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On Behavioral Heterogeneity

Werner Hildenbrand and Alois Kneip

1 Introduction

It is well-known that the hypothesis of utility maximization on the individual
level does not imply any identifiable properties of mean demand for a sufficiently

large population H of households, in particular, the Jacobian matrix

.....

of mean demand

F(p) = #—1}1 > " (pa") (1)

hcH

has no identifiable structure, such as negative definiteness or diagonal dominance

(Sonnenschein (1973), Andreu (1983) and Chiappori and Ekeland (1996)).

Consequently, in order to obtain some useful properties of mean demand,
one has to make additional assumptions either on the individual utility functions
or on the joint distribution of demand functions and income, that is to say, on
the composition of the population of households. For the first approach see, for
example, the literature on additively separable utility functions or Mitjuschin and
Polterovich (1978). The distributional approach is treated in Hildenbrand (1983),
érdle, Hildenbrand and Jerison (1991), Grandmont (1992), Quah (1997), Kneip
(1999) and Jerison (1999). In this paper we pursue the distributional approach.

In a very original and influential paper Grandmont (1992) showed that “in-
creasing behavioral heterogeneity makes aggregate expenditure more indepen-
dent of prices”. Grandmont’s definition of “behavioral heterogeneity” is based
on a specific parametrization of housecholds’ demand functions (given by the a-

transformation) and is defined by a distributional assumption on the parameter.
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In this paper we want to show that Grandmont’s proposition holds in a much
more general setting, which does not require any parametrization of households’
demand function. To prove this claim we have, of course, to define in this general

setting a notion of “behavioral heterogeneity”. This is done in section 2.

Let W; (p) denote the aggregate (mean) consumption expenditure ratio for

commodity i of a population of households, i.e.,
Wi(p) =pi- Fi(p) /X i=1...,1
where X denotes mean income of the population.

Consider now the rate of change of W; (p) with respect to a percentage change

of the price pj, i.e.,

Si' (p) = 8)\ [Wz (plu EI) )‘pju s Jpl)])\zl :pjap]WZ (p) .

With this notation we can now formulate Grandmont’s main result. Let
W) = [ wlaspa)ds 2)
Rl

where w (p, x) is any continuously differentiable budget share function (i.e., 0 <
w; (p,z) < 1and 22:1 w; (p,x) = 1), v denotes a (probability) distribution of the
parameter « € (0, oo)l and a*p = (a1-p1,...,0 - p;). Note that all households

in the population (described by w and v) have the same income .

Then, sup, | Sy (p)| becomes arbitrarily small if 3 = (logay,... loga) is
“sufficiently uniformly spread” on R!. For example, if 3 is uniformly distributed
on the cube Q = [a,b]", then one obtains

sp S5 (p) | < =k

In this paper we want to show that for every (finite) population H of house-

holds one has

sup |Si (p) | < B (H) (3)

where the bound B (H) becomes arbitrarily small provided the population is
sufficiently “behavioral heterogeneous”, as defined in section 2. However, it is

important to emphasize that the relevant question is not whether the bound



B (H) is nearly zero but rather whether the bound B (H) is small as compared

to the mean comsumption expenditure ratio W, 7 =1,... L

In section 2 we shall associate to every population H of households an index
v (H) between zero and one which can be interpreted as a degree of behavioral
heterogeneity of the population. Naturally, v(H) = 0 for a population where
all households have the same demand function and the same income. The index
v (H) is also zero for a population where all households have a Cobb-Douglas
demand function even if they are different across the population. This population
is heterogeneous, yet not behaviorally heterogeneous since all households have the
same price-elasticities. The degree v (H) of behavioral heterogeneity is positive

yet less than one if the households h € H react differently to price changes.

If one computes the index v for the Grandmont model (2) one obtains an
index v (w,v) arbitrarily close to one if the parameter 5 = loga is sufficiently
uniformly spread on R!. For example, if the parameter 3 is uniformly distributed
on the cube @ = |a, b]l one obtains v > 1 — ﬁ - ¢, where the coefficient ¢ is

determined by the generating budget share function w.

The degree v (H) of behavioral heterogeneity is used to determine the bound
B (H) in the inequality (3). For example, consider the special case of a population
{wh,a:h}heH with 2" = 2 and sup, p;|9,,w! (p,2")| = d;; for all h € H. Note
that Grandmont’s model satisfies this assumption. Then we obtain (Proposition

3)

sup 1S5 (p) | < (1=~ (H))ds;.

