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Abstract

This paper defines decreasing absolute risk aversion in purely behavioral
terms without any assumption of differentiability and shows that a strictly
increasing and risk averse utility function with decreasing absolute risk aver-
sion is necessarily differentiable with an absolutely continuous derivative. A
risk averse utility function has decreasing absolute risk aversion if and only
if it has a decreasing absolute risk aversion density, and if and only if the
cumulative absolute risk aversion function is increasing and concave. This
leads to a characterization of all such utility functions. Analogues of these
results also hold for increasing absolute and for increasing and decreasing
relative risk aversion.



1 Introduction

Decreasing absolute risk aversion means that the decision maker behaves in
a less risk averse fashion the larger his wealth. Pratt (1964) defined it by the
condition that the equivalent risk premium π(x, z) should be a decreasing
function of initial wealth x, for every random addition z to wealth. Dybvig
and Lippman (1983), following Yaari (1969), defined decreasing risk aversion
by requiring that “gambles accepted at a given level of wealth will be accepted
at all higher levels of wealth.” These definitions are equivalent, and they are
behavioral in the sense that they can be directly interpreted in terms of
preferences or choice behavior.

An important fact about decreasing absolute risk aversion is that it can be
expressed in terms of the Arrow-Pratt coefficient of absolute risk aversion.
Indeed, a utility function exhibits decreasing absolute risk aversion if and only
if the coefficient of absolute risk aversion is decreasing. This was shown by
Pratt (1964) and by Dybvig and Lippman (1983). Arrow (1965) stated this
result as well, except that his terminology was inverted relative to Pratt’s.
Arrow used the decreasing coefficient of absolute risk aversion as a definition
of decreasing absolute risk aversion, and he then argued that it is equivalent
to more risk averse behavior at higher wealth levels.

The definition of the coefficient of absolute risk aversion assumes that the
utility function is twice differentiable. Pratt’s proof that one utility func-
tion is more risk averse than another if and only if it globally has a larger
coefficient of risk aversion assumes that the utility functions are twice con-
tinuously differentiable. The same assumption therefore underlies the proof
that decreasing absolute risk aversion is equivalent to a decreasing coefficient
of absolute risk aversion. Since Dybvig and Lippman use Pratt’s results,
their proof also relies on this assumption.

This raises the question of whether there exist utility functions with decreas-
ing absolute risk aversion that are not twice continuously differentiable. Can
risk averse utility functions with decreasing absolute risk aversion have kinks?
If they are differentiable, is it possible that the derivative is discontinuous?
If it is continuous, is it possible that the second derivative does not exist? If
it exists, must it be continuous?
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This paper addresses and answers those questions.

Intuition says that kinks are not possible, because somehow the utility func-
tion would be infinitely risk averse at the kink, and it would then have to
be infinitely risk averse at any higher wealth level also. This is not possible.
Indeed, according to Proposition 1, a strictly increasing utility function with
decreasing absolute risk aversion has to be everywhere differentiable with
positive derivative. This is true even if the utility function is not concave.

If the utility function is concave and differentiable, then it is automatically
continuously differentiable. But is it possible that the second derivative does
not exist? And if it exists, must it be continuous? The answer to these
questions is given in Theorem 1 and Proposition 3. If the utility function
is concave and strictly increasing, and if it exhibits decreasing absolute risk
aversion, then the second derivative will exist almost everywhere (in fact, it
will exist everywhere except possibly at a countable number of points), but
it may not exist everywhere. If it does exist everywhere, then it must be
continuous.

More specifically, if the utility function is strictly increasing and risk averse,
and if it exhibits decreasing absolut risk averison, then the marginal utility
function is absolutely continuous, which means that it has a density function.

Since the marginal utility function is absolutely continuous, the same is true
of what we call the cumulative absolute risk aversion function, the negative of
the logarithm of the marginal utility. This allows us to define a generalization
of the coefficient of absolute risk aversion, called the absolute risk aversion
density. It is the density of the cumulative risk aversion function. It also
equals the negative of the density of the marginal utility divided by the
marginal utility itself, and it coincides with the usual coefficient of absolute
risk aversion whenever the latter is defined. It is unique almost everywhere.

Theorem 1 says that a strictly increasing risk averse utility function has
decreasing absolute risk aversion if and only if it has a decreasing absolute
risk aversion density. This generalizes the result of Pratt (1964), Arrow
(1965), and Dybvig and Lippman (1983) to utility functions that are not
assumed to be twice continuously differentiable.

