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Abstract

We formulate an evolutionary learning process with trembles for static
games of incomplete information. For many games, if the amount of trem-
bling is small, play will be in accordance with the games� (strict) Bayesian
equilibria most of the time supporting the notion of Bayesian equilibrium.
Often the process will select a speciÞc equilibrium. We study an extension
to incomplete information of the prototype conßict known as �Chicken� and
Þnd that the equilibrium selection by evolutionary learning may well be in
favor of inefficient Bayesian equilibria where some types of players fail to
coordinate.
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1 Introduction

This paper suggests an evolutionary learning process in the spirit of Young ([7])

for static games of incomplete information and demonstrates in general how such

a process may give justiÞcation for the notion of Bayesian equilibrium and may

give selection among multiple Bayesian equilibria. For a speciÞc game of economic

interest, an extension to incomplete information of the prototype strategic conßict

known as the �Chicken� game, the selection is characterized. Although the game

is special, a general insight emerges: equilibrium selection by evolutionary learning

cannot in general be expected to be in accordance with the more efficient equilibria

where the different types of the players coordinate well.

There are mainly two motivations for extending the models of evolutionary

learning to incomplete information. First, the foundations of Bayesian equilibrium

are at least as shaky as those of Nash equilibrium. Any doubt one may have con-

cerning the feature that players use best replies against each other is as relevant for

Bayesian equilibrium in games of incomplete information as it is for Nash equilib-

rium in games of complete information. For Bayesian equilibrium one may further

doubt if the idea that players plan for types they are actually not, is an adequate

formalization of how players cope with uncertainty in games. It is therefore of in-

terest if one can give a justiÞcation of Bayesian equilibrium for games of incomplete

information, like the one given of Nash equilibrium for games of complete informa-

tion by, e.g., [7]. Second, going from complete to incomplete information in games

often adds a dimension of equilibrium multiplicity - in particular it often implies

the existence of inefficient equilibria - such that equilibrium selection may be even

more relevant in games of incomplete information. Since the evolutionary models

with small trembles suggested by, e.g., [5] and [7], have proved to be strong devices

for equilibrium selection, it is a natural idea to generalize such processes to games

of incomplete information.

To deÞne an evolutionary learning process connected to a game of incomplete

information, one has to give a physical meaning to the types and priors that are

part of the description of the game. We assume that there are two large pools of

players containing players to take the �row� and the �column� position in the game

respectively, and that each pool is subdivided in types. The existing types are as
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in the underlying game: if a player of a speciÞc type from one pool plays against

a player of a speciÞc type from the other, the two will receive payoffs depending

on their types and actions exactly as in the underlying game. Play goes on in

subsequent rounds. In each round, one player is picked at random from each pool

and these two play the game once, and their actions are observed by everybody, just

as assumed by Young [7]. The two crucial modelling choices that have to be faced

in an extension of Young�s approach to games of incomplete information concern

the degrees of knowledge of the priors and of observability of types. We consider

assumptions at the most �well-informed� extreme: We assume: (1) that all players

know the true probability distribution by which opponents are picked, and (2) that

after each round of play the types of the picked players become known by everybody.

We motivate these choices below.

For each type of each player there is a record of the actions a player of that type

took in a certain number of earlier rounds where this type was picked for play. After

a round of play the records on the two types who played are updated; the oldest

observation is deleted and the new one is inserted. The records on other types are

unchanged. When a player is about to play, he intends to play a best reply to the

expectation on the opponent created from samples from the current records on the

opponent. This deÞnes the basic learning process. The perturbed learning process

is deÞned from the basic one by adding a tremble: with a small probability ε a

picked player does not (necessarily) play a best response, but takes an arbitrary

action. The interest is in the perturbed process for ε small.

The considered game and the process may well be such that when the probability

of trembling is small play will be in accordance with the games�s strict Bayesian

equilibria most of the time. For such games one has thus obtained the kind of

support for the notion of Bayesian equilibrium looked for. Further, when a game has

several strict Bayesian equilibria, it may well be that play will be in accordance with

a speciÞc one most of the time. A selection among the Bayesian equilibria is thus

obtained. We study such selection in the Chicken game of incomplete information.

The game is an extension to incomplete information of the kind of coordina-

tion game typically studied in the earlier contributions on evolutionary learning in

games of complete information and illustrates how incomplete information may add

an economically important dimension of equilibrium multiplicity. Under complete

2



information the game has multiple strict Nash equilibria, but these have similar

efficiency properties: both pure Nash equilibria involve one player taking the tough

action and the other taking the cautious one, and equilibrium selection is only a

matter of who takes which action, i.e., who gets the (main part of the) surplus. Un-

der incomplete information the game still has two equilibria where (independently

of types), one side takes the tough action, and the other side takes the cautious one,

but in addition there is an equilibrium where sometimes (for some combinations of

types), both players take the tough action, and a waste occurs. The inefficiency

possible in equilibrium is thus due to incomplete information. If there is consid-

erable uncertainty about payoffs, equilibrium selection by evolutionary learning in

the incomplete information Chicken turns out to be in favor of the less efficient

equilibrium, where sometimes tough is played agains tough.

The present paper is closely related to contributions such as [1], [5], and [7],

that introduced the approach of evolution or evolutionary learning with trembles

for static games of complete information. Some papers have studied equilibrium

selection by evolutionary models for dynamic games with both incomplete informa-

tion and sequential moves, most notably for signalling games, [2], [4], and [6]. The

present paper is (as far as we know) the Þrst to study an evolutionary process in

the same spirit for static games of incomplete information.

