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Abstract
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1. Introduction

This paper proposes a new way to formulate commodity spaces in microeconomic

theory that is both more speci�c and more abstract than standard de�nitions of com-

modity spaces, including those for di�erentiated commodities, in the existing literature.

I focus on uncertainties inherent in any production technology and aim for consistency

with how commodities are actually purchased. The overall goal is to demonstrate that

one can modify our standard model in microeconomic theory so that it re
ects these

concerns yet nevertheless remains tractable for economic analysis. Then the resulting

economic properties can be examined and compared to those of the existing benchmark

model of an economy.

This research is motivated by theoretical models of engineering design and man-

ufacture, especially the solid geometric modelling work underpinning computer aided

design (CAD) and computer assisted manufacturing (CAM) tools. For concreteness and

simplicity, I have chosen to focus on geometric forms such as precision metal parts and

dies for plastic molding. This o�ers the advantage of easy visualization, but note that

the same engineering principles would carry over to other types of commodities.

An important aspect of any manufacturing procedure is its level of precision|the

closeness of the actual manufactured object to the desired object that is speci�ed in the

design and the reproducibility of the operation with the process remaining under con-

trol without further interference. The sub�eld of dimensioning and tolerancing (D & T)

studies this uncertainty, how it can and should be measured, how it is modelled formally,

how its speci�cations should be standardized (i.e., ANSI 14.5 in the U.S. and ISO 9000

internationally), and how a given level of uncertainty a�ects production costs and possi-

ble time-to-market delays in the introduction of new products.

Yet, for economics, it is essential that any useful formal model be tractable for

analysis and display the potential to yield interesting economic conclusions. Thus there

must be a balance between increased generality and abstraction on the one hand and

the prospects for obtaining interpretable economic results on the other hand. One fruit-

ful approach is to delineate clearly the comparisons and contrasts between a benchmark
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model and the proposed novel approach, while a related research strategy consists of dis-

playing exactly the sense in which one model encompasses the other. This analysis is

performed here for my proposed model versus Mas-Colell's (1975) renowned model of

abstract commodity di�erentiation with indivisibilities. As a bonus, the presence of in-

divisibilities in the di�erentiated commodities (geometric objects) here is a natural and

intuitive desideratum.

In economic theory, Debreu (1959) pointed out the necessity of formalizing the

de�nition of the set of commodities present in an economy. His well-known,

well-exposited, and well-reasoned statement on this matter appears as Chapter 2. There

he argues that a commodity should be described in terms of its complete physical de-

scription, its location, and its date of delivery so that all units of a given single com-

modity would be viewed as completely equivalent by each consumer and each �rm in

the economy. This paper focuses on the physical description aspect of the de�nition of a

commodity and suggests that how economists think about physical descriptions of goods

can be improved. My proposed improvement is consistent with actual (incomplete) con-

tracts to purchase and sell goods|for instance, defense procurement|and features con-

tracts that are, in principle, legally enforceable as the basis for de�ning commodities.

In addition, my framework respects realistic limits on information with respect to the

physical characteristics of products in that economic agents are not hypothesized to take

account of nonveri�able information on the distributions of uncertainties stemming from

the production process.

Debreu's (1959) admonishment to pay careful attention of the speci�cation of the

commodity space in economic theory has been followed up by a long list of researchers|

e.g., Bewley (1972) and many others who have examined various in�nite-dimensional

commodity spaces in general equilibrium theory and Prescott and Townsend (1984), who

advocate randomizations as a convexi�cation device (later utilized for di�erent purposes

by Hornstein and Prescott (1991) and by Cole and Prescott (1995)). My paper builds

on the seminal article by Mas-Colell (1975), which provides a state-of-the-art model of

abstraction commodity di�erentiation.
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However, to incorporate engineering considerations of product design and manu-

facture, it is necessary to add several layers to the Mas-Colell (1975) approach so that it

re
ects the speci�c structure of the commodity space suggested by geometric design the-

ory and by dimensioning and tolerance analysis. This involves much more than simply

adding uncertainty or randomness.

Yet, for such an approach to have important implications for economic theory, it

must yield the fundamental ingredients for constrained optimization (this is needed in

engineering too!) and for consistency of the resulting economic system, where consis-

tency of the model indicates that it has a suitable equilibrium. Suitability means that

one can de�ne well-behaved price systems, interpretable as reasonable market conditions,

such that at least one of these price systems can clear all markets simultaneously, given

that all individual agents optimize taking prices as given. Furthermore, one wants the

resulting allocations corresponding to any equilibrium to be eÆcient. In other words,

the goal is existence and Pareto optimality of equilibrium allocations in the model. If

there were possibly no equilibria or if an equilibrium could fail to be eÆcient in situ-

ations which otherwise satisfy appropriate versions of the well-known conditions that

usually suÆce to guarantee these properties, then one would naturally question the rea-

sonableness of the proposed model.

The remainder of this paper is organized as follows: Section 2 explains several ar-

eas of engineering considerations that motivate this paper. With this motivation, Sec-

tion 3 presents the proposed set of di�erentiated products and proves that it has the

mathematical structure of a compact metric space. Section 4 presents the economic envi-

ronment in terms of the new commodity space, preferences, and endowments. Then Sec-

tion 5 de�nes competitive equilibrium, establishes its existence, and demonstrates its ef-

�ciency by appealing to a core equivalence result. Section 6 examines an alternative pos-

sible de�nition of di�erentiated products in C0 subject to production imprecision given

by probabilities and explains why this approach is not adopted here. Continuing in this

vein, Section 7 explores the potential re-de�nition of geometric objects as equivalence
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classes under the equivalence relations of translation or translation and rotation. Sec-

tion 8 discusses various issues involved in the extension from pure exchange economies to

those with production. Finally, Section 9 contains concluding comments.

