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Abstract: This paper presents the likelihood ratio (LR) test for the number

of cointegrating and multi-cointegrating relations in the I(2) vector autoregressive

model. It is shown that the asymptotic distribution of the LR test for the (multi-)

cointegration ranks is identical to the asymptotic distribution of the much applied

test statistic based on the Two-Step procedure in Johansen (1995), Paruolo (1996),

and Rahbek, Kongsted, and Jørgensen (1999). By construction the LR test statistic

is smaller than the non-LR test statistic from the Two-Step procedure as the latter

ignores some of the restrictions concerning the hypothesis of I(2), and application

of the LR test may change rank selection in empirical work. Based on a study of

existing empirical applications and related Monte Carlo simulations we conclude

that the LR test has much better size properties when compared to the Two-Step

based test. Overall, we propose to use of the LR test for rank determination in I(2)

analysis as the Two-Step based statistic was developed as a feasible approximation

to the then unobtainable LR test.

Keywords: Vector Autoregression, Error Correction Model, Cointegration, I(2),

Likelihood Ratio Test, Monte Carlo, Reduced Rank, Rank Testing.

JEL Classification: C32.

1 Introduction and Summary

For many OECD countries for the post-war period, the first difference of nominal vari-

ables, e.g. inflation rates or money growth, seem to behave as unit root processes, imply-

ing that the levels of the nominal variables are integrated of second order, I(2). Johansen

(1992) shows that a model for I(2) variables can be parameterized as a vector autoregres-

sive (VAR) model with two reduced rank restrictions imposed, see also Johansen (1995),

Discussions with Søren Johansen and Hans Christian Kongsted are gratefully acknowledged.
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Paruolo (1996), Johansen (1997), Rahbek, Kongsted, and Jørgensen (1999), Paruolo and

Rahbek (1999), Paruolo (2000) and the survey by Haldrup (1998). Several applications

have appeared in the empirical literature on e.g.money demand and open economy price

determination, see inter alia Juselius (1998), Juselius (1999), Diamandis, Georgoutsos,

and Kouretas (2000), Banerjee, Cockerell, and Russell (2001), Banerjee and Russell (2001),

Fliess and MacDonald (2001), Nielsen (2002) and Kongsted (2003).

In this paper we present the likelihood ratio (LR) test for the (multi-) cointegration

ranks in the I(2) model and derive the asymptotic distribution. Inference on the cointe-

gration ranks (r, s) is central in empirical applications of the multivariate p−dimensional
I(2) model as it determines the number of multi-cointegrating stationary relations, r, and

the number of I(1) trends, s. The remaining dimension, p− r − s, equals the number of

common I(2) trends in the system.

Existing literature up to now has applied alone the non-LR test based on the sum of two

sets of canonical correlations from the Two-Step estimation procedure in I(2) VARmodels,

see Johansen (1995), Paruolo (1996), and Rahbek, Kongsted, and Jørgensen (1999). While

the Two-Step procedure is possible to implement as a sequential application of reduced

rank regression (RRR) well-known from I(1) analysis, it does not make use of the rich

structure of the I(2) parameterization. In particular, it ignores a set of restrictions in the

first step of the procedure and as a result the value of the LR test for finite samples is in

general smaller than the corresponding Two-Step based test. Regarding asymptotics, we

find that the asymptotic distribution of the LR test is identical to the one of the Two-

Step based test, which implies that existing critical values published for the Two-Step

test apply to the LR test as well. Based on a study of existing empirical examples in the

literature and related Monte Carlo simulations we examine some finite sample properties

of the two tests. First of all, we find that the size properties of the LR test are excellent.

Secondly, for ranks (r, s), where r > 0 or p− r − s > 0, the Two-Step statistic is always

larger than the LR statistic, which increases rejection frequencies. This shows in some of

the examples where the difference between the LR and the Two-Step statistics is quite

large. Overall we propose that the LR test should be used rather than the Two-Step rank

test, not only because of the better size properties, but also because the Two-Step based

statistic was developed as an approximation to the then unobtainable LR test.

Maximum likelihood (ML) estimation of the parameters in the I(2) model with known

ranks, (r, s), have been proposed by Johansen (1997) and Boswijk (2000) based on different

parameterizations. We base our derivations on the parametrization in Johansen (1997).

Ox code for calculating the LR test for the (multi-) cointegration ranks can be obtained

from the authors. Note also that ML estimation of the I(2) model is implemented in the

new version of CATS in RATS and in the Matlab program me2 by Omtzigt.

The rest of the paper is organized as follows: Section 2 presents the I(2) model and

2



the used notation. Section 3 presents the LR and the Two-Step test statistics, and the

asymptotic distribution of the LR test is then derived in Section 4. Section 5 illustrates

some small sample properties of the rank tests based on an empirical example and a Monte

Carlo simulation.

Throughout the paper use is made of the following notation: for any p × r matrix α

of rank r, r < p, let α⊥ indicate a p× (p− r) matrix whose columns form a basis of the

orthogonal complement of span(α). Hence α⊥ = 0 if r = p and α⊥ = Ip if α = 0. Define

also α = α(α0α)−1 and let Pα = αα0 = αα0 denote the orthogonal projection matrix

onto span(α). Finally, the symbols
D→, P→ and

D
= are used to indicate weak convergence,

convergence in probability and equality in distribution respectively.

2 Model and Representation

This section introduces the notation used throughout and briefly reviews the I(2) VAR

model.

2.1 The I(2) Model

Consider the p−dimensional vector autoregressive model of order k as given by,

Xt = Π1Xt−1 + . . .+ΠkXt−k + �t, t = 1, 2, ..., T,

or, in a parameterization convenient for the presentation of I(2) analysis,

∆2Xt = ΠXt−1 − Γ∆Xt−1 +
k−2X
i=1

Ψi∆
2Xt−i + �t. (1)

Here the p × p dimensional matrices are related by the identities Π =
Pk

i=1Πi − I,

Γ = I +
Pk

i=2 (i− 1)Πi, and Ψj =
Pk

i=j+2 (i− j − 1)Πi. Finally, �t is a p-dimensional iid

N(0,Ω) sequence with Ω positive definite, and the initial values X−k+1, ...,X0 are fixed.

