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Abstract

We show that the volatility of prices, which is usually regarded as
an impediment for financial growth, may serve as a cause of it.

JEL classification: G11

1. Can price volatility, which is present in virtually every financial market
and usually thought of as a risky investment’s downside, serve as an “engine”
of financial growth? Paradoxically, the answer to this question turns out to
be positive.

To demonstrate this paradox, we examine the long-run performance of
constant proportions investment strategies in financial markets. Such strate-
gies prescribe to rebalance the investor’s portfolio, depending on price fluctu-
ations, so as to keep fixed proportions of wealth invested in all the portfolio
positions. It is assumed that asset returns form stationary ergodic processes
and asset prices grow (or decrease) at a common rate ρ. It is shown that if an
investor employs a constant proportions strategy, then the value of his or her
portfolio grows almost surely at a rate strictly greater than ρ, provided the
investment proportions are strictly positive and the stochastic price process
is in a sense non-degenerate. The very mild assumption of non-degeneracy
we impose requires some randomness, or volatility, of the price process. If
this assumption is violated, then the market is essentially deterministic, and
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the result ceases to hold. Thus, in the present context, the price volatility
appears to be an endogenous source of acceleration of financial growth. This
phenomenon might seem counterintuitive, especially in stationary markets
[1], where the asset prices themselves, and not only their returns, are sta-
tionary. In this case, ρ = 0, i.e. each asset grows at zero rate, while any
constant proportions strategy exhibits growth at a strictly positive exponen-
tial rate with probability one.

The effect highlighted in this article can be demonstrated in the frame-
work of the conventional, well-studied models of financial markets. Constant
proportions strategies are involved in many practical financial computations,
cf. [4]. However, to our knowledge, the phenomenon examined here has not
been clearly described and systematically investigated in the literature.1 The
aim of the present note is to fill this gap.

2. Consider a financial market with K ≥ 2 securities (assets). Let
pt = (p1

t , ..., p
K
t ) be the vector of security prices at time t ∈ {0, 1, 2, ...}.

Assume that pk
t > 0 for each t and k, and denote by

Rk
t =

pk
t

pk
t−1

(k ∈ {1, 2, ..., K}, t ∈ {1, 2, ...}) (1)

the (gross) return on asset k over the time period (t − 1, t]. Define Rt =
(R1

t , ..., R
K
t ).

At each time period t, an investor chooses a portfolio ht = (h1
t , ..., hK

t ),
where hk

t is the number of units of asset k in the portfolio ht. A sequence
H = {h0, h1, ...}, specifying a portfolio at each time t, is called a trading
strategy. Let λ = (λ1, ..., λK) be a vector such that

λk ≥ 0 (k ∈ {1, 2, ..., K}) and
K∑

k=1

λk = 1. (2)

A trading strategy H is called a constant proportions strategy with vector of
proportions λ = (λ1, ..., λK) if

pk
t h

k
t = λkptht−1 (k ∈ {1, 2, ..., K}, t ∈ {1, 2, ...}). (3)

If λk > 0 for each k, then H is said to be completely mixed. The scalar product
ptht−1 =

∑K
k=1 pk

t h
k
t−1 expresses the value of the portfolio ht−1 in terms of the

prices pk
t at time t. According to relation (3), the amounts pk

t h
k
t invested in

1The only reference we can indicate in this connection is the book by Luenberger [3],
Chapter 15.2, where some examples related to the topic under consideration are discussed.

2



assets k = 1, 2, ..., K are proportional to λ1, ..., λK . It is immediate from (2)
and (3) that a constant proportions strategy is self-financing :

ptht = ptht−1, t ∈ {1, 2, ...}. (4)

We fix λ and H satisfying (2) and (3) and denote by Vt = ptht the value
of the portfolio ht at time t ∈ {0, 1, 2, ...} expressed in terms of the current
prices pk

t . It will be assumed that V0 > 0, which implies Vt > 0 for each t
(see formula (6) below). We will suppose that the price vectors pt, and hence
the return vectors Rt, are random, i.e., they evolve in time as stochastic
processes. Then the trading strategy ht, t ∈ {0, 1, 2, ...}, generated by the
investment rule (3) and the value Vt = ptht, t ∈ {0, 1, 2, ...}, of the portfolio
ht are stochastic processes as well. We are interested in the asymptotic
behavior of Vt as t → ∞.

3. We will assume:
(R) The vector stochastic process Rt is stationary and ergodic. The expected
values E| ln Rk

t | are finite.
It follows from (R) that pk

t = pk
0R

k
1 ...R

k
t , where the random sequence

Rk
t is stationary. This assumption on the structure of the price process

is a fundamental hypothesis widely accepted in mathematical finance (in
particular, it lies in the basis of the famous Black-Scholes formula, see e.g.
[3]). By virtue of Birkhoff’s ergodic theorem, we have

lim
t→∞

1

t
ln pk

t = lim
t→∞

1

t

t∑

j=1

ln Rk
j = E ln Rk

t (5)

almost surely (a.s.) for each k ∈ {1, 2, ..., K}. This means that each asset k
has a well-defined and finite (exponential) growth rate, which turns out to be
equal to the expectation E ln Rk

t . This expectation can be positive, zero or
negative. It does not depend on t in view of the stationarity of Rt.

