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Abstract

Incomplete asset markets cause competitive equilibria to be constrained sub-
optimal and provides scope for Pareto improving interventions. In this paper,
we examines how intervention in prices in asset or spot commodity markets
serve this purpose. We show that, if fix-price equilibria behave sufficiently regu-
larly near Walrasian equilibria, Pareto improving price regulation is generically
possible. An advantage of price regulation, contrasted with interventions in in-
dividuals’ asset portfolios, is that it operates anonymously, on market variables.

Key words: incomplete asset market, fix-price equilibria, Pareto improve-
ment.

JEL classification numbers: D45, D52, D60.



1 Introduction

When asset markets are incomplete, competitive equilibrium allocations gener-
ically fail to satisfy the criterion of constrained Pareto optimality which recog-
nizes the incompleteness of the asset market. Geanakoplos and Polemarchakis
(1986) showed that, generically, there exist reallocations of portfolios that yield
Pareto improvements in welfare after prices in spot commodity markets adjust
to attain equilibrium; Citanna, Kajii and Villanacci (1998) developed further
and generalized the argument.

The failure of constrained optimality casts doubt on non-intervention with
competitive markets.

Expansions of the asset market do not necessarily lead to Pareto improve-
ments: Hart (1975) gave an example of financial innovation that leads to a
Pareto deterioration; Cass and Citanna (1998), Elul (1995) and Hara (1997)
identified conditions for Pareto improving financial innovation.

The taxation of trades in assets, which is anonymous, can generically imple-
ment a Pareto improvement. Citanna, Polemarchakis and Tirelli (2001) demon-
strated the result, which requires that the number of individuals not exceed the
number of traded assets; it provides only a partial answer to Kajii (1994), who
pointed out that, apart from informational requirements, the heterogeneity of
individuals and the requirement of anonymity may interfere with improving
interventions.

The direct regulation of prices in spot commodity markets is an alternative
to the reallocation of portfolios or the taxation of trades in assets. Importantly,
this is not an intervention in individual choice variables but in market variables,
and, as such, it satisfies the requirement of anonymity.

An extension of the fix-price equilibrium of Drèze (1975) provides a notion
of equilibrium that allows for trading at non-competitive prices; alternative
specifications, in Barro and Grossman (1971), Bénassy (1975) or Younès (1975)
should not affect the argument.

The results of Laroque (1978, 1981), nevertheless, point out a stumbling
block: the behavior of fix-price equilibria in the neighborhood of competitive
equilibria is particularly complicated. There are robust examples for which, at
regulated prices close to competitive prices, there are no fix-price equilibria close
to competitive equilibria. Here, we restrict attention to the class of economies,
evidently restrictive, that satisfy conditions sufficient for the local uniqueness
of fix-price equilibria. In Herings and Polemarchakis (2003), a robust example
illustrates the approach as well as the results.

The conditions under which the result holds, that the number of instruments
(contingent commodities) exceed the number of objectives (individuals), imply
that the result complements the one of Geanakoplos and Polemarchakis (1986)
and Citanna, Polemarchakis and Tirelli (2001).

Antecedents of this result are the argument in Polemarchakis (1979), where
fixed wages that need not match shocks in productivity may yield higher ex-
pected utility in spite of the loss of output in an economy of overlapping genera-
tions; and the argument in Drèze and Gollier (1993), which employs the capital
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asset pricing model to determine optimal schedules of wages that differ from
the marginal productivity of labor. Kalmus (1997) gave a heuristic example of
Pareto improving price regulation.

Of serious concern are the informational requirements needed to determine,
even compute, improving interventions. In the case of price regulation they
involve knowledge of marginal utilities of income and excess demands for com-
modities across states. Geanakoplos and Polemarchakis (1990) and Kübler,
Chiappori, Ekeland and Polemarchakis (2002) are only first steps towards an
analysis of the informational requirements of active policy.

2 The economy

The economy is that of the standard two-period general equilibrium model with
numéraire assets and incomplete asset markets. Assets exchange before and
commodities after the state of the world realizes.

States of the world are s ∈ S = {1, . . . , S} and commodities are l ∈ L =
{1, . . . , L+1}. At state s, commodity (L+1, s) is numéraire. Assets are a ∈ A =
{1, . . . , A+1}. Asset A+1 is numéraire. The payoffs of assets are denominated
in the numéraire commodity, (L + 1, s), at every state of the world.

A bundle of commodities at a state of the world is xs = (. . . , xl,s, . . . ,
x(L+1),s); across states of the world, x = (. . . , xs, . . .). A portfolio of assets
is y = (. . . , ya, . . . , yA+1).

The payoffs of an asset across states of the world are Ra· = (. . . , Ra,s, . . .)′;
at a state of the world, payoffs of assets are R·s = (. . . , Ra,s, . . .); across states
of the world, the asset payoff matrix is R = (. . . , Ra·, . . .).

The asset payoff matrix has full column rank, and the numéraire asset has
positive payoffs: RA+1· > 0.

Individuals are i ∈ I = {1, . . . , I}. A utility function, ui, that satisfies stan-
dard conditions of continuity, monotonicity, quasi-concavity and, when required,
smoothness and boundary behavior, and the endowment, ei, a strictly positive
bundle, describe an individual — the boundary behavior of the utility function,
together with the strict positivity of the endowment guarantee that consump-
tion bundles demanded by the individual lie in the interior of the consumption
set, as in see Debreu (1972).

The utility functions and consumption sets of individuals as well as the ma-
trix of asset payoffs do not vary. The allocation of endowments, ω = (. . . , ei, . . .),
identifies an economy, and the set of economies coincides with the strictly posi-
tive orthant of the commodity space; a property holds generically if it holds for
an open set of economies of full Lebesgue measure.

Prices of commodities at a state of the world are (. . . , pl,s, . . . , 1); across
states of the world, p = (. . . , ps, . . .) � 0; the price of the numéraire commodity
at a state of the world is pL+1,s = 1; the domain of prices of commodities is
P. Prices of assets are q = (. . . , qa, . . . , 1); The price of the numéraire asset is
qA+1 = 1. The domain of prices of assets is Q.
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It is often convenient to truncate prices of commodities and prices of assets
by deleting the prices of the numéraires. Commodities or assets other than the
numéraire are Ľ or Ǎ; the domain of prices of commodities or assets other than
the numéraires is P̌ or Q̌.

At arbitrary terms of trade, a competitive equilibrium, typically, does not
exist. In commodities and assets other than the numéraire, rationing on net
trades, uniform across individuals, serves to attain market clearing. Rationing
in the supply (demand) of commodities other than the numéraire is z ≤ 0
(z ≥ 0). Rationing in the supply (demand) of assets other than the numéraire is
y ≤ 0 (y ≥ 0). Without appropriate rationing constraints, demand and supply
of commodities will not match, which leads to inconsistencies. Equilibrium
rationing constraints are exactly such that markets clear.