Theorem 1 also says that a strictly increasing risk averse utility function has
decreasing absolute risk aversion if and only if its cumulative absolute risk
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aversion function is increasing and concave. This allows a complete charac-
terization of strictly increasing risk averse utility functions with decreasing
absolute risk aversion. The characterization says that such a utility func-
tion is uniquely determined by its cumulative absolute risk aversion function,
which can be any increasing concave function, and an additive constant. This
is so because the utility function can be recovered, up to an additive con-
stant, by integrating the exponential of the cumulative absolute risk aversion
function.

Pratt (1964) wrote that “. . . , convenient utility functions for which [the
coefficient of absolute risk aversion] is decreasing are not so very easy to find.”
Our characterization represents a way of finding all such utility functions.

All the results hold for increasing absolute risk aversion as well, except that
the cumulative absolute risk aversion function will be convex rather than
concave, and the absolute risk aversion density will be increasing rather than
decreasing. Thus, a strictly increasing risk averse utility function has increas-
ing absolute risk aversion if and only if its cumulative absolute risk aversion
function is increasing and convex, and if and only if it has an increasing
absolute risk aversion density.

Analogues of all the results also hold for relative risk aversion, where increas-
ing or decreasing relative risk aversion is defined in behavioral terms without
assuming that the utility function is twice differentiable.

The cumulative relative risk aversion function of a utility function defined
on the positive half-line is defined as the composition of the exponential
function and the cumulative absolute risk aversion function. If it is absolutely
continuous, then we call its density the relative risk aversion density.

If the utility function is strictly increasing and exhibits increasing or decreas-
ing relative risk aversion, then it is necessarily differentiable with positive
derivative, so that the cumulative absolute and the cumulative relative risk
aversion functions are well defined. If, in addition, the utility function is risk
averse, then the marginal utility functions, the cumulative absolute and the
cumulative relative risk aversion functions are all absolutely continuous.

Theorem 2 says that a strictly increasing risk averse utility function has in-
creasing (decreasing) relative risk aversion if and only if it has an increasing
(decreasing) relative risk aversion density. The theorem also says that a
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strictly increasing risk averse utility function has increasing (decreasing) rel-
ative risk aversion if and only if its cumulative relative risk aversion function
is increasing and convex (concave). This implies that a strictly increasing risk
averse utility function with increasing (decreasing) absolute risk aversion is
uniquely determined by its cumulative absolute risk aversion function, which
can be any increasing and convex (concave) function, and an additive con-
stant.
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2 Monotone Absolute Risk Aversion

We consider a decision model where the relevant set of outcomes is an open
interval I on the real line, unbounded above. The outcomes may be inter-
preted as levels of future wealth or future consumption. Typically, I = IR or
I = (0,∞).

The utility function u will be assumed to be strictly increasing, reflecting the
idea that more consumption or more wealth is better.

A random variable z will be called a binary lottery if it has at most two
distinct values.

Recall that the utility function u is said to be risk averse if

Eu(x + z) ≤ u(x)

whenever x is in I and z is a binary lottery with Ez ≤ 0 and such that
x + z ∈ I with probability one. It is well known that u is risk averse if and
only if it is concave.

Recall that utility function u is more risk averse than a utility function v if

Eu(x + z) ≤ u(x)

whenever x is in I and z is a binary lottery such that x+z ∈ I with probability
one and such that Ev(x + z) ≤ v(x).

We say that u exhibits decreasing absolute risk aversion (respectively, in-
creasing absolute risk aversion) if it is less risk averse (respectively, more
risk averse) at higher wealth levels. Decreasing or increasing absolute risk
aversion are referred to jointly as monotone absolute risk aversion.

To express this formally, for every d ≥ 0, define a utility function u[d] on I
by

u[d](x) = u(x + d)

Say that u exhibits

• decreasing absolute risk aversion if for all d ≥ 0, u is more risk averse
than u[d] on I
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• increasing absolute risk aversion if for all d ≥ 0, u[d] is more risk averse
than u on I

• constant absolute risk aversion if u exhibits both increasing and de-
creasing absolute risk aversion.

We first observe that a utility function with monotone absolute (increasing
or decreasing) risk aversion must be differentiable.

Proposition 1 Let u be a strictly increasing utility function on I. Suppose
u exhibits decreasing or increasing absolute risk aversion. Then u is differ-
entiable with u′ > 0.

