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Abstract

This paper shows that a stock market is evolutionary stable if and
only if stocks are evaluated by expected relative dividends. Any other
market can be invaded by portfolio rules that will gain market wealth
and hence change the valuation. In the model the valuation of assets
is given by the wealth average of the portfolio rules in the market. The
wealth dynamics is modelled as a random dynamical system. Neces-
sary and sufficient conditions are derived for the evolutionary stability
of portfolio rules when (relative) dividend payoffs form a stationary
Markov process. These local stability conditions lead to a unique evo-
lutionary stable strategy according to which assets are evaluated by
expected relative dividends.
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1 Introduction

The expected discounted dividends model is one of the cornerstones of fi-
nance. According to this model the rational and fair value of common stocks
is given by the discounted sum of future dividends paid out by the com-
pany. Indeed in the very long run (half a century) the trend of stock market
prices coincides with the trend of the dividends paid by the companies. Yet
over shorter horizons (even for decades) stock market prices can considerably
deviate from their dividend fundamentals. This phenomenon, called excess
volatility, was first pointed out by Shiller (1981). While models based on
complete rationality have difficulties to cope with excess volatility, models
based on adaptive behavior typically go to the other extreme and generate
too irregular price dynamics. The model considered in this paper suggest a
solution in between these two extremes.

We consider a stock market with a heterogenous population of portfo-
lio rules. In the model rationality is important on the level of the market
since market selection may ultimately give pressure for selecting the rational
portfolio rules. It turns out that only a rational market in which assets are
evaluated by expected relative dividends is evolutionary stable. Any other
market can be invaded by portfolio rules that will gain market wealth and
hence change the valuation. While, as in De Long, Shleifer, Summers, and
Waldmann (1990), rational strategies clearly face the risk that there are too
many irrational strategies, any set of irrational strategies is however more
easily turned over by invasion of even a small fraction of slightly different
strategies. That is to say, every now and then the market can be displaced
from its rational valuation by a big push of irrationality but eventually the
market selection pressure will lead the market back to the rational valu-
ation because from any irrational market there exists a sequence of small
and nearby innovations leading back to the rational market. This stability
property may be the explanation that on long-term averages stock markets
look quite rational while severe departures are possible in the short- and
medium-term.

In a sense our results give support to a long hold conjecture by Friedman
(1953) and Fama (1965) who argued that the market naturally selects for
rational strategies, which, in effect, would lead to market efficiency. However,
our paper also makes clear that the mutation force has to be added to the
selection argument in order to prove this conjecture. Considering only the
market selection process, the economy can get stuck at any situation in which
all traders use the same portfolio rule. Moreover, our paper shows which
types of mutant strategies can successfully invade which type of market. For
example, an irrational market can be turned over by invading strategies that



are not themselves the rational strategy. An invasion of the rational strategy
may fail in an irrational market.

To make these ideas precise we study an incomplete asset market where a
finite number of portfolio rules manage capital by iteratively reinvesting in a
fixed set of long-lived assets. In every period assets pay dividends according
to the realization of a stationary Markov process in discrete time. In addi-
tion to the exogenous wealth increase due to dividends, portfolio rules face
endogenously determined capital gains or losses. Portfolio rules are encoded
as non-negative vectors of expenditure shares for assets. The set of portfo-
lio rules considered is not restricted to those generated by expected utility
maximization. It may as well include investment rules favored by behavioral
finance models. Indeed any portfolio rule that is adapted to the information
filtration is allowed in our framework.

Portfolio rules compete for market capital that is given by the total value
of all assets in every period in time. The endogenous price process provides a
market selection mechanism along which some strategies gain market capital
while others lose. We give a description of the market selection process from a
random dynamical systems perspective. In each period in time the evolution
of the distribution of market capital, i.e. the wealth shares of the portfolio
rules as percentages of total market wealth, is given by a map that depends
on the exogenous process determining the asset payoffs. An equilibrium in
this model is provided by a distribution of wealth shares across portfolio rules
that is invariant under the market selection process. Provided there are no
redundant assets every invariant distribution of market shares is generated
by a monomorphic population, i.e. all traders with strictly positive wealth
use the same portfolio rule at such an equilibrium. A criterion for evolution-
ary stability as well as evolutionary instability is derived for monomorphic
populations. Roughly speaking a portfolio rule is evolutionary stable if it has
the highest exponential growth rate in any population where itself determines
market prices. This implies that an evolutionary stable investment strategy
is robust against the entry of new portfolio rules. In a sense an evolutionary
stable population plays the “best response against itself.”

The stability criterion for the robustness of invariant distributions with
respect to the entry of new portfolio rules singles out one portfolio rule,
denoted \*, that is the unique evolutionary stable strategy, i.e. it drives out
any mutation. Moreover, any other investment strategy can successfully be
invaded by a slightly changed strategy. According to this rule one should
divide wealth proportionally to the expected relative dividends of the assets.
An explicit formula for this rule is given—applicable in actual markets.

