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A solution concept for cooperative games, the extended core, is introduced.
This concept is always nonempty yet coincides with the core whenever it
is nonempty. Moreover, a non-cooperative framework can generate the ex-
tended core. Every transferable utility game is associated with a two-player
zero-sum non-cooperative game. The min-max values of the associated zero-
sum games characterize when cooperative games have nonempty cores. If the
core is empty, the min-max value determines how an exogenous regulator can
impose costs on proper coalition formation so that there are no incentives
to deviate from extended core imputations, which are necessarily feasible in
the original game. In order to choose among the imputations belonging to
the extended core, a proportional version of the nucleolus is proposed as a
selection device.

1 Introduction

1.1 The Empty Core Problem

The core is by far the cooperative solution concept that is most frequently
applied in economics. Numerous economic fields such as public economics,

∗I would like to thank Beth Allen, Camelia Bejan, Adam Galambos, Leo Hurwicz,
Yakar Kannai, Andy McLennan, Marcel Richter, Luis Sánchez-Mier, David Schmeidler,
Vasiliki Skreta, and Jingang Zhao, for helpful discussions, suggestions, and continuous
encouragement during the process of writing this paper. All remaining errors are mine.

1



political economy and industrial organization to name a few, have successfully
applied this solution concept. Nevertheless, there exist important economic
situations which translate into environments where the core is empty. In
such settings the core is not applicable.

The question of how to handle empty-core situations is of great importance
because the number of games in which the core cannot be applied is consider-
able.1 Still, the issue is frequently avoided by imposing enough assumptions
so that the core of a game is nonempty. Despite including some of the best
pieces of research in economic theory,2 the cooperative game literature does
not address the empty-core problem.

In the literature it is possible to find attempts of defining solution concepts
that can be applied to empty-core situations. Within this class of concepts
the main examples are the bargaining set (Aumann and Maschler 1964) [2]
and the kernel (Davis and Maschler 1965) [4]. Although technically sound,
the applicability of these alternative solution concepts is debatable. In very
few situations, at least when compared against the core, they have been used
as a tool to study economic fields outside game theory.

Two main reasons can account for this lack of applicability: First, these
solution concepts are not suitable to build upon core applications (which
constitute the vast majority of the literature where cooperative games have
been utilized) because in games where the core is nonempty, they do not
coincide with the core. In cases where the core is nonempty, inclusion of the
core (with the bargaining set) or nonempty intersection with the core (with
the kernel) are the best results available. Second, these alternative concepts
lack the simplicity and intuitive appeal of the core. As a consequence, it is
quite burdensome to actually compute these solution concepts, even for very
simple examples.3

1Bondareva (1963) [3] and Shapley (1967) [14] characterized these types of games.
2E.g. The Debreu-Scarf core convergence theorem, the Shapley and Shubik work on

market games [16], and the asymptotic results on ε-cores, e.g. [20].
3According to [10] to calculate the bargaining set of a cooperative game with four

players, it is necessary to solve 150 systems of linear inequalities.
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1.2 An Alternative

In this project we provide an alternative to deal with empty-core environ-
ments: the extended core. The main characteristic of the extended core is
that, unlike the core, it is never empty. Nevertheless, in cases where the
core is nonempty both concepts coincide. Therefore, the extended core is a
good candidate to generalize the numerous applications of the core to set-
tings where the core is empty. Even when this generalization is not possible,
we show how the tools that define the extended core can be used to define a
notion that measures “how far” a game is from having a nonempty core.

After going through the formal definition of the extended core, we point out
different interpretations of the solution concept. The extended core can be
justified in three different ways, one of them based on tools taken from non-
cooperative game theory and the other two arguing from the cooperative
standpoint. This versatility intends to emphasize that the extended core is
both simple and intuitive.

1.2.1 Non-cooperative Point of View

The challenge generated by the first concern (see Section 1.1, last paragraph)
is to describe the core within a framework that is also applicable to games in
which the core is empty. We achieve this goal by using non-cooperative game
theory: We associate to every cooperative game (with a nonempty core) a
non-cooperative two-player zero-sum game in a similar fashion to Aumann
1989 [1]. We identify Nash equilibrium strategies4 for the row player with
core vectors.5 One of the main contributions of this work is to understand
that exactly the same exercise can be performed with an empty core game.
The set of vectors that result from this experiment conform the extended core.

4As we are talking about a zero-sum game, the term min-max strategies is more accu-
rate.

5One of the most appealing features of the associated game is the ability to link the
most important non-cooperative concept, Nash equilibrium, with the most important co-
operative concept: the core.
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1.2.2 Cooperative Point of View

Besides the theoretical interest of such a solution concept, there exist two
natural economic interpretations of the extended core. The first one requires
incrementing the aggregate payoff until the game eventually has a nonempty
core. Then, the core vectors of this enlarged game are normalized so that
they add up to the original aggregate payoff. The result of this procedure is
precisely the extended core vectors. This exercise can be thought of as the
set of players asking for a loan, choosing a core payoff vector, and then paying
the loan according to the proportions established by the chosen payoff vector.

Our second interpretation of the extended core is based on finding a way
so that coalitions have fewer incentives to block. This can be interpreted
as incrementing coalition formation costs. With a sufficiently high level of
costs every game eventually has a nonempty core and moreover, every payoff
vector eventually belongs to the core. The extended core consists of those
payoff vectors that require the minimum level of costs so that no coalition
wants to block them.

1.3 Choosing a Single Outcome

As the extended core is a multiple valued concept, it is important to estab-
lish a criterion to select among its payoff vectors. In a similar way as the
concept of nucleolus (Schmeidler 1969 [13]) can be used to select a particular
payoff vector from the core, the proportional nucleolus (Young et. al. 1982
[21]), always chooses a payoff vector from the extended core. The nucleolus
formalizes the idea of a fair distribution of output in the sense of choosing
the payoff distribution that minimizes the biggest complaint by any coali-
tion. The proportional nucleolus differs from the original nucleolus in the
definition of complaint. This latter version of nucleolus is concerned with
coalitions that suffer the biggest proportional loss (as opposed to absolute
loss) of their worth.
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2 Notation and Basic Definitions

For completeness, we start by defining some basic concepts in cooperative
game theory.