2. Real World Considerations

Geometric objects must be closed and bounded subsets of some �nite-dimensional

Euclidean space. Obviously, the main cases of interest are subsets of the plane and es-

pecially three-space, but IRn is speci�ed in this paper because this level of added gener-

ality does not increase the diÆculty. Fix a positive integer n and let S0 denote the set

of nonempty compact subsets of IRn. Elements of S0 will be called geometric objects.

[Where confusion with the notion of object classes in computer science could occur, the

literature uses the terms geometric solid (for three-dimensional subsets) or, more gener-

ally, artifacts, although the later terminology can be applied to virtually anything that is

designed or manufactured.] Determination of the subsets of S0 which can be considered

the natural domains of geometric objects is postponed to Subsection 2.3, after a topolog-

ical structure on S0 has been introduced.

2.1 Approximations

Two distinct notions of approximation of a subset in IRn by a sequence (or net)

of subsets in IRn are commonly found in the literature: the one based on the generalized

volume or n-dimensional Lebesgue measure of the symmetric di�erence of two sets and

that based on the Hausdor� metric (or, more generally, closed convergence of sets). The

second choice is more natural for engineering applications and, in fact, has appeared in

the engineering design literature, as discussed below.

To see the di�erence between the two approximation concepts, consider the prob-

lem of approximating a x cm by y cm rectangle in the plane, where 0 � x � 100 and

0 � y � 100, by a rectangle with integer-valued length and width (i.e., by a x̂ cm by ŷ

cm rectangle, where x̂ 2 f0; 1; : : : ; 100g and ŷ 2 f0; 1; : : : ; 100g). Let A be our desired

set or nominal object (the x cm by y cm rectangle) and let B denote the set (the x̂ cm

by ŷ cm rectangle) that we actually obtain as described above. Then the error measure

based on the Hausdor� metric can be written as Æ(A;B) = max
�
maxb2Bmina2A



ja �
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;maxa2Aminb2B




ja � bj




	 where, for x = (x1; x2) 2 IR2,




jxj




 = maxfjx1j; jx2jg

instead of the familiear Euclidean norm kxk =
p
x21 + x22 (which gives an equivalent

but not identical distance between the sets A and B). The alternative area-based error

measure, Area(A4B) = Area
�
(A [ B)n(A \ B)

�
instructs one to �nd the volume (or

area in the plane) of the symmetric di�erence between the sets. It's easy to check that

Æ(A;B) = maxfjx� x̂j; jy� ŷjg and Area(A4B) = jx� x̂jmaxfy; ŷg+ jy� ŷjmaxfx; x̂g�

jx � x̂j � jy � ŷj. In this example, the Æ(A;B) error measure tends to be independent of

the approximate magnitudes of x and y; taking x = y = 99:5 and x = y = 0:5 both give

minimum errors of 0.5. On the contrary, the area of the symmetric distance necessar-

ily goes to zero as x and y become close to zero even though the relative errors (under

either error measure) explode.

Yet another useful way to understand the di�erences between these two error

measures is to constrast them for the following sequence of sets: the ideal desired set

A is �xed and equals the square with vertices (0; 0), (0; 50), (50; 50) and (50; 0) while for

each k, the set that we actually obtain is Bk, where Bk is the union of A and the rect-

angle with vertices (0; 50), (0; 100), (1=k; 100), (1=k; 50) so that each Bk equals A plus a

vertical spike of width 1=k. For all k, Æ(A;Bk) = 50 but Area(A4Bk) = 50=k ! 0 as

k ! 1. This example indicates that the error measure Æ is likely to perform better for

certain engineering design problems than the error measure given by the voume of the

symmetric di�erence.

2.2 The Hausdor� Metric

The Hausdor� distance is de�ned for every pair of nonempty subsets of IRn.

First, de�ne (open) �-neighborhoods of nonempty subsets of IRn by B�(A) = fx 2 IRn j

there exists y 2 A with kx � yk < �g where A 6= ;, A � IRn, and � > 0. For every two

nonempty subsets E and F of IRn, de�ne the (extended) Hausdor� distance Æ(E;F ) by

Æ(E;F ) = inff� 2 (0;1] j E � B�(F ) and F � B�(E)g. [Say that an extended distance

function, extended semimetric, or extended metric is a distance function, semimetric or

metric that may assume the value of 1.] Let F denote the set of subsets of IRn and let

F0 denote the set of nonempty subsets of IRn. Then the function Æ:F0 � F0 ! [0;1] is
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an extended semimetric on F0; Æ(E;F ) = 0 whenever E = F , Æ(E;F ) = Æ(F;E), and

Æ(E;F ) � Æ(E;G) + Æ(G;F ). However, Æ fails to be an extended metric on F0 because

Æ(E;F ) = 0 does not imply E = F ; indeed Æ(E;F ) = 0 whenever cl(E) = cl(F ), where

cl(A) denotes the closure of A. This can be \�xed" by considering equivalence classes of

sets in F0, where two sets are equivalent if they have the same closure. A natural repre-

sentative of each equivalence class is the (unique) closed subset which equals the closure

of every set contained in the given equivalence class. Of course, it simpli�es the discus-

sion to work directly with the set of nonempty closed subsets of IRn.