The I(2) model, denoted H(r, s), is then defined by two reduced rank restrictions given

by,

Π = αβ0, (2)

α0⊥Γβ⊥ = ξη0, (3)

where α and β are p × r matrices and ξ and η are (p− r) × s matrices with r ≤ p

and s ≤ p − r. Note, that (3) alternatively may be stated as Pα⊥ΓPβ⊥ = α1β
0
1, where

α1 = α⊥ξ and β1 = β⊥η are p× s matrices, where by definition span(α1) ⊂ span(α⊥) and
span(β1) ⊂ span(β⊥).
We use the notation H(r) = H(r, p− r) to denote I(1) models, in which case α1 and

β1 are p× (p− r) matrices, and H(p) denotes the unrestricted VAR.
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2.2 Representation

Corresponding to the reduced ranks of Π and α0⊥Γβ⊥ in (2) and (3), consider the as-

sumption that the characteristic polynomial, A(z) = Ip − Π1z − . . . − Πkz
k, has exactly

2(p − r) − s roots at z = 1 and the remaining roots outside the unit circle. It relates

to H(r, s) as the 2(p − r)− s unit roots are equivalent to the reduced rank r < p in (2)

and the reduced rank s < p− r in (3). When this assumption holds, Xt under H(r, s) is

referred to as satisfying H0(r, s).

Under H0(r, s), Xt in (1) is an I(2) process with the representation,

Xt = C2

tX
s=1

sX
i=1

�i + C1

tX
i=1

�i + γ1 + γ2t+ X̃t, (4)

where, see Johansen (1992),

C2 = β2(α
0
2Θβ2)

−1α02, β0C1 = ᾱ0ΓC2, β01C1 = ᾱ01(I −ΘC2), (5)

and X̃t is a stationary I(0) process. Here Θ = Γβα0Γ+ Ip −
Pk−2

i=1 Ψi, α2 = (α, α1)⊥, and

β2 = (β, β1)⊥ such that α
0
2Θβ2 has full rank p − r − s under H0(r, s). The coefficients

γ1 and γ2 depend on the initial values of the process and satisfy (β, β1)
0γ2 = 0, and

β0γ1−δβ02γ2 = 0, where δ = ᾱ0Γβ̄2. Also note that by definition (α, α1, α2) and (β, β1, β2)

are square non-singular matrices with orthogonal blocks, and that β2 is a function of

(β, β1).

It follows from (4) and (5) that (β, β1)
0Xt is I(1) as (β, β1)

0C2 = 0, whereas the

(p− r − s) linear combinations β02Xt are I(2). Moreover, the r linear combinations

β0Xt − δβ02∆Xt (6)

are stationary, i.e.multi-cointegrating. Note also that since β0Xt−δβ02∆Xt and (β, β1)
0∆Xt

are stationary, also

β0Xt − ᾱ0Γ∆Xt = β0Xt − ᾱ0Γ(Pβ,β1 + Pβ2)∆Xt (7)

is a stationary process.

3 Estimation and Rank Test Statistics

This section presents the LR test for cointegration ranks in the I(2) VAR model. The

presentation is based on the ML estimation for known ranks (r, s) in the parametrization

of Johansen (1997). Also the conventionally applied Two-Step rank test based on the

estimator of Johansen (1995) is reviewed. Finally implementation of rank determination

based on sequential testing is briefly discussed.
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3.1 Likelihood Ratio Test

In order to maximize the likelihood function for known ranks (r, s) under the hypothesis

H(r, s), Johansen (1997) proposes a reparameterization of the model based on the reduced

ranks in (2) and (3) as well as the multi-cointegration term in (7). The parametrization

is given by,

∆2Xt = α[ρ0τ 0Xt−1 + ψ0∆Xt−1] + Ωα⊥(α
0
⊥Ωα⊥)

−1κ0τ 0∆Xt−1

+
k−2X
i=1

Ψi∆
2Xt−i + �t, (8)

where α (p× r), ρ ((r+ s)× r), τ (p× (r+ s)), ψ (p× r), κ ((r+ s)× (p− r)), Ψi (p× p),

i = 1, ..., k − 2, and Ω (p × p) all are freely varying parameters. The parameters in the

previous formulation in (1)-(3) can be derived from the new parameters by the identities

τ = (β, β1), β = τρ, ψ0 = −(α0Ω−1α)−1α0Ω−1Γ, and κ0 = −α0⊥Γ(β, β1) = −(α0⊥Γβ, ξ),
using the projection identity,

α(α0Ω−1α)−1α0Ω−1 + Ωα⊥(α
0
⊥Ωα⊥)

−1α0⊥ = Ip.

No closed form solution for the ML estimators of the parameters in (8) exists, but estimates

can be obtained through an iterative algorithm that switches between two steps: For fixed

τ , the parameters α⊥ and α can be obtained by solving an eigenvalue problem and the

remaining parameters can be found from regression. For fixed values of these parameters,

τ can be estimated by generalized least squares. Convergence to the global maximum of

the likelihood function is not guaranteed, but the value of the likelihood function increases

in each iteration. In our implementation we use the Two-Step estimates, presented below,

as starting values for the ML iterations.

The LR test for H(r, s) against the unrestricted alternative, H(p), is given by

SLR
r,s = −2 logQ (H(r, s) | H(p)) = −T log

¯̄̄
Ω̆−1Ω̂

¯̄̄
, (9)

where Ω̆ and Ω̂ denote the covariance matrices estimated under H(r, s) and H(p) respec-

tively.

3.2 Two-Step Rank Test

The Two-Step estimator is based on the parameterization in (1). In the first step, alone

the reduced rank restriction of Π in (2) is imposed which can stated as the equation,

∆2Xt = αβ0Xt−1 − Γ∆Xt−1 +
k−2X
i=1

Ψi∆
2Xt−i + �t. (10)
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Ignoring the second restriction (3), the parameters α and β are estimated by RRR as

applied in I(1) models. The test for reduced rank of Π is the familiar trace test of H(r)

in H(p) :

Qr = −T
pX

i=r+1

log (1− λi) ,

where 1 ≥ λ1 ≥ ... ≥ λp ≥ 0 are the eigenvalues from the corresponding RRR, see

Johansen (1996, Chapter 6).

The second step is conditional on r and the estimated α and β from the first step. Given

these, the model is decomposed into a marginal model for α0⊥∆
2Xt and a conditional model

for α0∆2Xt given α
0
⊥∆

2Xt. The restriction in (3) concerns alone the marginal equation as

given by,

α0⊥∆
2Xt = −ξη0β

0
⊥∆Xt−1 − α0⊥Γββ

0∆Xt−1 +
k−2X
i=1

α0⊥Ψi∆
2Xt−i + α0⊥�t,

for which the parameters ξ and η are estimated by RRR. Conditional on r, the test

statistic for reduced rank, s, of α0⊥Γβ⊥, can be written as

Qr,s = −T
p−rX

i=s+1

log (1− ζi) ,

where 1 ≥ ζ1 ≥ ... ≥ ζp−r ≥ 0 are the second step eigenvalues. Finally, the Two-Step test
statistic proposed for the joint hypothesis H(r, s) against the unrestricted model H(p) is

given by,

S2Sr,s = Qr +Qr,s.