2.1 Cooperative Games

Definition 2.1: Let N = {1, 2, . . . , n}. A coalition is defined as any
nonempty subset of N . A cooperative game is an ordered pair (N, v)

where N is the set of agents6 and v : 2N −→ R+ is a function such that
v(∅) = 0. Let Γ(N) be the set of all cooperative games that have N as their
set of agents. For technical reasons throughout this paper it will be assumed
that v(N) > 0.

Definition 2.2: An imputation is any vector x ∈ RN
+ such that

∑
i∈N

xi = v(N).7

The core of a cooperative game (N, v) is the set of imputations which no
coalition is able to improve upon. It will be denoted by C(N, v). Rigorously,

C(N, v) = {x ∈ RN |
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) ∀S ⊆ N}.

Not every game has a nonempty core. The following necessary and sufficient
conditions for a game to have a nonempty core were given independently by
Bondareva [3] and Shapley [14]:

Definition 2.3: A collection of coalitions {S1, S2, . . . Sk} is called balanced
if there exist non-negative numbers λ1, λ2, . . . , λk such that∑

Sj3i

λj = 1 ∀i ∈ N.

The numbers λ1, λ2, . . . , λk are called balancing weights.

6We will refer to individuals who take part in a cooperative games as “agents”. Indi-
viduals who take part in non-cooperative games will be called “players”.

7Notice that in this setting an imputation is not necessarily individually rational.
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Proposition 2.4: (Bondareva [3] / Shapley [14]) The core of a game (N, v)
is nonempty if and only if for every balanced collection {S1, S2, . . . Sk} with
weights λ1, λ2, . . . , λk, the inequality

k∑
j=1

λjv(Sj) ≤ v(N)

holds.

While the Bondareva-Shapley theorem provides a tractable set of necessary
and sufficient conditions for a game to have a nonempty core, it is obviously
true that many games — in fact, a nonempty open set of n-player games
in R2n−1 — fail to satisfy the Bondareva-Shapley conditions and therefore
necessarily have empty cores.

Definition 2.5: Given a game (N, v), its cover (N, v̄) (see [16]) is a game
defined by:

v̄(S) = max
k∑
j=1

λjv(Sj) ∀S ⊆ N

where the maximum is taken over all balanced collections of sub-coalitions
of S, {S1, S2, . . . Sk} with corresponding weights λ1, λ2, . . . , λk.

Now we present some examples of games with both nonempty and empty
cores. As we define new concepts, we will illustrate them in these examples.

2.1.1 Examples of Games with Nonempty Cores

For our first example, consider a setting with three agents. Agents 1 and
2 own a right glove while agent 3 owns a left glove. The worth of each
coalition is either 0 or 1, depending on whether it can form a right-left pair
of gloves. Formally, this situation can be modeled as a cooperative game
v : 2{1,2,3} −→ {0, 1} defined by
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v(∅) = 0

v(i) = 0 ∀ i ∈ {1, 2, 3}
v(1, 2) = 0

v(1, 3) = v(2, 3) = v(1, 2, 3) = 1

For this game the core is nonempty. Indeed, it is easy to show that C(N, v) =
{(0, 0, 1)}. We will refer to this game as the gloves game.

2.1.2 Examples of Games with Empty Cores

The second game will be generated by the example given in the motivation
[11].

v(∅) = 0

v(i) = 7× 1− 6 = 1 ∀ i ∈ {1, 2, 3}
v(i, j) = 7× 2− 9 = 5 ∀ i, j ∈ {1, 2, 3} i 6= j

v(1, 2, 3) = 7× 3− 14 = 7

For this game the core is empty. Indeed, any imputation that attains effi-
ciency will not be stable as there will exist a two player coalition that will
want to deviate. We will refer to this game as the phone game.

For our last example we use the classical game n men and a trunk. Here,
n agents are stuck with a valuable trunk in the middle of the desert. On
his own, no agent can carry the trunk out of the desert. Nevertheless, any
group constituted by two or more of them is able to do so. The characteristic
function generated by these payoffs is as follows:

v(S) = 0 if |S| ≤ 1

v(S) = 1 if |S| > 1
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For this game, the core is empty if n > 2. If n = 2, then the core will coincide
with the set of all imputations.

2.2 The Associated Zero-Sum Non-cooperative Game

In this section we describe a two player non-cooperative zero-sum game
G(N, v) that is generated from any cooperative game (N, v). This zero-
sum game was first used by Aumann [1] in order to generate an alternative
proof of the Bondareva-Shapley theorem. Instead of dealing directly with
the linear programming problem posed by the core, he translates the model
into an environment where the duality results needed for the proof are em-
bedded in the Min-Max Theorem for zero-sum games. This paper intends
to further exploit the analogy between these two settings in order to give a
non-cooperative support of the extended core.

In such zero-sum game, the row player chooses an agent and the column
player chooses a coalition. The row player gets a strictly positive payoff if
and only if the chosen agent belongs to the coalition selected by the column
player. This payoff is inversely related to the worth of the coalition chosen
by the second player. In any other case, players receive zero payoff.

Definition 2.6: Given any cooperative game (N, v) define the non-cooperative
zero-sum game G(N, v) by:

• Set of Players: {A,B}.

• Strategy Sets: SA = N and SB = {S ⊆ N | v(S) > 0}.

• Payoffs:

uA(i, S) =

{
v(N)
v(S)

if i ∈ S
0 if i /∈ S

and uB = −uA.

Notice that the restriction to coalitions such that v(S) > 0 is imposed just
to avoid dividing by zero. All of the results go through if, for coalitions of
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worth equal to zero, uA(i, S) is replaced by a large enough number M .