The Hausdor� metric was de�ned by Hausdor� (1962). A convenient reference

is Hildenbrand (1974, pp. 15{21), while Nadler (1978) discusses convergence of sets in

greater generality. Note that the Hausdor� metric topology is closely related to the con-

cept of closed convergence of sets; see, for instance Hildenbrand (1974). The topology

induced by the Hausdor� metric has been used extensively in economic theory.

Let G denote the set of closed subsets of IRn and let G0 denote the set of non-

empty closed subsets of IRn. Then Æ:G0 � G0 ! [0;1] is an extended metric (since

Æ(E;F ) = 0 if and only if E = F whenever E 2 G0 and F 2 G0) and (G0; Æ) is an ex-

tended metric space. Note that the topology on G0 induced by the (extended) Hausdor�

metric is not determined by the topology of IRn but rather can depend on the metric

used on IRn in the sense that two metrics d0 and d00 can de�ne the same topology on IRn

but induce di�erent topologies on G0 unless d0 and d00 are uniformly equivalent (i.e., if

they yield exactly the same class of uniformly continuous real-valued functions on IRn).

This is why the above discussion speci�ed the metric derived from the Euclidean norm

on IRn.

As mentioned above, in the context of geometric design one is concerned with

closed and bounded sets. In IRn, the closed and bounded sets are the compact sets. To

set notation, let S be the set of compact subsets of IRn and let S0 be the set of non-

empty compact subsets of IRn. Note that (S0; Æ) is a metric space; Æ is a metric rather

than an extended metric on S0 because the Hausdor� distance between any two non-

empty compact sets is �nite.
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By a result of Aubin (1977, p. 164, Theorem 1), Æ is a complete extended metric

on G0. This says that if fSkg is a Cauchy sequence of sets in G0, then there exists S 2

G0 such that limk!1 Sk = S. If, in fact, Sk 2 S0 for all k and Æ(Sk; S)! 0, then S must

be compact also because Æ(T 0; T 00) = 1 whenever T 0 is compact and T 00 is unbounded

(closed but noncompact). This proves that (S0; Æ) is a complete metric space.

In geometric design, one frequently works with closed sets that are contained in a

given compact set because such uniform boundedness captures the notion that a maxi-

mum size initial material is available or that a given machine or manufacturing process

is constrained by an overall feasible size limitation. Without loss of generality, let K de-

note the closed unit cube in IRn (K = fx 2 IRn j 0 � xi � 1 for all i = 1; 2; : : : ; ng). Let

K denote the set of closed subsets of K and let K0 denote the set of nonempty closed

subsets of K so that K0 = fS � IRn j S 6= ;; S is closed, and S � Kg. Then (K0; Æ)

is a compact metric space. (See Hildenbrand (1974 Theorem 1, p. 17).) This property

constitutes a major advantage of using the topology induced by the Hausdor� metric.

In geometric design theory, the Hausdor� topology is also applied to the bound-

aries of geometric solids. Implicitly, this yields another extended metric space

(G0nfIR
ng; Æ@) and metric spaces (S0; Æ

@) and (K0; Æ
@). For G;H 2 G0nfIR

ng, G;H 2 S0,

or G; H 2 K0, Æ
@(G;H) = Æ(@G; @H), where @S = cl(S)n int(S) denotes the boundary of

the set S. By de�nition, the boundary of any set in S0 belongs to S0 and the boundary

of any set in K0 is a nonempty closed subset of the compact set K and hence belongs to

K0. [To see that the boundary of any set in S0 or K0 must be nonempty, recall that a

set is both open and closed if and only if its boundary is empty; the only subsets of the

connected space IRn which are both open and closed are the empty set and IRn itself.]

Note that there are sets in K0 that are not the boundary of any set in IRn (for instance,

K itself). Note also that Æ@ is not de�ned on all of G0 because @IR
n = ;.

Observe that (K0; Æ) and (K0; Æ
@) are distinct topological spaces, although both

are metric spaces. Convergence in the Æ metric is not equivalent to convergence in the Æ@

metric. To see this, for k = 3; 4; 5; : : :, let Sk = KnB1=k(1=2; : : : ; 1=2), where B�(x) =
�
y 2 IRn

�� kx � yk < �
	
denotes the open �-ball in IRn centered at x 2 IRn (for � > 0).

Then Sk
Æ
�! K but Sk

Æ@
�! Knf(1=2; : : : ; 1=2)g where Knf(1=2; : : : ; 1=2)g fails to be
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a closed subset of K but its boundary @K [ f(1=2; : : : ; 1=2)g is closed. This example il-

lustrates that the Æ@-limit of a sequence of compact sets need not be a closed set. Hence

(K0; Æ
@) is not closed.

2.3 The Domain of Geometric Objects

The previous subsection stated that (K0; Æ) is a compact metric space when en-

dowed with the topology induced by the Hausdor� metric. Recall that K0 denotes the

set of nonempty closed (and automatically bounded, and therefore compact) subsets

of the closed unit cube K in IRn. Yet not all sets in K0 serve as appropriate geometric

objects. Hence, the domain D of geometric objects must be a proper subset of K0. Of

course, compactness of D is highly desirable for mathematical tractability.