At prices and rationing (p, q, z, z, y, y), the budget set of an individual is

βi(p, q, z, z, y, y) =


(x, y) :

qy ≤ 0,
ps(xs − ei

s) ≤ Rs·y, s ∈ S,
zl,s ≤ xl,s − ei

l,s ≤ zl,s, (l, s) ∈ Ľ × S,

y
a
≤ y ≤ ya, a ∈ Ǎ


 ;

his optimization problem is to choose a utility maximizing consumption bundle
and asset portfolio in his budget set. The set of all optimal consumption bundles
and asset portfolios is denoted di(p, q, z, z, y, y).

An individual is effectively rationed in his supply (demand) for a commodity
or an asset if he could increase his utility when the rationing constraint in the
supply (demand) of that commodity or asset is removed. There is effective
supply (demand) rationing in the market for a commodity or an asset if at least
one individual is effectively rationed in his supply (demand) for this commodity
or asset. At a competitive equilibrium, there is neither effective supply rationing
nor effective demand rationing in the market for any commodity or asset. In
this sense, a competitive equilibrium is a special case of a fix-price equilibrium.

Definition 1 (Fix-price equilibrium). A fix-price equilibrium at prices
(p, q) is a pair ((x∗, y∗), (z∗, z∗, y∗, y∗)), such that

1. for every individual, (xi∗, yi∗) ∈ di(p, q, z∗, z∗, y∗, y∗),

2.
∑I

i=1 xi∗ =
∑I

i=1 ei and
∑I

i=1 yi∗ = 0,

3. for every l ∈ Ľ, if for some i′ xi′∗
l,s−ei′

l,s = z∗l,s, then for all i ∈ I xi∗
l,s−ei

l,s <

z∗l,s, while if for some i′ xi′∗
l,s −ei′

l,s = z∗l,s, then for all i ∈ I xi∗
l,s−ei

l,s > z∗l,s,

4. for every a ∈ Ǎ, if for some i′ yi′∗
a = y∗

a
, then for all i ∈ I yi∗

a < y∗
a, while

if for some i′ yi′∗
a = y∗

a, then for all i ∈ I yi∗
a > y∗

a
.

At a fix-price equilibrium, only one side of the market is effectively rationed;
this is expressed by conditions 3 and 4.
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At prices (p, q), fix-price equilibria exist. Appendix 1 spells out the argu-
ments in detail. Herings and Polemarchakis (2002) provide a (more complicated)
proof that requires weaker assumptions on the primitives.

A sign vector,
r = (r1,1, . . . , rL,S , r1, . . . , rA),

describes the state of markets at a fix-price equilibrium. If there is effective
supply rationing in the market for a commodity or an asset, the associated
component of the sign vector is -1, if there is effective demand rationing it is
+1, and if there is no effective rationing it is 0.

For a sign vector r, the set PQ(r) is the set of prices (p, q) ∈ P×Q, for which
there exists a fix-price equilibrium at prices (p, q) with state of the markets r.
For prices (p, q) ∈ P ×Q, the set of fix-price equilibrium allocations is D(p, q),
and, for a sign vector r, the set of fix-price equilibrium allocations with state of
the markets r is D(p, q, r).

A neighborhood of α is Nα. If ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium,
the allocation (x∗, y∗) is locally unique as a fix-price equilibrium allocation
if there exists a neighborhood N x∗,y∗ such that for every Nx∗,y∗ ⊂ N x∗,y∗

there exists a neighborhood Np∗,q∗ with D(p, q) ∩ Nx∗,y∗ a singleton for every
(p, q) ∈ Np∗,q∗ .

If a competitive equilibrium allocation is locally unique as a fix-price equilib-
rium allocation, then, for prices close to competitive equilibrium prices, there is
exactly one fix-price equilibrium allocation close to the competitive allocation.

For a locally unique competitive equilibrium allocation, for each sign vector
r, the function (x̂r, ŷr) : N p∗,q∗ ∩ PQ(r) → IRI(L+1)S+I(A+1) associates the
unique fix-price equilibrium allocation in N x∗,y∗ ∩ D(p, q, r) to (p, q).

Comparative statics require a differentiable form of local uniqueness.

Definition 2 (Differentiable local uniqueness). If ((p∗, q∗), (x∗, y∗)) is a
competitive equilibrium, the allocation (x∗, y∗) is differentiably locally unique as
a fix-price equilibrium allocation if it is locally unique and there is a neighborhood
Np∗,q∗ such that, for every sign vector r, the function (x̂r, ŷr)|Np∗,q∗∩ PQ(r) is
differentiable.

Laroque and Polemarchakis (1978) proved, for a complete asset market, that,
generically, the set of fix-price equilibrium allocations can be represented by a
finite number of continuously differentiable functions of prices. Nevertheless,
the results in Laroque (1978) and the examples in Madden (1982) show that
competitive equilibria need not be locally unique as fix-price equilibria. Even
though fix-price equilibrium allocations exist for all prices, there may be robust
local non-existence, and therefore local non-uniqueness as a fix-price equilib-
rium, at competitive prices.

Assumption 1. For endowments in Ω∗, an open set of full Lebesgue measure, if
((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, then the competitive equilibrium
allocation is differentiably locally unique as a fix-price equilibrium allocation.
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By an argument similar to the one in the proof of Theorem 1, Laroque (1981),
Appendix 2 characterizes economies where competitive equilibrium allocation
are differentiably locally unique as a fix-price equilibrium allocation.

Local uniqueness of fix-price equilibrium allocations at competitive equilibria
is not too strong a requirement; it is less demanding than the requirement of
uniqueness of fix-price equilibrium allocations at prices in a neighborhood of
competitive prices. This guarantees a certain degree of generality of the results.

The function (x̂, ŷ) associates the unique fix-price equilibrium allocation in
Nx∗,y∗ to (p, q) ∈ Np∗,q∗ . At a locally unique fix-price equilibrium,

vi(p, q) = ui(x̂i(p, q)), (p, q) ∈ Np∗,q∗

defines the indirect utility function of an individual. Lemma 2 in Appendix 2
implies that it is differentiable when the fix-price equilibrium is differentiably
locally unique, with partial derivatives given by

∂pl,s
vi(p∗, q∗) = −∂xL+1,s

ui(xi∗)(xi∗
l,s − ei

l,s), (l, s) ∈ Ľ × S.

The effect of a change in the spot market price of commodity (l, s) ∈ Ľ × S
is equal to minus the marginal utility of the numéraire commodity in state s
multiplied by the excess demand of commodity (l, s) at the competitive equi-
librium. Lemma 2 in Appendix 2 therefore implies that the indirect welfare
effects of a change in prices, generated by the induced change in the rationing
constraints and individuals’ choices, equal zero.

Pareto improving price regulation

If the asset market is incomplete, A+1 < S, generically, competitive equilibrium
allocations are not Pareto optimal.