3.3 Rank Determination

Different values of the cointegration ranks define the sequence of partially nested models

illustrated in Table 1 for the p = 4 dimensional case.

In the determination of the cointegration ranks in empirical applications, economic

theory may provide some guidance. With a particular model suggested by theory, the

corresponding hypothesis, H(r, s), can be tested directly against H(p). Alternatively, or

if little is known a priori, an estimate (br, bs) of the ranks can be obtained by a sequential
application of the rank tests. The idea is to start testing the most restricted model,

H(0, 0), and in case of rejection to proceed left-to-right and top-to-bottom in Table 1.

The estimator can be written as

(br, bs) = {(r, s) | Sr,s ≤ cr,s;

Sr0,s0 > cr0,s0 for the indices (r0 < r, s0 ≤ p− r0) and (r0 = r, s0 < s)},

where Sr,s denote either of the test statistics, and cr,s their asymptotic critical values,

see the next section. The estimator (br, bs) will select the correct ranks with a limiting
6



r Models

0 H(0, 0) ⊂ H(0, 1) ⊂ H(0, 2) ⊂ H(0, 3) ⊂ H(0, 4) = H(0)

∩
1 H(1, 0) ⊂ H(1, 1) ⊂ H(1, 2) ⊂ H(1, 3) = H(1)

∩
2 H(2, 0) ⊂ H(2, 1) ⊂ H(2, 2) = H(2)

∩
3 H(3, 0) ⊂ H(3, 1) = H(3)

∩
4 H(4, 0) = H(4)

p− r − s 4 3 2 1 0

Table 1: Partial nesting structure for p=4.

probability (1− π), where π is the size of each test in the sequence as discussed in Johansen

(1995).

4 Asymptotic Distribution of the LR Test

In this section the asymptotic distribution is given for the LR test of cointegration ranks

in the I(2) model H(r, s). We also discuss the inclusion of deterministic terms such as

linear trends in the analysis. To present the limiting distributions, introduce the following

notation: for two stochastic processes Xu and Yu on the unit interval u ∈ [0, 1], define the
process Xu corrected for Yu by

Xu|Y = Xu −
µZ 1

0

XsY
0
sds

¶µZ 1

0

YsY
0
sds

¶−1
Yu.

4.1 No Deterministic Components

Consider the hypothesis H(r, s) against the unrestricted H(p). We state the asymptotic

distribution of the LR statistic in (9).

Theorem 1 Under H0(r, s), then as T →∞,

SLR
r,s = −2 logQ(H(r, s)|H(p))

D→ Q∞r +Q∞r,s,

where

Q∞r = tr

(Z 1

0

dWuG
0
u

µZ 1

0

GuG
0
udu

¶−1 Z 1

0

GudW
0
u

)

Q∞r,s = tr

(Z 1

0

dW2uW
0
2u

µZ 1

0

W2uW
0
2udu

¶−1 Z 1

0

W2udW
0
2u

)
.
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Here Wu = (W
0
1u,W

0
2u)

0 is a (p − r) dimensional standard Brownian motion on the unit

interval, u ∈ [0, 1], with W1u of dimension s and W2u of dimension p−r−s. Furthermore,

Gu =

Ã
W1uR u
0
W2vdv

¯̄̄̄
¯W2

!
.

The proof is given in the appendix. Note, that the asymptotic distribution of the LR test

is identical to the asymptotic distribution of the Two-Step rank test derived in Johansen

(1995, Theorem 7). In particular, the two components, Q∞r and Q
∞
r,s, have the asymptotic

distributions of the statistics from the first and second step of the Two-Step rank test, Qr

and Qr,s. This implies that the critical values for the Two-Step rank test can be applied

to the LR test.

4.2 Linear Trends and Deterministics

In empirical applications it is often important to include deterministic linear trends and

a constant level. Rahbek, Kongsted, and Jørgensen (1999) propose a specification which

allows deterministic linear trends and a constant level in all components and linear com-

binations of the process. This includes the multi-cointegrating relations (6), and avoids

at the same time the possibility of quadratic trends. An important feature of the model,

denoted H∗(r, s) in the following, is that the LR test as well as the Two-Step test, are

asymptotically similar with respect to the parameters of the deterministic terms, see also

Nielsen and Rahbek (2000) for a discussion of the implication of similarity.

In terms of the parameterization in (8), H∗(r, s) can be represented as:

∆2Xt = α[ρ0τ ∗0X∗
t−1 + ψ∗0∆X∗

t−1] + Ωα⊥(α
0
⊥Ωα⊥)

−1κ0τ ∗0∆X∗
t−1

+
k−2X
i=1

Ψi∆
2Xt−i + �t, (11)

where τ ∗ = (τ 0, τ 01)
0 ((p + 1)× (r + s)), ψ∗ = (ψ0, ψ01)

0
((p + 1)× r), and, finally, X∗

t−1 =

(X 0
t−1, t)

0 is p+1 dimensional. Like in Section 2.2, the model with exactly 2(p−r)−s unit
roots and the remaining roots with modulus larger than one, is referred to as H∗

0(r, s).

Under H∗
0 (r, s) the process Xt in (11) has the representation in (4) but with γ1 and γ2

being functions of τ 1 and ψ1 in addition to initial values, see Rahbek, Kongsted, and

Jørgensen (1999). As a result, Xt is as emphasized an I(2) process with linear trends in

all linear combinations of the process, including the multi-cointegrating ones.

The result in Theorem 1 is extended to the model H∗(r, s) in Theorem 2. As the

proof mimics the proof of Theorem 1, we state the result without proof, simply noting

that the asymptotic distributions of the ML estimators are identical to the asymptotic

distributions of the Two-Step estimators in Rahbek, Kongsted, and Jørgensen (1999).
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With respect to the Two-Step based analysis, H∗(r, s) in terms of the parametrization

in (1), corresponds to restricting a constant and linear regressor, µ1 + µ2t, as follows:

µ2 = αb01 and α0⊥µ1 = −α0⊥Γβb01 − ξη01, (12)

where b1 is 1× r and η1 is 1× s. Each restriction is simple to impose in the two separate

steps, see Rahbek, Kongsted, and Jørgensen (1999) for further details.