A natural restriction on geometric objects is the requirement that they be con-

nected sets. Indeed, if a potential geometric object is not connected, it should be consid-

ered as two or more separate geometric objects, where each one of the rede�ned individ-

ual geometric objects consists of a single connected component of the originally proposed

geometric object. This insistence on connectedness re
ects manufacturing processes and

practices, in that each connected component could equally well be produced at a di�er-

ent facility. From an economics viewpoint, the connected components could be viewed

as extreme complements in consumption if the speci�cs of the situation render this true

for some or all consumers and, in addition, �rms could consider selling the various con-

nected components as a bundled commodity. For a familiar example, think of left gloves

and right gloves.

In this paper, I proceed beyond connectedness to the stronger condition of con-

vexity. Let C0 denote the set of nonempty closed (and hence compact) convex subsets of

K, so that C0 = fS 2 K0 j S is convexg. Then (C0; Æ) is a compact metric space and, in

fact, C0 is itself a convex set under the operations of taking the (Minkowski) sum of sets

and scalar multiplication; i.e., if S, T 2 S0 and � 2 IR, de�ne S + T = fs + t j s 2

S and t 2 Tg and �S = f�s j s 2 Sg. See Allen (1999c) for an explicit proof.

Here I follow the research strategy of focusing on C0 as the domain of geometric

objects because of not only the desirability of connected sets but also some problems

8



with the interpretation of the Hausdor� metric topology when it is applied to noncon-

vex sets. To see an explicit example of the diÆculty, de�ne a sequence fSkg of nonempty

compact subsets of K, where S1 = S2 = K and for each k = 3; 4; 5; : : :, Sk =

KnB1=k(1=2; : : : ; 1=2), where B�(x) denotes the open ball of radius � > 0 centered at

x in IRn. Then, as k ! 1, Sk ! K but each Sk fails to be contractable and \would

not hold water" because it has a hole. Another example is provided by setting each Sk

equal to the (�nite) subsets of K de�ned by points with coordinates expressed as dec-

imals with (at most) k digits, so that in IR2, S0 = f(0; 0); (0; 1); (1; 0); (1; 1)g, S1 =

f(s1; s2) 2 K j s1 = 0; 1=10; 2=10; : : :1, and s2 = 0; 1=10; : : : ; 1g. Then, as k ! 1,

Sk ! K even though Sk \K does not contain an open set for any k. Clearly K and the

Sk could not be viewed as close substitutes for most purposes.

One solution to this problem may be to modify or strengthen the Hausdor� topol-

ogy so that it distinguishes between a set and the same set after a tiny piece has been

removed. Berliant has proposed a modi�ed Hausdor� metric for this purpose; see Ber-

liant and Dunz (1995) and Berliant and ten Raa (1988, 1992) but note that these refer-

ences alter the metric further to re
ect a given set of utility functions. Current research

is addressing these issues.

2.4 Dimensioning and Tolerancing

To think about dimensioning and tolerancing (D & T), consider the goal of dril-

ling a hole in a cube of homogeneous metal. [The hole is an example of a feature; see

Shah and M�antyl�a (1995).] Three distinct criteria are involved:

(1) Size tolerance, which means that the radius of the hole|and its depth if it does

not extend completely through the piece of metal|must be within an acceptable

range, which would usually take the form of a requirement that the hole's circum-

ference must stay entirely within an annulus de�ned by two concentric circles hav-

ing radii equal to the minimum value and the maximum value in the acceptable

range,

9



(2) Form tolerance, which means that the hole is suÆciently circular, rather than

polyhedral or oval-shaped [regardless of its size], which again is typically veri�ed

by checking that the circumference lies within an annular region, and

(3) Position tolerance, which requires the hole to be in approximately the correct

location relative to the edges of the cube of metal or relative to the locations of

other features.

The three tolerancing constraints would be tested independently and the metal would

be reworked or discarded if any criterion is not satis�ed. This de�nes a tolerance zone

or set of acceptable geometric objects. In the literature, axioms for tolerance zones have

been provided. One important aspect is that exact form cannot be required; each crite-

rion must have some \wiggle room", which need not be symmetric.

Note that this discussion focuses on D & T standards for a single geometric ob-

ject and not statistical tolerancing, in which deviations with respect to some criteria can

be o�set by enhanced precision in terms of other criteria. Also, statistical quality con-

trol, in which random items from a batch are inspected and then a decision is made to

accept or reject the entire batch, is not considered here.

The Hausdor� metric topology has been advocated in the engineering literature

[i.e., Boyer and Stewart (1991, 1992), Requicha (1993), Requicha and Rossignac (1992),

Stewart (1993)] as a �rst step toward capturing D & T standards in a mathematical

model. In brief, a tolerance zone is basically de�ned as a (relatively) open subset of ge-

ometric objects or an open ball, in the Hausdor� metric topology, around the nominal

(desired) geometric object. [See also Srinivasin (1998).]

