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Abstract

We develop a method of assigning unique prices to derivative securities, in-
cluding options, in the continuous-time �nance models developed in Rai-
mondo [45] and Anderson and Raimondo [6]. In contrast with the martin-
gale method of valuing options, which cannot distinguish among in�nitely
many possible option pricing processes for a given underlying securities price
process when markets are dynamically incomplete, our option prices are
uniquely determined in equilibrium as a function of the underlying economic
data and the underlying securities price process; in the single-agent model,
this function is given in closed form.



1 Introduction

Assuming that the price of a stock follows a geometric Brownian motion,
Black and Scholes [9] developed the Black-Scholes formula for pricing options
on that stock. Merton [40] showed that if markets are dynamically complete,
there is a trading strategy that replicates the payo� of the option; as a
consequence, the Black-Scholes formula for the price of the option can be
obtained by arbitrage considerations.

Raimondo [45] proved existence of equilibrium in a continuous-time �-
nance model with one agent; the theorem covers both models with dynam-
ically incomplete as well as dynamically incomplete markets. The existence
theorem in that paper had not previously appeared in the literature, although
it may be possible to derive it from other results in the literature. The paper
made two additional contributions: it obtained the pricing formula in closed
form, resulting in speci�c pricing predictions, and it established methodol-
ogy that has the potential to prove existence in the multi-agent, dynamically
incomplete case; see Anderson and Raimondo [6].

In this paper, we show that we can obtain an explicit formula, in closed
form, for pricing options and other derivatives in the same setting as Rai-
mondo [45]. The method extends to the multi-agent model of Anderson and
Raimondo [6], except that the option price is not given in closed form, as a
function of the stock price and the underlying data. Raimondo [45] showed
that the price of a stock in a representative agent model follows generalized
geometric Brownian motion only when all three of the following conditions
are satis�ed:

1. the agent has a CRRA utility function;

2. there is only one stock;

3. there are no endowments in the terminal period, so the only source of
wealth in that period is the stock.

In all other cases, the equilibrium price of the stock does not follow geometric
Brownian motion, and hence the original Black-Scholes formula for pricing
options on the stock does not apply.

The standard technique for pricing options and other derivatives in situa-
tions where the underlying securities price process is not geometric Brownian

1



motion is the martingale method; Nielsen [42] provides an excellent exposi-
tion of this method. This method was initiated by Harrison and Kreps [24]
in the complete markets case, and has since been extended to dynamically
incomplete markets. The idea is to construct a martingale whose terminal
value is the payo� of the option or other derivative. If markets are dynam-
ically complete, this martingale is uniquely determined by the underlying
price process, and determines the pricing of the option by arbitrage. How-
ever, if markets are dynamically incomplete, the martingale is not uniquely
determined by the underlying securities prices; indeed, the method allows
in�nitely many di�erent pricing processes for the option.

In this paper, we show how to assign a unique equilibrium price to options
and other derivatives in single-agent economies, regardless of whether mar-
kets are dynamically complete or incomplete. The derivative price process
is uniquely determined by the underlying economic data{the endowment
process and utility of the agent, and the dividends of the securities. The
equilibrium price is given in closed form, as a function of the underlying
data of the economy. The pricing of the securities and derivatives exhibits a
number of signi�cant properties; in particular, there are speci�c correlations
among the prices of the underlying securities which are not characteristic
of geometric Brownian motion,1 and the price of an option on one security
depends on the price of all securities, not just the price of the security un-
derlying the option.

In this paper and the companion papers cited below, we assert that equi-
librium imposes more structure on �nance models than that implied by the
absence of arbitrage alone. It has been argued that equilibrium has no pre-
dictive power on securities and derivatives prices beyond that contained in
the absence of arbitrage. The somewhat imprecise argument goes as follows:
if prices are free of arbitrage, then under some hypotheses the prices will be
martingales with respect to a probability measure mutually absolutely con-

1For example, even if the terminal dividends (and hence the terminal prices) of stocks
are independent, the prices of the stocks exhibit speci�c correlations due to wealth e�ects.
If the terminal dividends and prices of securities are correlated, for example if the terminal
prices are given by

S(T ) = eS(0)+�T+�W

where W is a K-dimensional Brownian motion, � 2 RN and � 2 RN�K is a matrix, the
covariance matrix of the securities at times t < T is not equal to �. The covariance matrix
can be calculated explicitly from the close-form pricing formula.
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tinuous with respect to the true probability measure. One can then extract a
state-dependent felicity function for a single agent which supports the given
arbitrage-free prices as an equilibrium.