In the case of increasing absolute risk aversion, the result in Proposition 1 is
from Lemma 8.4.7 of Dubins and Savage (1965, 1976). We provide a proof
of Proposition 1 in the appendix.

Proposition 2 Let u and v be differentiable utility functions on an interval
I with u′ > 0 and v′ > 0. Then u is more risk averse than v if and only if
u′/v′ is continuous and

ln u′(r) − ln u′(s) ≥ ln v′(r) − ln v′(s)

whenever r, s ∈ I, r < s.

Proof:

Let k : v(I) → IR be the function such that u = k◦v. It is strictly increasing.
Since k = v−1 ◦ u, k is differentiable, and

u′(x) = k′(v(x))v′(x)

for x ∈ I.

Now u is more risk averse than v if and only if k is concave, which is the
case if and only if k′ is continuous and decreasing. But k′ is continuous and
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decreasing if and only if the function u′/v′ is continuous and decreasing. Take
logs and rearrange to see that u′/v′ is decreasing if and only if

ln u′(r) − ln u′(s) ≥ ln v′(r) − ln v′(s)

whenever r, s ∈ I, r < s.

✷

Proposition 2 is a generalization of a part of the proof of Pratt (1964) The-
orem 1. Pratt assumed the utility functions to be twice continuously differ-
entiable.

Because of Proposition 2, we call − ln u′ the cumulative absolute risk aversion
function of u, provided that u is differentiable with positive derivative.

If u the cumulative absolute risk aversion function exists (u is differentiable
with positive derivative), then u is risk averse (concave) if and only if the
cumulative absolute risk aversion function is increasing.

Recall that a function G : I → IR is absolutely continuous if and only if there
exists a measurable function g : I → IR such that∫ r

s
|g(t)| dt < ∞

and
G(r) − G(s) =

∫ r

s
g(t) dt

for r, s ∈ I. If so, then we may call g a density of G. A density of G is unique
almost everywhere.

If u is differentiable with u′ > 0 and the cumulative absolute risk aversion
function − ln ◦u′ is absolutely continuous, then a density R∗

A(u) of − ln ◦u′

will be called an absolute risk aversion density for u. If u has an absolute
risk aversion density R∗

A(u), then R∗
A(u) is unique almost everywhere.

Corollary 1 Let u and v be differentiable utility functions on an interval I
with u′ > 0 and v′ > 0. Assume that R∗

A(u) and R∗
A(v) exist. Then u is more

risk averse than v if and only if

R∗
A(u) ≥ R∗

A(v)

almost everywhere.
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Proof:

It follows from Proposition 2 that u is more risk averse than v if and only if

∫ s

r
R∗

A(u)(t) dt ≥
∫ s

r
R∗

A(u)(t) dt

whenever r, s ∈ I, r < s. But this holds if and only if

R∗
A(u) ≥ R∗

A(v)

almost everywhere.

✷

If R∗
A(u) exists, then − ln u′ is differentiable at almost every x, with

(− ln u′)′(x) = R∗
A(u)(x)

and, hence,

R∗
A(u)(x) = −u′′(x)

u′(x)

at almost every x. So, the usual coefficient of absolute risk aversion is almost
everywhere well defined and equal to R∗

A(u). Conversely, if u is twice contin-
uously differentiable, then R∗

A(u) exists and is equal to the usual coefficient
of absolute risk aversion almost everywhere.

Proposition 3 Provided that u is differentiable with u′ > 0, − ln ◦u′ is ab-
solutely continuous if and only if u′ is absolutely continuous; and R∗

A(u) is
an absolute risk aversion density of u if and only if −u′R∗

A(u) is a density of
u′.

Proof:

Suppose R∗
A(u) is an absolute risk aversion density of u. Then

ln ◦u′(s) = ln ◦u′(r) −
∫ s

r
R∗

A(u)(t) dt
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Apply the exponential function to the function ln ◦u′. By a version of the
chain rule for an absolutely continuous function (or Itô’s Lemma applied to
the deterministic Itô process ln u′, interpreting s as time),

u′(s) = exp(ln ◦u′(s))

= exp(ln ◦u′(r)) −
∫ s

r
exp(ln ◦u′(t))R∗

A(u)(t) dt

= u′(r) −
∫ s

r
u′(t)R∗

A(u)(t) dt

so that −u′R∗
A(u) is a density of u′. Conversely, if −u′R∗

A(u) is a density
of u′, then a similar calculation using the logarithmic transformation shows
that R∗

A(u) is a density of − ln ◦u′.