2.5 Some Remarks on the Literature

The approach taken in this paper starts from the framework of general design

theory, as developed by Yoshikawa (1981), who studies topologies and �lters on abstract

spaces associated with engineering design. Boyer and Stewart (1991, 1992) and Stewart

(1993) introduce a topology (speci�ed by the Æ@ metric de�ned in an earlier subsection)

that is related to the one studied here. Requicha (1993) and Requicha and Rossignac

(1992) discuss the Boyer and Stewart metric; see also the related papers by Requicha
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(1980, 1983), Tilove (1980) and Tilove and Requicha (1980) that focus on regular sub-

sets in the context of dimensioning and tolerancing. [Recall that by de�nition, a set is

regular if it equals the closure of its interior.] My paper does not focus on regular sets;

this research strategy was chosen because of the diÆculties associated with using the

Hausdor� metric on the space of regular sets|lack of closure and the corresponding loss

of compact subsets of geometric objects|that are pointed out in Allen (1999b). Peters,

Rosen, and Shapiro (1994) and Rosen and Peters (1992, 1996) propose a quite di�erent

feature-based metric space topology for spaces of regular geometric designs. [See Shah

and M�antyl�a (1995) for an overview of features in engineering design.] A recent article

by Allen (1999a) uses the Hausdor� topology and argues that, to characterize the sets of

geometric objects that are manufacturable by some process or processes, one must take

limits (and this involves a convergence concept or a topology). Mathematical properties

of various subspaces of geometric objects are examined in Allen (1999c), based also on

the topology induced by the Hausdor� metric.

3. Di�erentiated Products

Section 2 argued that, as a �rst approach, one could take C0 to be the domain of

geometric objects. For reasons of intuition, consistency with dimensioning and toleranc-

ing standards, and technical tractability, C0 is endowed with its topology induced by the

Hausdor� metric so that (C0; Æ) becomes a convex compact metric space.

Thus, subsets of C0 become the basic di�erentiated products. Notice that the

statement reads \subsets of C0" rather than \subsets in C0" because a commodity is

some geometric object that belongs to a speci�ed set of geometric objects.

Let D0 denote the set of nonempty closed subsets of C0, and give D0 the Haus-

dor� metric topology derived from the Hausdor� metric topology on C0. Note that D0

is not a subset of C0 but rather is a collection of subsets of C0 so that D0 is a set of sets.

Note also that the Hausdor� distance is invoked twice in the de�nition of D0, �rst in the

de�nition of C0 and then in a second layer involving the convergence of nonempty closed

sets of nonempty convex compact subsets of IRn. Write (D0; Æ) where no confusion can

occur.
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Proposition 3.1 D0 is a compact metric space.

Proof. This follows from Theorem 1 in Hildenbrand (1974, p. 17), since (C0; Æ) is a com-

pact metric space.

However, the discussion in Section 2.4 suggests that not all elements of D0 are

appropriate di�erentiated products. For example, a set consisting of a single geometric

object (a set containing just one closed convex subset of K) is obviously nonempty and

closed, but it violates the principle that exact form cannot be required in dimensioning

and tolerancing.

To solve this problem, D0 will be restricted further and a proper subset of D0 will

be taken to be the space of di�erentiated products. A consequence of its de�nition is

compactness, so that tractability is not lost. Fix � > 0 and let D� be the subset of D0

such that every element of D� contains an open �-ball.

Proposition 3.2 For any suÆciently small � > 0, D� is a nonempty proper compact

subset of (D0; Æ).

Proof. If Sk ! S in (D0; Æ) and each Sk is a compact set containing an open �-ball for

the given �xed � > 0, then so also does S contain an open �-ball. The set D� is a proper

subset of D0 whenever � > 0 because, for instance, singletons belong to D0 but not to

D�. It's nonempty whenever � is suÆciently small relative to the size of K.

Notice that D� is not simply the collection of closed �-balls, but rather contains

all subsets that contain �-balls. The mapping f�g � C0 ! D0 de�ned by (�; S) 7! �B�(S)

maps onto some proper subset of D0. However, note that (for � > 0 and �� suÆciently

small) the map [�; ��] � C0 ! D0 (de�ned as above by (�; S) 7! �B�(S)) is continuous for

the product topology derived from the topologies on IR and (C0; Æ) and the \two layer"

Hausdor� metric topology on (D0; Æ).

4. The Economic Environment

This section lays out the economic model. It features the set D� (for some suf-

�ciently small � > 0) of di�erentiated products de�ned in the previous section, where

D0 � D� was endowed with a topology.
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4.1 The Commodity Space

One aspect of the economic model which has not yet been emphasized is the hy-

pothesis that commodities in D0 or D� are indivisible. Di�erentiated products are as-

sumed to be available only in integer amounts. This is a natural assumption for geomet-

ric objects, as fraction amounts|as well as irrational quantities|are diÆcult to inter-

pret in an economic context.

These indivisibilities imply that, in order to enable equilibria possibly to exist,

the presence of at least one perfectly divisible good is needed. This phenomenon would

arise even if D� were a �nite set|the e�ects are unrelated to the fact that the model

features in�nitely many distinct commodities. Desirability assumptions for the divisi-

ble good are imposed in Subsection 4.3 below. [For a further discussion, see Mas-Colell

(1975, 1977).]

Accordingly, let h denote the perfectly divisible (homogeneous) good. For sim-

plicity, only one divisible good is postulated; the extension to ` divisible goods that are

priced in equilibrium simultaneously with the pricing of the di�erentiated commodities

is a technical exercise. See Allen (1986b) for a discussion of the mathematical diÆcul-

ties and an explicit proof in the context of a more complicated model with di�erentiated

information that can be traded on markets.

Then the set of commodities is D� [ fhg, for some �xed suÆciently small � > 0.