Notice that this argument requires that the state-dependent felicity be
chosen very carefully to produce the given pricing process. Suppose instead
we require that the single agent's utility function be the expected utility
generated by some state-independent felicity function. In that case, the ar-
gument just cited that any arbitrage-free pricing system can be justi�ed as
an equilibrium will not hold; state-dependence is essential to the proof. Of
course, one might object that state-dependence is commonly observed in
practice. It is di�cult to argue against this objection, but the implication
of this objection is not that one should consider a pricing process justi�ed if
it can be supported as equilibrium with respect to a felicity function whose
state-dependence is carefully chosen to match the peculiarities of the pricing
process. The implication is that the state-dependence should be speci�ed
as part of the model, and the pricing process should be required to be an
equilibrium with respect to the exogenously given state-dependent utility
function. Allowing arbitrary state-dependence is a virtue in a result of the
form \for all state-dependent felicity functions, ... ;" is is not a virtue in a
result of the form \there exists a state-dependent felicity function ... ."

One of the reasons that state-independence appears natural in some mod-
els is that the models are partial equilibrium. If a signi�cant portion of
household wealth is held in housing, a model that includes stocks but not
housing is a partial equilibrium model. Since changes in the value of hous-
ing induce wealth e�ects that alter individuals' willingness to hold stocks,
changes in housing values seem, in a stock-only model, to be instances of
state-dependent felicity. But in a general equilibrium model which includes
both stocks and housing, the state-dependence disappears. In particular, we
argue that the relationship between stock pricing and housing can only be
properly studied in a general equilibrium model which includes both. More
generally, in this and the companion papers, we take the position that all
assets and securities should be included in the model, and that felicity func-
tions (and in particular any state-dependence of felicity functions) should be
taken as exogenously speci�ed.

This approach has real economic and �nancial consequences. If one's sole
criterion for validating a price process is the absence of arbitrage, then the
economic characteristics (endowments, utility functions, and information) of
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the agent(s) can play no role in determining prices: absence of arbitrage is a
property of the pricing process alone, not of the underlying economic data.
The pricing process in which stock prices are given by geometric Brown-
ian motion, and option prices by the Black-Scholes formula, is arbitrage-free;
hence, if one's sole criterion for price processes is the absence of arbitrage, one
can never reject this pricing process on theoretical grounds. If one assumes
geometric Brownian motion{Black-Scholes pricing, a speci�c prediction fol-
lows. One can deduce the implied volatility � of the geometric Brownian
motion from the stock price, the strike price of the option, the price of the
option, and the time left until the expiration date of the option; the implied
volatility � must be independent of the strike price, so the graph of � in
terms of the strike price must be a horizontal line. Our model provides a
speci�c prediction on the shape of the implied volatility curve in terms of
the economic primitives, and it is certainly not a horizontal line except in
very special cases. Empirically, the implied volatility curve is in the shape
of a \smile," with the implied volatility being higher for strike prices well
below the current stock price as well as for strike prices well above the cur-
rent stock price (see Campbell, Lo and McKinley [10]). In future work, we
hope to explore assumptions on the underlying primitives which generate a
\smile" that matches the empirically-measured implied volatility curve.

Other papers (see for example Heston [25]) have used the martingale
method to provide closed-form prices for options outside the geometric Brown-
ian motion context. However, the papers of which we are aware assume a
particular stochastic process underlying the stock price. There is no guar-
antee that these stochastic processes are consistent with market clearing un-
less one carefully chooses a state-dependent utility function which carefully
matches the peculiarities of the given stochastic process; indeed, Raimondo
[45] makes it clear that the pricing processes commonly assumed are equilib-
rium processes only under very special circumstances. Second, the papers of
which we are aware either assume dynamically complete markets, or in the
case of dynamically incomplete markets provide one example of an arbitrage-
free price system; there are in�nitely many other arbitrage-free price systems,
and there is no guarantee that the arbitrage-free price system they identify
is consistent with market clearing with respect to a state-independent util-
ity function; as we argue above, any state-dependence of utility should be
exogenously speci�ed, not carefully chosen to �t the peculiarities of a par-
ticular pricing process one is trying to justify. Third, closed forms solutions
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are obtained only in special cases.2

By contrast, in our paper, the option price is determined uniquely by
market clearing. This is true even in situations in which markets are dy-
namically incomplete. We get the option price in closed form, even with a
stochastic interest rate.