Of the modelling choices (1) and (2) above, the assumption of observability of

types is the more fundamental and controversial one (if types can be observed then

close to correct priors can be derived from long records). In favor of (2) speaks

the following: First, if the player pools are large, each individual only plays rarely,

so no individual has incentive to hide his type after having played. Second, for

the formulation of a theory that is general enough to include games for which the

type of the opponent can be inferred from knowledge of the actions and one�s own

type and payoff, it has to be assumed that types become known after each round

of play. Third, to preserve from Young�s work the essential structural equivalence

between equilibria and particular states (so-called conventions), records have to list

actions type-wise, since a Bayesian equilibrium reports an action for each type of

each player. Records of past play can only be type-wise if types become known. Fi-

nally, assuming that only the opponent�s actions can be observed, and consequently

that records only list past actions, will imply a certain �drift� phenomenon, which
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has no counterpart in Young�s work: Occasionally a certain type of a player will, by

accident, be picked in a high concentration over some rounds, and for that reason

a speciÞc action may be observed much. This will shift the expectation concerning

the player towards the much observed action, which may change the best response

(of some types) of the other player, a shift that would not have occurred if it had

been known that the high concentration of the particular action was only caused

by a particular type coming out many times. In this way, even if play were cur-

rently in accordance with an equilibrium, behavior would be able to drift out of

equilibrium (without trembles), whereas in Young�s work, and for the process we

formulate, if play is currently locked at a convention (corresponding to an equi-

librium), play cannot drift away, but only change by trembling. So, a straight

extension of Young�s work to incomplete information implies observability of types.

Of course, an alternative process where only actions could be observed would also

be of interest.1

In Section 2 we give the deÞnitions of games of incomplete information and

Bayesian equilibrium. Section 3 deÞnes the evolutionary learning process in two

steps, the basic and the perturbed process, respectively. Further we state some

general results about convergence and stochastically stable states. In Section 4 we

analyze the incomplete information version of the Chicken game and characterize

the long run behavior supported by evolutionary learning. Section 5 concludes.

Proofs are given in Appendix.

2 Games of Incomplete Information and
Bayesian Equilibrium

We describe a Þnite static two player game of incomplete information as follows.

The Row player, Player 1, has Þnite action set R, and the Column player, Player

2, has Þnite action set C. Player 1 is of one type α out of the Þnitely many in

A, while Player 2 is of one type β out of the Þnitely many in B.2 Each player

1In Jacobsen et. al. (2001) we have studied such a process for the speciÞc case of signaling
games.

2For everything below we could, more generally, have chosen a formulation where the set
of available strategies possibly depended on type, R(α) and C(β) etc. This could be of some
relevance in the context of evolutionary learning with trembles, see Section 3 below, but would
imply a heavier notation.
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knows his own type, but not the opponent�s. Player 1�s belief concerning Player

2�s type is given by a probability measure b over B. Likewise, Player 2�s belief

concerning Player 1�s type is given by a probability measure a over A. If players 1

and 2 of types α and β choose actions r ∈ R and c ∈ C respectively, they obtain
von Neumann-Morgenstern payoffs u(r, c,α,β) and v(r, c,α,β).

A probabilistic expectation, or conjecture, of Player 1, concerning Player 2�s

choice, is a collection q = (qβ) of probability measures over C, one for each of

Player 2�s possible types. Likewise, an expectation of player 2 is p = (pα), where

each pα is a probability measure over R. The expected payoff of a Player 1 of type

α, who holds a conjecture q, from choosing the speciÞc action r, is,

Uα(r, q) =
!
β∈B

b(β)
!
c∈C

u(r, c,α,β)qβ(c),

and r is a best reply if it maximizes Uα(r", q) over r" ∈ R. Let the set of pure best
replies be BRα(q). DeÞne the expected payoff of Player 2, Vβ(c, p), similarly and

let the set of best replies for a Player 2 of type β holding a conjecture p be BRβ(p).

The sets BRα(q) and BRβ(p) are always non-empty.

A Bayesian equilibrium (in pure actions) is a pair r(·), c(·), where r(α) ∈ R for
all α ∈ A, and c(β) ∈ C for all β ∈ B, such that if one for each α deÞnes the
probability measure pα by pα(r(α)) = 1, and for each β deÞnes qβ by qβ(c(β)) = 1,

then r(α) ∈ BRα(q) for all α ∈ A, and c(β) ∈ BRβ(p) for all β ∈ B. A Bayesian
equilibrium is strict if for all the α�s and β�s, BRα(q) and BRβ(p) are singletons.

We only consider games with at least one strict Bayesian equilibrium.

3 Evolutionary Learning in Games of Incomplete
Information

A Bayesian equilibrium is a Nash equilibrium of the extended game where the

players� pure strategies are mappings r : A −→ R, and c : B −→ C, and payoffs

associated to such strategies are the expected values of payoffs from the original

incomplete information game, where expectations are taken with respect to types.

However, the evolutionary learning process we deÞne in this section is not just

an application of the process of Young to this extended game. Applying Young�s

process directly to the extended game would imply an assumption that in each round
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the full strategy of the opponent, and not just the action taken by the relevant type

of opponent, is observed, and this is not meaningful. Hence, the process we deÞne

is not a special case of Young�s. On the other hand, Young�s process is the special

case of the process deÞned here where the game under consideration has only one

type for each player.

The presence of incomplete information necessitates some modelling choices

which do not have counterparts in the work of Young. We face these choices in

a general formulation.

3.1 The Basic Learning Process

Envisage that there are two large (disjoint) pools of player 1s and 2s, both pools

partitioned according to types. Players from the two pools play a game between

them in subsequent rounds. In each round one player 1 is picked at random from

pool 1, such that type α has probability a(α), and one player 2 is picked randomly

from pool 2 with probability b(β) of type β. The picked player 1 chooses an action

r from R, while the picked player 2 chooses an action c from C. They receive

payoffs according to their choices r and c, and their types α and β, as given by the

underlying game, that is, u(r, c,α,β) to player 1, and v(r, c,α,β) to player 2.

