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Abstract

In order to model the concept of behavioral heterogeneity, some authors
have employed the following approach. By using affine transformations of
the price space, a consumption sector is defined as the set of all transformed
demand functions of a given “generating” demand function. This leads to a
parametrization of the objects by elements of a finite dimensional Euclidian
space. Increasing dispersedness of the parameter distribution is then inter-
preted as increasing behavioral heterogeneity of the consumption sector.

In this paper, we show that such an interpretation is not valid if the
generating demand function satisfies a mild regularity condition. Due to the
specific parametrization, increasing heterogeneity of the parameters leads to
decreasing heterogeneity of the demand functions. More precisely, we prove
that they become concentrated nearby a finite set of Cobb-Douglas demand
functions.
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1 Introduction

Following the seminal contribution by Grandmont (1992), several attempts
have been made to relate desirable structural properties of aggregate de-
mand to the idea of behavioral heterogeneity (see e.g. Quah (1997), Kneip
(1999), and, recently, Giraud and Maret (2001)). In order to discuss such a
relationship more precisely, let us consider the following framework.

Given a fixed income, the behavior of a consumer is described by a de-
mand function f that assigns to every price vector p € ]Rl+ + a commodity
bundle f(p) € IR,. Assuming the set F of all demand functions to be
equipped with a suitable topology, a consumption sector is then defined by a
Borel probability measure 7 on F. The mean (or aggregate) demand of the
consumption sector at p is

F(p) = /f f(p)dr.

As a part of a well-behaved general equilibrium model, F' should have
properties that guarantee uniqueness and stability of equilibrium. For that,
it is sufficient that F' is, at least approximately, of Cobb-Douglas type. Ac-
tually, most of the mentioned contributions pursue this aim. But how is it
related to a concept of behavioral heterogeneity?

Intuitively, one would tend to speak of behavioral heterogeneity, if the
support, of the distribution 7 is “large” and, furthermore, 7 is not concen-
trated on a “small” subset of F but puts approximately the same mass on
sets of “equal size”. However, it is difficult to give a precise meaning of these
notions in case of the infinite dimensional function space F. Therefore, some
authors, like Grandmont (1992) and Quah (1997), consider a parametriza-
tion of the demand functions by a finite dimensional space, e.g. a subset C'
of IR"™. It is defined by a mapping 7" from C' into F such that a distribution
on C induces a consumption sector 7 as the image measure of y with respect
to T

Obviously, a parameter distribution y that is dispersed - a concept which
is well defined for i - does not necessarily imply that the induced consumption
sector 7 displays behavioral heterogeneity. As put by Quah (1997), “since
dispersion in this paper (and Grandmont’s) is a condition imposed on the
parameter distribution, it is not clear if it is related to heterogeneity (in some
meaningful sense) of the distribution of demand functions.”

The intention of this paper is to show, by using Grandmont’s approach as
an example, that this question has to be answered negatively. More precisely,



we consider a sequence of measures (u,) on the parameter space IR’ which
are increasingly dispersed in the sense that their densities become increas-
ingly flat. Moreover, T is defined by applying affine transformations of the
price space to a given “generating” demand function that is linear in income
and satisfies a mild regularity condition at the boundary of the price space.
Then, it turns out, that the induced measures 7, on F become increasingly
concentrated close to a finite set of Cobb-Dougas demand functions. Con-
sequently, it is no surprise that aggregate demand will be approximately
of Cobb-Douglas type. Put differently, it is increasing behavioral similarity
which is responsible for the nice structural properties of aggregate demand.

The message of this paper is that every parametrization contains an inher-
ent danger of misinterpretation. In our case, easily interpretable assumptions
on the parameter distribution p imply quite unintentional properties of the
induced distribution 7 of demand functions.

The following section provides an example that conveys the basic idea in a
simple way. Section 3 presents the general results while proofs are gathered in
Section 4. Some additional remarks are offered in the concluding Section 5.

2 An Example

Let IR? be the initial parameter space and assume the parameters o =
(g, ) to be distributed according to the two-dimensional, uncorrelated,
and symmetric normal distribution p,, defined by the density

1 oF + o
2mo? exp(~ 202

po (0, ) = ), o>0.