In this paper, we get everything in one package. Starting from assump-
tions about economic primitives, we derive equilibriumstock prices and deriv-
ative prices in closed form, whether or not markets are dynamically complete.
We are not aware of any other papers that do this.

We emphasize that, in the single-agent case, the option price is given
in closed form that can easily be evaluated numerically. The stock pays a
dividend A(!; T ) only at the terminal period T ; the dividend equals the
terminal value of a geometric Brownian motion e�T+��(!;T ). The equilibrium
price of the stock does not follow geometric Brownian motion. The price
of the stock and the option at times t < T are given explicitly in terms of
�(!; t). Assuming one knows �(!; t), it is a simple matter to compute the
stock and option price numerically. �(!; t) is measurable with respect to Ft,
the �-algebra of events known at time t. We think of �(!; t) as encapsulating
the information available at time t about the terminal dividend of the stock;
�(!; t) is the conditional expectation, at time t, of ln(A(!;T ))��T

�
. Since the

underlying assumption of all continuous-time �nance models is that agents
know the information in Ft at time t, �(!; t) should in principle be observable
at time t. We might think of it as the consensus of analysts' projections about
the terminal dividend.

As a practical matter, there is a vast amount of data reporting actual
stock prices, while the data on analysts' projections is scarcer and harder to
interpret. Thus, for empirical work, it is very desirable to calculate the rela-
tionship between the stock price and �(!; t). A su�cient condition to ensure

that the relationship between �(!; t) and pA(!;t)
pB(!;t)

is invertible is �'002 (c)
'02(c)

� 1
c
,

i.e. the coe�cient of relative risk aversion is everywhere less than or equal
to one.3 This condition is far from necessary, and in future work, we hope to
develop much more general conditions which imply invertibility; for exam-

2For example, Heston [25] obtains a closed-form solution with a deterministic interest
rate, but not with a stochastic interest rate. We obtain a closed form solution with an
endogenously determined stochastic interest rate.

3We do not need to assume the coe�cient of relative risk aversion is constant, only
that it is bounded above by one.
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ple, if the current value of the individual's holding of a single stock does not
make up too large a portion of the individual's expected wealth at period T ,
invertibility will still hold if the coe�cient of relative risk aversion exceeds
one but is not too high.

Although this paper only explicitly discusses the representative agent
model of Raimondo [45], the method extends readily to the multi-agentmodel
of Anderson and Raimondo [6]. The principal di�erence is that the formula
for the option price depends on the terminal wealths of the agents; since these
terminal wealths are not given in closed form, neither is the option price. One
of the key lessons of Anderson and Raimondo [6] is that equilibrium prices of
the basic securities, as well as derivative securities, necessarily depend on the
terminal wealths of the agents. These terminal wealths depend on the whole
history of prices, not just the terminal prices. As a consequence, the current
price of an option is not determined as a function of the current prices of
the securities, let alone a function of the current price of the stock on which
it is written; instead, the current equilibrium price of an option depends
on the entire history of securities prices up to that time. As a result, the
usual formula for the trading strategy that replicates an option does not
apply, even when markets are dynamically complete. We shall explore in
future work whether the methods we have developed allow one to construct
replication strategies for equilibrium securities prices.

As in Raimondo [45], our method makes use of nonstandard analysis, and
in particular the nonstandard theory of stochastic processess as developed in
Anderson [1], Keisler [32], and Lindstr�om [33, 34, 35, 36]. These methods of
nonstandard stochastic analysis have previously been applied to the theory
of option pricing in Cutland, Kopp and Willinger [13, 14, 15, 16, 17, 18, 19].
Those papers primarily concern convergence of discrete versions of options to
continuous-time versions, and their methods can likely be used to establish
convergence results for the pricing formulas considered in this paper.

In nonstandard analysis, a hyper�nite set is an in�nite set which pos-
sesses all the formal properties of �nite sets; in particular, the Radner [43]
and Du�e and Shafer [21, 22] existence results ensure that a hyper�nite in-
complete markets economy has an equilibrium. We begin with a standard
continuous-time model, construct a nonstandard hyper�nite economy, obtain
an equilibrium for the hyper�nite economy, then use the nonstandard theory
of stochastic processes to induce an equilibrium in the standard continuous-
time model. For further comments on the methodology, see Raimondo [45].
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2 The Model