Theorem 2 Under H∗
0(r, s), then as T →∞,

−2 logQ(H∗(r, s)|H∗(p))
D→ Q∗∞r +Q∗∞r,s ,

where

Q∗∞r = tr

(Z 1

0

dWuG
0
1u

µZ 1

0

G1uG
0
1udu

¶−1 Z 1

0

G1udW
0
u

)

Q∗∞r,s = tr

(Z 1

0

dW2uG
0
2u

µZ 1

0

G2uG
0
2udu

¶−1 Z 1

0

G2udW
0
2u

)
.

Here Wu = (W
0
1u,W

0
2u)

0 is a (p − r) dimensional standard Brownian motion on the unit

interval, u ∈ [0, 1], with W1u of dimension s and W2u of dimension p−r−s. Furthermore,

G1u =

⎛⎜⎝ W1uR u
0
W2vdv

u

¯̄̄̄
¯̄̄G2

⎞⎟⎠ and G2u =

Ã
W2u

1

!
.

Critical values are given in inter alia Rahbek, Kongsted, and Jørgensen (1999) and in

Doornik (1998).

The results in Theorems 1 and 2 can be extended to further classes of I(2) models

considered in the literature. A leading example is the model which allows for a constant

level in all linear combinations of the process, including the multi-cointegrating, where

the limiting distribution of the LR test for cointegration ranks is the same as reported in

Theorem 2, but with G1 and G2 replaced by,⎛⎜⎝ W1uR u
0
W2vdv

1

¯̄̄̄
¯̄̄W2

⎞⎟⎠ and W2u, (13)

respectively. This model can be represented as in (11), with X∗
t−1 = (X

0
t−1, 1)

0 and ∆X∗
t =

∆Xt corresponding to (13). Models with this and different sophisticated specifications of

trend and level parameters are considered for the Two-Step analysis in Paruolo (1996).
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5 Finite Sample Properties

From the previous section it is clear that asymptotically the LR and the Two-Step tests are

identical and this section explores their finite sample difference. Initially we characterize

the relation between the LR statistic and the Two-Step based statistic. Next, we then

discuss some main points based on a detailed study of existing empirical applications and

corresponding Monte Carlo simulations. For illustration, details of one of the empirical

applications are given.

5.1 The LR and Two-Step Statistic in Finite Samples

The asymptotic equivalence of the LR test and the Two-Step rank test does not hold for

finite samples in general. The relation between the test statistics is stated in the following

proposition:

Proposition 1 Consider the hypothesis H(r, s) in H(p). In finite samples,

SLR
r,s ≤ S2Sr,s .

Equality holds if (p− r − s) r = 0.

Proof: Note first that under the alternative, H(p), estimation is identical for the ML

and the Two-Step analysis. However, under the null, H(r, s), the Two-Step procedure

does not maximize the likelihood function. One way to see this is by comparing (10) and

(8) to obtain

Γ = −αψ0 − Ωα⊥ (α
0
⊥Ωα⊥)

−1
κ0τ 0

= α
¡
α0Ω−1α

¢−1
α0Ω−1Γ+ Ωα⊥ (α

0
⊥Ωα⊥)

−1
α0⊥Γββ

0 + Ωα⊥ (α
0
⊥Ωα⊥)

−1
ξη0β

0
⊥.

The first step of the Two-Step procedure ignores the restriction imposed on the last term,

and instead of the 2s (p− r) − s2 free parameters in ξη0 the Two-Step procedure allows

for (p− r)2 parameters. In other words, the estimators of α and β from the first step are

not the MLEs in general. Hence, maximizing the likelihood function in the second step

with α and β fixed at their first step non-MLE values, will result in a smaller value when

compared to the ML estimation. Equivalently, SLR
r,s ≤ S2Sr,s holds. In two special cases,

the Two-Step procedure maximizes the likelihood function under H(r, s). First in I(1)

models, where s = p − r and α0⊥Γβ⊥ is non-singular. And secondly if r = 0 where the

second step of the Two-Step procedure is conditional on α = β = 0.

Note, that the magnitude of the difference depends on the number of redundant parame-

ters as well as the sample correlation between the terms in (10) and the redundant terms.
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The number of additional parameters is largest for models on the diagonal of Table 1,

where s = 0, while the LR and the Two-Step statistics coincide for model located in

the first row and last column of Table 1. Also note that in the model H∗(r, s), the sec-

ond restriction in (12) is also ignored in the first step of the Two-Step procedure, which

introduces an additional distortion.

Proposition 1 implies that rejection frequencies for hypothesis H(r, s) in H(p), where

r(p− r− s) > 0, are lower for the LR test than for the Two-Step test. As a consequence

the Type I error probability is lower for the LR test, while the Type II error probabilities,

for test of more restricted models, are potentially larger.

5.2 Empirical Study and Monte Carlo

To analyze small sample properties and compare the LR and Two-Step tests, rank deter-

mination in a number of published I(2) applications in the literature was reconsidered.

In each case we revisited the rank determination based on the original data using both

types of statistics. Furthermore, Monte Carlo simulations were made with the estimated

models as data generating processes (DGPs), that is estimated parameter values were

used in the DGP definitions. This way the results from the Monte Carlo studies have

empirical relevance. Specifically we considered the Danish import price determination

in Kongsted (2003), the domestic pricing behavior in Banerjee, Cockerell, and Russell

(2001), the money demand analyzed by I(2) VAR models in inter alia Johansen (1992)

and Rahbek, Kongsted, and Jørgensen (1999), and the Danish export pricing behavior in

Nielsen (2002). In addition, we also constructed simulations based on DGPs to cover a

broader range of the parameter space of the I(2) model.

The main result emerging from the studies is that the size properties of the LR test

are clearly preferable to the Two-Step test, and the rejection frequency of the LR test for

a true null hypothesis is often close to the nominal size of the test. The Two-Step test,

on the other hand, is often severely size distorted, with rejection frequencies far from the

nominal size. This is particular the case if s = 0 in the true model. In some cases the

LR test still over-rejects true hypotheses, as it is also known from the LR test in I(1)

models. If the size distortion of the LR test is deemed important, a Bartlett correction of

the likelihood ratio may be developed along the lines of Johansen (2002).

For presentation of the main points we report results only for the Danish import price

determination, while the remaining results can be obtained from the authors.