Examining the payoff matrices of the associated games that correspond to
our examples gives the following results: For the gloves game the payoff ma-
trix of G(N, v) is

A \ B { 1,3 } { 2,3 } { 1,2,3 }
1 (1,-1) (0,0) (1,-1)
2 (0,0) (1,-1) (1,-1)
3 (1,-1) (1,-1) (1,-1)

Similarly, the payoff matrix corresponding to the phone game

A \ B { 1 } { 2 } { 3 } { 1,2 } { 1,3 } { 2,3 } { 1,2,3 }
1 (7,-7) (0,0) (0,0) (7

5
,−7

5
) (7

5
,−7

5
) (0,0) (1,-1)

2 (0,0) (7,-7) (0,0) (7
5
,−7

5
) (0,0) (7

5
,−7

5
) (1,-1)

3 (0,0) (0,0) (7,-7) (0,0) (7
5
,−7

5
) (7

5
,−7

5
) (1,-1)

Finally, the payoff matrix for three men and a trunk is

A \ B { 1,2 } { 1,3 } { 2,3 } { 1,2,3 }
1 (1,-1) (1,-1) (0,0) (1,-1)
2 (1,-1) (0,0) (1,-1) (1,-1)
3 (0,0) (1,-1) (1,-1) (1,-1)

As the game at hand is zero-sum, any Nash equilibrium (mixed) strategy pro-
file always generates the same expected payoffs. Thus, the associated game
can be assigned a value in the same way that was done by von-Neumann and
Morgenstern [19].

Definition 2.7: Let the pair of strategies (σ∗, τ ∗) be any Nash equilibrium
of the zero-sum game G(N, v). Define ω(N, v) = uA(σ∗, τ ∗). The Min-Max
Theorem guarantees that the value ω(N, v) is well defined.

After some arithmetic, ω(N, v) can be calculated for each of our examples.
In the gloves game it is evident that a Nash equilibrium occurs when player
A chooses agent 3 and player 2 selects the grand coalition. Thus, ω(N, v) = 1.

In the phone game, consider the Nash equilibrium in which player A gives
weights

(
1
3
, 1

3
, 1

3

)
to her pure strategies and player B gives the same weights
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to the coalitions {1, 2}, {1, 3} and {2, 3}. Then, the expected utility for the
first player is equal to ω(N, v) = 7

5
× 2

3
= 14

15
.

For n men and a trunk, the unique Nash equilibrium occurs when the first
player gives equal weights 1

n
to all agents and the second player gives equal

weights 2
n(n−1)

to all coalitions of cardinality two. In such instance, the ex-

pected utility for the first player is equal to ω(N, v) = (n− 1)× 2
n(n−1)

= 2
n
.

Notice that the fact that 0 < ω(N, v) ≤ 1 for every example is not a coinci-
dence. First, as the first player’s expected payoff is always strictly positive,
ω(N, v) must also be. Second, if things come to worst, player B can always
limit her opponent’s payoff to 1 by choosing the grand coalition. This rea-
soning proves our first result.

Proposition 2.8: For any cooperative game (N, v), ω(N, v) belongs to the
interval (0, 1].

3 Relationship Between (N, v) and G(N, v)

3.1 Nash Equilibria and Core Imputations

We begin by characterizing what kind of associated games are generated by
cooperative games with a nonempty core. The first result in this direction
is used in Aumann’s alternative proof of the Bondareva-Shapley Theorem [1].

Proposition 3.1: (Aumann) Let (N, v) be any cooperative game. If the
value ω(N, v) of the associated game is equal 8 to one, then the core of the
original game is not empty.

An example to illustrate this proposition is the gloves game. For this game,
ω(N, v) = 1 and the core is nonempty. The same works for the game of
two men and a trunk. The fact that our examples with an empty core have
a value strictly less than one suggests that the converse of Proposition 3.1
holds. In fact, this is true, as stated formally in the following proposition:

8In the original [1] this result is stated with ω(N, v) ≥ 1 instead of ω(N, v) = 1
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Proposition 3.2: If the core of a cooperative game (N, v) is nonempty, then
the value ω(N, v) of the associated game is equal to one.

The method used to prove Propositions 3.1 and 3.2 is constructive. To prove
Proposition 3.1, a core imputation is assigned to any Nash strategy corre-
sponding to player A. Conversely, the proof for Proposition 3.2 shows how
to generate a Nash strategy for player 1 starting from any core imputa-
tion. Thus, we can say even more about the relationship between (N, v)
and G(N, v). When ω(N, v) = 1, there is a natural bijection between core
imputations and Nash strategy profiles for player A.

In symbols, given an imputation x define a strategy profile σ for player A by

σi =
xi∑

j∈N

xj
∀i ∈ N

Then,

x ∈ C(N, v) iff ∃τ s.t. (σ, τ) is a Nash eqm. of G(N, v)

We proceed to examine this relationship in the particular context of the
nonempty core examples previously described. In the zero-sum game associ-
ated with the gloves game, it is clear that it is optimal for player A to choose
agent 3 in a Nash equilibrium. In the same way, the unique core imputation
of the cooperative game is (0, 0, 1). In the game two men and a trunk, any
imputation of the form (a, 1 − a) belongs to the core for a ∈ [0, 1]. In turn,
it is clear that no matter what mixed strategy player A uses, it will be part
of a Nash equilibrium.

3.2 Cooperative Interpretation of ω(N, v)

The fact that a cooperative game (N, v) has an empty core is not an im-
pediment to associate it with it a zero-sum game G(N, v) and a quantity
ω(N, v). Various natural questions arise. Are the Nash strategy profiles in
G(N, v) related to some relevant set of imputations of the cooperative game?
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If so, does this set preserve, in some sense, the stability properties of the
core? How can ω(N, v) be interpreted in the context of the cooperative game
(N, v)? In what follows we attempt to answer each of the previous questions.

Definition 3.3: Given a game (N, v) and a real number k ≥ 1, define the
k-expanded game (N, v̂k) in the following way:

v̂k(S) = v(S) if S 6= N

v̂k(N) = kv(N)

Define also

k̂(N, v) = min{k ≥ 1 | C(N, v̂k) 6= ∅}.

Intuitively, consider any cooperative game (N, v). If the worth of the grand
coalition is multiplied by a number greater than one, eventually the core will
become nonempty. Then k̂(N, v) is defined as the smallest number k that
does the trick. Proposition 2.4 and Definition 2.5 imply that v̂k̂(N) is ex-
actly equal to v̄(N), the worth the grand coalition takes in the cover game
(N, v̄). This characterization gives an easy way to check that k̂(N, v) is well
defined.9 Furthermore, v̂k̂(N) also coincides with the concept that Zhao [22]
denotes as minimum no-blocking payoff (MNBP). In that particular paper he
shows that the core has a nonempty relative interior if and only if k̂(N, v) = 1.

