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Abstract

Local convergence results for adaptive learning of stochastic steady

states in nonlinear models are extended to the case where the exoge-

nous observable variables follow a finite Markov chain. The stability

conditions for the corresponding nonstochastic model and its steady

states yield convergence for the stochastic model when shocks are suf-

ficiently small. The results are applied to asset pricing and to an

overlapping generations model. Large shocks can destabilize learning

even if the steady state is stable with small shocks.
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1 Introduction

We consider stability under adaptive learning of stochastic steady state equi-
libria for nonlinear expectations models of the form

yt = H(E∗

t
G(yt+1, wt+1), wt), (1)

where yt is a scalar endogenous variable and wt is an exogenous random
shock. Expectations E∗

t
(.) may not always be rational and under rational

expectations we denote them byEt(.). Explicit stability results for this model
have been obtained by (Evans and Honkapohja 1995) under the restrictive
assumption that wt is an iid process. In this paper we extend the stability
results to the case where wt is a time-dependent process taking the form of a
finite Markov chain. The extension is useful since many applied models make
the Markov chain assumption for the shock process, see e.g. (Hamilton 1989)
and (Mehra and Prescott 1985).

The finiteness of the Markov chain is a limitation in our results, but it
allows the formulation of adaptive learning in terms of a finite number of pa-
rameters. More general assumptions for shocks would lead to the description
of stochastic states in terms of infinite dimensional parameters. For example,
if wt in (1) is a general Markov process the stochastic steady state is likely to
be a function y(wt) that cannot in general be expressed in parametric form.
Agents would have to be estimate y(wt) using advanced nonparametric meth-
ods. Such an approach has been studied by (Chen and White 1998), but they
do not develop explicit stability conditions in terms of the properties of the
underlying economic model. Moreover, models of adaptive learning are based
on the hypothesis of boundedly rational agents and the assumption that such
agents are sufficiently sophisticated to use non-parametric techniques seems
to go against the spirit of the hypothesis.1

The class of models (1) with autocorrelated shocks is also important for
a different reason. The applied literature very often studies linearizations or
log-linearizations of nonlinear Euler equations. The linearization is usually
done around a non-stochastic steady state under the assumption that the
support of the exogenous shock process is small. We provide existence re-
sults for models with small Markov chain shocks and then relate the general
stability conditions to the linearized case and thus provide a bridge between

1Instead the agents might use a simpler but mis-specified parametric model. For

brevity, we do not consider this possibility further.
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the nonlinear and the linearized settings.2

The results are applied to a standard model of asset pricing and a sto-
chastic overlapping generations model. The stochastic steady state in the
asset pricing model is locally stable under learning irrespective of the size of
the shocks. In contrast, in the overlapping generations model it is possible
that the steady state is stable under learning with small shocks but unstable
with sufficiently large shocks.

2 The Model

The precise assumptions for model (1) are as follows. H(.) and G(.) are
twice differentiable with bounded first and second derivatives in some open
rectangles. G(yt, wt) is assumed to be observable. wt is an observable ex-
ogenous variable that follows a finite Markov chain with states {ŵ1, ..., ŵK}
and transition probabilities πij = Pr {wt+1 = ŵj |wt = ŵi}. The transition
matrix Π = (πij) is assumed to be recurrent, irreducible and aperiodic.

A rational stochastic steady state for the stochastic model (1) is defined
as a set of points λ∗1, ..., λ

∗

K such that

if wt = ŵk, then λt = λ∗k, where

λ∗k =
K∑
s=1

πksG(H(λ∗s, ws), wk). (2)

λ∗k is interpreted as the value of EtG(yt+1, wt+1) when the current state of
the shock is k and the value of the endogenous variable is yt = H(λ∗k, ŵk) if
the exogenous variable has the value ŵk in the current period t.

We remark that (2) is a natural definition of a stochastic steady state
in the current setting. This is because the agents, having seen the current
state of the shock in period t, take account of its value and correctly predict
the expected value of G(yt+1, wt+1) conditionally on the current state with
the economy being in the steady state next period, so that yt+1 has the
alternative values H(λ∗s, ws), s = 1, ..., K.