Price regulation can Pareto improve on a competitive equilibrium ((p∗,
q∗), (x∗, y∗)) if there exist prices of commodities p such that a fix-price equi-
librium of commodities at prices of commodities and assets (p, q∗) Pareto domi-
nates the allocation x∗. The ambiguity introduced by the possibility of multiple
fix-price equilibrium allocations at prices (p, q∗) is circumvented by considering
local variations at competitive equilibrium allocations that are differentiably
locally unique as fix-price equilibria.

Definition 3 (Pareto improving price regulation). Price regulation can
Pareto improve upon a competitive equilibrium, ((p∗, q∗), (x∗, y∗)), that is locally
unique as a fix-price equilibrium if there exists dp̌ ∈ IRLS such that∑

(l,s)∈Ľ×S
∂pl,s

vi(p∗, q∗)dpl,s > 0, for every i ∈ I.

Uniform price regulation can improve upon a competitive equilibrium if

dp̌s = dp̌s′ , for all s, s′ ∈ S.
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If (uniform) price regulation can improve upon a competitive equilibrium,
there is ε > 0 such that for all ε ∈ (0, ε], the fix-price equilibrium in the neigh-
borhood of the competitive equilibrium ((p∗, q∗), (x∗, y∗)) at commodity prices
p̌∗+εdp̌ and asset prices q∗ Pareto dominates the competitive equilibrium. Uni-
form price regulations are of interest because they imply a state-independent
change in prices. It shows that relatively simple policies suffice for the realization
of a Pareto improvement 1.

Generically, it is possible to make every individual better off by choosing
appropriate price regulations on the spot markets when asset markets are in-
complete. One needs at least as many instruments, LS, as individuals, I.

Uniform price regulation is effective when L ≥ I, which reflects again that
the number of instruments has to exceed the number of objectives. This comple-
ments the constrained suboptimality result of Geanakoplos and Polemarchakis
(1986), which applies when 2L ≤ I ≤ L(S − 1) + 1.

Proposition 1. Suppose that

1. For every individual, the consumption set is X i = {x : x ≥ 0}; the utility
function is continuous and quasi - concave; in the interior of the con-
sumption set 2, Int X i, it is twice continuously differentiable, ∂ui � 0
and ∂2ui is negative definite on 3 (∂ui)⊥; the endowment is strictly posi-
tive: ei ∈ Int X i, and ui(ei) > ui(x), for every x ∈ Bd X i.

2. The matrix of payoffs of assets has full column rank. The numeraire asset,
has positive payoff: rA+1 > 0.

If Assumption 1 holds, the asset market is incomplete (A+1 < S), and LS ≥
I > 1, then, generically, price regulation can improve upon any competitive
equilibrium.

If L ≥ I > 1, then, generically, uniform price regulation can improve upon
any competitive equilibrium.

Appendix 3 gives the proof, which follows Geanakoplos and Polemarchakis
(1986) and Citanna, Kajii and Villanacci (1998).

In the paper we focus on the adjustment of prices of state-contingent com-
modities, rather than asset prices. One reason for this is that government
interventions in commodity prices seem to occur much more frequently than
government control of asset prices. From a purely normative point of view, the
case where the central planner is limited to adjustments of asset prices only,
with competitive spot commodity markets in future periods, is interesting as
well. It provides an anonymous alternative to the adjustment of individual
asset portfolios as proposed in Geanakoplos and Polemarchakis (1986).

A final issue of interest is the case where asset prices adjust to clear markets
after the central planner intervened in spot commodity markets. The current

1John Geanakoplos and Hamid Sabourian insisted on this point.
2“Int” denotes the interior of a set and “Bd” the boundary.
3“⊥” denotes the orthogonal complement.
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analysis fixes asset prices at q∗, which allows us to derive a simple expression
for the derivative with respect to spot commodity prices of the indirect utility
function in Lemma 2. The corresponding expression for an indirect utility func-
tion where asset prices adjust to clear the asset markets is more complicated,
and the question whether Pareto improving price regulation is possible in that
sense is open.
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Appendix 1: existence of fix-price equilibria

A compact, convex subset of the consumption set that contains the aggregate
initial endowment in its interior is X̃ i The assumptions on utility functions
and on the asset return matrix imply that all S + 1 budget inequalities in
the definition of the budget set hold with equality at the optimal choice of an
individual. The rationing inequalities do not necessarily hold with equality.
The budget set related to X̃ i with all budget inequalities required to hold with
equality is β̃i and the corresponding demand function d̃i. Since prices are fixed
at (p, q), they are omitted in the notation.

The demand functions d̃i, i ∈ I, are continuous.
If (zn, zn, y

n
, yn) is a sequence that converges to (z, z, y, y), then the se-

quence (d̃i(zn, zn, y
n
, yn)) has a convergent subsequence, with limit (x̂, ŷ) ∈

β̃i(z, z, y, y).
If there exists (x̃, ỹ) ∈ β̃i(z, z, y, y), such that ui(x̃) > ui(x̂), and L̃−, L̃+,

Ã−, and Ã+, is the sets of non-numéraire commodities and non-numéraire assets
for which x̃l,s−ei

l,s is negative, positive, ỹa is negative, and positive, respectively,
then, for

λn =

min
{

1,
zn

l,s

x̃l,s−ei
l,s

, (l, s) ∈ L̃−,
zn

l,s

x̃l,s−ei
l,s

, (l, s) ∈ L̃+,
yn

a

ỹa
, a ∈ Ã−,

yn
a

ỹa
, a ∈ Ã+

}
,

x̃n = ei + λn(x̃ − ei), and ỹn = λnỹ, (x̃n, ỹn) ∈ β̃i(zn, zn, yn, yn). Evidently,
limn→∞ λn = 1, and limn→∞(x̃n, ỹn) = (x̃, ỹ). By the continuity of ui, x̃n is
strictly preferred to the consumption bundle in d̃i(zn, zn, y

n
, yn), a contradic-

tion.
Since there is no rationing in the market of the numéraire asset nor in the

market of the numéraire commodities, the argument for equilibrium existence
is not trivial.

If ((x∗, y∗), (z∗, z∗, y∗, y∗)) is a fix-price equilibrium at prices (p, q), then
x∗i′

l,s <
∑I

i=1 ei
l,s + ε, with ε some fixed positive number. Since R has full

column rank, this implies that there is α > 0 such that ‖y∗i‖∞ < α for any y∗i

consistent with a fix-price equilibrium at prices (p, q).
The functions (z, z) : CLS → −IRLS

+ × IRLS
+ and (y, y) : CA → −IRA

+ × IRA
+,

where CK = {r ∈ IRK : 0 ≤ rk ≤ 1} is the unit cube of dimension K, are defined
by

zl,s(r) = −min{2rl,s(
∑I

i=1 ei
l,s + ε),

∑I
i=1 ei

l,s + ε}, (l, s) ∈ Ľ × S,

zl,s(r) = min{(2 − 2rl,s)(
∑I

i=1 ei
l,s + ε),

∑I
i=1 ei

l,s + ε}, (l, s) ∈ Ľ × S,

y
a
(ρ) = −min{2ρaα, α}, a ∈ Ǎ,

ya(ρ) = min{(2 − 2ρa)α, α}, a ∈ Ǎ.
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The excess demand function z̃ : CLS × CA → IRLS × IRA is

z̃l,s(r, ρ) =
∑I

i=1 d̃i
l,s(z(r), z(r), y(ρ), y(ρ)) − ∑I

i=1 ei
l,s, (l, s) ∈ Ľ × S

z̃a(r, ρ) =
∑I

i=1 d̃i
a(z(r), z(r), y(ρ), y(ρ)), a ∈ Ǎ.

