictly) concave, then h is (strictly) concave.

Proof: By strict monotonicity, u1(x) = 0 implies x = ~0. Thus, h(0) = u1(~1 − ~0) = 1.
Similarly, h(1) = 0.

Now we prove that h is strictly decreasing. Take any v̄, v ∈ [0, 1] such that v̄ > v. The
definition of h implies that there is a vector x̄ ∈ X such that (v̄, h(v̄)) = (u1(x̄), u2(~1− x̄)).
By strict monotonicity and continuity of u1, there exists an α ∈ [0, 1) such that u1(αx̄) = v.
Then

h(v̄) = u2(~1− x̄) < u2(~1− αx̄) ≤ max
u1(x)=v

u2(~1− x) = h(v),

so that h is strictly decreasing.

For concavity, let v̂, v̄, α ∈ [0, 1]. Let x̂ be a vector satisfying u1(x̂) = v̂ and h(v̂) =
u2(~1− x̂). In a similar manner, let x̄ be a vector satisfying u1(x̄) = v̄ and h(v̄) = u2(~1− x̄).
Then

h(αv̂ + (1− α)v̄) = h(αu1(x̂) + (1− α)u1(x̄))
≥ h(u1(αx̂+ (1− α)x̄))
= max

u1(x)=u1(αx̂+(1−α)x̄)
u2(~1− x)

≥ u2(~1− (αx̂+ (1− α)x̄))
= u2(α(~1− x̂) + (1− α)(~1− x̄))
≥ αu2(~1− x̂) + (1− α)u2(~1− x̄)
= αh(v̂) + (1− α)h(v̄),

as desired. If either u1 or u2 is strictly concave, the inequality is strict. �

Proposition 2 (Sobel [15], Moulin [12]) For any pair of utility functions u1, u2 ∈ U,
then NB(UPS(u1, u2), (0, 0)) ≥ 1

2 .

Proof: Let (v∗, w∗) = NB(UPS(u1, u2), (0, 0)). Consider the sets

A = UPS(u1, u2) and B = {(v, w) ∈ R2
+ : vw ≥ v∗w∗}.

12



The sets A and B are convex and have disjoint interiors. Hence, there must exist a
hyperplane H separating A from B. As (v∗, w∗) lies on the frontier of both sets, (v∗, w∗) ∈
H. Moreover, H must be tangent to B at (v∗, w∗), which implies that its slope is −w

∗

v∗ .
Thus, H must be described by the equation

w = −w
∗

v∗
v + 2w∗.

This implies that (2v∗, 0), (0, 2w∗) ∈ H. However, for (2v∗, 0) or (0, 2w∗) not to lie in the
interior of A, it must be true that (v∗, w∗) ≥ 1

2 , as desired. �
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