The model we consider is essentially the same as that in Raimondo [45],
except for the following changes. The payout of the stocks in the terminal
period is given by the terminal value of a geometric generalized Brownian
motion. Thus, there are d independent Brownian motions �1; : : : ; �d, and
J stocks (J � d) with Aj(!; T ) = e�jT+�j�j with �j � 0 and �j � 0 (in
Raimondo [45], �j = 0 and �j = 1). We add M derivative securities Dm(1 �
m �M). Dm is in zero net supply. The payo� of Dm is given by

Dm(!; t) = 0 if t < T

Dm(!; T ) = Gm(A1(!; T ); � � � ; AJ(!; T ))

for some continuous functionGm : RJ ! R satisfying jGm(x)j � maxfSm; jxjrg
for some Sm 2 R and r 2 R+. The de�nitions of pricing process, trading
strategy, and budget sets are adapted in the obvious way to take into account
the availability of the derivative securities; the market clearing condition at
equilibrium requires that the agent hold zero units of each Dm at the termi-
nal period T and at almost all times t 2 [0; T ). As in Raimondo [45], we use
e�T+��(!;t)+�

p
T�tx to denote the vector�
e�1T+�1�1(!;t)+�1

p
T�tx1 ; : : : ; e�JT+�J�J (!;t)+�J

p
T�txJ

�
Theorem 2.1 There is a standard probability space (
;F ; �), a �ltration

Ft, and a d-dimensional Brownian motion � = (�1; : : : ; �d) such that the

continuous time �nance model just described has an equilibrium. The pricing

process is given by

pAj (!; t) = e�jt+�j�j(!;t)
R1
�1 '02 (F (t; !; x)) e

�j(T�t)+�j
p
T�txjd�(x)

pB(!; t) =
R1
�1 '02 (F (t; !; x))d�(x)

pC(!; t) = '01(1) for t < T
pC(!; T ) = '02 (F (T; !; 0))
pDm(!; t) =

R1
�1 '02 (F (t; !; x))Gm

�
e�T+��(!;t)+�

p
T�tx

�
d�(x)

(1)

where

F (t; !; x) = �
�
�(!; t) +

p
T � tx

�
+ 1J �

�
e�T+��(!;t)+�

p
T�tx�

and � is the cumulative distribution function of the standard d-dimensional

normal.
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Before we turn to the proof, it may be helpful to give several examples
of models included in Theorem 2.1 and the pricing processes that prevail in
those models.

Example 2.2 There is one Brownian motion and a single stock based on
it, one bond, and a European call option on the stock, with strike price �A;
thus, we are in the case J = d = K = 1. The agent has no endowment in
the terminal period T , so � is identically zero. In period T , the agent has
the CRRA utility function �2(c) =

p
c. Markets are dynamically complete.

Observe that Z b

a
e�xd�(x) =

1p
2�

Z b

a
e�xe�x

2=2dx

=
1p
2�

Z b

a
e(2�x�x

2)=2dx

=
e�

2=2

p
2�

Z b

a
e(��

2+2�x�x2)=2dx

=
e�

2=2

p
2�

Z b

a
e�(x��)

2=2dx

=
e�

2=2

p
2�

Z b��

a��
e�x

2=2dx

= e�
2=2 (�(b� �)� �(a� �))

The pricing process is

pA(!; t) = e�T+��(!;t)
Z 1

�1
'02 (F (t; !; x)) e

�
p
T�txd�(x)

= e�T+��(!;t)
Z 1

�1
1

2
p
e�T+��(!;t)+�

p
T�tx

e�
p
T�txd�(x)

=
e(�T+��(!;t))=2

2

Z 1

�1
e�

p
T�tx=2d�(x)

=
e(�T+��(!;t))=2+�

2(T�t)=8

2

pB(!; t) =
Z 1

�1
'02 (F (t; !; x))d�(x)

=
Z 1

�1
1

2
p
e�t+��(!;t)+�

p
T�tx

d�(x)
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=
1

2e(�T+��(!;t))=2

Z 1

�1
e��

p
T�tx=2d�(x)

=
e�(�T+��(!;t))=2+�

2(T�t)=8

2

pA(!; t)

pB(!; t)
=

e(�T+��(!;t))=2+�
2(T�t)=8

2

e�(�T+��(!;t))=2+�2(T�t)=8
2

= e�T+��(!;t)

pD(!; t) =
Z 1

�1
'02 (F (t; !; x))G

�
e�T+��(!;t)+�

p
T�tx� d�(x)

=
Z 1

�1
maxf0; e�T+��(!;t)+�

p
T�tx � �Ag

2
p
e�T+��(!;t)+�

p
T�tx

d�(x)

=
Z 1
ln �A��T���(!;t)