The effect of this rule on asset prices is equalization of assets’ expected
relative returns—in particular asset pricing is log-optimal in the sense of



Luenberger (1997, Chapter 15). It is well known that log-optimal pricing is
obtained if all investors have logarithmic von-Neumann—Morgenstern utilities
(Kraus and Litzenberger 1975). Hence the portfolio rule \* could also be
obtained as the outcome of an idealized market with a single representative
agent having rational expectations. For a market selection model based on
rational expectations see Blume and Easley (2001) and Sandroni (2000).
Our paper shows that an idealized market with rational expectations could
be justified by evolutionary reasoning.

One implication of our main results is that a rational market is evolution-
ary stable while an irrational market is evolutionary unstable. In particular
we show that any irrational market can already be destabilized by small
changes in the existing strategies. A further implication of our evolutionary
stability results is that among all proportional investment strategies only \*
can be a candidate for a rule that starting from any initial distribution of
wealth obtain total market wealth in the long-run in competition with any
set of other portfolio rules. Indeed, global stability of the A* rule has re-
cently been proved for the case of short-lived assets (Evstigneev, Hens, and
Schenk-Hoppé 2002). Simulations with simple strategies show that also with
long-lived assets A* is the unique portfolio rule which among all simple strate-
gies is able to gather total market wealth (Hens, Schenk-Hoppé, and Stalder
2002). An analytical proof of this finding is still warranted.

Our approach is related to the classical finance approach to maximize
the expected logarithm of the growth rate of relative wealth for some exoge-
nously given return process. From this perspective we show which portfolio
rule maximizes the expected logarithm of the growth rate of wealth in a
model with endogenously determined returns. Following the work by Kelly
(1956) and Breiman (1961), Hakansson (1970), Thorp (1971), Algoet and
Cover (1988), and Karatzas and Shreve (1998), among others, have explored
this maximum growth perspective. Computing the maximum growth port-
folio is a stochastic non-linear programming problem. Even if one restricts
attention to i.i.d. returns, when markets are incomplete, with more than two
assets, there is no explicit solution to this investment problem in general.
To overcome this problem, numerical algorithms to compute the maximum
growth portfolio have been provided by Algoet and Cover (1988) and Cover
(1984, 1991). Our result is interesting also in this respect because the simple
portfolio rule that we obtain shows that considering the equilibrium conse-
quences of this maximization does not make matters more complicated but
rather much easier. Indeed, as mentioned above, the portfolio rule \* can
be characterized as the unique portfolio rule that maximizes the logarithm
of the growth rate of relative wealth in a population in which the rule itself
determines the returns. Note however, that applying A\* does not require
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the solution of any optimization problem. It is the rationality of the market
selection and mutation process that makes the simple strategy A\* a smart
strategy.

The next section presents the economic model which has the mathemat-
ical structure of a random dynamical system. The model is based on Lucas
(1978)’s infinite horizon asset market model with long-lived assets and a sin-
gle perishable consumption good. In this model we introduce heterogenous
portfolio rules that are adapted to the information filtration, and we study
the resulting sequence of short run equilibria. In section 3 we define the
long run equilibrium concepts and different stability notions. In particular
we define invariant distributions of relative wealth and show that those are
characterized by monomorphic populations, i.e. an invariant distribution of
relative wealth arise if and only if all investors use the same portfolio rule.
Then we define evolutionary stability of invariant distributions of relative
wealth as those being robust to the innovation of new strategies. Section 4
contains the main result. Section 5 concludes.

2 An Evolutionary Stock Market Model

This section introduces an infinite horizon asset market model with long-
lived assets and a single perishable consumption good, as in the seminal
paper Lucas (1978).

There are K > 1 long-lived assets and cash. Time is discrete and denoted
by t = 0,1,.... Each asset £k = 1,..., K pays off a dividend per share at
the beginning of every period and before trade takes place in this period.
DF > 0 denotes the total dividend paid to all shareholders of asset k at the
beginning of period ¢. Assume that >, Df > 0.! D} depends on the history
of states of the world w' = (..., wp, ...,w;) where w; € S is the state revealed
at the beginning of period ¢. For technical convenience (and without loss of
generality) we assume infinite histories. S is assumed to be finite, and every
state is drawn with some strictly positive probability.

Dividend payoffs are in cash. Cash is only used to buy consumption
goods—in particular it cannot be used to store value. Assets are issued at
time 0. The initial supply of every asset k, sk, is normalized to 1. At any
period in time the supply remains constant: s¥ = sk. The supply of cash s?
is given by the total dividends of all assets.