✷

Theorem 1 Let u be a strictly increasing risk averse utility function on I.
The following statements are equivalent:

1. u exhibits decreasing (increasing) absolute risk aversion

2. u is differentiable with u′ > 0, and the cumulative absolute risk aversion
function

x 
→ − ln u′(x)

is concave (convex)

3. u has an absolute risk aversion density R∗
A(u) which is decreasing (in-

creasing).

In the case of increasing absolute risk aversion, the equivalence of (1) and
(2) in Proposition 1 is from Lemma 8.4.2 of Dubins and Savage (1965, 1976).
Pratt (1964) and Dybvig and Lippman (1983) proved the equivalence of (1)
and (3) under the assumption that u is twice continuously differentiable.

Theorem 1 implies that if a strictly increasing risk averse utility function u
exhibits monotone (decreasing or increasing) absolute risk aversion, then it
is not only differentiable but continuously differentiable. It is twice differen-
tiable everywhere except possibly at a countable number of points. If it is
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twice differentiable everywhere, then it is twice continuously differentiable.
All this follows from the fact that the cumulative absolute risk aversion func-
tion − ln ◦u′ is concave or convex. A concave or convex function is differen-
tiable everywhere except possibly at a countable number of points, and if it
is differentiable everywhere, then it is continuously differentiable.

It follows from the theorem that a strictly increasing utility function u is risk
averse and exhibits decreasing (increasing) absolute risk aversion if and only
if it has the form

u(s) = u(r) +
∫ s

r
exp(−k(x)) dx

for r, s ∈ I, for some increasing concave (convex) function k (the cumulative
absolute risk aversion function of u). If we fix r ∈ I and set u(r) = 0, then
this equation establishes a bijection between increasing concave (convex)
functions k and strictly increasing risk averse utility functions u that exhibit
decreasing (increasing) absolute risk aversion and have value zero at r.

Pratt (1964) wrote that “. . . , convenient utility functions for which [the
coefficient of absolute risk aversion] is decreasing are not so very easy to find.”
The equation above represents a way of finding all such utility functions.

Theorem 1 assumes that the utility function is risk averse. This assumption
is perfectly reasonable from an economic point of view, but it is somewhat
stronger than what is actually needed. What is needed is to know, when
proving that (1) implies (2), that the derivative u′ cannot be discontinuous
at every point. Risk aversion implies that u′ is discontinuous at most at
countably many points. This remark will be important when proving Theo-
rem 2 on the basis of Theorem 1.

The rest of this section is devoted to the proof of Theorem 1.

Proof of Theorem 1:

It follows directly from Proposition 2 and Proposition 1 that (1) of the the-
orem holds if and only if u is differentiable with u′ > 0 and the

x 
→ ln u′(x) − ln u′(x + h)

is continuous and decreasing (increasing) for all h ≥ 0.

(1) implies (2):
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First, we observe that u′ must be continuous. This is seen as follows. Suppose
there is a point x ∈ I where u′ is discontinuous. Then ln ◦u′ is discontinuous
at x, and since x 
→ ln u′(x) − ln u′(x + h) is continuous for all h ≥ 0, u′ is
discontinuous at x + h for all h ≥ 0. However, since u is risk averse, u′ is
decreasing, which implies that it is continuous (in fact, differentiable) almost
everywhere. This is a contradiction, so u′ is indeed continuous.

Let n ∈ IN , set h = 2−n, and set

Dn =
{

a

2n
∈ I : a ∈ Z

}

The function
x 
→ ln u′(x) − ln u′(x + h)

is decreasing on
{x ∈ Dn : x + h ∈ Dn}

Hence, the function − ln ◦u′ is concave (convex) on Dn. It follows that it is
concave (convex) on the set

D =
∞⋃

n=1

Dn =
{

a

2n
∈ I : n ∈ IN and a ∈ Z

}

Since D is dense in I and − ln u′ is continuous, this function is concave
(convex) on I.

(2) implies (3):

Since − ln ◦u′ is concave (convex), it is absolutely continuous with density
equal to its right derivative (− ln ◦u′)′+ from the right, as shown by Rock-
afellar (1971, Corollary 24.2.1). So, u has the absolute risk aversion density
R∗

R(u) = (− ln ◦u′)′+, which is decreasing (increasing).