�
p
T�t

e�T+��(!;t)+�
p
T�tx

2
p
e�T+��(!;t)+�

p
T�tx

d�(x)

� �A
Z 1
ln �A��T���(!;t)

�
p
T�t

1

2
p
e�T+��(!;t)+�

p
T�tx

d�(x)

=
1

2

Z 1
ln �A��T���(!;t)

�
p
T�t

q
e�T+��(!;t)+�

p
T�txd�(x)

�
�A

2e�T+��(!;t)=2

Z 1
ln �A��T���(!;t)

�
p
T�t

e��
p
T�tx=2d�(x)

=
e(�T+��(!;t))=2

2

Z 1
ln �A��T���(!;t)

�
p
T�t

e�
p
T�tx=2d�(x)

�
�Ae�(�T+��(!;t))=2+�

2(T�t)=8

2
�

 
��

p
T � t

2
� ln �A� �T � ��(!; t)

�
p
T � t

!

=
e(�T+��(!;t))=2+�

2(T�t)=8

2
�

 
�
p
T � t

2
� ln �A� �T � ��(!; t)

�
p
T � t

!

�
�Ae�(�T+��(!;t))=2+�

2(T�t)=8

2
�

 
��

p
T � t

2
� ln �A� �T � ��(!; t)

�
p
T � t

!

=
e(�T+��(!;t))=2+�

2(T�t)=8

2
�

 
ln(e�T+��(!;t)= �A) + �2(T � t)=2

�
p
T � t

!

�
�Ae�(�T+��(!;t))=2+�

2(T�t)=8

2
�

 
ln(e�T+��(!;t)= �A)� �2(T � t)=2

�
p
T � t

!
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pD(!; t)

pB(!; t)
= e�T+��(!;t)�

 
ln(e�T+��(!;t)= �A) + �2(T � t)=2

�
p
T � t

!

� �A�

 
ln(e�T+��(!;t)= �A)� �2(T � t)=2

�
p
T � t

!

=
pA(!; t)

pB(!; t)
�

 
ln(pA(!; t)=pB(!; t) �A) + �2(T � t)=2

�
p
T � t

!

� �A�

 
ln(pA(!; t)=pB(!; t) �A)� �2(T � t)=2

�
p
T � t

!

Note that the ratio pD(!;t)
pB(!;t)

follows the standard Black-Scholes formula. Note

also that the ratio pA(!;t)
pB(!;t)

follows geometric Brownian motion. The reader may
be surprised to see that the term �T rather than �t appears in the formula,
i.e. pA(!;t)

pB(!;t)
follows a geometric Brownian motion with no drift. The reason

is that the factor e�T in the payo� of the stock at time T just multiplies the
value of the stock at all time periods by a constant factor. If we modi�ed our
utility function to incorporate time-discounting, identical drift factors would
appear in pA and pB, so the ratio would be unchanged. We could obtain a
nonzero drift in an in�nite horizon model in which the agent discounts, and
dividends are paid at all times and follow a geometric Brownian motion with
drift.

Example 2.3 In this example, we modify Example 2.2 by changing the
utility function in period T to the CARA function �2(c) = �e��c, for � > 0.
For simplicity, we also take �1 = 0 and �1 = 1.

pD(!; t) =
Z 1

�1
'02 (F (t; !; x))G

�
e�(!;t)+�

p
T�tx� d�(x)

=
Z 1

�1
�e��e

�(!;t)+
p
T�tx

max
n
e�(!;t)+

p
T�tx � �A; 0

o
d�(x)

=
Z 1
ln �A��(!;t)p

T�t

�e��e
�(!;t)+

p
T�tx

e�(!;t)+
p
T�txd�(x)

� �A
Z 1
ln �A��(!;t)p

T�t

�e��e
�(!;t)+

p
T�tx

d�(x)

=
Z 1
ln �A��(!;t)p

T�t

�

 1X
n=0

(��)n
n!

e(n+1)�(!;t)e(n+1)
p
T�tx

!
d�(x)
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� �A
Z 1
ln �A��(!;t)p

T�t

�

 1X
n=0

(��)n
n!

en�(!;t)en
p
T�tx

!
d�(x)

= �
1X
n=0

(��)n
n!

e(n+1)�(!;t)
Z 1
ln �A��(!;t)p

T�t

e(n+1)
p
T�txd�(x)

� �A�
1X
n=0

(��)n
n!

en�(!;t)
Z 1
ln �A��(!;t)p

T�t

en
p
T�txd�(x)

= �
1X
n=0

(��)n
n!

e(n+1)�(!;t)e
(n+1)2(T�t)

2 �

 
(n+ 1)

p
T � t

2
� ln �A� �(!; t)p

T � t

!