There are finitely many portfolio rules (also referred to as investment
strategies) indexed by ¢ = 1,...,1, I > 2, each is pursued by an investor.
The portfolio rule of investor 7 is a time- and history-dependent proportional

IThis assumption avoids “dead” periods in which no dividends are paid.



strategy, denoted by Aj(w') = (N, ,(w"))k=0,..x with 0 < A}, (w") < 1 for
all k and 37 )\, (w!) = 1. For each k > 1, Al ,(w') is the fraction of the
wealth investor ¢ assigns to the purchase of the risky asset k in period t,
while \j j(w") is the fraction of wealth held in cash. Investment strategies are
distinct across investors.?

In the following discussion we assume that everything is well-defined. In
particular prices are assumed to be strictly positive. Sufficient conditions are
provided after the full derivation of the model.

For a given portfolio rule Ai(w') and wealth w!, the portfolio purchased
by investor ¢ at the beginning of period ¢ is

. AL (wh) w!
;ﬁziﬂﬁll k=01,.. K. (1)

io is the units of cash and 6}, is the units of assets held by investor i.
Since we have normalized the supply of the long-lived assets to 1, (92%:7,g is the
percentage of all shares issued of asset k that investor i purchases. pf denotes
the market clearing price of asset k in period t. We normalize the price for
cash p? = 1 in every period ¢t. The price of the consumption good is also the
numeraire.

For any portfolio holdings of agents (6;);—;. ; the market equilibrium

conditions for cash and long-lived assets are
I
b =5 k=0,.K (2)
i=1
where the supply of the risky assets is sf = 1, while the supply of cash is
K
s =Y Dfw)>0 (3)
k=1

with strict positivity by the assumption that at least one asset pays a divi-
dend.
The budget constraint of investor ¢ in every period t =0, 1, ...

K
> vk = (4)
k=0

is fulfilled because the fractions A}, (w*), k = 0,..., K, sum to one, see (1).

2The case of investors pursuing the same portfolio rule can be handled as follows:
Investors with the same strategy set up a fund with claims equal to their initial share.



Since the consumption good is perishable, the wealth of investor ¢ (in
terms of the price of the consumption good) at the beginning of period ¢ + 1
and after dividends are payed is

K

wi+1 = Z(Dfﬂ( ) +pf+1) ik (5)
k=1

Wealth can change over time because of dividend payments and capital gains.
Since the cash 0;0 held by every investor is consumed, the amount of cash
available in any one period stems only from the current’s period dividend
payments.

The market-clearing price pf for the risky assets (k > 1) can be derived
from (2) by inserting (1). One finds

I
pE =) M) wi = A (W) wy (6)
=1

where A = (Mg, -y Afy) and w/ = (wf, ..., wy).

Inserting (1) and (6) in (5) yields

K ‘ '

i A (W) w

Wi = D2 (Dha@™) 4 sl ) TETT
k=1 7

(7)

This is an implicit equation for the wealth of each investor i, w;_,, for a given
distribution of wealth w, across investors. Define

1) ) Nl

/\
DF (Wit L d Bf= "7
Z t+1 >\tk( ) ) an >\tk( ) (8)

The time index refers to the dependence on wealth: A! and BZ’k both depend
on the wealth in period ¢. (7) can now be written as

K
wi, = Aj + Z B* At (W) Wi 9)
k=1
and thus
w1 = Ay + By At+1(wt+1) Wi+1 (10)

where Ay (W = (A1 (WL M g (WTHT) € RP*E s the matrix
of portfolio rules, and B, € R*¥ is the matrix of portfolios in period t.
AT = (A}, ..., Al) € R! are the dividends payments, and B; Ayy1(w'™) wyiy
are the capital gains.



Solving the linear equation (9) gives an explicit law of motion governing
the distribution of wealth across strategies. One has

wisr = [Id = By A (W] 7' 4, (11)

(assuming existence of the inverse matrix) with Id being the identity matrix
in R, The following result ensures that the evolution of wealth (11) is
well-defined.

The next two assumptions are imposed throughout the following.

(A.1) Every investor consumes in every period but less than his entire
wealth, i.e. 0 < A o(w') <1 for all i, t and W*.

(A.2) There is at least one investor with a complete-diversification strat-
egy, i.e. there is a j such that A (w') >0 for allk =1,..., K, t and '

Proposition 1 Suppose wy > 0, (A.1) holds, and (A.2) is satisfied for some
investor with wl > 0. Then the evolution of wealth (11) is well-defined in
all periods in time. Moreover, for every i = 1,....1, w! > 0 if and only if
wh > 0.

Proof of Proposition 1. It suffices to prove the following: Suppose w; > 0,
(A.1) holds, and (A.2) is satisfied for some investor with w] > 0. Then (11)
is well-defined, wyq > 0, and, moreover, w;,; > 0 if and only if w} > 0 for
every 1 =1, ..., I.