As discussed in the introduction above, we make two important informational

assumptions. (1) Players know the true probability measure, a or b, by which their

opponent is picked. (2) After a round of play the actions r and c chosen in the

round, as well as the true types α and β of the players who took them, become

known to everybody.

The individuals keep records of past play. For each type α or β, a record hα or

hβ reports which actions were taken the last mα or mβ times a player of that type

played, hα ∈ Rmα and hβ ∈ Cmβ . A state h is a complete description of the records,

h = ((hα), (hβ)) ∈
"
α∈AR

mα ×"β∈B C
mβ . The state space is thus Þnite. After a

round of play where a type α of player 1 chose r, against a type β of player 2 who

chose c, only hα and hβ are updated, and this is done by deleting in each of them

the oldest observation and inserting as the newest observation r and c respectively.

Given a state h, a state h" is a successor to h, if it is possible to go from h to h" in

one step according to this procedure by picking α and β, and r and c appropriately.

When a player 1 has been picked, he Þrst samples from the records on player 2;
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for each β he takes a sample Qβ from hβ, where the sample size kβ = #Qβ fulÞls

kβ ≤ mβ. The sampling goes on according to a random procedure, which is such

that all observations in hβ have positive probability of ending in Qβ. Let Q be the

collection of samples, Q = (Qβ). A picked player 2 samples Pα from hα, where again

the sample size is kα ≤ mα, and the set of samples is P = (Pα). Samples Pα and

Qβ are converted into probability measures pα and qβ over R and C respectively

the obvious way: pα(r) is the number of times r appears in the sample Pα divided

by kα, etc. It will cause no confusion to identify the samples P and Q with the so

derived collections of probability measures p and q.

According to the basic learning process, a player 1 picked for play will take an

action in BRα(Q), if he is of type α. If BRα(Q) has several elements, player 1 will

pick one at random according to a full support probability measure on BRα(Q).3

Similarly a picked player 2 of type β will take an action in BRβ(P ).

Given the random procedures by which players are picked, sampling goes on, and

ties are broken, there will for each pair of states h and h" be a speciÞc probability

of going from h to h" in one step. Call this transition probability π0(h, h"). If h" is

not a successor of h, then π0(h, h") = 0. The matrix of all transition probabilities

is Π0, which deÞnes a homogeneous Markov chain on H.

A convention is deÞned as a state h with two properties: First, it consists entirely

of constant records, that is, for each α, the record hα is a list of mα identical actions

r(α), and for each β, hβ is a list of mβ identical actions c(β). Second, each recorded

action is the unique best reply to the only samples that are possible from h: If one

for each α lets Pα be the list of kα times r(α), and for each β lets Qβ be the list of

kβ times c(β), then BRα(Q) = {r(α)} for each α, and BRβ(P ) = {c(β)} for each
β.

A convention is an absorbing state for Π0, that is, a state that one stays in

for sure when transitions are governed by Π0. Since we have assumed that in

3It could well be argued that only best responses, which are not weakly dominated, should
be given positive probability. According to the �full� (below the �perturbed�) learning process,
unexpected actions will occur frequently due to trembling, and it is therefore dangerous to play
dominated actions. With the alternative assumption it would not be exactly the strict equilibria
that would correspond to the �resting points� (the conventions below) of the basic learning process,
but rather all the �semi-strict� equilibria (where it is not required that that every best response
is unique, but only that no type of no player has another best response that is undominated). We
prefer, nevertheless, the formulation in the text to have full correspondence to Young�s formulation
on issues that are not related to information being compete or incomplete.
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case of several best replies all have positive probability, it is also true that every

absorbing state is a convention. Further, for any convention there is a strict Bayesian

equilibrium deÞned in the obvious way, and every strict Bayesian equilibrium deÞnes

exactly one convention. Since we have assumed that there is a strict Bayesian

equilibrium, there is at least one convention.

Assume that from any state, there is, according to Π0, positive probability of

reaching a convention in a Þnite number of steps. From a standard argument

there is then probability one of Þnally reaching a convention irrespectively of initial

state,4 and we say that the basic learning process converges to a convention. One

can formulate assumptions on the considered game and the details of the learning

process that ensure convergence. The following is a straightforward extension of

Proposition 1 in [7]. First deÞne the best reply graph: Each node s is a combination

(r(α), c(β)) of actions, one for each type of each player. There is a directed edge

from s to s" if and only if s" is different from s for exactly one type of one player,

and for this type the action in s" is the unique best reply to the action combination

of the opponent in s. The game is weakly acyclic if, from any node, there is a

directed path (through directed edges) to some node out of which there is no edge

(a sink). Every sink is a strict Bayesian equilibrium. For each node s, let L(s) be

the length of the shortest path to a sink. Let L be the maximum of L(s) over all

nodes. Finally, let k be the largest sample size, k = maxα,β(kα, kβ), and let m be

the shortest record length, m = minα,β(mα,mb).

Proposition 0. If the game is weakly acyclic and for each type γ: kγ ≤ mγ

L+2
,

then the basic learning process converges to a convention.