Notice that k̂(N, v) is defined using concepts that do not refer at all to the
associated zero-sum game. Nevertheless, it will be closely related to ω(N, v).
Indeed the following proposition formalizes this fact.

Proposition 3.4: For any cooperative game (N, v), ω(N, v) = 1

k̂(N,v)
.

The key to the proof of Proposition 3.4 is to relate the cooperative game to the
non-cooperative environment. This is achieved by characterizing ω(N, v̂k),
the expected utility of player A in the associated zero-sum game correspond-
ing to the k-expanded game.

9k̂(N, v) is bounded above by
∑
S⊆N v(S).
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Lemma 3.5: For any number k ≥ 1, the associated value of the k-expanded
game ω(N, v̂k) is equal to the minimum between one and the product of k
times the associated value of the original game ω(N, v).

The intuition used in the proof of this lemma is as follows. Suppose that
(σ∗, τ ∗) is a Nash equilibrium of G(N, v). The interesting case occurs when
uA(σ∗, τ ∗) < 1. The only difference between the zero-sum games G(N, v)
and G(N, v̂k) is that when player B does not use the grand coalition the
payoffs are multiplied by k. If kuA(σ∗, τ ∗) = kω(N, v) is still less than one,
then (σ∗, τ ∗) is also a Nash equilibrium of G(N, v̂k) and ω(N, v̂k) = kω(N, v).
Otherwise, player B chooses the grand coalition so that ω(N, v̂k) = 1.

4 The Extended Core

The previous section shows how, if the core is nonempty, imputations in the
core are generated from Nash equilibrium profiles for player A. But, even
when the cooperative game has an empty core, it can still be associated with
a zero-sum game. The described non-cooperative framework now becomes
useful because it is also applicable to cooperative games that have an empty
core. The analogous to the core in this setting is the set of imputations gen-
erated by Nash equilibrium profiles for player A. We call it the extended core.

Definition 4.1: For any game (N, v), define its extended core EC(N, v)
as the set

{x ∈ Rn
+ |

∑
i∈N

xi = v(N) and ∃τ ∗ s.t. (
x

v(N)
, τ ∗) is a Nash eqm. of G(N, v)}

Of course, in the particular case in which the core is nonempty, Propositions
3.1 and 3.2 imply that the extended core and the core coincide. In this sense,
the extended core is a generalization of the core with a very important feature:

Proposition 4.2: The extended core is nonempty for any game (N, v).

Up to now the extended core is a mathematical concept with desirable prop-
erties but no economic intuition. The first step towards interpreting the
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extended core in a cooperative setting is to characterize it without referring
to the associated zero-sum game. The following proposition shows how the
extended core of a cooperative game (N, v) can be found directly:

Proposition 4.3: To calculate directly the extended core of a cooperative
game (N, v), first find the smallest k-expanded game with a nonempty core
and then normalize the imputations in its core multiplying them by ω(N, v).
More concisely, for any game (N, v), EC(N, v) = ω(N, v)C(N, v̂k̂(N,v)).

An objection could be raised about the fact that this concept is defined
by changing the original worths of coalitions somewhat arbitrarily. This
argument can be contested by the fact that both ω(N, v) and k̂(N, v) can be
expressed, using Proposition 2.4, in terms of the original worths of the game
(N, v) by the formula

1

ω(N, v)
= k̂(N, v) = max

B

∑
S∈B

λSv(S)

where the maximum ranges over all balanced families of coalitions B with
corresponding weights {λS}S∈B.

Notice that expanding the worth v(N) of the grand coalition by a factor of
k̂(N, v) is strategically equivalent to shrinking the worths of all proper coali-
tions S $ N by a factor of 1

k̂(N,v)
= ω(N, v).10 This observation leads to yet

another cooperative interpretation of the extended core.

Proposition 4.4: The game that results from multiplying the worth of all
proper coalitions by ω(N, v) has a nonempty core and it coincides with the
extended core of the original game.

Suppose that an economic situation (e.g. the phone game) generates a game
in which for every imputation there exists a coalition with incentives to de-
viate, leading to an inefficient outcome. If multiplying by ω(N, v) is inter-
preted as imposing costs (or taxes) on proper coalition formation, the previ-
ous proposition describes a method for an exogenous regulatory institution

10If we look at the games as 2|N |-dimensional vectors, one is a scalar multiple of the
other
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to attain a stable and efficient situation. In other words, if proper coalition
formation is taxed a fraction 1−ω(N, v) of its worth, it is impossible to block
imputations in the extended core. Furthermore 1 − ω(N, v) is the smallest
(least coercive) tax that is required to achieve this objective.

This kind of proportional taxation has been previously mentioned in the lit-
erature. Tijs and Driessen [18] propose to tax proportionally the surplus
v(S) −

∑
i∈S v({i}) generated by creating coalition S. The extended core

coincides with this concept when the worth of all singleton coalitions is zero
(e.g. if the original game is zero-one normalized.) Faigle and Kern [6] also
propose to take away a fraction of the worth of proper coalitions and apply
the concept to operation research topics such as traveling salesman games.

4.1 Applying the Extended Core to Empty Core Games

We proceed to calculate the extended core of the examples that have been
studied. Consider n men and a trunk for n ≥ 3. Recall from previous calcu-
lations that

ω(N, v) =
2

n

C(N, v̂ 1
ω(N,v)

) = {(1

2
, . . . ,

1

2
)}

Hence, we conclude that EC(N, v) = { 2
n
(1

2
, . . . , 1

2
)} = {( 1

n
, . . . , 1

n
)}. This

result seems to be plausible considering the symmetry of the game.