� �A�
1X
n=0

(��)n
n!

en�(!;t) e
n2(T�t)

2 �

 
n
p
T � t

2
� ln �A� �(!; t)p

T � t

!

= �
1X
n=0

(��)n
n!

en�(!;t)
"
e
(n+1)2(T�t)

2 e�(!;t)�(zn)� �Ae
n2(T�t)

2 �

 
zn �

p
T � t

2

!#

pA(!; t) = �
1X
n=0

(��)n
n!

e(n+1)�(!;t)e
(n+1)2(T�t)

2

pB(!; t) = �
1X
n=0

(��)n
n!

en�(!;t)e
n2(T�t)

2

where

zn =
ln e�(!;t)= �Ap

T � t
+
(n + 1)

p
T � t

2

Example 2.4 In this example, we modify Example 2.2 by adding a sto-
chastic endowment in the terminal period T . We take J = K = 1, d = 2,
and e(!; T ) = e�2(!;T ), so the endowment is given by the terminal value of
an exponential Browian motion for which there is no corresponding stock.
Markets are dynamically incomplete. The pricing formula becomes

pA1 (!; t) = e�1T+�1�1(!;t)
Z 1

�1
'02 (F (t; !; x)) e

�1
p
T�tx1d�(x)

= e�1T+�1�1(!;t)
Z 1

�1
1

2
q
F (t; !; x)

e�1
p
T�tx1d�(x)

pB(!; t) =
Z 1

�1
'02 (F (t; !; x))d�(x)

=
Z 1

�1
1

2
q
F (t; !; x)

d�(x)
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pA(!; t)

pB(!; t)
=

e�1T+�1�1(!;t)
R1
�1

1

2
p
F (t;!;x)

e�
p
T�tx1d�(x)R1

�1
1

2
p
F (t;!;x)

d�(x)

pD(!; t) =
Z 1

�1
'02 (F (t; !; x))G

�
e�T+��(!;t)+�

p
T�tx� d�(x)

=
Z 1

�1
maxf0; e�1T+�1�1(!;t)+�1

p
T�tx1 � �Ag

2
q
F (t; !; x)

d�(x)

pD(!; t)

pB(!; t)
=

R1
�1

maxf0;e�1T+�1�1(!;t)+�1
p
T�tx1� �Ag

2
p
F (t;!;x)

d�(x)R1
�1

1

2
p
F (t;!;x)

d�(x)

where
F (t; !; x) = e�2(!;t)+

p
T�tx2 +

�
e�1T+�1�1(!;t)+�1

p
T�tx1

�
Notice that the inclusion of any nonzero endowment in the �nal period,
whether stochastic or deterministic, precludes the simpli�cation that was
possible in Example 2.2. In particular,

pA1
pB

is not geometric Brownian motion
and the price of the option is not given by the conventional Black-Scholes
formula. Note also that the price of the stock A1 and the option D1 depend
not only on the Brownian motion �1 that determines the �nal stock dividend,
but also the Brownian motion �2, which is independent of the dividends of
the stock.

Note that the option price is given in closed form that can easily be
evaluated numerically. Assuming one knows �(!; t), one simply has to do
two numerical integrations with respect to the Gaussian distribution; it is not
necessary to simulate a random walk process. Alternatively, one can compute
the stock price pA1(!; t)=pB(!; t) numerically as a function of �(!; t). One
can then compute the option price as a function of the pA=pB, the strike
price of the option, and T � t, given the utility function and the �nal period
endowment.

Example 2.5 Suppose we modify Example 2.2 by eliminating the bond.
Thus, we consider a model in which there is one stock, no bond, and a
European call option on the stock. This does not fall under Theorem 2.1
as stated, but essentially the same argument guarantees that equilibrium
exists.4 The equilibrium trading strategy prescribes that the agent holds

4The only change, other than notation, is that in the construction of the consumption
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zero units of the bond at all (!; t); accordingly, the equilibrium consumptions
and stock and option holdings in this example are the same as those in
Example 2.2. However, in this example, there is no market for the bond.
If we consider the market with the stock but not the bond or the option
present, markets are dynamically incomplete and there is no trading strategy
involving only the stock which will replicate the option. It is not possible
to price the option by a pure arbitrage argument on the stock; equivalently,
the martingale method identi�es in�nitely many possible pricing processes.
Nonetheless, in the market with the stock and the option both present, the
option has a unique equilibrium price. The prices are exactly the same as in
Example 2.2. The pricing formula is

pA(!; t) =
e(�T+��(!;t))=2+�

2(T�t)=8

2

pD(!; t) =
e(�T+��(!;t))=2+�

2(T�t)=8

2
�

 
ln(e�T+��(!;t)= �A) + �2(T � t)=2

�
p
T � t

!