We show first that the matrix C' := Id— By Ay (w't!) is invertible by prov-
ing that it has a column dominant diagonal Murata (1977, Corollary p. 22).
C has entries

K i K

< A’ NPT
Ciy=1-Y X, Akkw and  Cy=->» N A’;w (i # J)
k=1 k=1
on the diagonal and off-diagonal, respectively, where A, = Al  (w™™), A}, =

A p(wh), and w = w, for notational ease. All entries are well-defined because
prices \gw > Maw? > 0 (for some j) by our assumption.

The condition for a column dominant diagonal is in particular satisfied,
if for every j =1,.... 1,

1Ci5l > 1G4l (12)

i#]
Off-diagonal entries are non-positive, i.e. Cj; < 0 for i # j. The diagonal
elements are strictly positive, i.e. Cj; > 0, since 0 < Mw//(\w) < 1 and
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therefore .
Ciy>1-> M=1-(1-X)=XN>0
according to assumption (A.1).
Thus (12) is equivalent to,
K

ZZ i’ﬁ . (13)

Since the right-hand side of the last equation is
K N K '
SR Y S R =1

and N > 0 by assumption, (13) holds true. Thus C' is invertible.

The matrix C has strictly positive diagonal entries and non-positive off-
diagonal entries. Thus, Murata (1977, Theorem 23, p. 24) ensures that
wipr > 01f Ay > 0 (see (8) for the definition of A;). Clearly, A, > 0 if
w; > 0. This implies Ay 1 x(w™™) wiq > 0 for all k.

Let (A.2) hold for investor j and let w! > 0. Investor j's portfolio is
completely diversified, i.e. 6’{7,6 > 0 for all k. Thus, A{ > 0 because at least
one asset pays a strictly positive dividend. Equation (7) implies, together
with the above result that prices in period £ + 1 are non-negative, w{ 41> 0.

By assumption (A.2) this finding implies )/ te(Wh) >0 for all k. Since
for each investor with wj > 0, Bj, > 0 for some k, (7) further implies that
wy,, > 0 for every investor with w; > 0. Obviously, wj,; = 0 if w; = 0. This
completes the proof. O

Proposition 1 ensures that the evolution of the wealth distribution on Ri
is well-defined: for given wy, (11) yields the distribution of wealth w;,; in the
subsequent period in time. We can state the law of motion in the convenient
form?

W = fi(w tHa t) (14)

where

Ak -1 4
A (whHw! K (wt)wl

t+1 — |Id— A t+1 t+1 t
Je(@™ wy) [—)\t (w tr1(w™) [E t+1 )\t k(wt)wt

() - i

— )

%

31t is also convenient to define wyy1 = (0, ...,0), if w; = (0, ...,0).



The final step is to derive the law of motion for the investors’ market
shares. This will complete the derivation of the evolutionary stock market
model.

The following assumption is imposed throughout the remainder of this

paper.
(B.1) All investors have the same rate of consumption: A} o(w') = A o(w’).

It is clear that, other things being equal, a smaller rate of consumption
leads to a higher growth rate of wealth. Without assumption (B.1) the
evolution of wealth would be biased in favor of investors with a high saving
rate. Since we want to analyze the relative performance of different asset
allocation rules no rule should have an disadvantage in terms of the rate at
which wealth is withdrawn from it.

Aggregating (7) over investors, one finds

K
Wi = ZDt—H t+1)+2/\t+1,k(wt+l)wt+1

= Dt LW + (1= Mgro(Wh) Wiga (15)

where Dyyy (W't = S8 D! Dy (w t“) is the aggregate dividend payment.
The last equality holds because STr | A1 s W1 = Sy Sore Ny g Wiy =
I i
(1= Aer1,0) Doimy Whys-
Equation (15) implies
Dy (@)
Aty10(w') .

The economy grows (or declines) with rate Dyy1(w'™)/(Ap10(w™™) W).
The growth rate is thus the ratio of the rate at which additional wealth is in-
jected by dividends, Dy, 1(w'™!) /W, to the rate at which wealth is withdrawn
from the process for consumption, A1 o(w't).

The market share of investor 4 is r} = w}/W,. Using (16) and exploiting
the particular structure of the variables (8) that define the law of motion
(14), we obtain

Wipr = (16)

)\t+1,0<wt+1)

1
Tt41 = m fi(W™ ) (17)
or, equivalently,
. 2k
A (whr AL (Wh)r
=\ Id— | = A (! df (W) :
ree1=Aepr0(w™t) [)\t,k(wt)rt .t+1(w ) Z ri1 (W )\tk( e




where Di .
) = D)
Dy 1 (w1
is the relative dividend payment of asset k. Equation (17) is referred to as
the market selection process.
The wealth of an investor ¢ in any period in time can be derived from

their market share and the aggregate wealth, defined by (16), as

D t+1 ]
Dia(w™) P (18)

i
Wiy =

3 Evolutionary Stability

We next introduce the stability concepts needed to analyze the long run be-
havior of the wealth shares under the market selection process. The analysis
is restricted to the stationary case. The following assumptions are imposed
to ensure that the calender date does not enter in strategies and dividends,
i.e. the model becomes stationary; only the observed history matters.