The proof is similar to the proof of Proposition 1 in [7], where it is demonstrated

that in the one type model it is sufficient for convergence that the game is weakly

acyclic and that for each player k ≤ m
L+2
.Young�s proof is constructive, providing

a Þnite sequence of samples that has positive probability and that implies that a

convention is reached. In our model only one type of each player plays in each round

4If there is, starting from any state, at least probability π of reaching a convention in s steps,
then there is at most probability 1− π of not reaching a convention in s steps, and then there is
at most probability (1−π)t of not reaching a convention in st steps. Here (1−π)t goes to zero as
t goes to inÞnity. So, independently of initial state it has probability zero to not eventually reach
a convention, or probability one to reach one.
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and a similar sequence of types and samples can be constructed. Since sampeling

and updating is done for each type of each player separately, it is sufficient that the

condition on kγ is fulÞlled typewise.

Sometimes it is possible to give a direct proof of convergence not referring to

Proposition 0, as for the bilateral monopoly game studied in Section 5. Convergence

implies that there are no other absorbing sets than the singleton sets of conventions.

It then follows from a standard result on Markov chains that a stationary distri-

bution for Π0, a probability measure µ over H, such that µΠ0 = µ, can only have

µ(h) > 0 for conventions h. The reverse, that any distribution with µ(h) > 0 only

for conventions h is stationary, is obvious.

3.2 The Perturbed Learning Process

The basic view in the literature on evolutionary learning is that a slightly perturbed

process involving trembles is more realistic than the basic one described above. The

basic process is modiÞed by assuming that there is in each round a small probability

ε (independent across rounds and players) that a picked player will not play a best

reply to his samples, but take a random action according to a speciÞc full support

distribution (which is independent of ε) over his full strategy set. The remaining

probability, 1 − ε, is assigned to the best replies as before. This means that in
each round, any �suboptimal� action has a probability proportional to ε of being

played. The described trembling can be interpreted as mistakes or experiments

or �mutations�. The transition probabilities of the modiÞed process are called

πε(h, h"), and the matrix of transition probabilities, the perturbed Markov chain, is

called Πε.5

The process Πε is irreducible: for any pair of states h and h", there is according

to Πε positive probability of going from h to h" in a Þnite number of steps; this is

just a matter of picking types and actions (which now all have positive probability)

5It can be argued, in particular if trembles have the interpretation of experiments, that in the
ε-eventuality of a tremble only all undominated (not all) actions should have positive probability.
This could be captured by excluding from the beginning dominated actions from the strategy sets,
which could well imply that the sets of available actions would depend on type, R(α) and C(β),
as already discussed. Here we have chosen the notationally simpler formulation in the text. We
note, however, Þrst that all of the general results reported in this section would be identical in a
formulation with type dependent strategy sets as long as it is assumed that a tremble for a type α
could go to any strategy in R(α), etc. Second, the equilibrium selection obtained for the speciÞc
game studied below does not depend on trembling to dominated actions.
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appropriately. Further, Πε is aperiodic: this follows since Πε is irreducible and

there is a state (namely a convention) h with πε(h, h) > 0. Finally, Πε is a regular

perturbation of Π0 in the sense of [7], i.e., Πε is irreducible and aperiodic, Πε −→ Π0

as ε→ 0, and for any transition hh" for which π0(h, h") = 0, there is a well deÞned

order of the speed by which πε(h, h") goes to zero with ε.

The resistance in a transition hh" is deÞned as this order: If π0(h, h") = 0, and

h" is not a successor of h, so even with trembles it is impossible to go from h to h",

then also πε(h, h") = 0, and πε(h, h") could be said to go to zero inÞnitely fast, so

the resistance in hh" is inÞnite. If π0(h, h") = 0, but one can go from h to h" if and

only if one type of each player makes a tremble, so two trembles are necessary, then

πε(h, h") is some constant times ε2, which goes to zero with a speed of order two,

and the resistance in hh" is two. If π0(h, h") = 0, but it takes just one tremble (by

one type of one player) to go from h to h", then πε(h, h") is a constant times ε, and

the resistance is one. Finally, if π0(h, h") > 0, the resistance is zero. To Þnd the

resistance in a transition from one state to another is just a matter of counting the

trembles necessary to go from the Þrst to the second.

It is standard from the theory of Markov chains that for each ε > 0, there is a

unique stationary distribution µε, µεΠε = µε, and this has the empirical content,

that if one lets the process run for a long time according to the probabilities of

Πε, then the relative frequencies by which the states are visited converge to the

probabilities of µε with probability one. Our interest is in Πε for small ε, and

therefore in µ0 ≡ limε−→0 µ
ε. It follows by [7], Lemma 1, that this limit distribution

exists, and that it is a stationary distribution for Π0. The states in the support of

µ0 are called stochastically stable, and these are the states that will be observed

frequently for small ε. Since µ0 is stationary for Π0, if the basic learning process

converges, then only the conventions of Π0 can be stochastically stable.

This has two important implications. In the long run observed play will most of

the time be in accordance with the game�s strict Bayesian equilibria. This supports

the notion of Bayesian equilibrium, in so far as the game and the details of the

process are such that the basic learning process is convergent. Further, it will

often be the case that only one convention is, or only a few similar conventions

are, stochastically stable, so only play according to, or very similar to, a speciÞc of

the game�s strict Bayesian equilibria will be observed frequently. This provides a

10



selection among the Bayesian equilibria.

To actually Þnd the selected equilibria requires the use of a (quite complicated)

theorem characterizing the stochastically stable states. The following is a result

(Corollary to Proposition 2) from [7], specialized to the situation where all ab-

sorbing sets are singletons (conventions). Assume that Π0 has several conventions

h1, ..., hT . Above it was described how one deÞnes the resistance of a direct transi-

tion between two states. For two conventions h and h", deÞne the resistance in the

(indirect) transition hh", as the minimal sum of resistances over all collections of

direct transitions leading from h to h". An h-tree is a collection of transitions hlhn
between conventions such that each convention other than h stands Þrst in exactly

one transition, and for any convention h" &= h, there is a unique way to go from h"

to h through the transitions of the collection. For each h-tree one can deÞne the

sum of resistances embodied in the transitions of the tree. The stochastic potential

of h is the minimal of such total resistances over all h-trees.