5.2.1 Empirical Illustration

We revisit the rank determination based on the original import price data in Kong-

sted (2003) and then use the estimated parameters to define DGPs for a small Monte

11



Carlo study. Data consists of import prices, domestic prices, a measure of competing

prices, and an interest rate. Kongsted (2003) estimates a VAR(2) for the effective sample

1975 : 3−1995 : 4. The deterministic specification includes a linear trend in all directions,
corresponding to the model H∗(r, s), and an unrestricted impulse dummy for 1992 : 2,

and we adopt the same specification noting that the impulse dummy has no effect asymp-

totically. According to Kongsted (2003), economic theory suggests the model H∗(2, 1)

with two stationary relations, one I(1) trend and one I(2) trend.

The Two-Step rank test statistics, also reported in Kongsted (2003), are given in the

left hand side of Table 2. Starting from the most restricted model H∗(0, 0) it is possible

to reject all models with r = 0 at a 5% level. In the second row, H∗(1, 0) and H∗(1, 1)

are easily rejected, while H∗(1, 2) has a p−value of 9%. To achieve that the first model
not rejected is the preferred H∗(2, 1) one has to use what appears to be a 10% level.

The LR statistics are reported in the right hand side of Table 2. As noted, all test

statistics in first row and last column are identical to the Two-Step results, and the

remaining test statistics are all lower. Using the LR test there are less evidence for

rejecting H∗(1, 2). If this model is nevertheless rejected, the next potential model is

H∗(2, 0), comprising two I(2) trends, again with a p−value of 10%. The LR statistic of
45 for this model is markedly lower than the corresponding Two-Step statistic of 75.

Thus based alone on asymptotic inference with an asymptotic p−value of 5%, both
statistics lead to different results than expected from economic theory. In the next we use

Monte Carlo simulations to investigate further the differences of the two tests in particular

with respect to size properties.

Simulations based on the estimated model. To analyze the difference, we set up

a small Monte Carlo simulation. As DGP we use H∗(2, 1) with parameters set to the

ML estimates, and generate time series, X−101, ...,X1, ...XT , for T ranging between 50

and 1000, by replacing �t with random draws from an iid Gaussian distribution with

the estimated covariance matrix. The initial values X−101 and X−100 are taken from the

actual data and the first 100 observations are discarded to eliminate the importance of

this choice.

The rejection frequencies at a nominal 5% level are reported in Table 3 for the two tests.

The rejection frequencies of H∗(r, s) in H∗(p) are identical for the Two-Step rank test and

the LR test for models with r = 0. For the models H∗(1, 0), H∗(1, 1),H∗(1, 2), H∗(2, 0)

and H∗(2, 1), the finite sample distributions, and the rejection frequencies, differ.

For the LR test the rejection frequencies for the true model H∗(2, 1) are very close

to the nominal 5% for all sample lengths. The rejection frequencies of some of the more

restricted hypotheses, e.g. H∗(1, 2) and H∗(2, 0), are relatively low in small samples,

indicating a low power.
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The Two-Step test is clearly size distorted, with rejection frequencies for the true

model H∗(2, 1) around 30% in small samples. The actual size converges very slowly to

the nominal 5%, and for T = 500 the rejection frequency is still twice the nominal size. At

the same time the rejection frequencies for more restricted models are higher than the LR

test. For a small sample, T = 50, the rejection frequency for H∗(2, 0) is 94% compared

to a rejection frequency of 22% for the LR test.

The distributions of the test statistics are reported in Figure 1 for the case T = 75.

The graphs are organized according to the nesting structure in Table 1. The lower right

graph reports the results for tests of the true model, H∗(2, 1). The distribution of the LR

statistics almost coincides with the asymptotic distribution, while the distribution of the

Two-Step statistics is more dispersed and displaced to the right. For some of the more

restricted hypotheses, there are big differences between the distributions. The difference

is largest if s = 0.

Further simulations based on the estimated model. To illustrate the difference

for the case of s = 0 in the DGP, such that a large distortion appears in the Two-Step

estimation of the model with correct ranks, we consider the model H∗(2, 0) as the DGP.

Based on the original data, this model was not rejected by the LR test.

The rejection frequencies are reported in Table 4. Note, that the true model H∗(2, 0) is

almost always rejected using the Two-Step rank test — and this is the case for all relevant

sample lengths. For T = 200, corresponding to 50 years of quarterly observations, the

actual size is 66%. The LR tests, on the other hand, have good size properties, with

rejection frequencies close to the nominal size.
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r Two-Step rank test LR test
0 343.53 238.76 161.88 122.79 101.00 343.53 238.76 161.88 122.79 101.00

[.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00]
1 187.53 96.95 51.17 48.48 142.37 88.22 49.94 48.48

[.00] [.00] [.09] [.01] [.00] [.00] [.11] [.01]
2 75.15 27.61 24.52 45.36 26.10 24.52

[.00] [.27] [.07] [.10] [.35] [.07]
3 13.02 10.42 11.72 10.42

[.37] [.11] [.49] [.11]
p− r − s 4 3 2 1 0 4 3 2 1 0

Table 2: Rank determination for the data in Kongsted (2003). Figures in square brackets are
asymptotic p−values according to the Γ−approximation of Doornik (1998).

T Models H∗(r, s)
H∗(0, 0) H∗(0, 1) H∗(0, 2) H∗(0, 3) H∗(0, 4) H∗(1, 0) H∗(1, 1) H∗(1, 2) H∗(1, 3) H∗(2, 0) H∗(2, 1)

Two-Step rank test
50 100.0 100.0 98.8 92.0 83.6 100.0 92.9 53.6 43.2 94.2 33.5
75 100.0 100.0 100.0 100.0 98.1 100.0 99.8 76.9 72.4 99.5 32.9
100 100.0 100.0 100.0 100.0 99.8 100.0 100.0 89.5 91.3 100.0 28.7
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 16.8
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10.1
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 7.5

LR test
50 100.0 100.0 98.8 92.0 83.6 97.5 66.7 27.7 43.2 21.5 4.0
75 100.0 100.0 100.0 100.0 98.1 100.0 98.6 53.3 72.4 51.8 5.5
100 100.0 100.0 100.0 100.0 99.8 100.0 100.0 77.7 91.3 81.2 6.3
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 5.7
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 5.6
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 5.5

Table 3: Rejection frequencies in a simulation based on Kongsted (2003). DGP is H∗(2, 1). The
tests are not calculated sequentially. Bold indicates rejection frequencies for tests of the correct model
(empirical size). Based on 5000 replications and a nominal 5% level.