If (r∗, ρ∗) ∈ CLS × CA is such that z̃(r∗, ρ∗) = 0, then ((x∗, y∗), (z∗, z∗, y∗,
y∗)), where (x∗i, y∗i) = d̃i(z∗, z∗, y∗, y∗), i ∈ I, (z∗, z∗) = (z(r∗), z(r∗)), (y∗, y∗)
= (y(r∗), y(r∗)), is a fix-price equilibrium. Conditions 1 and 2 of Definition 1
are satisfied for non-numeraire commodities and assets. The construction of the
functions (z, z) and (y, y) takes care of Conditions 3 and 4.

The set z̃(CLS × CA) is compact. Let the set ZY be a compact, convex set
that contains z̃(CLS × CA). The correspondence µ : ZY → CLS × CA is defined
by

µ(z, y) = arg max{
∑

(l,s)∈Ľ×S
rl,szl,s +

∑
a∈Ǎ

ρaya : r ∈ CLS , ρ ∈ CA}.

The correspondence ϕ : ZY × CLS × CA → ZY × CLS × CA is defined by
ϕ(z, y, r, ρ) = {z̃(r, ρ)}×µ(z, y). It is a non-empty, compact, convex valued, up-
per hemi-continuous correspondence defined on a non-empty, compact, convex
set. By Kakutani’s fixed point theorem, ϕ has a fixed point, (z∗, y∗, r∗, ρ∗).

If, for some a ∈ Ǎ, y∗
a < 0, then, by the definition of µ, ρ∗a = 0, so y∗

a ≥ 0, a
contradiction. If, for some a ∈ Ǎ, y∗

a > 0, then, by the definition of µ, ρ∗a = 1,
so y∗

a ≤ 0, a contradiction. Consequently, y∗
a = 0, for all a ∈ Ǎ. Moreover,

y∗
A+1 = −∑

a∈Ǎ qay∗
a = 0.

If, for some (l, s) ∈ Ľ × S, z∗l,s < 0, then, by the definition of µ, r∗l,s = 0,

so z∗l,s ≥ 0, a contradiction. If, for some (l, s) ∈ Ľ × S, z∗l,s > 0, then, by the
definition of µ, r∗l,s = 1, so z∗l,s ≤ 0, a contradiction. Consequently, z∗l,s = 0, for
all (l, s) ∈ Ľ × S. Moreover, for every s ∈ S, z∗L+1,s = −∑

(l,s)∈Ľ×S pl,sz
∗
l,s +

Rs·y∗ = 0.
It follows that 0 ∈ z̃(r∗, ρ∗), so a fix-price equilibrium at prices (p, q) exists.

Appendix 2: local comparative statics

In the optimization problem an individual faces when determining his demand,
the Lagrange multipliers corresponding to the rationing constraints in the mar-
kets for commodities (assets) are π (ρ). The individual optimization problem
leads to the study of a modified demand function, d̂i. At prices and Lagrange
multipliers (p, q, π, ρ), d̂i is defined by the solution to the optimization problem

max ui(x) − ∑
(l,s)∈Ľ×S πl,sxl,s −

∑
a∈Ǎ ρaya,

s.t. qy ≤ 0,

ps(xs − ei
s) ≤ Rs·y, s ∈ S.
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The set of (p, q, π, ρ) on which each individual optimization problem has a solu-
tion is N . Whenever (p∗, q∗) are competitive equilibrium prices, N is a neigh-
borhood of (p∗, q∗, 0, 0).

The modified demand function, d̂i, i ∈ I, is continuously differentiable on
N .

At a competitive equilibrium, ((p∗, q∗), (x∗, y∗)), z−l,s, z+
l,s, y−

a and y+
a , defined

by

z−l,s = mini∈I xi∗
l,s − ei

l,s, z+
l,s = maxi∈I xi∗

l,s − ei
l,s, (l, s) ∈ Ľ × S,

y−
a = mini∈I yi∗

a , y+
a = maxi∈I yi∗

a , a ∈ Ǎ,

determine the minimal and the maximal excess demands on both the spot and
the asset markets. If

Il,s = {i ∈ I : xi∗
l,s − ei

l,s = z−l,s}, (l, s) ∈ Ľ × S,

Il,s = {i ∈ I : xi∗
l,s − ei

l,s = z+
l,s}, (l, s) ∈ Ľ × S,

Ia = {i ∈ I : yi∗
a = y−

a }, a ∈ Ǎ,

Ia = {i ∈ I : yi∗
a = y+

a }, a ∈ Ǎ,

then, in a neighborhood of the competitive equilibrium, only individuals in Il,s

(Il,s) may be rationed on supply (demand) in the spot market (l, s), and only
individuals in Ia (Ia) on supply (demand) in the asset market a.

For an open set of endowments with full Lebesgue measure Ω ⊂ IRI(L+1)S
++ ,

for any competitive equilibrium ((p∗, q∗), (x∗, y∗)) of E , | Il,s |=| Il,s |= 1,

(l, s) ∈ Ľ × S, and | Ia |=| Ia |= 1, a ∈ Ǎ.
For a generic set of economies, there is exactly one individual in each market

with the minimal excess demand and exactly one individual with the maximal
excess demand. For the remainder, the allocation of endowments in the econ-
omy E belong to the set Ω, which permits the study of the local structure of
the set fix-price equilibria in the neighborhood of a competitive equilibrium
((p∗, q∗), (x∗, y∗)) of E .

For every individual, the function ci : IRLS × IRA → IRLS × IRA is defined by

ci
l,s(π, ρ) =




πl,s, if πl,s ≤ 0 and {i} = Il,s

or πl,s ≥ 0 and {i} = Il,s,

0, otherwise,

ci
a(π, ρ) =




ρa, if ρa ≤ 0 and {i} = Ia

or ρa ≥ 0 and {i} = Ia,

0, otherwise.
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The function c associates with Lagrange multipliers, (π, ρ), fix-price equilibria
in the neighborhood of the competitive equilibrium. The aggregate modified
excess demand function for commodities and assets other than the numéraire is
ẑ : N → IRLS+A defined by

ẑl,s(p, q, π, ρ) =
∑

i∈I d̂i
l,s(p, q, ci(π, ρ)) − ∑

i∈I ei, (l, s) ∈ Ľ × S,

ẑa(p, q, π, ρ) =
∑

i∈I d̂i
a(p, q, ci(π, ρ)), a ∈ Ǎ.