Theorem 0. Assume that the basic learning process converges to a conven-

tion. Then the stochastically stable states are exactly the conventions with minimal

stochastic potential.

4 Conventional Behavior in a Game of Chicken
with Incomplete Information

Below to the left the complete information game �Chicken� is displayed, where

R = C = {D,H}, and α > 0 and β > 0.
D H

D 0, 0 0,β
H α, 0 −1,−1

D H
D 0, 0 1, β
H α, 1 0, 0

This is a prototype strategic situation where each player has a cautious action, here

D (Dove), and a tough one, here H (Hawk), and it is good to take the tough action

against an opponent playing cautiously - the parameters α and β indicate how good

- but bad to take it against an opponent who also plays toughly, while D against

D is �neutral�.6 The game has exactly two strict Nash equilibria: One is (H,D),

where Player 1 plays H, and Player 2 plays D; the other is (D,H).
6The assumption that a player using D receives the same payoff when the opponent plays D

as when he plays H simpliÞes some formulas below, but is not essential for the basic result. The
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For the risk dominance relation, [3] one transforms the game to the one to

the right with only zero�s on the off-equilibrium diagonal and the same best reply

structure. The �Nash product� of an equilibrium is the product of the two play-

ers� payoffs in the transformed game, and the risk dominating equilibrium is the

equilibrium with the largest Nash product, so if α > β, then (H,D) risk dominates

(D,H), and vice versa. [5] and [7] show that the risk dominance selection rule is

supported by evolutionary learning. Young�s process is as deÞned in Section 3 with

only one type of each player. Assume that the record sizes for both positions in

the game are m, and the sample sizes are both k. It should cause no confusion

to let a vector of m times H be denoted also by H, etc. The two conventions are

(H,D) and (D,H), corresponding to the two strict equilibria. Young shows that if

k < m/3, then the basic learning process converges, and if further k is sufficiently

large, then the convention corresponding to the risk dominating equilibrium is the

only stochastically stable state.

We now consider a game of Chicken with incomplete information. The action

sets are still R = C = {D,H}, and uncertainty concerns how good it is for a player
to play H against D. Player 1 is of one of two types which, with a slight abuse

of notation, are called 1/α and α, where α is a number above one. Each type has

probability 1/2. Similarly, player 2 is of type 1/β with probability 1/2, and of

type β with probability 1/2, where β > 1. For the action combinations (D,D) and

(H,H) payoffs are independent of types and as given in the complete information

game, (0, 0) and (−1,−1) respectively. If the action combination is (H,D), then
player 1�s payoff is independent of the type of player 2, and it is 1/α if player 1

is of type 1/α, and α if he is of type α, while player 2 gets 0 independently of

types. Similarly, if the combination is (D,H), then player 2 gets 1/β if of type

1/β, and β if of type β, independently of the type of player 1, while player 1 gets

zero irrespective of types. For what follows it is convenient that the incomplete

information game is (also) given by just two parameters α and β, and that these

measure the degree of the players� uncertainty about payoffs.

The incomplete information game has three strict Bayesian equilibria. The Þrst

two are: r(1/α) = r(α) = H, c(1/β) = c(β) = D, and r(1/α) = r(α) = D, c(1/β) =

Chicken game formalizes, e.g., duopoly situations where the strategic conßict is really a battle
over the roles as leader and follower.
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c(β) = H. These are counterparts of the strict equilibria of the complete informa-

tion game; on side plays H, and the other plays D irrespective of types. The players

coordinate and clearly the equilibria are efficient ex ante and ex post. The third

equilibrium is r(1/α) = c(1/β) = D, r(α) = c(β) = H, where the �low� types play

D, and the �high� types playH. This is an equilibrium since against the strategy of

player 2, player 1 of type 1/α obtains zero in expected payoff from D and 1
2
( 1
α
− 1)

from H, so D is best, while player 1 of type α obtains zero from D and 1
2
(α − 1)

from H, so H is better, etc. There is a lack of coordination in it, since when both

players are of low type or both are of high type, losses occur. The equilibrium is

not inefficient ex ante, but it is ex post, and even ex ante it is dominated by a

half-half convex combination of the other two equilibria. So, the third equilibrium

is qualitatively different from the Þrst two, in particular with respect to efficiency.

Consider the learning process deÞned in Section 3 for this particular game.

Because of the symmetry of the game it is natural to assume m1/α = ma = m1/β =

mβ = m, and k1/α = kα = k1/β = kβ = k. The three conventions are, in obvious

notation, (HH,DD) and (DD,HH) corresponding to the two efficient equilibria

with coordination, and (DH,DH) corresponding to the equilibrium with lack of

coordination. It is easy to check that the game is weakly acyclic and L = 2.

Therefore we get directly from Proposition 0,

Proposition 1. If k < m/4, then the basic learning process converges to a

convention.

So, when k < m/4 and the trembling probability is small, only behavior in

accordance with the three conventions, or strict Bayesian equilibria, can be ob-

served frequently. Theorem 1, which is proved in the Appendix, tells which will be

observed,

Theorem 1. Assume k < m/4. If k is sufficiently large, then if (α − 1)(β −
1) < 4, the conventions (HH,DD) and (DD,HH) are the only stochastically

stable states, while if (α − 1)(β − 1) > 4, the convention (DH,DH) is the only

stochastically stable state.