T Models H∗(r, s)
H∗(0, 0) H∗(0, 1) H∗(0, 2) H∗(0, 3) H∗(0, 4) H∗(1, 0) H∗(1, 1) H∗(1, 2) H∗(1, 3) H∗(2, 0)

Two-Step rank test
50 100.0 100.0 96.2 84.3 82.8 100.0 86.6 33.3 39.3 91.0
75 100.0 100.0 100.0 99.1 97.0 100.0 99.1 46.6 59.5 91.1
100 100.0 100.0 100.0 100.0 99.7 100.0 99.9 64.6 79.5 86.3
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.1 99.6 66.3
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 38.3
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 23.0
2500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 11.2
5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 8.0

LR test
50 100.0 100.0 96.2 84.3 82.8 94.3 47.7 17.7 39.3 6.6
75 100.0 100.0 100.0 99.1 97.0 100.0 90.2 31.2 59.5 7.5
100 100.0 100.0 100.0 100.0 99.7 100.0 99.2 55.7 79.5 7.5
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.6 99.6 5.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 5.9
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 6.1
2500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 5.6
5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 5.2

Table 4: Rejection frequencies in a simulation based on Kongsted (2003). DGP is H∗(2, 0).
See also notes to Table 3.
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Figure 1: Distributions of the two test statistics for the case T=75. Graphs are organized

according the partial nesting structure. Based on 5000 replications.
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A Proof of Theorem 1

In this appendix we derive the asymptotic distribution of the LR test for cointegration

ranks in the I(2) model. In order to motivate the notation and ease the presentation of

the I(2) test we start by considering the well-known likelihood ratio test for cointegration

rank in the I(1) model.

Throughout we use the notation θ̆ and θ̂ to denote the ML estimates of a parameter

θ under the null hypothesis and under the alternative respectively.

A.1 Asymptotics for the I(1) LR Test

Consider the well-known I(1) model and the rank test in this case. The present rederiva-

tion of the LR test is not based on the conventional representation in terms of eigenvalues

and canonical correlations, see e.g. Johansen (1996, Chapter 11), but is instead based on

a linear regression type formulation. It is assumed here that the reader is familiar with

the well-established literature on I(1) VAR models.

For simplicity and without loss of generality consider the simplest case of the p−dimen-
sional I(1) VAR(1) model as given by

∆Xt = ΠXt−1 + �t, (14)

with the hypothesis H(r) parameterized as Π = αβ0. The aim is to derive the asymptotic

distribution of the likelihood ratio test,

−2 logQ(H(r)|H(p)) = −T log
¯̄̄
Ω̆−1Ω̂

¯̄̄
,

where Ω̆, Ω̂ are the ML estimates of the covariance matrix Ω under the hypothesis H(r)

and the alternative respectively. Denote by H0(r) the model with exactly p− r unit roots

in the characteristic polynomial, A(z), with the remaining roots outside the unit circle.

Lemma 1 Under H0(r), then as T → ∞, the LR statistic −2 logQ(H(r)|H(p)) con-
verges in distribution to

tr

(µZ 1

0

WudW
0
u

¶0µZ 1

0

WuW
0
udu

¶−1 Z 1

0

WudW
0
u

)
, (15)

where Wu is a (p − r)-dimensional standard Brownian motion on the unit interval, u ∈
[0, 1].

Proof: Recall that under H(r) the parameters α and β are non-identified. Identification

is obtained by normalization on the known p × r matrix c such that βc = β(c0β)−1 and
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αc = αβ0c, and hence Π = αβ0 = αcβ
0
c. Denote by α0, β0 and Ω0 the true parameters

corresponding to the null, H0(r).

In order to derive the asymptotic distribution of −2 logQ(H(r)|H(p)) introduce the
simple auxiliary null hypothesis Haux that β is known, β = β0, as given by the equation,

∆Xt = αβ00Xt−1 + �t. (16)

Using that by definitionHaux ⊆ H(r) ⊆ H(p), and therefore in particularQ(H(r)|H(p)) =
Q(H(r)|Haux)×Q(Haux|H(p)), it holds that

−2 logQ(H(r)|H(p)) = −2 logQ(Haux|H(p))− [−2 logQ(Haux|H(r))] . (17)

Consider first −2 logQ(Haux|H(r)): Introduce the (p− r)× r dimensional parameter

B = β̄
0
0⊥ (β − β0) , (18)

where β is normalized by c = β̄0. With this definition, H(r) can be rewritten as,

∆Xt = αβ0Xt−1 + �t = αβ0
¡
β̄0⊥β

0
0⊥ + β̄0β

0
0

¢
Xt−1 + �t = α (B0Z1t + Z0t) + �t,

where α and β normalized on c = β̄0. Here Z1t = β00⊥Xt−1 and Z0t = β00Xt−1 are I(1)

and I(0) processes respectively. Note that the hypothesis Haux is simply given by B = 0.

Define the estimated residuals

�̂t = ∆Xt − α̂
³
B̂0Z1t + Z0t

´
, �̆t = ∆Xt − ᾰZ0t and �̂0t = ∆Xt − α̂Z0t.

Then by definition, −2 logQ(Haux|H(r)) = −T log
¯̄̄
Ω̆−1Ω̂

¯̄̄
with Ω̆ = 1

T

PT
t=1 �̆t�̆

0
t, and,

Ω̂ =
1

T

TX
t=1

�̂t�̂
0
t =

1

T

TX
t=1

�̂0t�̂
0
0t − (YT + Y 0

T −XT ) ,

where

XT = α̂B̂0

Ã
1

T

TX
t=1

Z1tZ
0
1t

!
B̂α̂0 and YT =

Ã
1

T

TX
t=1

(∆Xt − α̂Z0t)Z
0
1t

!
B̂α̂0.

Next, the asymptotic distribution of the ML estimates of α and β under H(r) and nor-

malized by c = β̄0, α̂ and β̂ respectively, is given in Johansen (1996) and it follows that,

TB̂ = T β̄
0
0⊥

³
β̂ − β0

´
D→ B∞ =

µZ 1

0

FuF
0
udu

¶−1 Z 1

0

FudV
0
uΩ

−1
0 α0(α

0
0Ω
−1
0 α0)

−1, (19)

with Fu = β00⊥MVu, where Vu is a Brownian motion on u ∈ [0, 1] with covariance Ω0, and
M = β0⊥(α

0
0⊥β0⊥)

−1α00⊥.