Now consider the phone game. In this particular case

ω(N, v) =
14

15

C(N, v̂ 1
ω(N,v)

) = {(5

2
, . . . ,

5

2
)}

The previous data imply that EC(N, v) = {(7
3
, 7

3
, 7

3
)}.
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Contrary to what the previous examples might suggest, the extended core is
not always a singleton. Any game with a multiple-valued core is an example
of this. Moreover, even when the extended core is single valued, it will gen-
erally not coincide with the Shapley value. An example that illustrates these
points is the following:

v(1) = 5 v(2) = 2 v(3) = 2

v(12) = 5 v(13) = 5 v(23) = 5

v(123) = 10

Here the extended core is multiple valued (it actually coincides with the
core) and is given by C(N, v) = {(5, x, 5− x) ∈ R3 | x ∈ [2, 3]}. The Shap-
ley Value of this game is (41

3
, 25

6
, 25

6
) so it is not included in the extended

core. Even if we increase v(2) = v(3) = 21
2

so that the extended core is single
valued, the Shapley Value will not coincide with the extended core.

4.2 How Far is a Game from Having a Nonempty Core?

The parameter ω(N, v) is useful to determine if the game (N, v) is near or far
from having a nonempty core. Intuitively, a game with a higher ω(N, v) than
another needs less costs to generate unblocked imputations, and so can be
considered closer to have a nonempty core. Moreover, the difference between
the associated values can be used to tell if two games are near or far from
each other. In what follows we formalize these ideas, imposing a metric-like
structure over the space of games.

Notice that assigning numbers ω(N, v) ∈ (0, 1] to any game (N, v) induces
an equivalence relation on Γ(N), the set of all cooperative games that have
N as their set of agents. The equivalence class corresponding to ω(N, v) = 1
is precisely the set of games with nonempty cores.

Definition 4.5: Define the equivalence relation R ⊆ Γ(N)×Γ(N) as follows:
For any two games (N, v1), (N, v2) ∈ Γ(N) it is true that ((N, v1), (N, v2)) ∈
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R if and only if ω(N, v1) = ω(N, v2). The equivalence classes in which Γ(N)
is partitioned are of the form

Γα(N) := {(N, v) ∈ Γ(N) | α = 1− ω(N, v)}

The definition of Γα(N) uses α = 1−ω(N, v) (as opposed to α = ω(N, v)) so
that the parameter α can be used to decide how far is a game from having a
nonempty core.

Definition 4.6: Define the function d : Γ(N)/R× Γ(N)/R −→ [0, 1] as fol-
lows: For any α1, α2 ∈ [0, 1], let d(Γα1(N),Γα2(N)) = |α1 − α2|.

Proposition 4.7: The function d : Γ(N)/R× Γ(N)/R −→ [0, 1] satisfies all
the properties of a distance function.

The proof of this proposition is straightforward. We have thus proposed a
well defined concept of distance between equivalence classes of games.

4.3 How Far is an Imputation from Being in the Core?

Suppose that an exogenous regulator wants to impose a particular impu-
tation x on the agents of the cooperative game. A question of economic
interest is: What is the minimum level of taxes needed so that no coalition
has incentives to deviate from x? The non-cooperative framework can also
be used to answer this question. Using tools that are very similar to those
used in Subsection 4.2, now we impose a metric-like structure over the space
of imputations of a given game.

Definition 4.8: (Analogous to Definition 2.7) Let (N, v) be a game with
G(N, v) and uA as previously defined. Let x be an imputation of (N, v).
Define

ω(x) = min
S
uA(

x

v(N)
, S).

Definition 4.9: (Analogous to the last part of Definition 3.3) Let (N, v) be
a game. Given any imputation x, define
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k̂(x) = min{k ≥ 1 | x ∈ 1

k
C(N, v̂k)}

Proposition 4.10: (Analogous to Proposition 3.4) For any imputation x,

ω(x) = 1

k̂(x)
.

Definition 4.11: (Analogous to Definition 4.5) Let γ(N, v) denote the set
of imputations of the game (N, v). Define the equivalence relation R′ ⊆
γ(N, v) × γ(N, v) as follows: For any two imputations x1, x2 ∈ γ(N, v), it
holds that (x1, x2) ∈ R′ if and only if ω(x1) = ω(x2). The equivalence classes
in which γ(N, v) is partitioned are of the form

γα(N, v) := {x ∈ γ(N, v) | α = 1− ω(x)}

Definition 4.12: (Analogous to Definition 4.6) Define the function d : γ(N, v)/R′×
γ(N, v)/R′ −→ [0, 1] as follows: For any α1, α2 ∈ [0, 1], let d(γα1(N, v), γα2(N, v)) =
|α1 − α2|.

Proposition 4.13: (Analogous to Proposition 4.7) The function d : γ(N, v)/R′×
γ(N, v)/R′ −→ [0, 1] satisfies all the properties of a distance function.

5 The Proportional Nucleolus

The purpose of this section is to provide criteria for choosing a particular
imputation from all those that belong to the extended core. This line of
research has already been explored when the question is how to pick one
among all core imputations, giving rise to the nucleolus. We can solve the
extended core selection problem by using a modified version of this solution
concept.

The original nucleolus chooses the particular payoff distribution that, in some
sense, minimizes protests of all coalitions. Given an imputation, different
coalitions will protest (or be satisfied) with their corresponding shares. One
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way to model the different level of this complaints is with the concept of
excess, i.e. how much more can a coalition generate by itself compared to
the share assigned to it.

Definition 5.1: Let S be a coalition and x an imputation in a given coopera-
tive game (N, v). Define the excess of coalition S with respect to imputation
x by

e(S, x) = v(S)−
∑
i∈S

xi

Select (from a given set of payoff vectors) all imputations that minimize the
magnitude of the protest of the unhappiest coalition. Among those, select all
imputations that minimize the magnitude of the protest of the second most
unhappy coalition. The set of imputations that is left after iterating this
process 2|N |− 1 times is the nucleolus. Intuitively, minimizing the maximum
protest implies, in some sense, minimizing all of the protests. No coalition
can be too unsatisfied, so the payoff vectors in the nucleolus are “fair” for all.