For a general population the relation between the degree of behavioral heterogene-
ity v (H) and the bound B (H) is more complicated and is given in Proposition
4.

Obviously, a bound on |S;; (p) | implies a structural property of the Jacobian

OF (p) of mean demand, since
DyoF (p) Dy = X <_DW(p) +5 (p)) (4)

where D, and Dy ) are diagonal matrices with py,...,p; and Wi (p),..., Wi (p)
on the diagonal. Consequently, if |\S;; (p) | is small as compared with W; (p), then
the diagonal of the Jacobian matrix OF (p) becomes negative and dominant. In
particular, if for every i, W, (p) is greater than 23:1 |Si; (p) | and 23:1 |S;: (p) |



then the Jacobian matrix OF (p) is negative definite and mean demand F'(p)

satisfies the Law of Demand, i.e.,

(p—q)-(F'(p)— F(q) <O0.

Finally we remark that a bound on |S;; (p) | implies a restriction on the mag-
nitude of price-elasticities of mean demand. Let F;; (p) denote the price-elasticity

of mean demand for commodity 7 with respect to the price p;. Then one obtains

B (p) = Si(p) /Wi(p) if i # j.

Consequently, a low bound for |S;; (p) | implies strong restrictions on the matrix
FE (p) of price-elasticities.

In section 3 we shall use the estimates of price-elasticities obtained in Blundell
et al. (1993) in order to check whether the implication of the hypothesis of

“behavioral heterogeneity” is compatible with empirical facts.

2 Behavioral Heterogeneity

Notation: A population H of households h € H is defined by { ot }he 5> Where
(p,z) — f" (p,z) € R, denotes the demand function and 2" > 0 the income of
household h. The price vector p € P! = (0, oo)l :

Mean demand F (p) of the population H is defined by

F)= 2 3 ().

hcH

The consumption expenditure ratio of household h for commodity 7 (also called

the budget share) and the aggregate consumption expenditure ratio are defined
by

1 .
wi (p, z) 3:;Pz"f?(p,a?) 1=1,...,1
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and
1

Wi (p) == < Pili (p),

where X denotes mean income X = #—1H > hep 2™ of the population.

Thus,

W) = 25 3 Spul (). )

Let s?j and S;; denote the rate of change of w! and W;, respectively, with

respect to a percentage change of the price p;, L.e.,

s?j (p7 aj) = 8)\wzh (plu ey )‘pju s Jpl) ’)\:1 = pjap]wzh (p7 aj)

Sij (P) =W, (Pl; . e )\Pj; cee ,Pz) ’A:l = pjaiji (P) .

We want to find an upper bound for sup, |S;; (p) |. If one just knows for every
household the income 2" and d?j i= sup, ’3?3 (p, a:h> | then it follows from (1) that
the best possible upper bound is given by

1 x"
Si; < — —dl = D,.. 2
Sl;‘p’ J(p)’—#HZX 2] J (>

hcH

We remark that d?j does not depend on the income level 2" if the budget share
function w" is homogeneous of degree zero in (p, z).

It is our goal to improve upon inequality (2). To achieve this, one needs some
information about the characteristics of the population. The question now is:

which feature of the population H leads to an improvement of inequality (2)7

We shall associate to every population H of households an index v (H) with

0<~vy(H)<1- #—1H, which will be interpreted as a degree of behavioral hetero-

geneily of the population H. The index « (H) is used to improve upon inequality

(1)

The following assumptions on the budget share function w (p, x) are made:

Assumption 1: 0 < w; (p,z) <1



This follows from the budget restriction p- f (p,z) < z.

Assumption 2: w (p,z) is continuously differentiable in p >> 0 and z > 0 and

sup |p;dy,w; (p.x) | < oc.
p

Note that sup, |0p,w; (p, ) | is typically not finite. For this reason we consider
the rate of change of w; (p, x) for a percentage change of the j-th price.

Assumption 3: there is an integer m such that for all budget share functions
that we shall consider and for every 4,5 € {1,...,1} and every p € P the

derivative of the function

P — w; (ﬁl;"' y Pjy e 7?[7'1’;)

changes its sign at most m times.!