Thus, if there is substantial difference between the payoffs of the different types

(i.e, if α and β are so high, that (α − 1)(β − 1) > 4), then the process selects

13



the equilibrium (DH,DH), where players sometimes miscoordinate. This happens

since high values of α and β imply that in the equilibria (HH,DD) and (DD,HH)

it only takes a few trembles by the player using action H for the best response of

the high type of the opponent (type α or β) to change, and similarly it only takes

a few trembles of the player using action D for the best response of the low type

of the opponent (type 1/α or 1/β) to change. This is in constrast to what happens

in the equlibrium (DH,DH), where each type of each player �goes for his most

preferred equilibrium�, and it therefore takes more trembles to upset this action

being a best response.

The general message is that under incomplete information equilibrium selection

by evolutionary learning is no longer just a matter of which of the two efficient equi-

libria is supported, or who grasps the surplus. Rather, with a substantial amount of

uncertainty about payoffs, the qualitatively different, less coordinated equilibrium,

and only that, will be observed frequently. Under incomplete information, evolu-

tionary learning may well select in favor of equilibria which are very different with

respect to efficiency from the equilibria that are just counterparts of equilibria also

occurring under complete information.7

5 Conclusions

The evolutionary learning process we have studied is meant to formalize the view

that agents involved in strategic conßicts expect their opponents to act more or less

as they usually do in identical or similar conßicts. Therefore they form conjectures

on opponents from records of past play. They intend primarily to take actions

that are best given such conjectures, but with small probability they take more

or less arbitrary actions perhaps to test if they are right in the presumption that

alternative actions give poorer results.

We have shown in general how this view may imply (i) support for the no-

tion of Bayesian equilibrium, since the learning process may well generate play

in accordance with the game�s (strict) Bayesian equilibria most of the time, and

7It is just an artifact of the payoff speciÞcations above that when (α−1)(β−1) < 4, both of the
conventions corresponding to a coordinated equilibrium are stocahstically stable. It is relatively
easy to see that if one increases one of the player 1 payoffs a little bit above 1/α or α, then only
(HH,DD) is stochastically stable.
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(ii) selection among multiple Bayesian equilibria, since the learning process may

well generate play in accordance with one particular - or with several, but alike -

Bayesian equilibria most of the time.

For a speciÞc incomplete information �surplus division� game of economic inter-

est we have shown that (i) and (ii) are indeed true and we have found the selected

equilibrium. It turned out that equilibrium selection by evolutionary learning un-

der incomplete information could well be in favor of an equilibrium with inferior

efficiency properties.

Thus we have demonstrated how evolutionary learning can be used to give a

foundation for Bayesian equilibrium in static games, and to obtain a selection among

the Bayesian equilibria, and we have demonstated that - in contrast to the results

for similar games of complete information - the selection is not always in favor of

efficient equilibria.
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A Proof of Theorem 1

The stochastically stable states are the conventions with minimal stochastic poten-

tial. We Þnd the stochastic potentials for all three conventions by systematically

computing the resistances in all transitions from one convention to another.

First consider the transition from (HH,DD) to (DH,DH). Obviously, the way

to do this transition that requires the fewest trembles (the cheapest way) is either

by player 1 type 1/α trembling to D thus for possible sampling changing the best

reply of player 2 type β to H, or by player 2 type β trembling to H thus changing

the best reply of player 1 type 1/α to D. Assume Player 1 of type 1/α makes l

trembles to D, that is, type 1/α is picked in l consecutive rounds and plays D in

all of them, where l ≤ k. For a player 2 of type β, who samples all l of the Ds

from the record on player 1 type 1/α, the best reply will have changed to H if
1
2

#
l
k
β + k−l

k
(−1)$+ 1

2
(−1) ≥ 0, or if,

l ≥ 2

β + 1
k. (1)

This number of trembles is indeed sufficient to get all the way from (HH,DD) to

(DH,DH): according to the basic learning process, there is positive probability

that in each of the k rounds following the l trembles, player 1 is of type α, so h1/α

is unchanged and contains the l times D, and player 2 is of type β and in all k

rounds samples all l of the Ds from h1/α, and hence plays H in all k rounds. This

will gradually insert k times H in hβ. The picked player 1s of type α will with

positive probability according to Π0 have played H in all k rounds (they may not

have sampled any Hs from hβ). After this hβ contains k times H. Now it has,

according to the basic learning process, positive probability that in each of the next

m rounds player 1 is of type 1/α and samples k times H from hβ, which gives him

best reply D (since 1
2

1
α
+ 1

2
(−1) < 0), while player 2 is of type β, and all the time

samples at least l times D from h1/α, and hence plays H. Note that in these m

rounds, when some of the old Ds go out of h1/α, new Ds are inserted, and when

some of the old Hs go out of hβ, new Hs are inserted, which makes it possible that

best replies for possible sampling continues to be D for type 1/α, and H for type

β, during all m rounds. Then the convention (DH,DH) has been reached without

further trembling.
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Now assume Player 2s of type β make l trembles to H. If player 1 type 1/α sam-

ples all l of the Hs his best reply will have changed to D if 1
2

1
α
+ 1

2

#
l
k
(−1) + k−l

k
1
α

$ ≤
0, or if,

l ≥ 2

α+ 1
k. (2)

After these l trembles it has, just as above, positive probability according to the

basic process to reach (DH,DH) (Þrst k rounds with types 1/α and 1/β, and then

m rounds with types 1/α and β).

So, the resistance in the transition from (HH,DD) to (DH,DH) is,8

ρ[(HH,DD)→ (DH,DH)] = min{ 2

β + 1
k,

2

α+ 1
k}.

By symmetry it follows that ρ[(DD,HH)→ (DH,DH)] = min{ 2
α+1
k, 2

β+1
k}, which

is the same.