Definition 5.2: (Schmeidler [13]) Given a game (N, v) and a fixed imputa-
tion x, let θ(x) be the 2|N | − 1 dimensional vector that arranges all possible
excesses generated by x in decreasing order. If X is a nonempty set of im-
putations, define the nucleolus of X N (X) as the set

N (X) = {x ∈ X | θ(x) ≤L θ(y) ∀y ∈ X}

where ≤L denotes the lexicographic order. Finally, define the nucleolus of
the game (N, v) as the set N (N, v) equal to the nucleolus of the set of im-
putations of the game.11

Moreover, the nucleolus satisfies the following:

Proposition 5.3: (Schmeidler [13]) The nucleolus N (N, v) of a game satis-
fies:

11Notice that according to this definition the nucleolus of a game can contain imputations
that are not individually rational. This concept is also known as prenucleolus.
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• N (N, v) is nonempty.

• N (N, v) is single-valued.

• If the core C(N, v) is nonempty, N (N, v) belongs to the core.

The previous properties justify that, if an imputation needs to be selected
from the core, the nucleolus is a good choice. Now, we go back to the question
of how to choose from the set of imputations of the extended core. We claim
that changing the definition of excess in a suitable manner solves the problem.

To give intuition about how the excess definition needs to be changed we will
go back to the non-cooperative framework previously discussed. The next
proposition gives an interpretation of the behavior of the column player in
the associated game G(N, v). Indeed, it is optimal for agent B to choose
coalitions that suffer the biggest proportional loss given the payoff vector
generated by strategy profile chosen by player A.

Proposition 5.4: Given a cooperative game (N, v), let (σ∗, τ ∗) be a Nash
equilibrium of the associated game G(N, v). If τ ∗(S) > 0 then the vector x
defined by xi = σ∗i v(N) ∀i ∈ N satisfies

v(S)−
∑

i∈S xi

v(S)
≥

v(T )−
∑

i∈T xi

v(T )
∀T s.t. v(T ) > 0.

In this context, it is more important what percentage of the original worth
is lost than the actual magnitude of the loss. Suppose, for the sake of ex-
ample, a game (N, v) such that two coalitions S and T satisfy v(S) = 4 and
v(T ) = 100. If a payoff vector takes away two units from both coalitions,
according to the conventional notion of excess they will complain equally.
In contrast, according to the proportional excess, S protest is far more im-
portant because S is loosing fifty percent of its worth (compared with a two
percent loss of T .) To rigorously define a notion of proportional excess, we
will assume that for every coalition S we have that v(S) > 0 to avoid division
by zero.

Definition 5.5: Let S be a coalition of positive worth and x an imputation
in a given cooperative game (N, v). Define the proportional excess of
coalition S with respect to imputation x by
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ê(S, x) =

v(S)−
∑
i∈S

xi

v(S)
.

Definition 5.6: Given a game (N, v) and a fixed imputation x, let θ̂(x) be
the 2|N |−1 dimensional vector that arranges all possible proportional excesses
generated by x in decreasing order. If X is a nonempty set of imputations,
define the proportional nucleolus of X N̂ (X) as the set

N̂ (X) = {x ∈ X | θ̂(x) ≤L θ̂(y) ∀y ∈ X}

where ≤L denotes the lexicographic order. Finally, define the proportional
nucleolus of the game (N, v) as the set N̂ (N, v) equal to the proportional
nucleolus of the set of imputations of the game.

The proportional nucleolus is originally attributed to Young, Okada and
Hashimoto [21], and has been used in solving cost allocation problems (see
[9].) If the game is not assumed to be strictly positive, single-valuedness is
impossible to obtain. For non-negative games, a similar but multiple-valued
concept called the nucleon is described in [7]. This paper deals with the com-
putational issues of the iterative process used to trim down the original set
of imputations. With the strictly positive assumption on coalitions’ worths
we have:

Proposition 5.7: The proportional nucleolus N̂ (N, v) of a strictly positive
game satisfies:

• N̂ (N, v) is nonempty.

• N̂ (N, v) is single-valued.

• N̂ (N, v) always belongs to the extended core.

• If the core C(N, v) is nonempty, N̂ (N, v) belongs to the core.
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Thus, the proportional nucleolus is a sensible solution to the extended core
selection problem. This ability to select an imputation is another advantage
of the extended core as a solution concept.

6 Relation to the ε-core

The ε-core was first suggested by Shapley and Shubik in [15] and numerous
variants have been defined in subsequent research. Most of the literature12

has focused on obtaining asymptotic results when the number of agents is
big. In this section we compare the proportional tax interpretation of the
extended core with the lump-sum taxation that occurs in the ε-core. First,
we proceed to review the definitions of the two main variations of ε-core
starting with the more restrictive. My reference for these definitions is [8].

Definition 6.1: Given a cooperative game (N, v), the strong ε-core of
(N, v) is given by

{x ∈ RN |
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S)− ε ∀S ⊆ N}.

and the weak ε-core of (N, v) is given by

{x ∈ RN |
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S)− |S|ε ∀S ⊆ N}.

The (weak) inclusion chain formed by these concepts is given as follows:

Core ⊆Weak
ε

n
-core ⊆ Strong ε-core ⊆Weak ε-core

To show that (any of the variants of) the ε-core is essentially different from
the extended core, we examine the following game and check that it is im-
possible to approximate the extended core by set containment between two
arbitrarily close (weak or strong) ε-cores.

12e.g. see [20].
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Example: Consider the cooperative game defined as follows:

v(1) = 1 v(2) = 2 v(3) = 3

v(12) = 7 v(13) = 8 v(23) = 9

v(123) = 10

For this game, computing the value yields ω(N, v) = 5
6
. The extended core of

this game is then the singleton {(15
6
, 20

6
, 25

6
)}. On the other hand, consider the

strong ε-core. Of course, if ε is big enough, at some point the extended core
(and actually any imputation) will be included in the strong ε-core. Never-
theless, we claim that no nonempty (weak or strong) ε-core is contained in
the extended core of this game.

Indeed, the smallest ε for which there is a nonempty strong ε-core is equal
to 4

3
. Similarly, the smallest ε for which there is a nonempty weak ε-core is

equal to 2
3
. In either case, the strong or weak ε-core is equal to {(7

3
, 10

3
, 13

3
)}.

This means that any nonempty weak or strong ε-core will include (7
3
, 10

3
, 13

3
),

making it impossible that a nonempty ε-core is contained in the extended
core. Furthermore, if ε < 3

2
(respectively if ε < 3

4
) the strong ε-core (respec-

tively weak ε-core) is disjoint from the extended core.