Let
A5 (w, ) = {p e P| Pi|Op,w; (p, ) | > & - dj; (w,a:)} (3)

where d;; (w, ) = sup, {p;|0p,wi (p,z) |} . That is to say, the set AS; (w,z) is the
domain of price vectors p for which the absolute value of the rate of change of
the budget share w; for commodity ¢ with respect to a percentage change of the

price p; is larger than or equal to ¢ - d;; (w, ).

Note that A?j (w,z) =P, A5 (w, ) # 0 and is decreasing in € for 0 < & < 1,
and A5; (w,z) = 0 for £ > 1.

The sets A$; (w, r) will play a crucial role in defining the notion of “behavioral
heterogeneity”. Therefore it is important to emphasize that the set A (w,x)
depends in an essential way on the budget share function w and the income level

x. To show this dependence it turns out that it is convenient to consider log-prices

q = (Ch; s Jql) = (1ng17 s 710gpl) = 1ng

Then one defines

B (w, ) := {q € R/| |0g,w; (exp (q) , ) | > & - dy (w,a:)} ) (4)

I'Without loss of economic content one might even assume that m = 0, that is to say, the
function p; — slhj (]_31, R I ,]_ol,xh) is either non-negative or non-positive.



One easily verifies that p € A§; (w,x) if and only if logp € B;; (w, z) .

Proposition 1 If the budget share functionw (or, equivalently, the demand func-
tion f) is homogeneous of degree zero in (p,x), then

ij (w,z) = ij (w,1)+logz -1

If, in addition, w (p, z) does not depend on the income level z (or equivalently, the
demand function f (p,x) is linear in x), then the set Bj; (w,x) does not depend
on x and q € Bj; (w) implies ¢ + A1 € Bf; (w) for all A € R.

Proof: First we remark that homogeneity of w in (p,z) implies that
sup, ‘pjapjwi (p,a:)‘ = d;; (w,x) does not depend on the income level z. Homo-

geneity of w in (p,z) implies w; (p, ) = w; (%p, 1), and hence

8)\wi (plu s 7)‘ij' .. Jpluaj) ’)\:1 = 8)\wi (pl/aju .. 'JApj/a:J s 7pL/a77 1) ’)\:1-

Since d;; (w, ) does not depend on x we obtain that p € A; (w, z) if and only if
1p e Ag; (w, 1), and hence ¢ € Bj; (w, ) if and only if logg—logz-1 € B}, (w,1),
which proves the first part of Proposition 1.

If w (p,x) does not depend on z then, by definition of the set Bf; (w, ), this
set does not depend on z and we write Bf; (w) . Hence, if ¢ € Bj; (w), then the first
part of Proposition 1 implies ¢—logz-1 € B;; (w) for every x > 0. Q.E.D.

The dependence of the sets AS; (w, r) and B§; (w, r) on the budget share func-

tion w is complex. We just give two examples.

Example 1: Consider two budget share functions w and w® which are linked
by

w (p,z) = w (a * p, ) ()

for some o € P! where a* p = (aq - py,..., ;- p;). The corresponding demand
function f and f¢ then satisfy

Jo(px) =ax [(axpx).

This transformation of demand functions has been considered by Mas-Colell and
Neuefeind (1977), E. Dierker, H. Dierker and Trockel (1984) and Grandmont
(1992).



One easily shows that («) implies
ij (w*, x) = ij (w,z) —loga

that 1s to say, B}

(logaq,...,logay). Indeed, we first observe that d;; (w,z) = d;; (w* x). Let

(w®,z) is just a translation of Bf; (w, ) by the vector

q € Bj;(w*,2), ie, |0g;ws (expq,x) | > edi; (w*, ). Since Og,wy (expq,x) =
Og;w; (o exp q, ) = 9y, w; (exp (loga 4 q) , z) it follows that log a+q € B® (w, z) .
Thus we showed that Bf; (w®,xz) C B (w,z) — loga. The opposite inclusion is

shown analogously.
Example 2: CES demand functions

We only consider the case of two commodities. The CES budget share func-
tions are independent of income and are defined by

wi (p1,p2) = “pi 7
’ a’p; ?+(1—a) py°
1—a Uplf‘f
Wo (P17P2) = ( ) 2 o 1-¢

a’py 7+ (1 —a)’ p

where (a,0) are parameters with 0 < ¢ <1 and o > 0.

The functions s;; (p1,p2) = p;Op,wi (p1,p2) are either everywhere positive or
negative, depending on the parameter values (a,0). Hence, assumption 3 on
budget share functions is satisfied for m = 0.