In addition to (R), we will assume that all the assets under consideration
have the same growth rate:
(R1) There exists a number ρ such that, for each k ∈ {1, ..., K}, we have
E ln Rk

t = ρ.
This assumption allows to concentrate, for example, on those assets in

the market that grow at the maximum rate. It is natural to suppose that
all the others, growing slower, will eventually be driven out of the market.
As long as we deal with an infinite time horizon, we can exclude such assets
from consideration.

4. The main results are presented in the following theorem.
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Theorem 1. (i) The growth rate limt→∞(1/t) ln Vt of a constant propor-
tions strategy with vector of proportions λ ≥ 0 is equal to E ln(Rtλ) (a.s.).

(ii) Suppose all the coordinates λk of the vector λ are strictly positive,
i.e. the strategy under consideration is completely mixed. Let the following
condition hold:

(V) With strictly positive probability,

pk
t /p

m
t �= pk

t−1/p
m
t−1 for some 1 ≤ k, m ≤ K and t ≥ 1.

Then the growth rate E ln(Rtλ) of the constant proportions strategy is strictly
greater than ρ.

(iii) If condition (V) does not hold, then Eln(Rtλ) = ρ.

Since the process Rt is stationary, the expectation E ln(Rtλ) involved in
the statement of the theorem does not depend on t. Condition (V) means
that, for at least one moment of time t, the ratio pk

t /p
m
t of the prices of

at least two assets k and m is not the same as the analogous ratio at the
previous moment of time t − 1. This is a very mild assumption of volatility
of the price process. If this assumption does not hold, then the price ratios
of all the assets are constant over time (a.s.) and, for each t, the return
Rk

t = pk
t /p

k
t−1 on each asset k is equal to one and the same number, αt (a.s.).

In the context of Theorem 1, the volatility of the price process appears
to be the only cause for any completely mixed constant proportions strategy
to grow at a rate strictly greater than ρ – the growth rate of each particular
asset. This result looks at first glance unexpected, since the volatility of asset
prices is usually regarded as an impediment for financial growth, while here
it serves as an ”engine” of it. In a stationary market, where the process pt

(and not only Rt) is ergodic and stationary and where E| ln pk
t | < ∞, the

growth rate of each asset is zero,

E ln Rk
t = E ln pk

t − E ln pk
t−1 = 0,

while any completely mixed constant proportions strategy grows at a strictly
positive exponential rate.

Common intuition suggests that if the market is stationary, then the
portfolio value Vt for a constant proportions strategy must converge in one
sense or another to a stationary process. The common argument in support
of this conclusion appeals to the self-financing property (4). This property
seems to exclude possibilities of unbounded growth. The truth, however,
lies in the opposite direction: unbounded exponential growth is not only
compatible with self-financing, but is characteristic for any completely mixed
constant proportions strategy.
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Our result bears some similarity with the concept of asymptotic arbitrage,
see e.g. [2]. Three features however stand out: growth is exponentially fast,
unbounded wealth is achieved with probability one, and the effect of growth
is demonstrated for specific (constant proportions) strategies. None of these
properties can directly be deduced from asymptotic arbitrage.

5. Proof of Theorem 1. (i) We have

Vt = ptht =
K∑

m=1

pm
t hm

t−1 =
K∑

m=1

pm
t

pm
t−1

pm
t−1h

m
t−1 =

K∑

m=1

pm
t

pm
t−1

λmpt−1ht−1 = Vt−1

K∑

m=1

Rm
t λm = (Rtλ)Vt−1.

Thus
Vt = V0(R1λ)(R2λ)...(Rtλ), (6)

and so

lim
t→∞

1

t
ln Vt = lim

t→∞
1

t

t∑

j=1

ln(Rjλ) = E ln(Rtλ) (a.s.), (7)

which proves the first assertion of the theorem.
(ii) Observe that condition (V) is equivalent to the following one:
(V1) For some t ≥ 1 (and hence for each t ≥ 1), the probability

P{Rk
t �= Rm

t for some 1 ≤ k, m ≤ K}

is strictly positive.
Indeed, we have pk

t /p
m
t �= pk

t−1/p
m
t−1 if and only if pk

t /p
k
t−1 �= pm

t /pm
t−1,

which can be written as Rk
t �= Rm

t . Denote by δt the random variable that
is equal to 1 if the event {Rk

t �= Rm
t for some 1 ≤ k, m ≤ K} occurs and

0 otherwise. Condition (V) means that P{maxt≥1 δt = 1} > 0, while (V.1)
states that, for some t (and hence for each t)), P{δt = 1} > 0. The latter
property is equivalent to the former because

{max
t≥1

δt = 1} = ∪∞
t=1{δt = 1}.

By using Jensen’s inequality and (V1), we find that

ln
K∑

k=1

Rk
t λ

k >
K∑

k=1

λk(ln Rk
t )
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with strictly positive probability, while the non-strict inequality holds always.
Consequently,

E ln(Rtλ) >

K∑

k=1

λkE(ln Rk
t ) = ρ,

which proves (ii).
(iii) Suppose assumption (V) does not hold. Then, as has been noted

above, the return Rk
t = pk

t /p
k
t−1 on each asset k is equal to the same number

at (a.s.). In this case, E ln(Rtλ) = E ln αt = E ln Rk
t = ρ.

The proof is complete.
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