Obviously, increasing heterogeneity of the a-parameters (or increasing
dispersion of the distribution p,) is described by an increasing flatness of the
density p,, i.e. by 0 — 00.

Consider now the composite mapping

exp(a)
exp(a;) + exp(az)

a— a = exp(a) := (exp(ay), exp(az)) —

from IR into the unit simplex A = {a € R? |a; + as = 1}.

The inverse image of (6,1 —d) € A, 6 > 0, with respect to this mapping
is the straight line

Gs={(Ind,In(1 —6)) + (In A\, In\) | A > 0} C R2
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Similarly, we denote the inverse images of the sets Sy := {(¢',1—40") |§' >
1—-106},8 :={(0",1=4¢")]0" < 6}, and Sy := {(§',1 =6 [0 < ¢ <1-46}
by Ai, Ay, and Ay. These sets are depicted in Figures 1 and 2 that illustrate
the relationship between the a-parameter space IR?, the a-parameter space
IRfL +, and the open unit simplex S as the -parameter space.

Gs
Gj
A2 A() G176 AIZ
10%5 S, A
+log(t — 0) 1
(1-6) +
Ay So 1=
S A

5 1

Figure 1 Figure 2

The sets A}, Gj, Ay, G'_s, and A} in Figure 2 correspond to the sets
Ay, G5, Ag,G1_s, and Ay in Figure 1 and the hyperbola-like graph in Fig.
1 corresponds to S with respect to the transformation a — exp(«).

Any measure y, on IR? induces an image measure v, on A which is defined
by

o(D) = pio(for € IR exp(affﬁfiip(a?) €D

By the symmetry of u,, it is easy to see that, for fixed 6 between 0 and %,
one obtains for ¢ — oo

vo(S1) = (A1) = 5
I/U(S()) = /La-(Ao) — 0
o($) = ho(Ar) = 5

It follows that lim v, = v, with respect to the weak topology, where the
ag—r00

limit measure vy, is given by v ({(1,0)}) = ve({(0,1)}) = 1 and v (S) = 0.

The interpretation of this result is obvious: Increasing flatness of p,, i.e.
increasing dispersion of the a-parameters, leads to an increasing concentra-
tion of the a-parameters close to the axes (resp. the d-parameters close to
the boundary points of S).



So far we have only discussed the relationship between the distributions
of the different parameters. Now, we turn to our objects of interest which
are demand functions for two commodities.

Given a fixed income equal to one, these are functions f from the price
space ]RfL . into the consumption set ]Ri. They are parametrized by o € IR?
according to the definition®

f*(p) =a® f(a®p), a=exp(a)

where f is a given “generating” demand function which is continuous, (—1)-
homogeneous?, and satisfies

(C) The limits lim p;fi(p) =1 and  lim pofa(p) =: 72 exist.
p—(1,0) p—(0,1)
This assumption excludes that budget shares wiggle at prices close to the
boundary of the price space and is reasonable from an economic viewpoint.

By the homogeneity property of f, it follows that f&P(® = fe where
a = exp(a)/(exp(ay) + exp(as)), i.e. the essential parametrization is given
by fO01-9) for 0 < § < 1.

Of course, we want to know how these functions look like if § is close to
0 or 1 since increasing heterogeneity of the a-parameters puts most mass on
those 6.

By definition, we obtain the pointwise convergence

p1f1(6’1_6) (p) = op1fi(6p1, (1 —0)ps)
opy ( opy (1= 0)p, )
’ —
op1 + (1 — 0)p2 h op+ (L—0)p2 dpr+ (L—0)pz ) o1

Analogously, ps f{"' " (p) o0 1

It can be easily shown that both convergences are uniform on com-
pact subsets of the price space ]Ri 4. Hence, with respect to this topol-

ogy, lim f61-9) = ' and lim &9 = 2, where ['(p) = (2,52) and
6—1 6—0 p P

) = (ﬂ 7—2) are two Cobb-Douglas demand functions.

p1 7 p2

It follows that for an arbitrary open neighborhood @ of f' and f? there
exists § with 0 < § < % and f@179) € O for (6,1 — §") € S, U S,.

'z ®y = (z1y1,2292)
2This corresponds to a demand function with variable income that is 0-homogeneous
and linear w.r.t. income.