(B.2) Strategies are stationary, i.e. N, (w') = N, (w*) for alli =1,..,1
and k=0,1,..., K.

(B.3) Relative dividend payments are stationary and depend only on the
current state of natue, i.e. d¥(w') = d*(w;) for allk=1,..., K.

Assumption (B.3) is fulfilled, for instance, if Dy, (w'™™) = d*(wi1) Wy
with W, = Y, w}, i.e. the dividend payment of every asset has an idiosyn-
cratic component d*(w;, ;) (depending only on the state of nature in the re-
spective period) and an aggregate component W;. Dividends grow or decline
with the same rate as aggregate wealth.

Under these assumptions, the market selection process (17) generates a
random dynamical system (Arnold 1998) on the simplex AT = {r € R’ |
rt > 0,>,r" = 1}. For any initial distribution of wealth wy € R., (17)
defines the path of market shares on the event tree with branches w!. The
initial distribution of market shares is (rj); = (w}/Ws);. Formally, this can
be stated as follows.

Denote by © = SZ the set of all sequences of states of nature w = (w;)sez.
Denote the right-hand side of (17) by h(w®™!, 7)) : AT — A!. This map is in-
dependent of the calender date by assumptions (B.2-B.3). Define ¢(t,w,r) =
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(w1 Yo, .. oh(w!,r) forall t > 1, and p(0,w,r) =r. ¢(t,w,r) is the vec-
tor of investor’s wealth shares at time ¢ for the initial distribution of market
shares r and the sequence of realizations of states w.

Given a random dynamical system for a set of stationary trading strate-
gies (\'), one is particularly interested in those wealth shares that evolve
in a stationary fashion over time. Here we restrict ourselves to determinis-
tic distributions of market shares, i.e those that are fixed under the market
selection process (17).4 To specify this notion, we recall the definition of
a deterministic fixed point in the framework of random dynamical systems.
Let a set of strategies (\%) be given, and denote by ¢ the associated random
dynamical system.

Definition 1 7 € Al is called a (deterministic) fixed point of ¢ if, for all
w € Q) and all t,
T =(t,w,T). (19)

The distribution of market shares 7 is said to be invariant under the market
selection process (17).

By the definition of ¢(¢,w,r) the condition (19) is equivalent to 7 =
o(1,w,T) for all w, i.e. a deterministic state is fixed under the one-step map
if and only if it is fixed under all t-step maps.

It is straightforward to see that the state in which one investor possesses
the entire market does not change over time. In any set of trading strategies
each unit vector (i.e. each vertex of A7) is a fixed point. This follows from
Proposition 1 which shows that r* = 0 implies ©'(t,w,r) = 0.

The following result even holds without conditions (B.2-B.3).

Proposition 2 Suppose the dividend and capital gains matrix has full rank
at a deterministic fixed point. Then all investors use the same portfolio rule.

Proof of Proposition 2. Equations (7) and (16) give

% . ,
. )\z k(wt),rz
Tiy1 = Z(/\O df+1(wt+1) + qf+1(wt+1)) s

Pt gt (w') (20)

with

) = 30 N plwrl 1)

4See e.g. Schenk-Hoppé (2001) for an application and discussion of stochastic fixed
points.
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Suppose i, =r; =" > 0 for all i. Then equation (20) can be written as

(Z Do ha(winn) + )] ) 1) Poo. (@)

Pt gt (w')
If the dividend and capital gain matrix

Ao df—i—l(wt-i-l) + Qfﬂ(wtﬂ)

has full rank (as a function of k and wy; for each given history w'), then (22)
implies A{ , (w') = ¢/ (w"). In light of (21), this means that for all i = 1,..., I

Hence \' and N are identical for all 4, j. O

We are particularly interested in stable fixed points of the market selection
process. Loosely speaking, stability means that small perturbations of the
initial market share distribution do not have a long-run effect. If a fixed
point of market shares is stable, every path of market shares starting in
a neighborhood of this fixed point becomes asymptotically identical to it.
Since fixed points are associated to unique trading strategies by Proposition 2
(the total wealth being concentrated on this trading strategy), the natural
definition of a trading strategy’s stability is that of the fixed point’s stability.
Two different notions of stability will be needed. They are defined as follows.

It is assumed that for any given incumbent strategy A, the mutant strat-
egy N is distinct in the sense that M (w%) # A(w®) with strictly positive
probability. Moreover, the first entry in the tuple of relative wealth shares
r = (r,77) refers to the incumbent’s strategy, while the second refers to the
entrant’s wealth share.

Definition 2 A trading strategy \' is called evolutionary stable if, for all
N, there is a random variable ¢ > 0 such that lim; . @' (t,w,r) = 1 for all
r'>1—¢e(w) M =1-r"<e(w)) almost surely.