Model (1) with zero shocks is assumed to have a non-stochastic steady
state, which can defined as a solution λ̄ to the equation

λ̄ = G(H(λ̄, 0), 0). (3)

2(Evans and Honkapohja 1998) study a linear model with an exogenous variable that
follows a finite Markov chain.
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Next, we introduce the notation Ḡ1 = D1G(H(λ̄, 0), 0), H̄1 = D1H(λ̄, 0),
‖w‖ = max1≤k≤K |wk| .and make the following regularity assumption:

Regularity: Ḡ1H̄1 is non-zero and (Ḡ1H̄1)
−1 is not an eigenvalue of Π.

Under the regularity assumption we have existence of stochastic steady
states with small Markov chain shocks:

Proposition 1 Suppose that model (1) has a non-stochastic steady state λ̄
defined by (3), the Regularity assumption holds for λ̄. Assume that the tran-
sition matrix Π is recurrent, irreducible and aperiodic. Then ∃ε̂ such that
∀ε < ε̂ model (1) has a stochastic steady state λ∗1, ..., λ

∗
K defined by equations

(2) for Markov chain shocks with transition matrix Π and states {ŵ1, ..., ŵK}
that satisfy ‖w‖ ≤ ε.

Proof. Consider the set of equations (2), which we write in vector form
F (λ, w) = 0, where λ = (λ1, ..., λK) and w = (w1, ..., wK). By the implicit
function theorem this vector equation defines locally a function λ(w) around
w = 0 ≡ (0, ..., 0) if det(D1F (λ̄1, 0)) �= 0. Here the notation λ̄1 =λ̄(1, ..., 1)
is used. It is easily computed that

D1F (λ̄1, 0) =




1− π11Ḡ1H̄1 −π12Ḡ1H̄1 · · · −π1KḠ1H̄1

−π21Ḡ1H̄1 1− π22Ḡ1H̄1 · · · −π2KḠ1H̄1

...
...

. . .
...

−πK1Ḡ1H̄1 −πK2Ḡ1H̄1 · · · 1− πKKḠ1H̄1




= Ḡ1H̄1[(Ḡ1H̄1)
−1I −Π],

provided Ḡ1H̄1 �= 0. Thus det(D1F (λ̄1, 0)) �= 0 if (Ḡ1H̄1)
−1 is not an eigen-

value of Π.
Proposition 1 shows that, under mild assumptions, there exist steady

state solutions to the stochastic model (1). We do not consider existence
further since more general existence results, with shocks that are not small,
are usually derived for concrete economic models rather than general classes
of models such as (1). The asset pricing model with stochastic dividend
growth due to (Mehra and Prescott 1985), which is discussed below, is an
example of this approach towards existence of equilibria.
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3 Convergence of Learning to Steady State

We now formulate the adaptive learning of a stochastic steady state (2) for
model (1). Suppose that the agents do not know the steady state values
λ∗1, ..., λ

∗
K but try to infer them from past data. In the past the exogenous

shock has been in the different states k = 1, ...K and agents have perceptions
that the economy is in an unknown steady state, as defined in (2). A plausible
learning rule for this setting is that agents group the data into K different
groups conditionally on occurrence of the different values wk of the exogenous
shock and compute the state-contingent averages of the group values of the
relevant variable.

Thus let λj,t be the estimate of the steady state value λ∗j for period t+ 1
when the exogenous variable is in state ŵj in period t. The temporary equi-
librium given the forecasts and the current state ŵj is then yt = H(λj,t, ŵj).
Define also the indicator function ψj,t = 1 if wt = ŵj and = 0 otherwise. The
learning rule can be written as

λj,t = λj,t−1 + t−1ψj,t−1q
−1
j,t−1(

K∑
s=1

πjsG(H(λs,t−1, ws), wj) (4)

−λj,t−1 + ut−1)

qj,t = qj,t−1 + t−1(ψj,t−1 − qj,t−1), (5)

for j = 1, ...,K.
The equations of the learning algorithm can be interpreted as follows. qj,t

is the fraction of observations through t−1 in which the state ŵj has occurred.
(5) is the recursive form for computing the fraction. (4) is the recursive form
for computing state contingent averages, except for a small measurement or
observation error ut−1. ut−1 is assumed to be iid with mean 0 and bounded
support. (The existence of ut−1 is needed only for the instability result.) We
remark that the estimates used by agents at time t are based on observations
only through period t− 1.3 Equation (4) also specifies that λj,t−1 is updated
only if wt−1 = ŵj. We remark that, since the agents formulate the forecasts
for next period values for λj conditionally on the current state j, they do
not use the values λi for other states i �= j. Data conditional on j does not
provide useful information for estimating the other conditional expectations.