The commodity space is taken to be the set of ordered pairs of bounded integer-valued

Borel (signed) measures a on D� such that ja(D�)j < 1 [i.e., �nite sums and di�erences

of Dirac measures on D�] and scalars b 2 IR, where, for d 2 D�, a(d) denotes the number

of units of good d in the commodity bundle, for each d 2 D�, and b 2 IR denotes the

quantity of the perfectly divisible good h. Write c = (a; b) 2 MÆ(D�)� IR where MÆ(D�)

denotes the set of �nite integer-valued Borel measures a on D�.

Let MM (D�) =
�
a 2 MÆ(D�)

�� ja(D�)j � M
	
and let MM

+ (D�) = fa 2 MM (D�) j

a(d) � 0 for all d 2 D�g. Then the consumption set for each trader in the economy is

taken to be MM
+ (D�)�IR+ for some �xed � > 0 and some �xed positive �nite M 2 IR++.

Endow MÆ(D�) with its weak� topology or the topology of weak convergence of

measures on D� � D0. This is the topology of pointwise convergence on the set C(D�)
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of continuous real-valued functions on D�; i.e., ak ! a if for every f :D� ! IR which

is continuous (and bounded because D� is compact when endowed with the Hausdor�

topology),
R
f(d) dan(d) !

R
f(d) da(d). Then MM (D�) becomes a compact metric

space because the weak� topology is compact and metrizable on bounded subsets. Let

d� denote a metric for MM (D�).

4.2 Initial Endowments

Recall that c = (a; b) 2 MM
+ (D�)� IR+ is a commodity bundle. Designate individ-

ual endowments by the subscript zero and write c0 = (a0; b0) 2 MM
+ (D�) � IR++ for an

initial endowment.

To set notation, de�ne the set of all �nite integer-valued nonnegative Borel mea-

sures on D� by MÆ
+(D�) =

S
fMM

+ (D�) j M is a �nite integerg. The di�erence be-

tween these sets is that MM
+ (D�) is uniformly bounded by M (i.e., ja(D�)j � M for all

a 2 MM
+ (D�)), while M

Æ
+(D�) consists of measures that are bounded but not uniformly

so.

Where no confusion can result, the notation c = (a; b) or c0 = (a0; b0) is used

to designate either individual allocations and individual endowments or economy-wide

allocations and economy-wide endowments, where \economy-wide" does not mean total

or aggregate. When needed, explicit arguments are appended to c or c0 so that c(�) =
�
a(�); b(�)

�
and c0(�) =

�
a0(�); b0(�)

�
denote economy-wide allocations and endowments

while, for instance, c(i) =
�
a(i); b(i)

�
and c0(i) =

�
a0(i); b0(i)

�
refer to the allocations

and endowments of some particular individual agent i 2 I.

4.3 Preferences

In this economy, a preference relation � is a complete preorder on MM
+ (D�)� IR+

[i.e., the graph Gr(�) of � is a subset of (MM
+ (D�)� IR+)� (MM

+ (D�)� IR+)] satisfying

the following conditions:

(a) � is closed (continuity of preferences),

(b) If c0 = (a0; b0) and c00 = (a00; b00) are such that c00 � c0 and b00 > b0, then c00 � c0

(monotonicity with strict desirability of the perfectly divisible commodity),
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(c) If c0 = (a0; b0) and c00 = (a00; b00) are such that b0 > 0 and b00 = 0, then c0 � c00

(any allocation with none of the perfectly divisible good is strictly dominated by

any allocation with a positive amount of the perfectly divisible good),

(d) For any c0 = (a0; b0), there is c00 = (a00; b00) with a00 = 0 such that c00 � c0 (yet

another desirability condition for the perfectly divisible good),

(e) There is � 2 IR such that if c0 = (a0; b0) and c00 = (a00; b00) are such that b0 =

b00 and d(a0; a00) < 1=� (where d denotes a metric for the weak� topology on

MM
+ (D�)), then (a0; b0 + �) � (a00; b00).

Conditions (d) and (e) may be replaced by the condition (f), which is easier to under-

stand.

(f) There exists � > 0 such that (0; b+ �) � (a; b) for all c = (a; b) 2 MM
+ (D�)� IR+.

Endow P with the topology of closed convergence and let d� be a metric for it. See

Hildenbrand (1974) for details.

The interpretation of continuity of preferences may be troublesome here, given

the earlier arguments about \acceptable" sets of geometric objects and D&T notions.

However, upper semicontinuity is all that is really needed, which allows for situations

in which slight perturbation of a set of geometric objects results in a much worse set of

geometric objects. (For example, imagine that the perturbed set contains geometric ob-

jects which must undergo costly reworking before they can be installed in an assembly

line operation.)

Observe that convexity of preferences could be de�ned because convexity makes

sense in the space D, although convex combinations of sets in D� are not the same as

convex combinations of measures in MÆ
+(D�) or MM

+ (D�). In any event, convexity is not

required for the results in this paper, since a continuum of agents is needed to deal with

the nonconvexities that inherently arise from the presence of indivisibilities.

4.4 The Economy

This paper deals exclusively with large economies|those having an atomless con-

tinuum of agents. An economy then is de�ned to be a probability (joint) distribution on

the space of preferences and endowments.
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De�nition 4.1 An economy is a Borel probability measure � on
�
P �MM

+ (D�)� IR++;

B(P �MM
+ (D�) � IR++)

�
, for some � > 0 suÆciently small, such that the following con-

ditions hold: � has compact support, supp
�R

a0(�) d�(�)
�
= D�, and condition (e) in the

de�nition of preferences holds uniformly for � in the support of the marginal distribu-

tion of � on P [i.e., there is � > 0 such that for all �, if c0 = (a0; b0) and c00 = (a00; b00) are

such that b0 = b00 and d�(a
0; a00) < 1=�, then (a0; b00 + �) � (a00; b00).