�
�Ae�(�T+��(!;t))=2+�

2(T�t)=8

2
�

 
ln(e�T+��(!;t)= �A)� �2(T � t)=2

�
p
T � t

!

where � is the cumulative distribution function of the standard 1-dimensional
normal.

3 Proof

Up to now, all of our de�nitions and results have been stated without any
reference to nonstandard analysis. Our proof makes extensive use of nonstan-
dard analysis, in particular Anderson's construction of Brownian Motion and
the Itô Integral ([1]) and Lindstr�om's extension of that construction to sto-
chastic integrals with respect to L2 martingales [33, 34, 35, 36]. It is beyond
the scope of this paper to develop these methods; Anderson [3] and Hurd
and Loeb [31] are suitable references.

We construct our probability space, �ltration and Brownian Motion fol-
lowing Anderson's construction [1]. Speci�cally, we construct a hyper�nite

plan ^̂c and trading strategy ^̂y, one must buy our sell units of the stock rather than units
of the bond.

13



economy as in Raimondo [45], with the following changes to incorporate the
derivatives D1; : : : ;DM :

1. For all ! 2 
̂, de�ne Â(!; t) = B̂(!; t) = D̂(!; t) = 0 for all t < T̂ ,

Â(!; T̂ ) = e�T̂+��̂(!;T̂) (i.e. Âj(!; T̂ ) = e�jT̂+�j �̂j(!;T̂), j = 1; : : : ; J),

B̂(!; T̂ ) = 1, and D̂(!; T̂ ) = *G
�
e�T̂+��(!;T̂ )

�
, i.e. D̂m(!; T̂ ) =

*Gm

�
e�T̂+��(!;T̂ )

�
= *Gm

�
e�1T̂+�1�1(!;T̂); : : : ; e�J T̂+�J�J(!;T̂)

�
(m = 1; : : : ;M). De�ne A(!; t) = B(!; t) = D(!; t) = 0 for T 2 [0; T ),

A(!; T ) = e�T+��(!;T ), B(!; T ) = 1, D(!; T ) = G
�
e�T+��(!;T )

�
. Note

that A(!; T ) = �Â(!; T̂ ) and D(!; T ) = �D̂(!; T̂ ) for �-almost all !.

2. A security price is an internal function p̂ = (p̂A; p̂B; p̂D) : T � 
̂ !
*RJ

+ � *R+ � *RK
+ such that p̂(t; �) is F̂t-measurable. A consumption

price is an internal function p̂C : T � 
̂! *R+.

3. A trading strategy is ẑ = (ẑA; ẑB; ẑD) : T � 
̂ ! *RJ � *R � *RD

which satis�es the short-sale constraint

ẑ(!; t) � ((�M; : : : ;�M);�M; (�M; : : : ;M))

for all t; ! and such that ẑ(t; �) is F̂t-measurable.

4. An equilibrium for the economy is a security price process p̂, a con-
sumption price process p̂C , a trading strategy ẑ and a consumption
plan ĉ which lies in the demand set so that the securities and goods
markets clear, i.e. for all !

ẑA(!; t) = 1 for all t 2 T
ẑB(!; t) = 0 for all t 2 T
ẑD(!; t) = 0 for all t 2 T
ĉ(!; t) = 1 for all t < T̂

ĉ(!; T̂ ) = ê(!; T̂ ) + 1J � e�̂(!;T̂)

Theorem 3.1 The hyper�nite economy just described has an equilibrium.
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The pricing process is given by

p̂Aj (!; t) = e�j t+��̂j(!;t)
R
*R *'02

�
F̂ (t; !; x)

�
e�j(T�t)+�j

p
T̂�txjd�̂(x)

p̂B(!; t) =
R
*R *'02

�
F̂ (t; !; x)

�
d�̂(x)

p̂Dm(!; t) =
R
*R *'02

�
F̂ (t; !; x)

�
*Gm

�
e�T̂+��̂(!;t)+�

p
T̂�tx

�
d�̂(x)

p̂C(!; t) = '01(1) for t < T

p̂C(!; T̂ ) = *'02(F̂ (T̂ ; !; 0))

where

F̂ (t; !; x) = *�
�
�̂(!; t) +

q
T̂ � tx

�
+ 1J �

�
e�T̂+��̂(!;t)+�

p
T̂�tx

�

and �̂ is the cumulative distribution function of the d-dimensional normalized

binomial distribution, each of whose components is distributed ass
4�T

T̂ � t
*b

  
T̂ � t

�T
;
1

2

!
� T̂ � t

2�T

!