3This assumption is often used in the literature. It avoids a simultaneity problem
between yt and the forecasts E∗

t
G(yt+1, wt+1).
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The learning rule formulated above is an example of stochastic recursive
algorithms (SRA). We employ the techniques for such systems to derive the
conditions for convergence of adaptive learning to the stochastic steady state
(λ∗1, ..., λ

∗

K). It turns out that (see below for details) the conditions for local
convergence of SRAs can be studied using the local asymptotic stability of
the equilibrium of an associated ordinary differential equation (ODE). The
stability conditions for latter can in turn be related to those of another ODE:

dλj

dτ
=

K∑
s=1

πjsG(H(λs, ŵs), ŵj)− λj, j = 1, ..., K. (6)

Clearly, the steady state (λ∗1, ..., λ
∗

K) is an equilibrium point of (6). We

linearize (6) and introduce the notation G(1)
js = D1G(H(λ∗s, ŵs), ŵj) and

H
(1)
s = D1H(λ∗s, ŵs). Linearizing (6), we obtain:

Theorem 2 Assume that no eigenvalue of the matrix

M =




π11G
(1)
11 H

(1)
1 π12G

(1)
12 H

(1)
2 ... π1KG

(1)
1KH

(1)
K

π21G
(1)
21 H

(1)
1 π22G

(1)
22 H

(1)
2 ... π2KG

(1)
2KH

(1)
K

...
...

. . .
...

πK1G
(1)
K1H

(1)
1 πK2G

(1)
K2H

(1)
2 ... πKKG

(1)
KKH

(1)
K


 (7)

has real part equal to 1. Then
(i) The rational steady state (λ∗1, ..., λ

∗

K) is locally stable under learning if all
the eigenvalues of M have real parts less than 1.
(ii) The rational steady state is locally unstable under learning if M has an
eigenvalue with real part greater than 1.

Proof. The recursive equations for the parameter estimates can be writ-
ten in the form

θt = θt−1 + t−1H(θt−1, Xt),

where θt = (λ1,t, ..., λK,t; q1,t, ..., qK,t)
′ is the vector of parameters, Xt =

(ψ1,t−1, ..., ψK,t−1, ut−1)
′ is the vector of state variables, and

Hj(θt−1,Xt) = ψj,t−1q
−1
i,t−1(

K∑
s=1

πjsG(H(λs,t−1, ws), wj)− λj,t−1 + ut−1)

for j = 1, ...,K, and

Hj(θt−1,Xt) = ψj,t−1 − qj,t−1

for j = K + 1, ...2K.
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It is then possible to apply theorems on the convergence of SRAs, see e.g.
part II of (Evans and Honkapohja 2001). The assumptions made in Section
2 can easily be shown to imply the required convergence conditions.4 The
results state that, under the appropriate conditions, convergence of these
algorithms is governed by the stability of the associated ODE

dθ

dτ
= h(θ) where h(θ) = lim

t→∞
EH(θ,Xt). (8)

To compute the function h(θ) we first let π̄1, ..., π̄K denote the invariant
probabilities of the different states of the Markov chain Π = (πij). Then it
is easily seen that

hj(θ) = π̄jq
−1
j (

K∑
s=1

πjsG(H(λj, ŵj), ŵj)− λj), j = 1, .., K

hj(θ) = π̄j − qj, j = K + 1, ..., 2K.

The latter set of differential equations is independent of the former and is
clearly globally stable with qj → π̄j. It follows that (λ

∗

j , π̄j), j = 1, ...,K, is a
locally asymptotically stable equilibrium point of the associated differential
equation (8), provided λ∗j is locally asymptotically stable equilibrium point
for the ”small” ODE (6). Result (i) follows.

To prove result (ii) we remark that the conditions for a standard insta-
bility result for SRAs are also satisfied.5

These results provide simple conditions to evaluate whether the steady
state is stable under learning.6 The relevant conditions are obtained by
studying the ”small” ODE (6). This relationship establishes that a concept
known as expectational stability (or E-stability) is the key condition leading
to stability under learning.7 (Evans and Honkapohja 2001) provide an exten-
sive discussion of this connection between convergence of adaptive learning
and E-stability for different kinds of models.