Remark 4.2 If, in the de�nition of P, conditions (d) and (e) are replaced by condition

(f), then the last requirement in De�nition 4.1 can be replaced as follows: there is � > 0

such that for every � in the support and every c = (a; b) 2 MM
+ (D�)� IR++, (a; b+ �) �

(a; b). This is just a uniform version of condition (f).

Remark 4.3 For the existence of competitive equilibrium result in Section 5, the last

condition in De�nition 4.1 can be dropped whenever each trader is hypothesized to own

at most one total unit of all indivisible commodities (in D�) in his or her initial endow-

ment.

Remark 4.4 Observe that the initial endowments of the perfectly divisible good are as-

sumed to lie in some compact interval [b0;
�b0] in IR++ for almost all consumers, where

b0 > 0 and �b0 <1.

Remark 4.5 The condition that supp
�R

a0(�) d�(�)
�
= D� in De�nition 4.1 says that all

di�erentiated products in D� (for the given �) are actually available in the economy. All

results remain valid if D� is replaced by some smaller compact subset of D�. In this case,

all allocations involve only di�erentiated products on the smaller set and only goods in

the smaller set can be priced in equilibrium.

5. Equilibrium

As usual, an equilibrium is de�ned to be a price system and a feasible allocation

such that each consumer's allocation is maximal (with respect to his or her preferences)

on the budget set de�ned by the initial endowment and the price system. In this model,
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price systems must �rst be de�ned because the presence of in�nitely many commodities

usually means that, in principle, more than one candidate is available for the price space.

Accordingly, let P = f(p; pb) 2 C(D�)� IR j p(�) � 0 and pb > 0g = C+(D�)� IR++

de�ne the set of price systems. This means that the price of each good is nonnegative,

the price of the perfectly divisible good is strictly positive, and prices depend continu-

ously on di�erentiated commodities in (D�; Æ). Some zero prices for di�erentiated prod-

ucts could well arise in equilibrium because large sets in D� may not be very attractive

to consumers.

De�nition 5.1 A Borel probability measure � on
�
P �MM

+ (D�) � IR++ �MM
+ (D�) �

IR+; B(P �MM
+ (D�) � IR++ �MM

+ (D�) � IR+)
�
is an equilibrium distribution for the

economy � if there is p� 2 P = C+(D�)� IR++ such that:

(i) �1;2;3 = �, where �1;2;3 denotes the (joint) marginal distribution of � restricted to

its �rst three components (the set P �MM
+ (D�)� IR+),

(ii)
R
c0(�) d�2;3(�) =

R
c�(�) d�4;5(�), and

(iii) �
�
f(�; c0; c

�) 2 P�MM
+ (D�)�IR++�M

M
+ (D�)�IR+ j p

�c� � p�c0 and if c0 is such

that p�c0 � p�c0, then c0 � c�g
�
= 1.

Condition (i) says that � is a distribution corresponding to the given economy � and

condition (ii) is aggregate feasibility of the equilibrium allocation c�(�). Condition (iii)

requires that almost all agents maximize their preferences over their budget sets de�ned

by p�.

Theorem 5.2 Any economy satisfying the assumptions in this paper has an equilibrium

distribution.

Proof. All of the assumptions in Mas-Colell (1975) are satis�ed. The proof technique

involves �rst approximating D� by an increasing sequence of �nite sets (in the topology

of D�) and obtaining a corresponding sequence of equilibrium prices and equilibrium al-

locations for the �nite restrictions. This involves checking that individual demands are

upper hemicontinuous correspondences and that the aggregate demand, for the �nite re-

strictions, is a convex-valued upper hemicontinuous correspondence, so that Kakutani's
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�xed point theorem applies. Along the sequence of �nite approximations, a subsequence

of equilibrium distributions converges weakly (by compactness) to a distribution which

one can verify is an equilibrium distribution for the original economy � with respect to

the subsequential limit of the restricted equilibrium price systems. See Allen (1986a,

1986b) for additional details.

Remark 5.3 The technique of examining �nite approximations and taking suitable

(subsequential) limits is originally due to Bewley (1972) and permeates the literature

on existence of competitive equilibrium with in�nitely many commodities.

Remark 5.4 Equilibrium price systems necessarily satisfy certain no arbitrage condi-

tions. In equilibrium, the price of a set in D� can never exceed the sum of disjoint sets

with union equal to the original set. However, no arbitrage bounds do not apply to set-

theoretic containment.

The next goal is to obtain the First Welfare Theorem in this model. To avoid the

introduction of much additional technical notation, de�nition of the standard concept of

an eÆcient (or Pareto optimal) distribution for a large pure exchange economy is not in-

cluded in this version of the paper. Similarly the core is not de�ned formally because its

introduction requires a standard representation for the economy. See Mas-Colell (1975).

Proposition 5.5 A distribution � belongs to the core of an economy � if and only if � is

an equilibrium distribution for �.

Proof. See Mas-Colell (1975, Theorem 2).

Corollary 5.6 Any equilibrium distribution � for an economy � is such that the equilib-

rium allocation distribution �4;5 is Pareto optimal for �.

Proof. Core allocations are necessarily Pareto optimal.