Proof: The proof is essentially identical to the proof of Theorem 3.1 of
Raimondo [45].

Proposition 3.2 . Suppose a 2 ns(*Rd). Let

fa(x) = ea�x = ea1x1+���+adxd

Then fa 2 SL1(*Rd; d�̂).

Proof: See Raimondo [45]

Theorem 3.3 Suppose that '02(c) = O(1=cr) as c ! 0 and jGm(x)j � jxjr,
for some r 2 R. Then for �-almost all !, the equilibrium pricing process

satis�es

� (p̂A(!; t)) = e�t+��(!;
�t) R1

�1 '02 (F (
�t; !; x)) e�(T�t)+�

p
T��txd�(x)

� (p̂B(!; t)) =
R1
�1 '02 (F (

�t; !; x)) d�(x)
� (p̂C(!; t)) = '01(1)

�
�
p̂C(!; T̂ )

�
= '02 (F (T; !; 0))

� (p̂D(!; t)) =
R1
�1 '02 (F (

�t; !; x))G
�
e�T+��(!;

�t)+�
p
T��tx

�
d�(x)

for all t 2 T , where � is the cumulative distribution function of the standard

d-dimensional normal.
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Proof: The proofs for pA and pB are essentially the same as in Raimondo
[45]. Anderson [1] showed that, for almost all !, ��̂(!; t) = �(!; �t) 2 R

for all t 2 T ; �x any such !. Note that, since � is continuous, F̂ (t; !; x) '
F (�t; !; �x) for all t 2 T . Note that '02(c) is decreasing and there exists
 2 R such that '02(c) � 

cr
for all c 2 (0; 1]. Since the d-dimensional

binomial distribution �̂ converges in distribution to the d-dimensional normal
distribution �, Anderson and Rashid [4] shows that L(d�̂)st�1 = d�, where
L(d�̂) is the Loeb measure generated by d�̂. Thus, if J � 1,����*'02 �F̂ (t; !; x)� *Gm

�
e�T̂+��̂(!;t)+�

p
T̂�tx

�����
� '02(1)

����*Gm

�
e�T̂+��̂(!;t)+�

p
T̂�tx

�����+ 
�
1J �

�
e�̂(!;t)e

p
T̂ x
���r ����*Gm

�
e�̂(!;t)+

p
T̂�tx

�����
� '02(1)e

r�̂(!;t)
����e
p
T̂ x
����
r

+ e�r�̂(!;t)Sm
�
1J �

�
e
p
T̂ x
���r

2 SL1(d�̂)

by Proposition 3.2; the argument in case J = 0, using the lower bound
�(x) � e��x for some � 2 Rd, is similar. Therefore,Z

*R
*'02

�
F̂ (t; !; x)

�
*Gm

�
e�T̂+��̂(!;t)+�

p
T̂�tx

�
d�̂

'
Z
*R

'02
��F̂ (t; !; x)�Gm

�
e�T+��(!;

�t)+�
p
T��t�x�L(d�̂)

=
Z
R

'02 (F (
�t; !; x))Gm

�
e�T+��(!;

�t)+�
p
T��tx�L(d�̂)st�1

=
Z
R

'02 (F (
�t; !; x))Gm

�
e�T+��(!;

�t)+�
p
T��tx� d�

Theorem 3.4 p̂A, p̂B and p̂D are internal almost surely S-continuous SL2

martingales with respect to the internal �ltration fF̂tg. If we de�ne

pA(!; t) = �p̂A(!; t̂)

pB(!; t) = �p̂B(!; t̂)

pD(!; t) = �p̂D(!; t̂)

for t 2 [0; T ], then pA and pB are almost surely continuous square integrable

martingales with respect to the �ltration fFtg.
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Proof: The proof for p̂A and pA is given in Raimondo [45]. The proofs for
p̂B, pB, p̂D and pD are similar.
Proof of Theorem 2.1: The proof is essentially identical to the proof of
Theorem 2.1 in Raimondo [45].

References

[1] Anderson, Robert M., \A Nonstandard Representation of Brownian Mo-
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