For each evolutionary stable distribution of market shares there exits an
entry barrier (a random variable here) below which the new portfolio rule
does not drive out the incumbent player. Any perturbation of the distri-
bution of market shares, if sufficiently small, does not change the long-run
behavior. The market selection process asymptotically leaves the mutant
with no market share.

Finally, a corresponding stability criterion for local mutations is intro-
duced.

13



Definition 3 A trading strategy N\ is called locally evolutionary stable if for
all N there exists a random variable 6(w) > 0 such that \' is evolutionary

stable for all portfolio rules N with ||\ (w) — M (w)|| < §(w) for all w.

A locally evolutionary stable distribution of market shares is evolutionary
stable with respect to local mutations. That is, the mutant’s strategies are
restricted to small deviations from the status quo strategy.

4 The Main Result

We turn now to a detailed analysis of the evolutionary stability of stationary
portfolio rules. The local (in)stability conditions obtained here lead to a
unique evolutionary stable investment rule, provided the relative dividend
payoffs are governed by a stationary Markov process.

To analyze evolutionary stability of a trading strategy one has to consider
the random dynamical system (17) with an incumbent (with market share
r;) and a mutant (with market share r? = 1 — r}). The resulting one-
dimensional system governing the market selection process for two investors
with stationary portfolio rules is given by

o (0 D ) ST LI ) PONUA) SN IS

where A}, = X, (w'), df,; = d*(wi41) and

)‘%,k 7”t1 9 A%,k (1- Ttl)
Atl,k i+ /\%,k (1—7f)

i . 02, =
bk Atl,k i+ )‘%,k (1—7f) b

o[ B [Eron] ]

The derivative of the right-hand side of (23), denoted by h(w'*!, r}), with
respect to r} evaluated at r} =1 is ®

A2 (wh)

Oh(w™!,r}) _ . 1, t+1 e k
L T ; (M) + Ao d (i) Ny @

1
ory

;From (24) one can read off the exponential growth rate of investment
strategy 2’s wealth share in a small neighborhood of r! = 1, i.e. the state in
which investment strategy 1 owns total market wealth.

5The necessary calculations are lengthy but elementary and therefore omitted.
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Throughout the following we restrict the analysis to the stationary Markov
case. It is imposed that

(C) The state of nature follows a Markov process with strictly positive
transition probabilities, i.e. wsz > 0 for all 5,5 € S.

The growth rate of investment strategy 2’s wealth share in a small neigh-
borhood of r! =1 is

ga(A\?) = /S NZMS In [Z (AL (W0, 8) + Ao d*(s)) ;zgzoi P(dw®). (25)

seS k=1

It can be interpreted as the growth rate of strategy A\? at Al-prices because
for r! = 1 the asset prices correspond to the budget shares of investor 1 and
thus to the vector A'. Clearly asset prices change over time due to changes
in the status quo strategy A'. For instance at time ¢, prices are A'(w?).

This growth rate determines the local stability of the fixed point r! = 1.
If the growth rate is negative, gy1(A\?) < 0, investor 2 looses market share
and investor 1’s market share tends to one. In this case the portfolio rule A!
is stable against A% If the growth rate is positive, gx1(\?) > 0, investor 2
gains market share while that of investor 1 falls. In this case the portfolio
rule ! is not stable against \2.

Our main result shows that this (in)stability condition can be employed
to single out a unique evolutionary stable strategy. Moreover, an explicit
representation can be given for this strategy.

Theorem 1 Define the stationary portfolio rule \* by X\ = Ao and, for all
seSandalk=1,.. K, by

A= (1=X) o [Id— (1= X)m] ' wd (26)

using the matriz notation \* = (\;(s))~.

Instability results

(1) Every strategy distinct from X* is not stable against some arbitrarily close
strateqy, i.e. for all A # \* and for all € > 0 there exists a stationary strategy
p with |p(w®) — AMw®)| < e for all w° such that gy(u) > 0.

(ii) Suppose there is a set of positive measure Q such that for all W° € Q,
AMw?) # M (wo) and ([(1 — Xo) M (w0, 8) + Ao d*(3)]/ A (w°)E has full rank.
Then the strategy A is unstable against some arbitrarily close strategy p, i.e.
gx(p) > 0.
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Stability results
(iii) A* is never unstable, i.e. gx(A) < 0 for every strategy A.

(iv) \* is stable, i.e. gx«(A) < O for every strategy A # \* provided ([(1 —
M) EL | 8) + M E(d | 8)]/Ai(s)k has full rank.5

Theorem 1 defines a Markov strategy \*, i.e. a portfolio rule such that
only the current state of nature is taken into account when making an in-
vestment decision today. The strategy A* is well-defined because existence of
the inverse in (26) follows immediately from the property that Id — (1 —Xg) 7
has a row dominant diagonal (recalling that 0 < A\g < 1). The budget shares
of the \* investment rule have the following properties. First, note that the
definition (26) implies that the strategy A\* satisfies

E(; | 8) + X E(d | 5) = Ni(s)/(1 = Xo)

for all £ and all s.” That is, the \* portfolio rule “balances” capital and
dividend gains. Due to the Markov structure of dividends, an adjustment is
necessary whenever the conditional expected future payoff E(d* | s) changes.
Second, one observes that (26) takes on the form of the limit of a geometric
series. Indeed, there is the following alternative expression for A* which we
state as a remark.