Remark 5.7 A direct proof of Corollary 5.6 should be possible, but one must carefully

check that local nonsatiation is not violated in this model. This would avoid the neces-

sity of introducing the mathematical concept of a standard representation.
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6. An Alternate Model with Probabilities

Despite the arguments in Section 2 that sets of sets are the appropriate commodi-

ties with product di�erentiation, one may wonder about the potential formulation and

consequences of a model in which the commodities are de�ned to be probability distribu-

tions over some space of product characteristics or precise physical descriptions. In the

context of this paper, one would replace the sets in D� by probability distributions on

C0. Note that both sets and probabilities constitute natural generalizations of singletons,

which can equally well be speci�ed by Dirac probability measures.

Let Q(C0) denote the space of Borel probability measures on the compact metric

space C0. Give Q(C0) the weak
� topology of weak convergence of probability measures.

Then it becomes a compact metric space; see Parthasarathy (1967). Thus Q(C0) has the

same mathematical properties as D0.

However, one problem is that deletion of the Dirac measures or, more generally

the measures with atoms, results in a subset which is not closed. This implies that the

D & T axiom precluding exact form cannot be accommodated easily in a probabilistic

framework.

Putting aside this problem, one can proceed to consider MÆ
�
Q(C0)

�
as the space

of probabilistically-speci�ed di�erentiated commodity bundles, where again I use convex

subsets of K as the domain of geometric objects for speci�city. The economic interpreta-

tion is that traders buy and sell known lotteries on geometric objects.

Veri�cation that some random realization of a geometric object was drawn from

the speci�ed probability distribution is problematic. Appealing to reputation or random

testing of drawings from a given distribution and a given seller would seem to be neces-

sary in order to justify the implicit supposition that traders know the distribution or at

least have subjective distributions that are consistent and cannot be contradicted.

This approach would have the advantage of avoiding de�ning preferences in a

derived space such as D� rather than on the space C0 of underlying geometric objects.

Continuity properties of preferences thus become more natural and intuitive. However,

with uncertainty, preference relations should be replaced by cardinal utilities, as is done
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in Allen (1986a, 1986b). Continuity of derived ordinal preferences for probability distri-

butions when traders maximize expected utility should follow when the distributions are

suitably dispersed, which requires more than that they be atomless.

Note that, as earlier in this paper, probability distributions are not needed for

convexi�cation since the model features an atomless continuum of agents. Moreover, the

di�erentiated commodities de�ned by probabilities would still be assumed to be indivisi-

ble.

7. Equivalence Classes of Geometric Objects

One might wish to re�ne the de�nition of geometric objects as di�erentiated

products so that it re
ects aÆne invariance. Unlike buildings and bridges, the location

of a geometric object|as opposed to its delivery location|is inessential and, similarly,

the orientation of a geometric object when it is delivered generally doesn't matter. This

suggests that, at least for the case of geometric objects, a basic di�erentiated commod-

ity should be an equivalence class (under translation and rotation in IRn) of nonempty

compact subsets of IRn. This idea is the basis of continuing research.

8. Production Issues

The examples of geometric objects (precision-machined metal parts and dies for

plastic injection molding) naturally serve as inputs to downstream production processes

more than they would be expected to be purchased as �nal consumption goods. When

these di�erentiated commodities are intermediate products, the resulting demand rela-

tions must be derived from the behavior of pro�t-maximizing or cost-minimizing �rms.

The requisite upper hemicontinuity should easily follow.

Deeper production issues are associated with the production of di�erentiated

commodities in my model. The switch from a pure exchange economy to one with pro-

duction requires lower semicontinuous cost functions or, more generally, well-behaved

technology sets. The lower semicontinuity of cost functions when there are multiple pro-

duction processes is derived in Allen (1998).

The modern issues of manufacturability, mass customization, dedicated versus


exible tools, and agility and 
exibility require more attention to the speci�cation of
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production technologies or cost functions, both for the short run and the long run. Ef-

fective answers to these questions also generally require the de�nition of a topology on

the set of di�erentiated products, as is argued in Allen (1999a), where a simple manufac-

turability problem is formally posed and analyzed.

A microeconomic model with �rms usually permits the possibility of strategic be-

havior. Hence, game theory is needed. The customary starting point is to postulate a

static noncooperative game and inspect its Nash equilibria. Here the considerations of

agility and 
exibility might demand at least a two-stage game, with commitments on

technology choice before actual production begins. Product selection decisions are also

naturally placed in a game-theoretic model.

9. Conclusion

The main lesson of this paper is that, at least for some purposes, economic theo-

rists should reformulate the basic microeconomic general equilibrium model to capture

the notion that actual economic commodities are subject to manufacturing imprecision.

In practice, this means that consumers and �rms cannot guarantee that they purchase a

product satisfying a complete and exact physical description, but rather they purchase

an item that belongs to some speci�ed set of products, where the set must permit some

nontrivial range of all aspects of the product. The standard model can be modi�ed and

extended to take into account these considerations and nevertheless remain useful for

economic theory in the sense that major results on the existence and eÆciency of com-

petitive equilibrium stay valid in the proposed reformulation.

The same principles can be applied to situations in which the underlying basic

di�erentiated commodities are not restricted to be geometric objects. One simply re-

quires a compact metric space of base commodities where the metric is compatible not

only with consumers' notions of the substitution possibilities among goods but also with

the relevant dimensioning and tolerancing standards and technological feasibilities.
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