(3) implies (1):

Since

ln u′(x) − ln u′(x + h) =
∫ x+h

x
R∗

A(u)(t) dt

u is differentiable with u′ > 0, and R∗
A(u) is decreasing (increasing), the

function
x 
→ ln u′(x) − ln u′(x + h)
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is continuous and decreasing (increasing) for all h ≥ 0.

✷

3 Monotone Relative Risk Aversion

Let û be a strictly increasing utility function on (0,∞).

We say that û exhibits decreasing relative risk aversion (respectively, increas-
ing relative risk aversion) if it implies less risk averse (respectively, more risk
averse) behavior at higher wealth levels, in the sense both initial wealth and
the random additions to wealth under consideration are scaled up by the same
factor of proportionality. Decreasing or increasing relative risk aversion are
referred to jointly as monotone relative risk aversion.

To express this formally, for every d̂ > 0, define a utility function û{d̂} on

(0,∞) by
û{d̂}(x̂) = û(d̂x̂)

Say that û exhibits

• decreasing relative risk aversion if for all d̂ ≥ 1, û is more risk averse
than û{d̂}

• increasing relative risk aversion if for all d̂ ≥ 1, û{d̂} is more risk averse
than û

• constant relative risk aversion if û exhibits both increasing and decreas-
ing relative risk aversion.

The logarithmic transformation maps relative risk aversion into absolute risk
aversion, in the following sense.

Let u be the utility function defined on IR by u = û ◦ exp. Then û = u ◦ ln.
If x̂ > 0 and d̂ ≥ 1, set x = ln x̂ and d = ln d̂. Then d ≥ 0, and it is easily
verified that

u[d] ◦ ln = û{d̂}
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Consequently, û exhibits increasing (respectively, decreasing, constant) rela-
tive risk aversion if and only if u exhibits increasing (respectively, decreasing,
constant) relative risk aversion.

Proposition 4 Let û be a strictly increasing utility function on (0,∞). Sup-
pose û exhibits increasing or decreasing relative risk aversion. Then û is
differentiable with û′ > 0.

Proof: Set u = û ◦ exp. Then u exhibits increasing or decreasing absolute
risk aversion on IR, and hence, by Proposition 1, it is differentiable with
u′ > 0. But then û = u ◦ ln is differentiable with û′(x̂) = u′(ln x̂)/x̂ > 0. ✷

If û is a differentiable utility function on (0,∞) with û′ > 0, then the cu-
mulative relative risk aversion function of û is the function − ln ◦û′ ◦ exp,
defined on IR.

If û is differentiable with û′ > 0, and if the cumulative relative risk aversion
function − ln ◦û′ ◦ exp is absolutely continuous, then a relative risk aversion
density for û is a function R∗

R(û), defined on (0,∞), such that R∗
R(û) ◦ exp

is a density of − ln ◦û′ ◦ exp. In other words,

∫ s

r
|R∗

R(û)(exp x)| dx < 0

and
ln ◦û′ ◦ exp(r) − ln ◦û′ ◦ exp(s) =

∫ s

r
R∗

R(û)(exp x) dx

for all r, s ∈ IR.

If û has a relative risk aversion density R∗
R(û), then R∗

R(û) is unique almost
everywhere.

Provided that û is differentiable with û′ > 0, the cumulative relative risk
aversion function − ln ◦û′ ◦ exp is absolutely continuous if and only if the
cumulative absolute risk aversion function − ln ◦û′ is absolutely continuous;
and R∗

R(û) is a relative risk aversion density of û if and only if it is a density
of û′. This follows from the identity,

∫ s

r
R∗

R(û)(exp x) dx =
∫ exp s

exp r
R∗

R(û)(y) dy
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If R∗
R(û) exists, then − ln û′ ◦ exp is differentiable at almost every x, with

(− ln ◦û′ ◦ exp)′(x) = R∗
R(û)(exp x)

and, hence,

R∗
R(û)(x̂) = − x̂û′′(x̂)

û′(x̂)

at almost every x̂ > 0. So, the usual coefficient of relative risk aversion
is almost everywhere well defined and equal to R∗

R(û). Conversely, if û is
twice continuously differentiable, then R∗

R(û) exists and is equal to the usual
coefficient of relative risk aversion almost everywhere.