In subsection 4.1 a taxing procedure to restore stability of efficient payoff
vectors was proposed. An important reason to prefer the extended core over
the ε-cores is that the latter may generate negative worths of coalitions after
taxation. In this example, to take away ε = 4

3
from v(1) = 1 would imply

to give this singleton coalition a worth of −1
3
. This problem will not occur

with the extended core because in that case the quantity taken away from a
coalition is always a fraction of its worth.

7 Open Questions

If the extended core is generalized to the case of games with nontransferable
utility, the concept may be applied to economic situations in which existence
of competitive equilibrium is not a given. Non-convexities, externalities, and
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public goods come to mind. It would be very interesting to compare the
method used by the extended core to restore efficiency with the solutions
already proposed by the literature. In particular, is there any relationship
between Pigouvian taxation and the kind of taxes we have studied?

A vast literature13 has studied the branch of the Nash Program that refers
to the non-cooperative implementation of the core. As a natural extension of
the core, there is a good chance that such implementations can be modified
for the extended core.

Two important objections have been made against the concept of the core.
The first one is that, although it has been axiomatized, usually the set of
axioms only refers to the subset of games that have a nonempty core (see
[12].) The second objection is that the core assumes that the grand coalition
always forms. We foresee the possibility of making one good thing out of two
bad ones. From my point of view, the problem lies in requiring a Pareto op-
timality axiom (this is equivalent to the second objection) in games with an
empty core. A concept that besides payoff vectors explains coalition forma-
tion can deal with both objections simultaneously. The present work might
play a role in this project by relating optimal strategies for player B (in the
associated game) with those coalitions that are most likely to form.

13For a survey on the subject, see [17].
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Appendix: Proofs

Proposition 2.8: ω(N, v) ≤ 1 for any (N, v).

Proof: If (σ∗, τ ∗) is a Nash equilibrium of G(N, v) then

ω(N, v) = uA(σ∗, τ ∗) ≤ uA(σ∗, N) = 1.

Q.E.D.

Proposition 3.1: ω(N, v) = 1 implies that C(N, v) 6= ∅.

Proof: Let (σ∗, τ ∗) be any Nash equilibrium of G(N, v). We show that the
imputation defined by x∗ = v(N)σ∗ belongs to C(v,N).14 Notice that for
any S ⊆ N such that v(S) > 0, it is true that15

1 = uA(σ∗, τ ∗) ≤ uA(σ∗, S) =
∑
i

σ∗(i)χS(i)
v(N)

v(S)
.

Then

x∗(S) =
∑
i∈N

σ∗(i)χS(i)v(N) ≥ v(S),

so that x∗ ∈ C(N, v). Q.E.D.

Proposition 3.2: C(N, v) 6= ∅ implies that ω(N, v) = 1.

Proof: Let x∗ ∈ C(N, v) and (σ∗, τ ∗) be a Nash equilibrium of G(N, v). We
prove that ( x∗

v(N)
, τ ∗) is also a Nash equilibrium of G(N, v) and that the ex-

pected utility for player A for this Nash strategy profile is equal to one.

As x∗ ∈ C(N, v), then for any S ⊆ N ,

14x∗ is defined by distributing the worth of the grand coalition according to the weights
given by player A to the different strategies.

15In what follows χS denotes the indicator function of the set S.
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x∗(S) ≥ v(S)∑
i∈N

χS(i)x∗i ≥ v(S)

∑
i∈N

χS(i)
x∗i
v(N)

· v(N)

v(S)
≥ 1

and uA(
x∗

v(N)
, S) ≥ 1,

but this implies that

ω(N, v) = uA(σ∗, τ ∗) ≥ uA(
x∗

v(N)
, τ ∗) ≥ 1.

Now, Proposition 2.8 implies ω(N, v) ≤ 1, so that the previous inequalities
are binding. Finally, as uA( x∗

v(N)
, τ ∗) = 1, ( x∗

v(N)
, τ ∗) is a Nash equilibrium of

G(N, v). Q.E.D.

Lemma 3.5: (Used to prove Proposition 3.4) For any k ≥ 1, ω(N, v̂k) =
min{1, kω(N, v)}.

Proof: Denote the expected payoff functions of the game G(N, v̂k) by ûA
and ûB. Using the Min-Max Theorem, the following holds:

min{1, kω(N, v)} = min{1, kmin
τ

max
σ

uA(σ, τ)}

= min{1, k min
τ(N)=0

max
σ

uA(σ, τ)}

= min{1, min
τ(N)=0

max
σ

kuA(σ, τ)}

= min{1, min
τ(N)=0

max
σ

ûA(σ, τ)}

= min{ min
τ(N)>0

max
σ

ûA(σ, τ), min
τ(N)=0

max
σ

ûA(σ, τ)}

= min
τ

max
σ

ûA(σ, τ)

= ω(N, v̂k)
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Q.E.D.

Proposition 3.4: For any game (N, v), ω(N, v) = 1

k̂(N,v)
.

Proof: Using the previous propositions and the Lemma 3.5,

k̂(N, v) = min{k ≥ 1 | C(N, v̂k) 6= ∅}
= min{k ≥ 1 | ω(N, v̂k) = 1}
= min{k ≥ 1 | min{1, kω(N, v)} = 1}
= min{k ≥ 1 | kω(N, v) ≥ 1}

=
1

ω(N, v)

which clearly implies the result. Q.E.D.

Proposition 4.2: The extended core is nonempty for any game (N, v).

Proof: Non-emptiness follows directly from the Min-Max Theorem. Q.E.D.

Proposition 4.3: For any game (N, v), EC(N, v) = ω(N, v)C(N, v̂k̂).

Proof: Let (σ∗, τ ∗) be a Nash equilibrium of G(N, v). Assume that τ ∗(N) =
0; otherwise C(N, v) 6= ∅ and the result follows. Denote the expected payoff
function of player A in G(N, v̂ 1

w
) and (N, v) by ûA and uA respectively. Let

x be an imputation of (N, v). Then
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x ∈ EC(N, v) ⇐⇒ uA(
x

v(N)
, τ ∗) = ω(N, v)

⇐⇒ 1

ω(N, v)
uA(

x

v(N)
, τ ∗) = 1

⇐⇒ ûA(
x

v(N)
, τ ∗) = 1

⇐⇒ v̂k̂(N) · x

v(N)
∈ C(N, v̂k̂)

⇐⇒ k̂v(N) · x

v(N)
∈ C(N, v̂k̂)

⇐⇒ x ∈ ω(N, v)C(N, v̂k̂).