Next we consider the transition from (DH,DH) to (HH,DD). It is again

evident that this is most cheaply brought about either by trembling of type 1/α of

player 1, or of type β of player 2. Assume player 1s of type 1/α tremble l times to

H. The best reply of player 2 type β will for positive sampling have changed to D

if 1
2

#
l
k
(−1) + k−l

k
β
$
+ 1

2
(−1) ≤ 0, or if,

l ≥ β − 1
β + 1

k. (3)

Again it can be shown that after these l trembles it has, according to the basic

process, positive probability to go all the way to (HH,DD) (Þrst k rounds with

types α and β, and then m rounds with types 1/α and β).

Now assume player 2s of type β tremble l times to D. The best reply of player 1

type 1/α will for possible sampling have changed toH if 1
2

1
α
+ 1

2

#
l
k

1
α
+ k−l

k
(−1)$ ≥ 0,

or if

l ≥ α− 1
α+ 1

k. (4)

Again, after these l trembles it has, according to the basic process, positive proba-

bility to go all the way to (HH,DD). So,

ρ[(DH,DH)→ (HH,DD)] = min{β − 1
β + 1

k,
α− 1
α+ 1

k}.
8Note that here, and in what follows, we are ignoring an integer problem: The resistance is

really the smallest integer which is (weakly) above either 2
β+1k or

2
α+1k. It is because of the

assumption of �k sufficiently large� that this will cause no error (if a resistance as deÞned here is
smaller than another one, then it will also be smaller according to the correct deÞnition if only k
is large enough).

17



Due to symmetry, ρ[(DH,DH)→ (DD,HH)] = min{α−1
α+1
k, β−1

β+1
k} and the same.

Finally we consider the transition from (HH,DD) to (DD,HH) (and visa

versa). It is evident that if this transition is to be initiated by trembles of player

1, then it is obtained most cheaply if it is type α who does it: trembling by type

1/α and α are equally effective in making H a possible best reply for player 2, most

easily so for type β (the payoffs of player 2 do not depend on the types of player 1,

and these types have the same probability). However, when this has occurred and

hβ has become full of Hs, then the only possible best reply of player 1 type 1/α is

D, so h1/α is Þlled up with Ds at no further cost, so it can only work to make the

transition cheaper that the Ds, that occur because of trembling, are to be found in

hα.

So, assume that from (HH,DD), player 1s of type α make l trembles to D.

From (1) the best reply for player 2 type β will have changed to H for possible

sampling if l ≥ 2
β+1
k. After these l trembles it has, according to the basic process,

positive probability that in each of the next 2m rounds the types are 1
α
and β, so

hα does not change, and the samples drawn from this record contain in each round

all l of the Ds, so each player 2 of type β plays H. After the Þrst m rounds hβ = H,

which makes D the only possible best reply for player 1 type 1/α, so after the next

m rounds also h1/α = D.

Now suppose a type 1/β of player 2 is drawn. With positive probability the

sample drawn from hα will contain all l of the Ds in it. In that case the best reply

of type 1/β will be H if 1
2

1
β
+ 1

2

%
l
k

1
β
+ k−l

k
(−1)

&
> 0. It is already required that

l ≥ 2
β+1
k. By inserting this number of trembles we Þnd that it also suffices for the

now considered best reply shift exactly if −β2 + 2β + 3 ≥ 0, that is, if β ≤ 3.
Therefore Þrst consider the case β ≤ 3. It then has, according to the basic

process, positive probability that in each of the next m rounds the types are 1/α

and 1/β, and that, since already hβ = H, all the player 1s of type 1/α play D,

keeping h1/α unchanged, and all the player 2s of type 1/β play H, so after these

rounds h1/β = H. Finally, with positive probability the types α and β are drawn

in the next m rounds, and since now h1/β = hβ = H, with positive probability all

the player 1s of type α will play D, which can only work to keep H a best reply

for player 2 type β, so all of these play H. The state will then be the convention

(DD,HH). So, when β ≤ 3, only the 2
β+1
k trembles are required for transition.
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Then consider the case β > 3. Further trembling is required. There are two

possibilities: either type α of player 1 trembles further such that the best reply for

type 1/β of player 2 does shift to H (for possible sampling), or type 1/β trembles

such that the best reply for type α changes to D.

In the Þrst case, given that already h1/α = D, the total number of Ds required

in hα to ensure that H is a possible best reply for type 1/β is l such that 1
2

1
β
+

1
2

%
l
k

1
β
+ k−l

k
(−1)

&
≥ 0, or

l ≥ β − 1
β + 1

k. (5)

If this were the (larger) number of trembles Þrst made by type α, then just as above

we would with positive probability Þrst over 2m rounds get h1/α = D and hβ = H,

and then, in the same way as for β ≤ 3, over the next 2m also get h1/β = H and

hα = D. So, the convention (DD,HH) would then have been reached with
β−1
β+1
k

trembles.

In the second case, the best reply changes to D for type α of player 1, if player 2

type 1/β makes l trembles to H, where 1
2

#
l
k
(−1) + k−l

k
α
$
+ 1

2
(−1) ≤ 0, or l ≥ α−1

α+1
k.

By a similar argument as above one can verify that after these further trembles

there is positive probability according to the basic process of reaching the convention

(DD,HH). So, in the second case the total number of trembles required is,

2

β + 1
k +

α− 1
α+ 1

k. (6)

We have now shown that if transition from (HH,DD) to (DD,HH) is to be

initiated by trembling of player 1, then if β ≤ 3, the number of trembles required
is as given by (1), whereas if β > 3, it is the minimum of the expressions in (5) and

(6).