For the image measure 7, of v, with respect to the mapping s — f* which
is defined by
. (F)=v,{s€ S| f°eF})

on the space F of all continuous demand functions we thus obtain
75(0) > v,(S1 U S2) = v4(S1) + v6(S2)

and, consequently, lim 7,(Q) = 1.
o—00

This means that an increasing heterogeneity of the a-parameters leads
to an increasing concentration of the parametrized objects close to the two
Cobb-Douglas function f' and f2. Hence, it is no surprise that aggregate
demand is approximately of Cobb-Douglas type if the density p, becomes
extremely flat.

3 General Results

We consider consumers that are described by a continuous demand function
f:PP'xP — ]Rl+, where IP denotes the set of positive real numbers, such
that the following conditions are satisfied for all p € P! and all b, A € IP:

(1) f(Ap,Ab) = f(p,b) (homogeneity)
(2) pf(p,b)=0> (budget identity)
(3) f(p,Ab) = Af(p,b) (linearity in income).

It is straightforward to check that the set F of all these demand functions
can be equivalently described by their budget share functions. More precisely,
to any f € F one can assign a continuous function w : § — A, where S
(resp. A) denotes the open (resp. closed) unit simplex in IR/, such that the
assignment defines a bijection between F and the set W = C(S, A) given by

few(f),w(f)p)=p® f(p,1)-

In the sequel, a consumer is given by w € W, where W is endowed with
the topology of uniform convergence on compact subsets of S. Consequently,
a consumption sector is described by a (probability) measure 7 on the Borel

space (W, B(W)).
For any a € IP', the a-transform of w € W is defined by

a@®p
la® p|

)’

w*(p) = w(



where |- | denotes the sum-norm on IR'. This transformation corresponds to
the a-transform of a demand function f which, for any a € P, is given by

f4(p,0) :=a® fla®p,b).

Originally, Grandmont (1992) used IR’ as a parameter space, i.e. any a € IP!
is described by exp(a) for a € IR'. Accordingly, the a-transform of w € W
is defined by w™®®) . Given any fixed (“generating”) w € W, a measure
1 on IR! representing the distribution of the parameters o gives rise to a
consumption sector 7(u) which is defined as the image measure of y with
respect to the mapping « — w®™P@ e,

T(w) (W) = p({a € R [ e W}), W € BW).

The mapping o — w®P@ can be decomposed into the two mappings
a + exp(a)/|exp(a)| from IR! into S and s — w*® from S into W. We
denote by v(u) the image measure of y with respect to the first mapping and
by 7(v) the image measure of a measure v on S with respect to the second
one. Clearly, 7(u) = 7(v(p))-

Of course, the degree of heterogeneity of a consumption sector can only
be judged by looking at 7(u), the measures p or v(u) are irrelevant in this
respect.

Following Grandmont (1992), we assume that the measure p on the -
parameter space IR' is given by a continuously differentiable density p. Its
flatness is described by the number

m(p) = ml?x/ |%(a)|da.

We are interested in the measure 7(u) for the case of a very flat density
p, i.e. for m(p) very small, since this is interpreted as a highly dispersed
(or heterogeneous) distribution of the a-parameters. In order to model such
a case, we consider a sequence (p,) of densities with nh_)rrolo m(p,) = 0. The

corresponding measures are denoted by i, vy := v(ty), and 7, := 7(v,) =
T (fn)-

We assume that generating budget share function w reflects a kind of
"regular behavior” at least near the vertices of the price simplex S. This is
expressed by the following condition

(C) For every sequence (p*) in S converging to the i-th unit vector e € A,
the limit klim w(p*) exists and is denoted by w(e?).
—00
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Now we can state the main result as the following

Theorem. Let (p,) be a sequence of densities on IR’ such that lim m(p,) =
n—oo

0 and assume that w € W satisfies the condition (C). Then, for every
open neighborhood O of the (at most) [ constant budget share functions
w'(p) = w(e’),

lim 7,(0) = 1.

n—oo

The interpretation of this result is obvious: Given the regularity assump-

tion (C) on the generating budget share function w, increasing heterogeneity
of the a-parameters implies an increasing concentration of the distribution
of the associated functions w®. Put differently, it implies a decreasing het-
erogeneity of the consumption sectors.

The proof of this result rests on the following two propositions that sep-
arate the two assumptions of the Theorem.