If û is a differentiable utility function defined on (0,∞), with û′ > 0, set
u = û ◦ exp. Then the cumulative absolute risk aversion function of u and
the cumulative relative risk aversion function of û are related by

− ln ◦u′(x) = − ln ◦û′ ◦ exp(x) − x

Proposition 5 Let û be a differentiable utility function defined on (0,∞)
with û′ > 0, and set u = û ◦ exp. Then the cumulative relative risk aversion
function of û is absolutely continuous if and only if the cumulative absolute
risk aversion function of u is absolutely continuous; and R∗

R(û) is a relative
risk aversion density of û if and only if R∗

A(u) = R∗
R(û)◦exp−1 is an absolute

risk aversion density of u.

Proof: The functions R∗
A(u) and R∗

R(û) are related by the equation in the
proposition if and only if

∫ s

r
R∗

A(u)(x) dx =
∫ s

r
R∗

R(û)(exp x) dx − (s − r)

for all r, s ∈ I. Since

− ln ◦u′(x) = − ln ◦û′ ◦ exp(x) − x

it follows that R∗
A(u) is a density of − ln ◦u′ if and only if R∗

R(u) ◦ exp is a
density of − ln ◦û′. ✷

Theorem 2 Let û be a strictly increasing risk averse utility function on
(0,∞) The following statements are equivalent:
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1. û exhibits decreasing (increasing) relative risk aversion

2. û is differentiable with û′ > 0, and the cumulative relative risk aversion
function

x 
→ − ln ◦û′ ◦ exp(x)

is concave (convex)

3. û has a relative risk aversion density R∗
R(û) which is decreasing (in-

creasing).

Proof:

The theorem follows from Theorem 1 applied to the function u = û ◦ exp.
Note that u is not necessarily risk averse, as assumed in Theorem 1. This does
not matter, because û′ and hence u′ will be continuous almost everywhere,
which is all that is needed in the proof of Theorem 1.

✷

Theorem 2 implies that if a strictly increasing risk averse utility function û
exhibits monotone (decreasing or increasing) relative risk aversion, then it
is not only differentiable but continuously differentiable. It is twice differen-
tiable everywhere except possibly at a countable number of points. If it is
twice differentiable everywhere, then it is twice continuously differentiable.
All this follows from the fact that the cumulative relative risk aversion func-
tion − ln ◦û′ ◦ exp is concave or convex. A concave or convex function is
differentiable everywhere except possibly at a countable number of points,
and if it is differentiable everywhere, then it is continuously differentiable.

It follows from the theorem that a strictly increasing utility function û on
(0,∞) is risk averse and exhibits decreasing (increasing) relative risk aversion
if and only if it has the form

û(ŝ) = û(r̂) +
∫ ŝ

r̂
exp(−h ◦ ln(x̂)) dx̂

for r̂, ŝ ∈ (0,∞), for some increasing concave (convex) function h on IR (the
cumulative relative risk aversion function of û). If we fix r̂ > 0 and set
û(r̂) = 0, then this equation establishes a bijection between increasing con-
cave (convex) functions h and strictly increasing risk averse utility functions
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that exhibit decreasing (increasing) relative risk aversion and have value zero
at r̂.

4 Appendix: Proof of Proposition 1

The proof of Proposition 1 relies on the following lemma.

To state the lemma, we need to be careful in defining what we mean by
a concave function on a subset of the real line which is not necessarily an
interval. Generally, if C ⊂ IR is a set which is not necessarily an interval,
and if k is a real valued function defined on C, then we say that k is concave
if

k(tx + (1 − t)y) ≥ tk(x) + (1 − t)k(y)

whenever 0 ≤ t ≤ 1 and all the points x, y and tx + (1 − t)y are in C.

Lemma 1 Let C ⊂ IR be a set which has no smallest and no largest element,
and let h : C → IR and k : h(C) → IR be strictly increasing concave functions.