For the study of fix-price equilibria in the neighborhood of the competitive
equilibrium, it is sufficient to restrict attention to the zero points of ẑ. Neigh-
borhoods N i

xi∗,yi∗ are such that, for every (x, y) ∈ Nx∗,y∗ = ×i∈IN i
xi∗,yi∗ , for

all (l, s) ∈ Ľ × S, for all a ∈ Ǎ,

xi′
l,s − ei′

l,s < 0 and xi′
l,s − ei′

l,s < xi
l,s − ei

l,s, i 	= i′, i′ ∈ Il,s

xi′
l,s − ei′

l,s > 0 and xi′
l,s − ei′

l,s > xi
l,s − ei

l,s, i 	= i′, i′ ∈ Il,s

yi′
a < 0 and yi′

a < yi
a, i 	= i′, i′ ∈ Ia

yi′
a > 0 and yi′

a > yi
a, i 	= i′, i′ ∈ Ia.

If ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, and (x, y) ∈ Nx∗,y∗ , then
(x, y) ∈ D(p, q) if and only if there is (p, q, π, ρ) ∈ N such that d̂i(p, q, ci(π, ρ))
= (xi, yi), i ∈ I, and ẑ(p, q, π, ρ) = (0, 0).

The function ẑ is Lipschitz continuous because of the differentiability of the
functions d̂i and the Lipschitz continuity of the functions ci. It is differentiable
at each (p, q, π, ρ) ∈ N where all components of π and ρ are non-zero. For each
sign vector r without zero components,

N r = {(p, q, π, ρ) ∈ N : πl,srl,s > 0, (l, s) ∈ Ľ × S, ρara > 0, a ∈ Ǎ}.

The function ẑ is differentiable on N r. The limit of its Jacobian, limn→∞ ∂ẑ
(pn, qn, πn, ρn) = ∂ẑr(p∗, q∗, 0, 0), along a sequence ((pn, qn, πn, ρn) ∈ N r) that
converges to (p∗, q∗, 0, 0), exists;

∂p̌,q̌ ẑ
r
l,s(p

∗, q∗, 0, 0) =
∑

i∈I ∂p̌,q̌d̂
i
l,s(p

∗, q∗, 0, 0) = ∂p̌,q̌zl,s(p∗, q∗),

∂p̌,q̌ ẑ
r
a(p∗, q∗, 0, 0) =

∑
i∈I ∂p̌,q̌d̂

i
a(p∗, q∗, 0, 0) = ∂p̌,q̌za(p∗, q∗),

where z(p, q) denotes the unconstrained total excess demand function for com-
modities and assets other than the numeraires at prices (p, q). It follows that the
Jacobian with respect to (p̌, q̌) is independent of r at a competitive equilibrium.

Lemma 1. If ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, such that ∂z (p∗,
q∗) is of full rank, then, for each sign vector r without zero components, the
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tangent cone at (p∗, q∗) to the set of price systems having a local fix-price equi-
librium with state of the markets r is

{(p, q) ∈ P ×Q : (p̌, q̌) = (∂z(p∗, q∗))−1∂π,ρẑ
r(p∗, q∗, 0, 0)(π, ρ),

πl,srl,s > 0, (l, s) ∈ Ľ × S, ρara > 0, a ∈ Ǎ}.
Proof The restriction of ẑ to N r extends to a differentiable function z̃ : N →
IRLS+A as follows. For i ∈ I, the function c̃i is defined by c̃i

l,s(π, ρ) = πl,s

if i ∈ Il,s, rl,s = −1, or i ∈ Il,s, rl,s = +1, c̃i
l,s(π, ρ) = 0 otherwise, and

c̃i
a(π, ρ) = ρa if i ∈ Ia, ra = −1, or i ∈ Ia, ra = +1, and c̃i

a(π, ρ) = 0 oth-
erwise. The function z̃ is defined as ẑ with c replaced by c̃. Since ∂z(p∗, q∗)
is of full rank, it follows by the implicit function theorem that the solution to
z̃(p, q, π, ρ) = (0, 0) determines p and q as a function of π and ρ in a neighbor-
hood of (0, 0). The derivative of this function at (0, 0) with respect to π and
ρ is given by (∂z(p∗, q∗))−1∂π,ρz̃(p∗, q∗, 0, 0). The expression in the proposition
follows immediately if one takes into account that only π’s and ρ’s satisfying
πl,srl,s > 0, (l, s) ∈ Ľ × S, and ρara > 0, a ∈ Ǎ, should be considered. �

Proposition 2 in Geanakoplos and Polemarchakis (1986) shows that the as-
sumption that ∂z(p∗, q∗) has full rank at every competitive equilibrium holds
generically in endowments. Lemma 3.2 characterizes the tangent cones to the
regions in the price space having a fix-price equilibrium with state of the markets
r in the neighborhood of a competitive equilibrium. It guarantees neither that
the closures of these tangent cones cover the price space nor that the tangent
cones are full-dimensional nor that the tangent cones do not intersect. If this
were the case, local uniqueness would result.

In general, an increase in a price causes a different individual to be rationed
as a decrease in a price. Since ∂π,ρẑ

r, and therefore the tangent cone, depend on
∂π,ρd̂

i for the individual i that is rationed, the fact that the tangent cones need
not fit nicely together does not come as a surprise. In abstract terms, the fact
that different individuals get rationed at different prices in the neighborhood
of a competitive equilibrium, creates non-differentiabilities in the function ẑ
at competitive prices. At a point of non-differentiability, the implicit function
theorem need not apply, and local uniqueness may fail.

The generalized Jacobian of a Lipschitz continuous function f at a point x
is the convex hull of all matrices that are the limits of the sequence (∂f(xn)),
where (xn) is a convergent sequence with limn→∞ xn = x and f is differentiable
at xn.

A restriction of the fundamentals of the economy, the utility functions of
individuals and the matrix of asset payoffs is required to guarantee that, gener-
ically, competitive equilibrium allocations are differentiably locally unique as
fix-price equilibrium allocations

If a function f is Lipschitz continuous, f(x̂, ŷ) = 0, and every matrix M in
∂xf(x̂, ŷ) has full rank, then there exist a neighborhood Nx̂,ŷ, a neighborhood
Nŷ, and a Lipschitz continuous function g on Nŷ such that (x, y) ∈ Nx̂,ŷ and
f(x, y) = 0 if and only if y ∈ Nŷ and x = g(y).
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Assumption 2. For endowments in Ω∗, an open set of full Lebesgue measure,
if ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, then the determinants of the
matrices ∂π,ρẑ

r(p∗, q∗, 0, 0), with r sign vectors without zero components, are
either all equal to −1 or all equal to +1.

By an argument similar to the one in the proof of Theorem 1, Laroque
(1981), the competitive equilibrium allocation is differentiably locally unique as
a fix-price equilibrium allocation.

Remark An example of an economy that satisfies differentiable local uniqu-
eness for all endowments and, à fortiori, satisfies Assumption 2.