Proposition 1. If (p,) is a sequence of densities on IR' such that
lim m(p,) = 0, then lim v,(U) = 1 for every open neighborhood U of
n—oo

n—oo
the vertices of A.

Proposition 2. If w satisfies (C) then the mapping s — w?® can be
continuously extended to the vertices of A by defining w®(p) = w(e;).

4 Proofs

It will be convenient to separate an essential step in the proof of Proposition
1 from the remaining parts by stating an additional lemma. In order to do
that, we first introduce some notation.

Given a vector of direction r in IR, i.e. >~ r2 = 1, the probability dis-
tribution p on IR!, generated by the density function p, defines (according
to the Theorem of Fubini) on the one-dimensional subspace <r> a marginal
measure with density

el©)= [ nte)ir

where p, denotes the function p written in the transformed coordinates £ and
2’ with respect to the subspaces <r> and <r>=, respectively. But note that,
without further arguments, we cannot exclude the case that ¢, () = oo for
a null-set of &-values.



Denote by 7 9 .= r. grad(p) the directional derivative of p in direction r.

Lemma:

i) If m(p = max

then m(p,r /\—\d <V1-m(p)

(ii) If m(p,r /
then |¢.]] = sup{i(€) | € € R} < Zm(p,r).

Proof: Using % = r-grad (p) and max{>|r;|| 3272 = 1} = VI we
obtain (i) by

[120 = [15ng2< [Singi= [ Sl 12
= Ol [1229) < () g 122 < Vi)

Now we prove (ii). If we knew that for every £ there are an ¢ > 0 and
integrable functions g, ¢; : R"™" — IR, with

pr6,2)] < 9(&) and | P0(e,2)] < (@)

for all £ € [€ —¢,& + €] and ¢ e RF?
then we would obtain (Dieudonné (1970), Th. 13.8.6) that ¢, is continuously

differentiable and 5
! (& pT' - ! !
(€)= / £ ')du
A@ =] G

Clearly, the needed condition is fulfilled if i is a product measure with respect
to the subspaces <r> and <r>*. But in general we have to be more explicit.
Define for every natural number k£ the function

o (&, 2") = { pr(&,2) if o' € [k, k]!

0 otherwise

Clearly, for p,; the above stated condition is fulfilled, while the discontinuity
of p;1 (€, ) on the boundary of the cube [—k, k]' ! does not matter.
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Since f wrre < 1, there exist sequences gn — —o0 and &, — 400 with
Qprk(én) — 0 and @rk(f_n) — 0 and therefore

g -
onil8) = / La(€)dE = — /6 o (€)de.

—00

Hence,

aprk n apk
0 /_ gp?"k g / /;,,.>J_ 85 é- Rl (97“ (Of) «Q

Opk / Opx,
= da + da.
/9( >0 37"() %0 (a)<0 37“( 2

or

Therefore we obtain

e, ) = |8”’“( )| do

Opr / Opx
= do — do
/ Lo [ Tt

= 2/ %(a)da.
%(a)z0 OF

Hence

B 3
onnlé) = / () < / o PLEVE

< / / 6prk ') dz'de < (ga)

Hence, we have shown

eri(€) < for all % and &.

m(p,r)
2
Since pqr, k =1,2,... , is pointwise increasing, we obtain with the Theorem

of Lebesque

Qor(g) = klggo ork(§) < m(/«; T)'




Now, we can give the
Proof of Proposition 1:

First, we define for an arbitrary d with 0 < 6 < } a special neighborhood U’
of the unit vectors.

For i,j € {1,...,1} such that i # j, let S, := {s € S|s;,s; > 6}.
Define U} := S\ S}; and U’ := (| UJ;. It is straightforward to check that
i#]

U5§{865|ml?xsh>1—(l—1)5}.
Indeed, if s; := max sy <1—(l —1)d, then we obtain for s; := maxs,

h#i
the inequalities

i.e. s € S%. Hence, s € U’ and, therefore, s ¢ U°.
%j i

The inclusion implies that for any open neighborhood U of the unit vec-
tors there exists 6 > 0 such that U® C U. It follows that

va(U) 2 vn(U%) = v (S\USH) = 1= v JSH) 21D va(S))
i#] i#] i#]
Consequently, lim v,(U) > 1 — 3" lim 1,(S;). Thus, the claim of Proposi-
tion 1 is proved if we can show that lim 1,(S?;) = 0 for all i # j and the

n—0o0
given 9.