4The arguments on pp. 68-69 of (Evans and Honkapohja 1998) can be applied here to
show that conditions for general algorithms are satisfied for the model under study.

5The formal details are analogous to those in (Evans and Honkapohja 1994), Proof of
Proposition 5.2.

6For brevity we refrain from the details on the sense of convergence. See, Chapters 6
and 7 of (Evans and Honkapohja 2001) for a discussion.

7An REE is defined to be E-stable if it is a locally asymptotically stable equilibrium
point of an ODE between given forecasts and the resulting temporary equilibrium. In
model (1) the ODE defining E-stability is just (6).
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4 The Case of Small Shocks

It is important to note that the derivatives in matrix M in Theorem 2 are
evaluated at different points (λ∗j , ŵj). Thus it is first necessary to compute
the steady state values (λ∗j , ŵj). However, if the random shocks are small in
the sense that the different values ŵj are near a constant value, say, zero then
an important further result can be obtained. We now take up this issue.

Letting w = (w1, ..., wK), suppose that the states of the shock process
satisfy ‖w‖ ≤ ε for small ε > 0. As in Section 2 we can consider the
stochastic steady state λ∗j , j = 1, ..., K, to be a function of w. By continuity,
the non-stochastic steady state λ̄ is a limiting value, so that λ∗j(w) → λ̄ for all

j as ‖w‖ → 0 and the steady state values λ∗j(w) satisfy
∣∣λ∗j(w)− λ̄

∣∣ < δ, j =
1, ...,K, for some δ > 0. Also denote by M(w) the matrix (7) in Theorem 2
when the elements are viewed as functions of w. By continuity of eigenvalues
we have lim‖w‖→0M(w) → Ḡ1H̄1Π.

Under the regularity assumption Ḡ1H̄1 �= 1 and thus we have:

Proposition 3 Consider a given transition probability matrix Π, a stochas-
tic steady state λ∗j(w), j = 1, ...,K and the corresponding non-stochastic
steady state λ̄.
(i) If

∣∣Ḡ1H̄1

∣∣ < 1 for the non-stochastic steady state, then there exists ε̄ > 0
such that the stochastic steady state is E-stable for economies when the dif-
ferent states of exogenous shock satisfy ‖w‖ < ε̄.
(ii) The stochastic steady state for economies with an Markovian exogenous
variable satisfying ‖w‖ < ε for ε sufficiently small, is stable under learning
only if Ḡ1H̄1 ≤ 1 for the limit non-stochastic steady state.8

Proof. (i) Since Π is a Markov matrix, 1 is an eigenvalue of Π and
all eigenvalues have modulus ≤ 1. Thus, as ‖w‖ → 0, the limits of the
eigenvalues of M(w) are equal to Ḡ1H̄1µ, where µ is an eigenvalue of Π.
If

∣∣Ḡ1H̄1

∣∣ < 1, the eigenvalues of M(w) are sufficiently close to the values
Ḡ1H̄1µ, which then satisfy

∣∣Ḡ1H̄1µ
∣∣ < 1.

(ii) Suppose to the contrary that Ḡ1H̄1 > 1. By continuity, at least one
eigenvalue of M(w) is greater than one for all ‖w‖ sufficiently small, which
implies instability under learning by Theorem 2.

8We remark that Ḡ1H̄1 < 1 is the E-stability condition for the non-stochastic model,
see (Evans and Honkapohja 1995).
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Proposition 3 can be seen as the basis for the common practice whereby
one linearizes the model (1) at the non-stochastic steady state and studies
the resulting linear model. Since a finite Markov chain can be written in an
autoregressive form, see p.679 of (Hamilton 1994)), the linear model can be
written, after centering, as

yt = AE∗
t yt+1 +Bwt+1 + Cwt, (9)

wt+1 = Pwt + vt, (10)

where A = Ḡ1H̄1, B = Ḡ2H̄1 and C = H̄2. This can be analyzed further in
the usual way. For example, a sufficient condition for stability under learning
is |A| < 1, while A < 1 is a necessary condition.9

5 Application I: Asset Pricing

The standard model of asset pricing, see e.g. Chapter 10 of (Ljungqvist and
Sargent 2000) for an exposition, leads to an Euler equation for the price pt
of an asset paying a dividend dt in each period:

ptu
′(dt) = βE∗

t pt+1u
′(dt+1) + βE∗

t dt+1u
′(dt+1). (11)

Here u(.) is the utility function of the representative consumer and β is the
discount factor. We do not assume that expectations are necessarily always
rational, as indicated by * in the expectations.