If the transition is to be initiated by trembling of player 2, the trembling should

be done by type 1/β to make the transition cheapest (since it is more easy to

make type β play H by best reply). So, assume that player 2s of type 1/β make l

trembles to H. Then from (2), the best reply for player 1 type 1/α will (for possible

sampling) have changed to D if l ≥ 2
α+1
k.

As above it now has positive probability according to Π0 to reach a state with

h1/α = D, hα = H, hβ = H, and in h1/β the l entries of H are still there (after 2m

rounds with types 1/α and β). Now (as with β ≤ 3 above), if α ≤ 3 then for possible
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sampling, D will be a best reply also for type α of player 1, and (still as above)

one can construct a sequence of positive probability events leading all the way to

(DD,HH). If α > 3, more trembling is required. (Still as above), this can either

be further trembling to H by player 2 type 1/β, which does make D a possible best

reply for player 1 type α, the total number of trembles (including both initial and

further) required for this being l such that 1
2

#
l
k
(−1) + k−l

k
α
$
+ 1

2
(−1) ≤ 0, or,

l ≥ α− 1
α+ 1

k, (7)

or it can be trembling to D by player 1 type α until H becomes a possible best

reply for type 1/β of player 2. This requires l additional trembles where 1
2

1
β
+

1
2

%
l
k

1
β
+ k−l

k
(−1)

&
≥ 0, or l ≥ β−1

β+1
k. So, in the last case an overall of,

2

α+ 1
k +

β − 1
β + 1

k (8)

trembles are needed. In both cases there will, after the additional trembling, be

transition all the way to (DD,HH) with positive probability according the basic

process.

We have now shown that if transition from (HH,DD) to (DD,HH) is to be

initiated by trembling of player 2, then if α ≤ 3, the number of trembles required
is as given by (2), whereas if α > 3, it is the minimum of the expressions in (7) and

(8).

The resistance in the transition from (HH,DD) to (DD,HH) is the minimum

over the numbers of trembles required for transition when trembling is Þrst done

by player 1, and when it is Þrst done by player 2. So,

ρ[(HH,DD) → (DD,HH)] =

k ·


min{ 2

α+1
, 2
β+1
} if α ≤ 3, β ≤ 3

min{α−1
α+1
, 2
α+1

+ β−1
β+1
, 2
β+1
} if α > 3,β ≤ 3

min{ 2
α+1
, 2
β+1

+ α−1
α+1
, β−1
β+1
} if α ≤ 3,β > 3

min{α−1
α+1
, 2
α+1

+ β−1
β+1
, 2
β+1

+ α−1
α+1
, β−1
β+1
} if α > 3, β > 3

which is equivalent to,

ρ[(HH,DD) → (DD,HH)] =

k ·


min{ 2

α+1
, 2
β+1
} if α ≤ 3, β ≤ 3

min{α−1
α+1
, 2
β+1
} if α > 3,β ≤ 3

min{ 2
α+1
, β−1
β+1
} if α ≤ 3,β > 3

min{α−1
α+1
, β−1
β+1
} if α > 3, β > 3
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From symmetry we get by permuting α and β in the expression above that ρ[(DD,HH)→
(HH,DD)] = ρ[(HH,DD)→ (DD,HH)].

In the following we assume wlog. that α ≥ β (again by symmetry the result is
the same if β ≥ α). The expression above is then reduced to,

ρ[(HH,DD) → (DD,HH)] =

ρ[(DD,HH) → (HH,DD)] =

k ·


2
α+1

if α ≤ 3
min{α−1

α+1
, 2
β+1
} if β ≤ 3 ≤ α

β−1
β+1

if β > 3
.

Now note that ρ[(DD,HH) → (HH,DD)] ≥ ρ[(DD,HH) → (DH,DH)], which

together with the symmetry property ρ[(DH,DH)→ (DD,HH)] = ρ[(DH,DH)→
(HH,DD)] imply that their can be no (HH,DD)-tree with less total resistance

than the one consisting of the transitions from (DD,HH) to (DH,DH) and from

(DH,DH) to (HH,DD). The stochastic potential of (HH,DD) is then,

γ[(HH,DD)] =

ρ[(DD,HH) → (DH,DH)] + ρ[(DH,DH)→ (HH,DD)].

By symmetry, γ[(DD,HH)] = ρ[(HH,DD) → (DH,DH)] + ρ[(DH,DH) →
(DD,HH) = γ[(HH,DD)], where the last equality also uses ρ[(HH,DD) →
(DH,DH)] = ρ[(DD,HH)→ (DH,DH)].

Again, since ρ[(DD,HH) → (HH,DD)] ≥ ρ[(DD,HH) → (DH,DH)] etc.,

there can be no cheaper way to go to (DH,DH), than to go from each of the other

conventions separately, so

γ[(DH,DH)] =

ρ[(HH,DD) → (DH,DH)] + ρ[(DD,HH)→ (DH,DH)].

Then we simply arrive at the conclusion that both of (HH,DD) and (DD,HH),

and only those conventions, are stochastically stable if and only if ρ[(DH,DH)→
(HH,DD)] < ρ[(HH,DD) → (DH,DH)], and (DH,DH), and only that, is

stochastically stable if ρ[(DH,DH) → (HH,DD)] > ρ[(HH,DD) → (DH,DH)]

(where it is again used that k is sufficiently largeú).

21



Finally, from α ≥ β it follows that ρ[(DH,DH) −→ (HH,DD)] = β−1
β+1
k, and

ρ[(HH,DD)→ (DH,DH)] = 2
α+1
k. Since 2

α+1
< β−1

β+1
, if and only if (α−1)(β−1) >

4 etc., the conclusion of Theorem 1 follows. !
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