Q.E.D.

Proposition 4.4: The game that results from multiplying the worth of all
proper coalitions by ω(N, v) has a nonempty core and it coincides with the
extended core of the original game.

Proof: Start with the k̂-expanded game (which has a nonempty core) and
multiply the worth of every coalition by ω(N, v). The new game, which co-
incides with the game that results after taxing proper coalitions, must still
have a nonempty core. Proposition 4.3 ensures that the core of the taxed
game is exactly the extended core. Q.E.D.

Proposition 4.7: The function D : Γ(N)/R × Γ(N)/R −→ [0, 1] satisfies
all the properties of a distance.

Proof: The distance properties of D are directly inherited from the distance
properties of the Euclidean distance on [0, 1]. Q.E.D.

Proposition 4.10: (Analogous to Proposition 3.4) For any imputation x ∈
γ(N, v), ω(x) = 1

k̂(x)
.

Proof: Let x ∈ γ(N, v). The definition of k̂(x) implies that:
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∑
i∈S

xi ≥
1

k̂(x)
v(S) ∀S $ N

1

v(S)

∑
i∈S

xi ≥
1

k̂(x)
∀S $ N

uA(
x

v(N)
, S) ≥ 1

k̂(x)
∀S $ N

min
S
uA(

x

v(N)
, S) ≥ 1

k̂(x)

and the last inequality has to be binding, otherwise k̂(x) would not be min-
imal. Q.E.D.

Proposition 4.13: (Analogous to Proposition 4.7) The function d : γ(N)/R×
γ(N)/R −→ [0, 1] satisfies all the properties of a distance.

Proof: The distance properties of d are directly inherited from the distance
properties of the Euclidean distance on [0, 1]. Q.E.D.

Proposition 5.4: Given a cooperative game (N, v), let (σ∗, τ ∗) be a Nash
equilibrium of the associated game G(N, v). If τ ∗(S) > 0 then the vector x
defined by xi = σ∗i v(N) ∀i ∈ N satisfies

v(S)−
∑

i∈S xi

v(S)
≥

v(T )−
∑

i∈T xi

v(T )
∀T s.t. v(T ) > 0.

Proof: If τ ∗(S) > 0 then for any coalition T that has positive worth

uA(σ∗, S) ≤ uA(σ∗, T )∑
i∈S

σ∗i
v(N)

v(S)
≤

∑
i∈T

σ∗i
v(N)

v(T )∑
i∈S xi

v(S)
≤

∑
i∈T xi

v(T )

v(S)−
∑

i∈S xi

v(S)
≥

v(T )−
∑

i∈T xi

v(T )
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as we wanted. Q.E.D.

Proposition 5.4: The nucleolus N (N, v) of a game satisfies:

• N (N, v) is nonempty.

• N (N, v) is single-valued.

• If the core C(N, v) is nonempty, N (N, v) belongs to the core.

Proof: See Schmeidler [13].

Proposition 5.7: The proportional nucleolus N̂ (N, v) of a game satisfies:

• N̂ (N, v) is nonempty.

• N̂ (N, v) is single-valued.

• N̂ (N, v) always belongs to the extended core.

Proof: The fact that the game is positive implies that the proportional excess
function ê(S, x) is continuous on both arguments. This allows the arguments
used by Schmeidler to be applicable in this setting.

For the last claim, notice that the proportional nucleolus N̂ (N, v) is a solution
to the following equivalent problems:

min
x

max
S

ê(S, x)

max
x

min
S
−ê(S, x)

max
x

min
S

∑
i∈S xi

v(S)

max
σ

min
S

∑
i∈S

σi
v(N)

v(S)

max
σ

min
S
uA(σ, S)

max
σ

min
τ
uA(σ, τ)
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so that player A is optimizing when his strategy profile is based on the propor-
tions in which the nucleolus distributes v(N). This is precisely the definition
of belonging to the extended core. Q.E.D.

31



References

[1] Aumann R. (1989): Lectures on Game Theory. Boulder, CO: West-
view Press.

[2] Aumann R. J. and Maschler M. (1964): “ The Bargaining Set
for Cooperative Games,” in Advances in Game Theory. Edited by M.
Dresher, L.S. Shapley and A.W. Tucker. Princeton, NJ: Princeton
University Press, 443–476.

[3] Bondareva O. (1963): “Some Applications of Linear Programming
Methods to the Theory of Cooperative Games,” SIAM Journal on Prob-
lemy Kibernetiki, vol 10, 119–139.

[4] Davis M. and Maschler M. (1965): “The Kernel of a Cooperative
Game,” Naval Research Logistics Quarterly, vol 12, 223–259.

[5] Faulhaber G. (1975): “Cross-Subsidization: Pricing in Public En-
terprises,” American Economic Review, vol 65, 5, 966–977.

[6] Faigle U. and Kern W. (1993): “On Some Approximately Balanced
Combinatorial Cooperative Games,” ZOR — Mathematical Methods of
Operations Research, vol 38, 2, 141–152.

[7] Faigle U., Kern W., Fekete S. P., and Hochstattler W.

(1998): “The Nucleon of Cooperative Games and an Algorithm for
Matching Games,” Mathematical Programming, vol 83, 2, 195–211.

[8] Kannai Y. (1992): “The Core and Balancedness,” in Handbook of
Game Theory with Economic Applications, vol 1. New York, NY: North
Holland, 355–395.

[9] Lemaire J. (1992): “An Application of Game Theory: Cost Alloca-
tion,” in ASTIN Bulletin, vol 14, 61–81.

[10] Maschler M. (1992): “The Bargaining Set, Kernel, and Nucleolus”
in Handbook of Game Theory with Economic Applications, vol 1. New
York, NY: North Holland, 591–670.

32



[11] Moulin H. (1995): “Une évaluation de la théorie des jeux coopératifs,”
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