Case 1. (Asset pricing with stationary dividends) Following (Ljungqvist
and Sargent 2000), Example 2, we first consider the case where dividends
assume a finite set of values {d̂1, ..., d̂K} and they evolve according to a finite

Markov chain with transition probabilities πij = Pr
{
dt+1 = d̂j

∣∣∣dt = d̂i

}
. For

simplicity, this Markov chain is assumed to be known to the representative
agent. At time t the agent needs to predict the ex dividend asset price pt+1
for the period.

Equivalently, we can assume that the agent make prediction of the quan-
tity E∗

t pt+1u
′(dt+1). Letting yt = ptu

′(dt) and wt+1 = dt+1u
′(dt+1) the model

(11) becomes
yt = βE∗

t (yt+1 + wt+1),

9(Evans and Honkapohja 1998) study stability conditions for learning in the special
case B = 0, C = 1. These special assumptions are inconsequential for the stability and
instability results.
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which is a special case of (1) when H(y, w) = βy and G(y, w) = y + w. We
can directly apply the general results and conclude that the REE is E-stable
and hence locally stable under adaptive learning.

Case 2. (Asset pricing with dividend growth) (Mehra and Prescott 1985)
formulate a finite state model of dividend growth by assuming that the
growth of dividends follows a finite Markov chain. In other words, we assume
that

dt+1 = µtdt,

where µt is a finite (K-state) Markov chain with a transition matrix Π.
Assume also that the utility function of the representative consumer exhibits
constant relative risk aversion, so that

u(d) =
d1−γ

1− γ
, γ > 0.

The price dividend ratio pt/dt can be shown, see p.240 of (Ljungqvist and
Sargent 2000), to satisfy the equation

pt

dt

= E∗

t

[
β(µ

t+1)
1−γ(

pt+1
dt+1

+ 1)

]
, (12)

where again we have allowed for the possibility that expectations may not
always be rational.

Letting yt = pt/dt and wt = µt, it is easily seen that (12) is a special
case of model (1) with H(y, w) = y and G(y, w) = β(w)1−γ(y + 1). The
E-stability of the REE is governed by the matrix




π11β(w1)
1−γ π12β(w2)

1−γ · · · π1Kβ(wK)
1−γ

π21β(w1)
1−γ π22β(w2)

1−γ · · · π2Kβ(wK)
1−γ

...
...

. . .
...

πK1β(w1)
1−γ πK2β(w2)

1−γ · · · πKKβ(wK)
1−γ


 (13)

and E-stability requires all of the eigenvalues of matrix (13) must have real
parts less than one. The model is no longer linear and in principle the stability
of the REE under learning could be affected by the nonlinearity. However,
instability under learning can be ruled out using a further argument exploited
by (Mehra and Prescott 1985) to ensure uniqueness of the REE. They impose
the further condition that all eigenvalues of the matrix (13) should be inside
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the unit circle. This determinacy condition clearly implies that the unique
REE is also E-stable.

We summarize the analysis in the following proposition:

Proposition 4 The stochastic steady state in the standard asset pricing
model is stable under learning when (i) the dividends follows a finite Markov
chain and also (ii) when the growth rate of dividends follows a finite Markov
chain and the eigenvalues of (13) have real parts less than one.

We emphasize that stability of the REE under learning could in principle
be affected by the size of the Markov chain shocks in Case 2 of the asset
pricing model. (Case 1 is a linear model in which the magnitude of the shocks
does not matter for stability.) The assumption used by (Mehra and Prescott
1985) to ensure existence and uniqueness of REE is, however, sufficient also
to rule out instability of the REE under learning.10

6 Application II: Overlapping Generations

As a second application of our results we consider the standard overlapping
generations model (the so-called Samuelson model) with productivity shocks.
This model was suggested by (Evans and Honkapohja 1995), Section 6 and
we generalize their analysis to the case where the shock are a Markov chain
rather than iid. The analysis will illustrate that the size of the shocks is
important for the stability of the steady state under learning.