Remark 1 The definition of the unique evolutionary stable strategy \* in
(26) is equivalent to

[e.9]

X=X ) (L= 2g)" 7™ d. (27)

m=1

It is obvious from the last representation that according to the strategy
A* one has to divide wealth across assets according to the present expected
value of their (relative) future dividend payoffs. The discounting rate is the
inverse of the saving rate 1 — \g. If the A* portfolio rule manages all market
wealth then all asset prices are given by this vector of fundamental values.
In this respect the \* strategy corresponds to a rational market.

The main result of this paper, Theorem 1, shows that this investment
strategy has the following properties. First, a rational market is evolution-
ary stable: it cannot be invaded by a portfolio rule that is distinct from
A*. Second, any irrational market, i.e. one in which A* does not manage

5The conditional expected value is defined as E(d* | s) = Y. 5 d*(3).
"The term (1 — \g) on the right-hand side appears because investment shares add up
to one minus the consumption share, i.e. ZkK:1 Ai(s) =1— Ao.
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all wealth, is not robust against small deviations from the status quo. The
stronger version of both findings requires that every investment strategy dis-
tinct from \* generates a different payoft stream which is ensured by the full
rank condition.

The intuition for the main result is immediate from the exponential
growth rate (25). From this equation one can read off that A* is the portfolio
rule with the highest exponential growth rate in any population where itself
determines market prices. In this sense the \* portfolio rule plays the “best
response against itself.” The expression (25) for the exponential growth rate
also show that the A* portfolio rule is an equilibrium in a standard two-period
economy with a log-utility investor. Therefore the \* portfolio rule yields the
maximum growth portfolio and \*-prices prevail in such an economy.

A short remark on the case of i.i.d. dividend payments is in order. It is
apparent from representation (27) in Remark 1 that for an i.i.d. dividend pro-
cess the unique evolutionary stable strategy A\* is given by A\f = (1 — \o)Ed*,
k=1,.., K. Again each asset is priced at its fundamental value. Moreover,
in the i.i.d. case the budget shares are fixed since the current state of nature
does not provided any valuable information on the future dividend payoffs.

Proof of Theorem 1. We first show (ii), pointing out how to derive asser-
tion (i) in the proof. Suppose ([(1— o) A\r(w?, 8) + Ao d*(5)]/Ax(w))* has full
rank for almost all w®. For notational simplicity, we first normalize strategies
with 1 — A to make 31, Ay = 1, and we also denote A = (A, .., A\g) € AKX,

Let A # X\*. To prove assertion (ii), it suffices to show that g,(u) > 0 for
all p in some neighborhood of .

Using (25), the growth rate of strategy u at A-prices, cf. (25), can be
written as

with
GA(B("),@0) = 3 Mups In [Z [(1 = Xo)Ai(w”, 8) + Ao d¥(s)] l;Lwo)
ses k=1

For given wy, p(w®) — ga(u(w®),wp) is a concave function. The full
rank assumption ensures that it is actually strictly concave with positive

probability.
One further has
ag)\(:u(wo)v wo) _ Zﬂ-w . [(1 - >‘0) )‘n(wov S) + >‘0 dn(s)] /)‘n(wo)
Opin (w°) T Y [ = X0) k(w0 5) A+ Ao d(s)] pu(w0) [ Ak(w?)
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Thus

509G (W), wo) 0
S (P hron) e
= Z ZSGS Twos [(1 - i\(f(j\u%gwo’ S) + )‘0 dn(s)] d,un(wo) (29)

for every duy (wW°), ..., dux (w°) with Zle dpin(W?) = 0.

We final step in proving (ii) is to show that for each w° € Q, (29) is
strictly positive for some (dpuy (w°), ..., duk (W) with S5 du, (w°) = 0.
This property implies that there is some u(w), arbitrarily close to A(w?)
with g (u(w®),wp) > 0 on Q. For w® ¢ Q we let p(w®) = A(w®). The
strategy p is arbitrarily close to A. Measurability of p follows from the fact
that, due to finiteness of .S, the sigma algebra of the probability space under
consideration is the power set (and thus every function is measurable). By
construction the strategy u satisfies gx(u) > 0, which verifies assertion (ii).

It is clear that (29) is strictly positive for some (dpui(w®), ..., dur(w°))
with 325 dju,(w®) = 0 if and only if

D ses Tuos (1= A0) Au(w?, 5) + Ao d"(s)]
An(w?)