17



Using (19), the consistency of α̂ and the continuous mapping theorem, it follows that,

TXT
D→ α0B

∞0
µZ 1

0

FuF
0
udu

¶
B∞α00

= α0(α
0
0Ω
−1
0 α0)

−1α00Ω
−1
0

Z 1

0

dVuF
0
u

µZ 1

0

FuF
0
udu

¶−1 Z 1

0

FudV
0
uΩ

−1
0 α0(α

0
0Ω
−1
0 α0)

−1α00.

Similarly, by convergence to stochastic integrals,

TYT =

Ã
1

T

TX
t=1

�tZ
0
1t − (α̂− α0)

1

T

TX
t=1

�tZ
0
0t

!
TB̂α̂0

D→
Z 1

0

dVuF
0
u

µZ 1

0

FuF
0
udu

¶−1 Z 1

0

FudV
0
uΩ

−1
0 α0(α

0
0Ω
−1
0 α0)

−1α00

Therefore by joint convergence, and as 1
T

PT
t=1 �̂0t�̂

0
0t

P→ Ω0, Ω̆
P→ Ω0,

− 2 logQ(Haux|H(r)) = −T log
¯̄̄
Ω̆−1Ω̂

¯̄̄
= Ttr

©
Ω−10 (YT + Y 0

T −XT )
ª
+ oP (1)

D→ tr

(
Ω−10 α0(α

0
0Ω
−1
0 α0)

−1α00Ω
−1
0

Z 1

0

dVuF
0
u

µZ 1

0

FuF
0
udu

¶−1 Z 1

0

FudV
0
u

)
.

For −2 logQ(Haux|H(p)), the remaining term in (17), this also implies that,

−2 logQ(Haux|H(p)) D→ tr

(
Ω−10

Z 1

0

dVuF
0
u

µZ 1

0

FuF
0
udu

¶−1 Z 1

0

FudV
0
u

)
.

Hence by the joint convergence of −2 logQ(Haux|H(p)) and −2 logQ(Haux|H(r)) under
H0(r), and the fact that both distributions are defined in terms of the same underlying

Brownian motion,

− 2 logQ(H(r)|H(p))
= −2 logQ(Haux|H(p))− [−2 logQ(Haux|H(r))]

D→ tr

(
α0⊥ (α

0
0⊥Ω0α0⊥)

−1
α00⊥

Z 1

0

dVuF
0
u

µZ 1

0

FuF
0
udu

¶−1 Z 1

0

FudV
0
u

)
D
= tr

(µZ 1

0

WudW
0
u

¶0µZ 1

0

WuW
0
udu

¶−1 Z 1

0

WudW
0
u

)
,

with Wu = (α00⊥Ω0α0⊥)
−1/2 Vu and the skew projection, Ip = α0(α

0
0Ω
−1
0 α0)

−1α00Ω
−1
0 +

Ω0α0⊥ (α
0
0⊥Ω0α0⊥)

−1 α00⊥ has been used. This completes the proof of Lemma 1.

A.2 Asymptotics for the I(2) LR Test

The proof in the I(2) case is analogous to the proof in the I(1) case with the main

difference being the more sophisticated parameterization. Again we consider, without
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loss of generality, the simplest case of the I(2) model, the VAR(2) model as given by

∆2Xt = ΠXt−1 − Γ∆Xt−1 + �t.

The hypothesis of interest is H(r, s) against the alternative H(p). Under H(r, s) we use

the parameterization in (8),

∆2Xt = α[ρ0τ 0Xt−1 + ψ0∆Xt−1] + Ωα⊥(α
0
⊥Ωα⊥)

−1κ0τ 0∆Xt−1 + �t. (20)

We want to derive the asymptotic distribution of the likelihood ratio test,

−2 logQ(H(r, s)|H(p)) = −T log
¯̄̄
Ω̆−1Ω̂

¯̄̄
.

Proof of Theorem 1: As before, with θ a parameter, the corresponding true param-

eter is denoted θ0. Henceforth, the parameters β and τ under H(r, s) are normalized on

c = β̄0 and c = τ̄ 0 respectively such that β̄
0
0β = Ir and τ̄ 00τ = Ir+s. Furthermore, set

α⊥ = (Ip − β̄0(α
0β̄0)

−1α0)β̄0⊥ such that all other parameters are identified, see Johansen

(1997). Note in particular that ρ = τ̄ 00β which is (r + s)× r.

Introduce the parameters defined in Johansen (1997):

B0 = β̄
0
20 (ψ − ψ0) , B1 = β̄

0
10 (β − β0) , B2 = β̄

0
20 (β − β0) , C = β̄

0
20 (τ − τ 0) ρ⊥,

where ρ⊥ =
¡
I − ρ̄0 (ρ

0ρ̄0)
−1 ρ

¢
ρ̄0⊥. Note that ρ = τ̄ 00β = ρ0+ τ̄ 00β10B1 = ρ(B1) and define

similarly ρ⊥(B1).

Note initially, that from Johansen (1997, Lemma 1) it follows that for the ML estima-

tors B̂0, B̂1, B̂2 and Ĉ derived under H(r, s),

TB̂0
D→ B∞0 , T B̂1

D→ B∞1 , T 2B̂2
D→ B∞2 and TĈ

D→ C∞, (21)

under H0(r, s). Here

B∞ = (B∞00 , B∞01 , B∞02 )
0
=

µZ 1

0

HuH
0
udu

¶−1 Z 1

0

HudV
0
1u (22)

C∞ =

µZ 1

0

H0uH
0
0udu

¶−1 Z 1

0

H0udV
0
2u, (23)

where

Hu =

⎛⎜⎝ H0u

H1u

H2u

⎞⎟⎠ =

⎛⎜⎝ β02C2Vu

β01C1Vu

β02C2
R u
0
Vsds

⎞⎟⎠ ,

with Vu a Brownian motion on u ∈ [0, 1] with covariance Ω0. Furthermore,

V1u =
¡
α00Ω

−1
0 α0

¢−1
α00Ω

−1
0 Vu (24)

V2u =
³
ρ̄00⊥κ0 (α

0
0⊥Ω0α0⊥)

−1
κ00ρ̄0⊥

´−1
ρ̄00⊥κ0 (α

0
0⊥Ω0α0⊥)

−1
α00⊥Vu (25)

= −
³
ξ00 (α

0
0⊥Ω0α0⊥)

−1
ξ0

´−1
ξ00 (α

0
0⊥Ω0α0⊥)

−1
α00⊥Vu,
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where the definition that ξ = −κ0ρ̄⊥ has been used, see Section 3.1. Now under H(r, s)
the model in (20) can be rewritten as

∆2Xt = A0Z0t +A1Z1t +A2Z2t + �t (26)

where Z0t, Z1t and Z2t are I(0), I(1) and I(2) regressors respectively, defined by

Z0t =

Ã
β00Xt−1 + ψ00∆Xt−1

τ 00∆Xt−1

!
, Z1t =

Ã
β020∆Xt−1

β010Xt−1

!
and Z2t = β020Xt−1.