1. If k ◦ h is continuous at a point x in C then so is h

2. If C and h(C) are intervals, and if k ◦ h is differentiable at a point x
in C then so is h

Proof:

(1):

Assume, to the contrary, that k ◦ h is continuous at x but h is discontinuous
at x. Set

h = sup{h(y) : y ∈ C, y < x}
h = inf{h(y) : y ∈ C, y > x}

k = sup{k(z) : z ∈ h(C), z < h(x)} = sup{k ◦ h(y) : y ∈ C, y < x}
and

k = inf{k(z) : z ∈ h(C), z > h(x)} = inf{k ◦ h(y) : y ∈ C, y > x}
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Then k = k but h < h. Let z, z′ ∈ h(C) be such that z < h and h < z′.
Because k is concave, the graph of k above z′ is on or below the line through
(z, k(z)) and (z′, k(z′)). Since this is true of all such z and z′, the graph of k
above (h, k) is on or below the line through (h, k) and (h, k). But since k = k,
this line is horizontal. The point (z′, k(z′)) on the graph of k approaches the
point (h, k) as z′ → h from above through h(C). But then, since k is strictly
increasing, its graph cannot possibly stay on or below the horizontal line
through (h, k) and (h, k), a contradiction.

(2):

If h has a kink at x, then k can only make it worse, so k ◦ h will also have a
kink at x.

✷

It is easily seen that if u and v are strictly increasing utility functions defined
on an interval I, then u is more risk averse than v if and only if there exists
a strictly increasing concave function k : v(I) → IR such that u = k ◦ v. This
is true even if v is not continuous, so that the set v(I) where k is defined is
not an interval.

Proof of Proposition 1:

Assume that u exhibits increasing absolute risk aversion.

Since u is strictly increasing, it is almost everywhere differentiable, by Billings-
ley (1986, Theorem 31.2). In particular, it is continuous at almost every point
in I.

First, we show that u is continuous. Let x be a point in I where u is con-
tinuous. We will show that u is continuous at x + d for every d ≥ 0. It then
follows that u is continuous everywhere in I.

Given d ≥ 0, since u[d] is more risk averse than u, there is a strictly increasing
concave function kd : u(I) → IR such that u[d] = kd ◦ u on u(I).

We shall show that kd is continuous at u(x). Assume it is not. For every
e ≥ 0, u[d+e] is more risk averse than u[d], so there is a strictly increasing
concave function kd,e : u[d](I) → IR such that u[d+e] = kd,e ◦ u[d] on u[d](I).
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Since
k[d+e] ◦ u = u[d+e] = kd,e ◦ u[d] = kd,e ◦ kd ◦ u

it follows that
k[d+e] = kd,e ◦ kd

Since, by assumption, kd is not continuous at u(x), it follows from (1) of
Lemma 1 that k[d+e] is not continuous at u(x). Since k[d+e] ◦ u = u[d+e],
this implies that u[d+e] is not continuous at x, which means that u is not
continouos at x + d + e. This is true of all e ≥ 0, contradicting the fact that
u is continuous almost everywhere.

Hence, kd is continuous at u(x). This is true of all d ≥ 0, so so u is continuous
x + d for all d ≥ 0. Since u is continuous almost everywhere, it follows that
it is continuous everywhere.

Second, we show that u is differentiable with u′ > 0. Let x be a point in I
where u is differentiable.

Given d ≥ 0, there is, as above, a strictly increasing concave function kd :
u(I) → IR such that u[d] = kd ◦ u on u(I). Since u is continuous, u(I) is an
interval.

Since kd is concave, if u′(x) = 0, then u[d] is differentiable at x with u′
[d](x) =

0, and so u is differentiable at x + d with u′(x + d) = 0. This would be
true of all d ≥ 0, contradicting the fact that u is strictly increasing. Hence,
u′(x) > 0.

We shall show that kd is differentiable at u(x). Assume it is not. For every
e ≥ 0, there is, as above, a strictly increasing concave function kd,e : u[d](I) →
IR such that u[d+e] = kd,e ◦ u[d] on I. Since, as above,

k[d+e] = kd,e ◦ kd

it follows from (2) of Lemma 1 that k[d+e] is not differentiable at u(x). Since
k[d+e] ◦ u = u[d+e] and u is differentiable at x, this implies that u[d+e] is not
differentiable at x. Hence, u is not differentiable at x + d + e. This is true of
all e ≥ 0, contradicting the fact that u is differentiable almost everywhere.

So, kd is differentiable at u(x). This is true of all d ≥ 0, so u is differentiable
at x + d with u′(x + d) > 0, all such c. Since u is differentiable almost
everywhere, it follows that it is differentiable everywhere.
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The proof for the case of decreasing absolute risk aversion is identical, except
that d ≥ 0 is replaced by d ≤ 0 and e ≥ 0 is replaced by e ≤ 0.

✷
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