(30)

is not constant in n (for given w?).
We will show that (30) is constant, i.e.

D Taps [(1=20) An(w”,8) + Ao d"(s)] = cAn(w”)

SES

for all n, if and only if A = \*.
Taking the sum over n on both sides of the last equality shows that ¢ = 1.
The condition that (30) is constant therefore becomes

D s [(1=X0) An(w”, 5) + Ao d"(s)] = An(w”) (31)
seS
By definition of A*, (31) holds if A = A*. To show that (31) implies
A = \*, we need to consider three distinct cases: (a) A(w®) does not depend
on W’ (b) A(w") depends only on a finite history, i.e. A(w°®) = Mw_7, ..., wq)
for some T' > 0; and (c¢) A(w®) depends on an infinite history.
Case (a): In this case (31) takes the form

(1 —=X0) A+ X E@" | wo) =\ (32)
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which is equivalent to E(d" | wg) = A,. If, as we have assumed in the
Theorem, the dividend process is a non-degenerate Markov process, u has to
depend on wy. This is a contradiction.

Case (b): Obviously, if A(w?) is only a function of wy, then A = \*. For a
strategy A(w’) that depends on a history of length T' > 1, (31) becomes

D s (1= X0) An(wor1, ., wo, 8) + Ao d"(5)] = Anlw_r, ...,wo)  (33)

If A\, would vary with w_7, (33) could not hold for all w°. Thus (33) implies
that A(w’) = AMw_741,...,wp). Repeated application shows that A\(w°) =
Mwo). However, this implies A = A\*, as discussed above.

Case (c): In this case (31) reads

D T [(1=20) Aa(@") + Ao d"(w1)] = Mn(w”). (34)
wi€S

An analogous equation holds with \,(w!) on the right-hand side,
D T (1= 20) M (@?) + Ao d"(wn)] = Mn(w?). (35)

wo €S

Inserting (35) in (34) yields

An(@0) = (1=20)°72 oy An (@) X0 [ (1=X0) Y 72 d" (wo) + Y ™ (w1)

w2

where 7}, =
Repeating this procedure and observing that

s Twows T 10w -

m
(I —X)™ E T, An( — 0asm — o0

we find

)\ (0.)
An (W) = 1 —OAO =)y A, dM(wn) (36)

m=1 Wm,

Thus A, (w°) is a function of wy only, implying that A = A\*, as discussed in
case (b). The equivalence of (36) and the definition of A\* in the Theorem 1
has been established in Remark 1.

Assertion (iii) and (iv) follow immediate from the above results. We
consider the case (iv) in which the full rank condition is satisfied. As observed
above, the growth rate gy« (A(w®), wp) is concave in A(w°) and strictly concave
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under the full rank assumption in (iv). Assertion (iv) is immediate if we can
show that its maximum over A¥ is equal to zero and that this maximum is
attained at A(w®) = A\*(wyp).

At the maximum (29) is equal to zero. This is equivalent to (30) being
constant, i.e. (31) is fulfilled. However, we have already proved above that
this is true if and only if A = A*. Thus g«(\) takes on its maximum at
A = A*. Obviously the maximum is zero. This is (iv).

(iii) is obvious from the proof of (iv). O

5 Conclusion and Outlook

We have studied the evolution of wealth shares of portfolio rules in incom-
plete markets with long-lived assets. Prices are determined endogenously.
The performance of a portfolio rule in the process of repeated reinvestment
of wealth is determined by the wealth share eventually conquered in competi-
tion with other portfolio rules. Using random dynamical systems theory, we
derived necessary and sufficient conditions for the evolutionary stability of
portfolio rules. In the case of Markov payoffs these local stability conditions
lead to a simple portfolio rule that is the unique evolutionary stable strategy.
This rule possesses an explicit representation as it invests proportionally to
the expected relative dividends. This stability property may help to explain
why on long-term averages stock markets look quite rational while severe
departures are possible in the short- and medium-term.

As in many other papers on economic theory, our results are based on a
couple of assumptions and modeling choices that shall be extended in future
research. For example, we have restricted strategies to be adapted to the
information filtration given by the exogenous revelation of the states of the
world. Hence, we did not allow for price dependent strategies as for example
simple momentum strategies like “buy (sell) if prices have gone up (down).”
Moreover, we made a clear distinction between the market selection process
and the mutations. The latter act at the selection process only once the
former has settled at a point of rest. It would be desirable to consider a
selection process with ongoing mutations. Finally, in our model the wealth
shares of the strategies increase due to “internal growth,” i.e. they increase
by the returns they have generated. This process shall be augmented by a
process of “external growth” in which strategies increase their wealth share by
attracting wealth from less successful strategies. Data from Hedge Funds, for
example, show that internal growth leads external growth so that one effect
of this extension my be speeding up the market selection process. However,
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this and the other possible extensions mentioned have to be checked carefully
in future research.
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