There are three states of the world, two commodities and two assets. The
utility functions have an additively separable representation ui =

∑
s∈S πsu

i
s

with
ui

s(xs) = αi ln x1,s + (1 − αi)x2,s, 0 < αi < 1,

and a uniform probability measure π over the states of the world. The payoffs
of the assets are R·1 = (1, 0, 0)′, and R·2 = (0, 1, 0)′. Endowments are chosen
such that | Il,s |=| Il,s |= 1, (l, s) ∈ Ľ×S, and | Ia |=| Ia |= 1, a ∈ Ǎ, so they
belong to a set of full Lebesgue measure by Lemma 4.4.

Competitive equilibrium prices are (p∗, q∗). All partial derivatives are eval-
uated at (p∗, q∗, 0, 0). It holds that ∂π1,s

ẑr = ∂π1,s
d̂i(1,s), where {i(1, s)} = I1,s

if r1,s = −1, and {i(1, s)} = I1,s if r1,s = +1. An increase in π1,s corresponds
to the introduction of demand rationing or the disappearance of supply ra-
tioning on commodity (1, s), which decreases the demand for commodity (1, s),
so ∂π1,s

ẑr
1,s is negative. The change in income spent on commodity (1, s) equals

p∗1,s∂π1,s
ẑr
1,s. The individual i(1) is the one affected by rationing in the asset

market, so {i(1)} = I1 if r1 = −1, and {i(1)} = I1 if r1 = +1. From the
properties of the Cobb-Douglas utility function, it follows that

∂π1,1 d̂
i(1,1)
1,2 =

−α
i(1,1)
1 p∗

1,1q∗
1∂π1,1 ẑr

1,1

p∗
1,2q∗

2 (2−α
i(1,1)
1 )

,

∂π1,1 d̂
i(1,1)
1,3 = 0, ∂π1,1 d̂

i(1,1)
1 =

p∗
1,1∂π1,1 ẑr

1,1

(2−α
i(1,1)
1 )

,

∂π1,2 d̂
i(1,2)
1,1 =

−α
i(1,2)
1 p∗

1,2q∗
1∂π1,2 ẑr

1,2

p∗
1,1q∗

2 (2−α
i(1,2)
1 )

,

∂π1,2 d̂
i(1,2)
1,3 = 0, ∂π1,2 d̂

i(1,2)
1 =

−p∗
1,2q∗

2∂π1,2 ẑr
1,2

q∗
1 (2−α

i(1,2)
1 )

,

∂π1,3 d̂
i(1,3)
1,1 = 0, ∂π1,3 d̂

i(1,3)
1,2 = 0, ∂π1,3 d̂

i(1,3)
1 = 0,

∂ρ1 d̂
i(1)
1,1 = α

i(1)
1 ∂ρ1 ẑr

1
p∗
1,1

, ∂ρ1 d̂
i(1)
1,2 = −α

i(1)
1 q∗

1∂ρ1 ẑr
1

p∗
1,2q∗

2
, ∂ρ1 d̂

i(1)
1,3 = 0.

The sign of the determinant of ∂π,ρẑ
r does not change by premultiplying it by

the strictly positive row vector (p∗1,1q
∗
1 , p∗1,2q

∗
2 , 1, q∗1) and postmultiplying it by
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the strictly positive column vector ((2−α
i(1,1)
1 )/−p∗1,1q

∗
1∂π1,1 ẑ

r
1,1, (2−α

i(1,2)
1 )/−

p∗1,2q
∗
2∂π1,2 ẑ

r
1,2, 1/ − ẑr

1,3, 1/ − q∗1∂ρ1ẑr
1
)′. The resulting matrix is given by




α
i(1,1)
1 − 2 α

i(1,2)
1 0 −α

i(1)
1

α
i(1,1)
1 α

i(1,2)
2 − 2 0 α

i(1)
1

0 0 −1 0

−1 1 0 −1




and its determinant equals

(4 − 2α
i(1,1)
1 − 2α

i(1,2)
1 )(1 − α

i(1)
1 ) > 0.

The determinant of ∂π,ρẑ
r is positive, irrespective of the sign vector r. It follows

that the competitive equilibrium allocation is differentiably locally unique as a
fix-price equilibrium allocation. �

As in Laroque (1981), whenever there are two sign vectors without zero
components r1 and r2 such that the determinants of ∂π,ρẑ

r1
(p∗, q∗, 0, 0) and

∂π,ρẑ
r2

(p∗, q∗, 0, 0) have opposite signs and ∂z(p∗, q∗) has full rank, then for ev-
ery neighborhood Nx∗,y∗ there exists for every neighborhood Np∗,q∗ a price sys-
tem (p, q) ∈ Np∗,q∗ with at least two fix-price equilibrium allocations in Nx∗,y∗ .
Assumption 2 is “almost necessary” for the differentiable local uniqueness of
competitive equilibrium allocations.

Local uniqueness of fix-price equilibrium allocations at competitive equilibria
is not too strong a requirement. It is less demanding than the requirement
of uniqueness of fix-price equilibrium allocations at prices in a neighborhood
of competitive prices. The latter requirement guarantees a certain degree of
generality of our results.

The function (x̂, ŷ) : Np∗,q∗ → IRI(L+1)S+I(A+1) associates the unique fix-
price equilibrium allocation in Nx∗,y∗ to (p, q) ∈ Np∗,q∗ . The indirect utility
function of an individual at a locally unique fix-price equilibrium is defined by

vi(p, q) = ui(x̂i(p, q)), (p, q) ∈ Np∗,q∗ .

Lemma 2. If ((p∗, q∗), (x∗, y∗)) is a competitive equilibrium, then the indirect
utility function vi : Np∗,q∗ → IR is differentiable and

∂pl,s
vi(p∗, q∗) = −∂xL+1,s

ui(xi∗)(xi∗
l,s − ei

l,s), (l, s) ∈ Ľ × S.

Proof For every sign vector r, the restriction of vi to Np∗,q∗ ∩ PQ(r), denoted
vir

, is differentiable. From the differentiation of the budget constraints

qŷir

(p, q) = 0 and ps(x̂ir

s (p, q) − ei
s) = Rs·ŷir

(p, q), s ∈ S,
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with respect to pl,s, and the first order conditions for individual optimization
at a competitive equilibrium,

∂xi
l,s

ui(xi∗) = ∂xi
L+1,s

ui(xi∗)p∗l,s, (l, s) ∈ Ľ × S,

and ∑
s∈S

∂xi
L+1,s

ui(xi∗)Rs· = µiq∗, for some µi > 0,

it follows that

∂pl,s
vir

(p∗, q∗) = −∂xi
L+1,s

ui(xi∗)(xi∗
l,s

− ei
l,s

).

Since the derivative is independent of the sign vector r, the result follows. �

Appendix 3: Pareto improving price regulation

Price regulation can Pareto improve on a competitive equilibrium ((p∗, q∗),
(x∗, y∗)) if there exist prices of commodities p such that a fix-price equilibrium
of commodities at prices of commodities and assets (p, q∗) Pareto dominates the
allocation x∗. The ambiguity introduced by the possibility of multiple fix-price
equilibrium allocations at prices (p, q∗) is circumvented by considering local
variations at competitive equilibrium allocations that are differentiably locally
unique as fix-price equilibria.