By definition,

A > 0}).

Z]’

va(S2) = pn({a € RY| % €S2} = p({lnAs|se S

Consider the direction 7 := %(ei —¢’) in IR’. The length of the projec-
tion of In As onto < r¥ > is then given by

7 . In \s| = % -|Ins; —Ins;| < %\ln(ﬂ
if s € Sfj. Consequently,

{lnXs|s € S50 > 0} C {8r7 47| |8 < Indl, y e< 1 >4} = BY.

’L_]’

10



It remains to show that lim p,(B{;) = 0. Denoting by ¢, the density of
n—oo

the marginal distribution of y, with respect to < ¥ >, we obtain

in(BY) = / on(B)dB < V2 - |1n6|- [lpnl .

18l< L5/ 1]

By the Lemma, ||90n|| < %\/zm(pn) Hence, ,un(B?]) < %\/Z| lné‘m(pn)
Since, by assumption, lim m(p,) = 0 it follows that lim 4, (BY;) = 0. O
n—oo n—oo

Proof of Proposition 2:

Let (s*) be a sequence in S such that k]im s¥ = ¢'. It has to be shown that the
— 00

sequence (wsk) converges uniformly on compact subsets of S to the constant
function w'(p) = w(e?).

We have to prove that for any given compact set K C S and any € > 0
there exists a number k(e) such that

sf®@p

XY <€ forallpe K and k > k(e).

) = w(e’)

u

By assumption (C), there exists §(¢) > 0 such that |w(q) — w(e’)| < € for
all ¢ € S with |g — €'| < §(¢). Hence, it remains to show that for every § > 0
there exists k(d) such that

sk®p

e <0 for k> k(0) and p € K.

e’L

Put differently, it has to be proved that (¢*) = ((s*®p)/|s*®p|) converges
to e’ uniformly on an arbitrary compact subset K of S.

Without loss of generality, let K = {p € S| mhin pp > o} with o > 0.
Consider first the i-th component of (¢*). We obtain

| > e P Stpi
- 2 k - <k k
' Zj 5ipj  S;pi T Zi;éj 5;Dj
b _ 5 s

= > :
sipit 2 s+ (U=si)/pi s+ (1—sf)/o

If s* — €', i.e. s¥ — 1, the last term converges to 1. Hence, (¢¥) converges
to 1 uniformly on K.

11



For all components j (j # i) of (¢*) we obtain

k k

ko k
CH s s s;

0< U J g
= B = ko T
DonSEPh T DopSHO O, Sp O

Since s¥ — 0 for j # 4, the last term converges to 0. Consequently, (g})

converges to 0 uniformly on K. (I

Proof of the Theorem:

Under the assumptions of the Theorem, let O be an open neighborhood of the
constant bugdet share functions @'. By Proposition 2, there exists an open
neighborhood U of the unit vectors e!,...,e' such that {w®|s € U} C O.
This implies

T, (0) > 1, ({w’ | s € U}) = v, (U).

By Proposition 1, lim v, (U) = 1 which implies lim 7,(0) = 1. O
n—0o0 n—oo

5 Concluding Remarks

Recently, it has been argued by Quah (2001) that Grandmont’s model can be
a model of demand heterogeneity. We do not deny this possibility. Indeed,
our conlusion rests on the condition (C). However, what is the economic
justification for rejecting this condition?

A similar problem arises in the contribution by Giraud and Maret (2001)
who pursue a slightly different approach. Instead of deriving approximate
results for aggregate demand, they try to model a “perfectly heterogeneous”
consumption sector by claiming the existence of a “uniform” distribution on
the set of all affine transformations of a generating budget share function
such that aggregate demand is exactly of Cobb-Douglas type.

Now, assume that one component of the generating function has a partial
derivative with respect to the price of some other commodity that is either
everywhere positive or everywhere negative. Since affine transformations
preserve the sign of the derivatives, the corresponding partial derivative of
the aggregate budget share function cannot be zero as required by a Cobb-
Douglas type demand. Consequently, such “nice” generating functions have
to be excluded in order that their claim is true. Again, what is the economic
rationale for this exclusion?
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