Figure 1 shows the graph of s11(-) as a function of (logp;,logps) for the
parameter values (a,0) = (0.95,2), (0.5,2), (0.05,2) and (0.5,0.1).

It follows from Proposition 1 that the set B, (a,0) is a strip parallel to the
diagonal in R?. Thus,

Bjy (a,0) = {(u,v) ER?*| v—w € [z—b,z+b]}.

One can compute the interval [z — b;, 2 + b,] and show that the length of this
interval only depends on the parameter o and s, while the location additionally

depends on the parameter a.

In Figure 2 are plotted the sets BS; (a,0) N Q for ¢ = 0.7 and the parameter
values (a,0) = (0.95,2.5), (0.5,2) and (0.05,1.5), and the cube ) = [-20, 20> .
By a closer look at Figure 2 we recognize that for all three functions the corre-
sponding set of prices logp € BY, (a,0) only covers a small fraction of the whole
cube [—20, 20]2 . This is not a specific property of CES-functions, but holds for all

8



budget share functions w satisfying our assumptions. Indeed, we shall show that
for £ > 0 the set Bj; (w,z) is sparse in R, that is to say, for any cube Q = [a, b’
in R!
l €
A (Bij (lw,a:) ﬂQ) 0
A (Q) (b—a)—o0

where A denotes the Lebesgue measure on R'.

Proposition 2 If d;; (w,z) > 0 and £ > 0 then for every g € R’

) ~ 3 . m+ 1
A {qJER’ (qlu"'quu"'uql)EBZ‘j(wa)}SW

Corollary: The sel Bj; (w,x) is sparse for £ > 0, more specifically,

N (Bs; (w,2) N Q) - m+ 1

Q) ~eedy(w,x)(b—a)

Proof of Proposition 2: Let v (§) := w; (equl, ., €XPq; 1,eXPE,eXP Py, .-
By definition of the set Bf; (w, z) we obtain

{¢; €R] @145+, @) € Bf; (w,2)} ={§ €R| |/ (§)] > edyj (w,x)} =: C.

Assumption 3 on budget share functions implies that there are m + 1 intervals,
I = (—00,2z1) ..., Iy = (Zn-1,2n) 5+« o s Imy1 = (2m, 00) such that the function
v is monotone on every interval. Hence fIn |/ (§)]dE = ‘fln v (€) dS‘ . Since 0 <
v (€) < 1 one obtains

[ ¢ @de|= - viani<t

Note that v (20) = lime ,_ v (§) and v (2my1) = lime o v (€) exist. Conse-

z).

quently,
12 [ W©ldez [ W (©)de > sy (wa) N (€N L),
In cnl,
which implies Proposition 2. Q.E.D.

Our discussion of properties of the sets B (wh, a:h> allows to draw the follow-

ing conclusion: The sets Bj; (wh ,a7h> are sparse, and their exact location in R!

9



depends crucially on the households’ characteristics (wh, a:h> I (w!, z') is close to
(w?, ), then Bf; (w', ') and B;; (w?, x?) are to be found in similar regions. On
the other hand, 1f there are substantial structural differences between two budget
share functions, then the corresponding sets B;; do not intersect. This has already
been illustrated by the CES example (see Flgure 2). In the context of example 1
we can infer from the sparseness of Bf; (w,x) that Bf; (w,z) N Bf; (w®,x) = 0 if
the shift introduced by « is sufﬁmently large.

The intuitive notion of “behavioral heterogeneity” of a population H of house-
holds - however it is made precise - undoubtedly implies that households’ char-
acteristics (wh, a:h> must be different across the population. This alone, however,
is not sufficient, and the above arguments open a way to quantify the struc-
turally important differences. “Behavioral heterogeneity” should imply that the
sets Bj; (w a:h> and, hence, A (wh, a:h> are different in the sense that they are
“located in different regions” in R!, which could be made precise by requiring
that these sets possess only few intersections. In terms of the sets As; (w,z) we
now define the intersection frequency: for every £ > 0 we define
#{heH]peA (w" ")} =

I (p) = #{heHy logp € B; (w",z")}.

#H 1

10



Figure 1:

Obviously, I?