In the Samuelson model it is assumed that each generation lives for two
periods. They work when young and consume only when old. Thus the
utility function of the representative consumer born in period t takes the
form

U(ct+1)− V (nt),

where ct+1 denotes his consumption in period t + 1 (when the consumer
is old) and nt denotes labor supply in period t (when he is young). The
utility function for consumption U(c) is assumed to be strictly concave while
the disutility of labor supply V (n) is taken to be strictly convex. Both are

10We remark that uniqueness (or determinacy) of REE does not in general imply stability
under learning for all models, see Parts III and IV of (Evans and Honkapohja 2001) for a
detailed discussion.
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assumed to be twice continuously differentiable. Output is assumed to be
perishable and the production function of the consumer is

qt = nt + µt,

where the additive productivity shock µt is taken to be nonnegative random
variable. It is observable when time t decisions are made. We assume that
µt follows a finite Markov chain that is recurrent, irreducible and aperiodic.

The budget constraints of the consumer are

ptqt = Mt,

pt+1ct+1 = Mt,

where pt is the price of output and Mt denotes his savings in the form of
money. It is assumed that there is a constant stock of nominal money in the
economy. As is well-known, utility maximization and market clearing yield
the equation

(nt + µt)V
′(nt) = E∗

t [(nt+1 + µt+1)U
′(nt+1 + µt+1)], (14)

which characterizes the (interior) temporary equilibria when the consumers
have the expectations E∗

t (.).
The model (14) can be cast in the general framework (1) as follows. First,

we define yt = nt, wt = µt − E(µ), where E(µ) is the mean of the invariant
distribution of µt and set

G(y, w) = (y + w + E(µ))U ′(y + w + E(µ)).

Second, note that the left hand (14) is strictly increasing in nt, so that (14)
can be solved for nt. Then y = H(x,w) is implicitly defined by the equation

x = (y + w + E(µ))V ′(y).

With these definitions the basic results, Theorem 2 and Proposition 3 can be
applied.

We are interested in studying whether the size of the shocks can affect
the stability of the stochastic steady state of the model. To show this we
assume that utility functions are isoelastic

U(c) =
c1−σ

1− σ
, V (n) =

n1+ε

1 + ε
,

12



in which case (14) takes the form

(nt + µt)n
ε
t = E∗

t [(nt+1 + µt+1)
1−σ].

We also let µt = E(µ) + vt, where vt ∈ {v1, v2} with transition probability
matrix Π.

We select the following numerical values for the parameters: σ = 4,
ε = 1, E(µ) = 0.6 leading to a non-stochastic steady state at 0.645 and
this steady state is stable under steady state learning, see p.201 of (Evans
and Honkapohja 1995). Note that the non-stochastic steady state is also a
limiting case, with v1, v2 → 0 for any transition matrix Π, of the stochastic
steady state when the Markov chain shocks are present. We now specify the
values π11 = π22 = 0.1 for the transition matrix and v1 = 0.05. We then
vary the value of v2 and consider E-stability of the stochastic steady state
when the value of v2 is increased. Table 1 reports the signs of the trace and
determinant of the matrix M − I for different values of v2.

11

v2 0.1 0.15 0.2 0.25 0.3 0.35

Tr − − − − − −
det + + + + − −

Table 1: E-stability of the stochastic steady state

Table 1 illustrates how the steady state becomes unstable when the size
of the shock becomes larger. As might have been anticipated on the basis
of Theorem 2 and Proposition 3, there are models in which the steady state
REE is stable under learning when shocks are small but is not stable with
large enough shocks. We summarize the finding in

Remark 5 In stochastic nonlinear models stability under learning of a steady
state can be affected by the magnitude of the random shocks. A steady state
that is stable under learning when shocks are small can become unstable if
the shocks are sufficiently large.

11In this example M is a 2× 2 matrix and we can consider stability by computing the
trace and determinant of M − I.
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7 Concluding Remarks

In this paper we have extended the earlier results of stability under learning
of steady states in stochastic nonlinear models to an important case, where
the exogenous shocks are no longer iid and are instead correlated over time.
Explicit local stability and instability results in terms of the underlying eco-
nomic framework were obtained when the shocks follow a finite state Markov
chain. We also discussed the significance of small vs. large shocks and the
linearization of the model.

The assumption that the Markov chain is finite is restrictive, though this
case has been fairly often used in applications. The assumption enables
the definition of steady states and formulation of adaptive learning, so that
agents realistically estimate the values of a finite number of parameters.
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