Pareto improvement by price regulation is possible only if the asset market
is incomplete. Another necessary requirement is that the economy allows for
heterogeneous individuals.

Assumption 3. A + 1 < S and I > 1.

The function ϕ is defined by

ϕ(x, λ̃, p̃, e) =




∂ui(xi) − λ̃ip̃, i ∈ I
∑

s∈S p̃s(xi
s − ei

s), i ∈ I
∑

i∈I(xi
l,s − ei

l,s), (l, s) ∈ L × S \ {(L + 1, S)}
∑

s∈S nsp̃s(xi
s − ei

s), i ∈ I \ {1}




,

where the Lagrangian multiplier λ̃i ∈ IR does not vary with the state of the
world, the prices of commodities p̃ ∈ IR(L+1)S−1

++ ×{1} are discounted prices, with
only the price of commodity (L+1, S) normalized to 1, and n 	= 0 is a fixed vector
such that nR = 0. In the standard reformulation of the incomplete markets
model in discounted prices, it is assumed that one individual is unconstrained,
so that his marginal utility at an optimal choice is proportional to the price
system. Pareto optimality implies that the marginal utility vectors of all agents
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should be proportional to the price system. The function ϕ is completed by
specifying budget constraints and market clearing conditions, and one condition
for every individual but one that recognizes the incompleteness of markets:∑

s∈S nsp̃s(xi
s − ei

s) = 0. The existence of n 	= 0 such that nR = 0 follows
from market incompleteness. It follows that the function ϕ vanishes at a Pareto
optimal competitive equilibrium.

For a function f that depends on a vector of variables α and on endowments
e, fe(α) is the function that results from fixing e; for instance, ϕe(x, λ̃, p̃) =
ϕ(x, λ̃, p̃, e).

Lemma 3. Generically, competitive equilibrium allocations are not Pareto op-
timal.

Proof A necessary condition for x to be a Pareto optimal competitive equi-
librium allocation for an economy e is that ϕe(x, λ̃, p̃) = 0. Since the dimension
of the domain of ϕe is lower than the dimension of the range, whenever ϕe is
transverse to 0, a solution to ϕe(x, λ̃, p̃) = 0 does not exist. By a standard
argument, ϕ is transverse to 0. By the transversal density theorem, the set
of economies for which ϕe is transverse to 0 has full Lebesgue measure. By a
standard argument, this set can be chosen to be open. �

The function ψ : Ξ × Ω∗ → IRN is defined by

ψ(ξ, e) =




∂xi
s
ui(xi) − λi

sps, i ∈ I, s ∈ S

ps(xi
s − ei

s) − Rs·yi, i ∈ I, s ∈ S

λiR − µiq, i ∈ I
∑

i∈I(xi
l,s − ei

l,s), (l, s) ∈ Ľ × S
∑

i∈I yi
a, a ∈ Ǎ

qyi, i ∈ I




,

ξ = (x, λ, y, µ, p̌, q̌) and Ξ = IRI(L+1)S
++ × IRIS

++ × IRI(A+1) × IRI × P̌ × Q̌. The
dimension of Ξ is N. When ξ∗ is consistent with a competitive equilibrium, it
is necessarily the case that ψe(ξ∗) = 0.

The function h : Ξ × IRI × Ω∗ → IRLS+1 is defined by

h(ξ, α, e) =




∑
i∈I αiλi

s(x
i
l,s − ei

l,s), (l, s) ∈ Ľ × S
∑

i∈I(αi)2 − 1


 .

A competitive equilibrium can be Pareto improved by price regulation if the
matrix of partial derivatives of the indirect utility functions with respect to
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prices has full rank4. By Proposition 4.8, this matrix is guaranteed to have full
rank if there is no solution to ψe(ξ) = 0 in combination with he(ξ, α) = 0.

The function ψ̃ : Ξ × IRI × Ω∗ → IRN+LS+1 is defined by

ψ̃(ξ, α, e) =
(

ψ(ξ, e)
h(ξ, α, e)

)
.

If ψ̃ is transverse to 0, then it follows from the transversal density theorem that
for a subset of endowments of full Lebesgue measure, ψ̃e is transverse to 0. If
LS ≥ I, then the dimension of the range of ψ̃e exceeds that of the domain.
Transversality of ψ̃e implies that there are no solutions to the associated system
of equations. It is possible to Pareto improve all competitive equilibria by price
regulation.

Proposition 1. If LS ≥ I, then, generically, all competitive equilibria of E can
be Pareto improved by price regulation.

Proof One fixes (l, s) ∈ Ľ×S and Ω∗∗, an open subset of endowments in Ω∗ of
full Lebesgue measure, such that no competitive equilibrium of the associated
economy E is Pareto optimal. The function ψ̂ : Ξ × Ω∗∗ → IRN+1 is defined by

ψ̂(ξ, e) =




ψ(ξ, e)

∑
s∈S\{s}

∑
i∈I

λi
s

λi
s
(xi

l,s
− ei

l,s
)


 .

If ψ̂(ξ, e) = 0, then the matrix M̂ of partial derivatives of ψ̂ evaluated at (ξ, e)
has full row rank: if v′M̂ = 0, then v = 0. The components of v are v1,i,l,s, i ∈ I,
(l, s) ∈ L× S, v2,i,s, i ∈ I, s ∈ S, v3,i,a, i ∈ I, a ∈ A, v4,l,s, (l, s) ∈ Ľ × S, v5,a,
a ∈ Ǎ, v6,i, i ∈ I, and v9, according to the labelling of the equations defining
ψ̂.

If v is such that v′M̂ = 0, then 0 = v′∂ei
L+1,s

ψ̂(ξ, e) = −v2,i,s, i ∈ I, s ∈ S.

It follows that, for i ∈ I,

0 = v′∂ei
l,s

ψ̂(ξ, e) = −v4,l,s, (l, s) ∈ (Ľ \ {l}) × S,

0 = v′∂ei
l,s

ψ̂(ξ, e) = −v4,l,s − v9
λi

s

λi
s

= 0, s ∈ S \ {s},

0 = v′∂ei
l,s

ψ̂(ξ, e) = −v4,l,s.

Consequently, if v4,l,ŝ = 0 for some ŝ ∈ S \ {s}, then v9 = 0 and v4,l,s = 0, for
all s ∈ S \ {s}. If, on the contrary, v4,l,s 	= 0, for all s ∈ S \ {ŝ}, then

λi
s

λi
s

= −v4,l,s

v9
=

λi′
s

λi′
s

, i, i′ ∈ I, s ∈ S \ {s}.