]
A behaviorally heterogeneous population will now be characterized by the

(p) =1 and Ij; (p) is a decreasing step-function in .

property that for every price vector p the intersection frequency I7; (p) is small.
Since we do not want to emphasize a particular value of ¢ we shall consider the

shaded area 7,; (p) in Figure 3, i.e.,

1
Vi (p) =1 —/ L5 (p)ds
0
and define the degree of behavioral heterogeneity with respect to i, j by

Yij T igf Vg (p).

Definition: The degree of behavioral heterogencilty of the population H is
defined by

inf Vi (p) =1 (H).

Dy%,J

The minimal degree of behavioral heterogeneity, i.e., v (H) = 0, is attained
for a population H if

e all households have the same demand function and the same income
e all households have the same demand function which is linear in income

e all households have a Cobb-Douglas demand function which can be different

across the population.
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Obviously, v(H) <1 — # = < 1 for every population H.

If there is an ¢ such that the sets B (w a:h> are disjoint (see example 2)

then I (p) < 1/#H for every pand hence ,; > (1 —¢) (1 — ﬁ)

Proposition 3 For cvery population H with d?j =d;; and " =  one oblains

sup 1Si; (p)| < (1=~ (H)) dij.

Proof:
Define G5, (p) := 1 — I5; (p) . Then

Giy(0) = g (e HI 1ty (p.o) | < =d}

Thus, G5; (p) is the cumulative distribution function of ’3?3 (p,x)|/d;;. Conse-
quently,

’Sij (p)’ < # Z‘Szg p,r ij #Hz‘szg p,r ‘/dlj

he H heH
= d;;- /5 dG3; (p) .
Since [ e dGj; (p) = 1 — v;; (p) we obtain
1S5 (D) < (1=, (p)) .
We remark that one obtains
S1p 1955 (p)| = (1L = (H)) dy;

if for all households h € H and all price vectors p either s (p, h) > 0 or

sij (p,a") < 0.

Example 3: (Grandmont (1992))

Recall from example 1 that Bj; (w®,z) = B;; (w', z) —loga, o € R),. The
population is described by the budget-share function w!, the common income x
and the distribution v of log o on R'. The intersection frequency is defined by

I;(p) = v{logaeR| logpe B;; (w*, z)}
= v{loga e R| loga € By (wl,a:)—logp}:u{ij(wl,a:)—logp}.
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Since the set B (w',z), and hence its translate by log p, is sparse it follows
that the mtersectlon frequency Ij; (p) is arbitrarily small if the distribution v is
sufficiently uniformly spread. For example, if v is the uniform distribution on the

cube @ = [a, b]L then we obtain from Proposition 2 that

m+ 1
I .
o () < wd (0= a)

Finally we consider a general population H. The goal is to improve upon
inequality (2).

It follows from (1) that

|Si; (p)] < —Z\Sm p,a")| a" /X

heH
_ 3 ‘s” xh )| dia"
#H heH X
G 1 ] Gl )’: _ d-L dia” —D.. btai
mnee ZheH d Y5 (p) an #H Y onen % = Di; , we obtain
S?' p7ajh d?ajh
1Si ()| < (1= 35 (p)) Dij + covyy (‘ : <dh. >‘, ;( ) : (5)
i

Hence, if the covariance were negative, we would obtain a result that is analogous

to Proposition 3, namely

sup 1Si (P)| < (1=~ (H)) Dij.

Of course, the above covariance need not to be negative. Yet one can show that

it becomes small for sufficiently large v (H) .

Proposition 4 For every population H of households with v (H) > % follows

L
X

Nl

1
. [vaTHd?ja:h} z,

Sl;-p’Sij (P)| < (1=~ (H)) Dy + [y (H) (1 =~ (H))]

Proof: By Cauchy-Schwarz inequality we have

n(pam)| e\ n(p, 2t db. . o
(COUH (‘SU %a’; )‘7 ;?j )) S varyg (%) - Vary (%) . (6>

13




Sh» CEh
M. Then 0 < 2, < 1for h € H and meang (2n) = 1—1,; (p) .

Let z;, := .
af;

Since vary (z,) = meany (22) — (meang (z,))” , we obtain

vary (zn) < (1 — Vij (P)) - (1 — Vij (P)>2 = Yij () (1 — Vi (P)) :

The function & (1 — £) is decreasing on the interval [%, 1} . Consequently we obtain
for v (H) = inf;;, 7, (p) > 3 that vary (z) < v (H) (1 —~(H)). Hence, from
(5) and (6) we obtain the claimed inequality of Proposition 4.