Finally,

A0 =
³
α, α (ψ − ψ0)

0 τ̄ 0 + Ωα⊥ (α
0
⊥Ωα⊥)

−1
κ0
´

(27)

A1 =
³
αB0

0 + Ωα⊥ (α
0
⊥Ωα⊥)

−1
κ0 [ρ̄⊥ (B1)C

0 + ρ̄ (B1)B
0
2] , αB

0
1

´
(28)

A2 = αB0
2. (29)

Introduce next the auxiliary hypothesis,Haux where ψ (p×r), β (p×r) and τ (p×(r+s)) are
fixed at their true values, ψ0, β0 and τ 0, corresponding to B0, B1, B2 and C all identically

zero. Note that under Haux, the model equation in (26) reduces to

∆2Xt = A0Z0t + �t,

and furthermore that Haux ⊆ H(r, s) ⊆ H(p). Hence,

−2 logQ(H(r, s)|H(p)) = −2 logQ(Haux|H(p))− [−2 logQ(Haux|H(r, s))] .

Turn first to −2 logQ(Haux|H(r, s)) and define the corresponding estimated residuals,

�̂t = ∆2Xt − Â0Z0t − Â1Z1t − Â2Z2t, �̆t = ∆2Xt − Ă0Z0t and �̂0t = ∆2Xt − Â0Z0t.

Then Ω̆ = 1
T

PT
t=1 �̆t�̆

0
t, and

Ω̂ =
1

T

TX
t=1

�̂t�̂
0
t =

1

T

TX
t=1

�̂0t�̂
0
0t +XT − YT − Y 0

T ,

where

XT =
³
Â1, Â2

´Ã 1
T

TX
t=1

(Z 01t, Z
0
2t)

0
(Z 01t, Z

0
2t)

!³
Â1, Â2

´0
YT =

Ã
1

T

TX
t=1

³
∆Xt − Â0Z0t

´
(Z 01t, Z

0
2t)

!³
Â1, Â2

´0
.

With DT =blockdiag
³

1√
T
Ip−r,

1
T 3/2

Ip−r−s
´
it follows that

D0
T

Ã
1

T

TX
t=1

(Z 01t, Z
0
2t)

0
(Z 01t, Z

0
2t)

!
DT

D→
Z 1

0

HuH
0
udu. (30)
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Next, using (21) together with the definitions of Ai in (27)-(29) and consistency of the

remaining parameters, it follows that

√
TD−1

T

³
Â1, Â2

´
D→ α0 (B

∞0
0 , B∞01 , B∞02 )−

³
Ω0α0⊥ (α

0
0⊥Ω0α0⊥)

−1
ξ0C

∞0, 0, 0
´
. (31)

Combining (30) and (31) and using the definitions (22)-(23) it follows that

TXT
D→ X∞ =

h
α0 (B

∞0
0 , B∞01 , B∞02 )

0 −
³
Ω0α0⊥ (α

0
0⊥Ω0α0⊥)

−1
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∞0, 0, 0
´i
×∙Z 1

0
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0
udu

¸ h
α0 (B

∞0
0 , B∞01 , B∞02 )

0 −
³
Ω0α0⊥ (α

0
0⊥Ω0α0⊥)

−1
ξ0C

∞0, 0, 0
´i0

Note that, as α00α0⊥ = 0 by definition,

tr
©
Ω−10 X∞ª = tr

(
α0

Z 1

0

dV1uH
0
u

µZ 1

0

HuH
0
udu

¶−1 Z 1

0

HudV
0
1uα

0
0

)

+ tr

(
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Z 1

0
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0
u
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0

HuH
0
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0

HudV
0
2uξ

0
0

)
,

that is, the cross product terms vanish. Next, by convergence to stochastic integrals,

TYT = T

Ã
1

T

TX
t=1

³
∆Xt − Â0Z0t

´
(Z 01t, Z

0
2t)DT

!
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T
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´0
=

Ã
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T
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0
1t, Z

0
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!
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T
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+ oP (1)
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0
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0
u

h
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−1
ξ0C

∞0, 0, 0
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D
=
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0
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0
u

µZ 1

0

HuH
0
udu
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HudV
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0
0−Z 1

0

dVuH
0
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0
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0
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¶−1 Z 1

0
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0
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0
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0
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−1
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Therefore by joint convergence, and as 1
T

PT
t=1 �̂0t�̂

0
0t

P→ Ω0, Ω̆
P→ Ω0, and furthermore

using the definition of V1 and V2 in (24)-(25),

− 2 logQ(Haux|H(r, s)) = −T log
¯̄̄
Ω̆−1Ω̂

¯̄̄
D→ tr
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+ tr

½∙
α0⊥ (α

0
0⊥Ω0α0⊥)

−1
ξ0

³
ξ00 (α

0
0⊥Ω0α0⊥)

−1
ξ0

´−1
ξ00 (α

0
0⊥Ω0α0⊥)

−1
α00⊥

¸
×Z 1

0

dVuH
0
0u

µZ 1

0

H0uH
0
0udu

¶−1 Z 1

0

H0udV
0
u

)
.

21



This implies directly that also

−2 logQ(Haux|H(p)) D→ tr

(
Ω−10

Z 1

0

dVuH
0
u

µZ 1

0

HuH
0
udu

¶−1 Z 1

0

HudV
0
u

)
.

Using the projection Ip = α0(α
0
0Ω
−1
0 α0)

−1α00Ω
−1
0 +Ω0α0⊥ (α

0
0⊥Ω0α0⊥)

−1 α00⊥ and collecting

terms, it follows that

− 2 logQ(H(r, s)|H(p))
= −2 logQ(Haux|H(p))− [−2 logQ(Haux|H(r, s))]

D→ tr
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The term in (32) can be rewritten as

tr
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Note next that the term appearing in (33) can be written as
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Hence,
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and the result in Theorem 1 follows by defining the standard Brownian motion,

Wu = (α
0
0⊥Ω0α0⊥)

−1/2
α00⊥Vu.
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