4If the matrix of partial derivatives has full rank, it is possible to generate any desired
marginal change in utilities by means of price regulation.
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Hence, for i, i′ ∈ I, for s1, s2 ∈ S, λi
s1/λi

s2 = (λi
s1/λi

s)(λ
i
s/λi

s2) = (λi′
s1/λi′

s )(λi′
s /

λi′
s2) = λi′

s1/λi′
s2 . The economy e has then a Pareto optimal competitive equilib-

rium induced by ξ, contradicting e ∈ Ω∗∗. Consequently, v4,l,s = 0, s ∈ S \ {s},
and v9 = 0.

For i ∈ I, and (l, s) ∈ L × S,

0 = v′∂xi
l,s

ψ̂(ξ, e) = v′
1,i,·,·∂xi

l,s
∂ui(xi).

It is possible to represent a utility function satisfying A2 by one with ∂2ui(xi)
negative definite on a bounded subset of the consumption set. Then it follows
that v1,i,·,· = 0. For i ∈ I, 0 = v′∂yi

A+1
ψ̂(ξ, e) = v8,i. Also, for a ∈ Ǎ, 0 =

v′∂yi
a
ψ̂(ξ, e) = v5,a. Finally, 0 = v′∂λi

s
ψ̂(ξ, e) = v′

3,i,·R
′
s·, i ∈ I, s ∈ S. Since R

has full column rank it follows that v3,i,a = 0, i ∈ I, a ∈ A.

Therefore, v = 0, M̂ has full row rank N + 1, and ψ̂ is transverse to 0.
The set of endowments such that ψ̂e is transverse to zero is denoted Ω̂l,s. By
the transversal density proposition, Ω∗∗ \ Ω̂l,s has Lebesgue measure zero. For

e ∈ Ω̂l,s, the dimension of the range of ψ̂e exceeds that of the domain, so

(ψ̂e)−1({0}) = ∅.
The set Ω̂ = ∩(l,s)∈Ľ×SΩ̂l,s is of full Lebesgue measure and, by a standard

argument, open. Redefine the function ψ̃ such that endowments belong to
Ω∗∩Ω̂. For (ξ, α, e) such that ψ̃(ξ, α, e) = 0, M̃ is the matrix of partial derivatives
of ψ̃ evaluated at (ξ, α, e).

If v is such that v′M̃ = 0, and the components of v are denoted by v1,i,l,s,

v2,i,s, v3,i,a, v4,l,s, v5,a, v6,i, v7,l,s, and v8, then, 0 = v′∂ei
L+1,s

ψ̃(ξ, α, e) = −v2,i,s,

i ∈ I, s ∈ S. Hence,

0 = v′∂ei
l,s

ψ̃(ξ, α, e) = −v4,l,s − αiλi
sv7,l,s, i ∈ I, (l, s) ∈ Ľ × S.

Since
∑

i∈I(αi)2 = 1, there is i′ such that αi′ 	= 0. If there is s ∈ S such that,
for i ∈ I \ {i′}, αi′λi′

s − αiλi
s = 0, then, for any l ∈ Ľ,

0 =
∑

s∈S\{s}
∑

i∈I αiλi
s(x

i
l,s − ei

l,s) =
∑

s∈S\{s}
∑

i∈I
αi′λi′

s

λi
s

λi
s(x

i
l,s − ei

l,s)

= αi′λi′
s

∑
s∈S\{s}

∑
i∈I

λi
s

λi
s
(xi

l,s − ei
l,s).

Since αi′ 	= 0,
∑

s∈S\{s}
∑

i∈I(λi
s/λi

s)(x
i
l,s − ei

l,s) = 0, a contradiction since e ∈
Ω̂. Consequently, for every s ∈ S, there is i ∈ I\{i′} such that αi′λi′

s −αiλi
s 	= 0.

For (l, s) ∈ Ľ × S, (αi′λi′
s − αiλi

s)v7,l,s = 0, so v7,l,s = 0, and, thus v4,l,s = 0.

Also, 0 = v′∂αi′ ψ̃(ξ, α, e) = 2αi′v8, so, since αi′ 	= 0, v8 = 0. It follows as in the
first part of the proof that v1,i,l,s = 0, i ∈ I, (l, s) ∈ Ľ × S, that v6,i = 0, i ∈ I,
that v5,a = 0, a ∈ Ǎ, and that v3,i,a = 0, i ∈ I, a ∈ A.

Therefore, M̃ has rank N + LS + 1 and ψ̃ intersects 0 transversally. If
Ω̃ is the set of economies such that ψ̃e is transverse to 0, then Ω∗ \ Ω̃ has
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Lebesgue measure zero by the transversal density theorem. Openness follows
by a standard argument. �

Generically, it is possible to make every individual better off by choosing
appropriate price regulations on the spot markets when asset markets are in-
complete. One needs at least as many instruments, LS, as individuals, I. Propo-
sition 1 makes clear that this is all one needs. This is not the case in the con-
strained suboptimality result of Geanakoplos and Polemarchakis (1986), which
applies when 2L ≤ I ≤ L(S − 1) + 1.

A competitive equilibrium can be Pareto improved by uniform price regu-
lation if the matrix of partial derivatives of the indirect utility functions with
respect to uniform price regulation has full rank.

The function k : Ξ × IRI × Ω∗ → IRL+1 is defined by

k(ξ, α, e) =




∑
s∈S hl,s(x, λ, α, e), l ∈ Ľ

∑
i∈I(αi)2 − 1


 .

The matrix of partial derivatives of the indirect utility functions with respect to
uniform price regulation is guaranteed to have full rank if there is no solution
to ψe(ξ) = 0 in combination with ke(ξ, α) = 0.

Corollary 1. If L ≥ I, then, generically, all competitive equilibria of E can be
Pareto improved by uniform price regulation.

Proof The argument follows that in the proof of Proposition 5.3. The equa-
tions related to h that characterize Pareto improving price regulation are re-
placed by the equations related to k that characterize Pareto improvements
by uniform price regulation. This defines a function ψ. The matrix M gives
the partial derivatives of ψ evaluated at some (ξ, α, e) with ψ(ξ, α, e) = 0. If
v′M = 0, by considering the partial derivatives with respect to ei

l,s, it follows
that v2,i,s = 0, i ∈ I, s ∈ S, and v4,l,s + αiλi

sv7,l = 0, i ∈ I, (l, s) ∈ Ľ × S. If i′

is such that αi′ 	= 0, and if s ∈ S such that, for i ∈ I \ {i′}, αi′λi′
s − αiλi

s = 0,
then

0 =
∑

i∈I αi
∑

s∈S λi
s(x

i
l,s − ei

l,s) = αi′λi′
s

∑
i∈I

∑
s∈S

λi
s

λi
s
(xi

l,s − ei
l,s)

=
∑

i∈I
∑

s∈S
λi

s

λi
s
(xi

l,s − ei
l,s) =

∑
i∈I

∑
s∈S\{s}

λi
s

λi
s
(xi

l,s − ei
l,s), l ∈ Ľ,

which contradicts e ∈ Ω̂. It follows that v4,l,s = 0, (l, s) ∈ Ľ×S, and v7,l = 0, l ∈
Ľ. The remainder of the proof follows the argument in the proof of Proposition
6. �
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