Example 2 (continued): In Figure 2 we have considered the set Bf; (a,0)
for a population of three households with CES budget share functions and the

parameters

(a,0) = (0.95,2.5),(0.5,2) , (0.05, 1.5).

Let us additionally assume that all three households have the same income z = 2"

(note that dj; # d7; # d2,).
A numerical calculation yields:

e v (H) = 0.650; this is close to the upperbound for the degree of behavioral

: L2
heterogeneity 1 — 70 = 3

e sup, Sy (p) = 0.127 for all 4, j, which is clearly smaller than D;; = 0.250
(see the inequality (2) in section 2).

e the bound in Proposition 4 is equal to 0.136. Note that the covariance term

in (5) is positive since (1 — v (H)) D;; = 0.087.

Remark 1: The mean |S;; (p)| = can be expected

1 =P n ( h)
#H D onen xS (@

to be smaller than #—1H Y oher %h ‘S?J (p, a:h> ‘, and hence, smaller than the bound

given in Proposition 4 if there is a balancing sign-effect across the population,
that is to say, some s?j (p, a:h> are positive while others are negative.

The budget identity and homogeneity of the budget share function w (p, z)
imply that

ZZSZ (p, a:h) = 0.
i=1 j=1

Thus, if s?j (p, a:h> is not zero for all 7,7 then, for a given household h, some
s?j (p, a:h> are positive and others are negative. One might argue that “behav-

ioral heterogeneity” of a population should imply that, for given 4, 7, the sign of

14



s?j (p, a:h> alternates across the population. The sign of s?j (p, a:h> changes across
the population if, for i = 7, the own price-elasticity of demand for commodity 4
is spread around minus one and if, for i # j, the cross price elasticity is spread
around zero. Why should this prevail for every commodity? We believe that to
a certain extent a balancing sign-effect always prevails, yet this balancing effect
is not sufficiently general and strong in order to base on it alone the desired

conclusion of a small |.S;;(p)|.

Remark 2: One might argue that the structure of the Jacobian matrix of
demand depends on the level of commodity aggregation. In the simple case of
icks-Leontief (composite-commodity) aggregation one can show that changing
signs of S;; (p) across the elementary commodities i, j has a balancing effect which
goes in favour of diagonal dominance of the Jacobian matrix of the demand system

for composite-commodities.

3 Empirical Results

We have already mentioned in the introduction that there is a relation between the
derivatives S;; (p) and the price-elasticities of mean demand. In matrix notation

we obtaln

—Dwy + S (p) = Dwp I (p) -

Recall that E (p) is the matrix of price-clasticities, while Dy () is the diagonal
matrix with Wy (p) ..., W, (p) on the diagonal. We have shown in Section 2 that
in the case of extreme heterogeneity all elements of S (p) will be very small, and
hence —Dw ) &= Dwp)F (p) . Consequently, in this extreme situation own price

elasticities will be close to —1, while cross price elasticities will be close to 0.

On the other hand, we already argued that it might not be reasonable to
expect an extremely high degree of heterogeneity. The actual degree depends on
the structure of the underlying population. It is thus an interesting empirical
question to check whether for existing populations the matrix —Dy ) + S (p)
possesses the structure to be assumed in the presence of a reasonably high de-

gree of heterogeneity: off-diagonal elements are small; all diagonal elements are
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negative, and their absolute values are considerably larger than those of the off-

diagonal ones.

In the econometric literature one can find quite a number of empirical studies
providing estimates of price elasticities which can in principle be used to answer
this question. However, estimating price elasticities as required by our approach is
not easy. Most studies consider aggregate time series W;;, X; and p;; over different
time periods (usually years) ¢t = 1, 2,.... Time changes of the W, are modelled
as functions of X; and py¢,...,pn, and estimates of price elasticities are then
obtained from the resulting model coefficients. In order to have sufficient data
to ensure reliable estimates, it is necessary to rely on sufficiently long time series
based on many periods. In view of the above definition of price elasticities this
is not without problems, since it is implicitely required that only prices change,
while the composition of the population remains invariant. This is certainly not
fulfilled for data stemming from a wide range of different years, and consequently
the resulting estimates of price elasticities may not be interpretable as required

in this paper.

To our knowledge, there exists only one published work in the literature which
explicitely deals with these problems. This is the well-known and very extensive
empirical study presented by Blundell et al. (1993). The authors use data from
the British Family Expenditure Survey (FES) over 15 years (1970-1984). In order

to obtain sufficiently long time series they use monthly data.

Blundell et al. (1993) provide estimates of price elasticities based on two

different models. The first one is referred to as “micro model”., and it is based

:
on a parametric model of individual budget share functions. The approach uses
the fact that the FES contains cross-section data providing information about
income and other important household characteristics. Model parameters are al-
lowed to vary in dependence of individual household characteristics which results
in different budget share functions for different household types. Estimates of
prices elasticities are then obtained by evaluating the model at average shares

and household characteristics.

Conceptually, the resulting elasticities of an “average individual” do not ex-
actly correspond to our definition of the aggregate elasticities determining F (p) .
We thus concentrate on the estimates of price-elasticities obtained by the second
approach presented in Blundell et al. (1993), which is called the “macro model”.
The authors present a sophisticated model of mean budget shares as a function
of prices and mean income. The model incorporates some aggregation factors

which are able to partially compensate distributional changes.
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Using this “macro model”, Table 4c¢ Blundell et al. (1993) provides the
estimates of price elasticities for 6 commodity aggregates: food, alcohol, fuel,
clothing, transport and services. The corresponding matrix Dyy(,) of mean bud-
get share can be approximated from the average shares given in their table 2b.
We have used these values to calculate a corresponding estimate of the matrix
—Dw) + S (p) = DwpF (p) is presented in our Table 1.

Remark: Throughout the paper of Blundell et al. (1993) mean budget shares
Wi =+ >, wh (p,2") are used instead of Wy = Cy (p) /X;. Since usually W, #
Wi this constitutes some deviation from our definitions. It might also be noted
that the qualitative conclusions to be drawn from Table 1 rest valid if elasticities
from the “micro model” are applied. In fact, Blundell et al. (1993) show that most
of the differences in the estimated elasticities from these models are statistically

not significant.

One can infer from Table 1 that all diagonal elements of Dy, F (p) are neg-
ative. Furthermore, the off-diagonal elements are indeed considerably smaller in
absolute value than the diagonal ones. One might say that a matrix with a sim-
ilar qualitative structure is to be expected for a population with a high, but not

extremely high, degree of heterogeneity.

One even recognizes that, with the exception of the commodity fuel, the diag-
onal elements seem to dominate the off-diagonal ones in the same row or column.
One might thus ask whether even the hypothesis of diagonal dominance is accept-
able. For simplicity, in order to avoid a separate discussion of sums of rows and

columns we have considered this question by relying on the symmetrized matrix

Q (p) = DwyE (p) + E (p)" Dy -

Diagonal dominance can now be checked by computing the differences @ (p),, —
Zj;«éi |Qi; (p)| for each row i = 1,...,6. The resulting differences are reported
in Table 2. Since the estimation error is by no means negligible, the table also
provides rough approximations of the standard error of the estimated differences
and of the corresponding lower and upper confidence bound. The indicated errors
must be considered as very crude approximations, since they are calculated only
from the standard errors of the elasticity estimates given in Table 4C of Blundell
et al. (1993). Correlations between elasticities estimates are not provided and

thus have to be ignored.

We see that five out of the six differences are negative. Positivity of the
difference for the commodity aggregate “fuel” does not seem to be significant

(recall, however, that we use a very crude approximation of the standard error).
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Table 1: Estimates of =W (p) + S (p)

Food Alcohol Fuel Clothing Transport Services
Food -0.211  0.009  -0.005  -0.005 0.017 0.034
Alcohol  0.007  -0.087  0.029 0.019 0.039 0.014

Fuel -0.005 0.029 -0.046  0.000 -0.034 -0.007
Clothing 0.066 -0.042 -0.044 -0.122 0.019 -0.003
Transport 0.020 -0.007 -0.015  -0.027 -0.214 -0.018
Services  0.010  0.004 -0.004  0.010 -0.023 -0.131

Table 2: Diflerences

diff std  low.bound upp.bound

Food -0.252  0.074 -0.397 -0.108
Alcohol  -0.036 0.051 -0.135 0.064
Fuel 0.079 0.049 -0.017 0.176
Clothing -0.101 0.059 -0.217 0.016
Transport -0.259 0.095 -0.446 -0.072
Services  -0.149 0.056 -0.258 -0.040
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