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Abstract
In this paper, we consider finite normal form games satisfying

transference of decisionmaker indifference. We show that any set of
strategies surviving k rounds of elimination of some weakly domi-
nated strategies can be reduced to a set of strategies equivalent to
the set of strategies surviving k rounds of elimination of all weakly
dominated strategies in every round by (at most k) further rounds of
elimination of weakly dominated strategies. The result develops work
by Gretlein (Dominance Elimination Procedures on Finite Alterna-
tive Games, Int J Game Theory 12, 107-113, 1983). We then consider
applications and demonstrate how we may obtain a unified approach
to the above-mentioned work by Gretlein and recent work by Ew-
erhart (Iterated Weak Dominance in Strictly Competitive Games of
Perfect Information, J Econ Theory 107, 474-482, 2002) and Marx and
Swinkels (Order Independence for Iterated Weak Dominance, Games
Econ Behav 18, 219-245, 1997).
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1 Introduction

For the class of normal form games where a finite number of players have
strict preferences over a finite set of outcomes (utility vectors), Gretlein [6]
showed that the set of outcomes resulting from iterative elimination of some
weakly dominated strategies contains the set of outcomes that remains from
a procedure that removes all weakly dominated strategies in every step until
no more strategies can be removed. In this paper, we extend this result and
show that any set of strategies surviving k rounds of iterated weak dominance
can be reduced to a set of strategies equivalent to the strategies surviving k
rounds of elimination of all weakly dominated strategies in every round. The
reduction can be carried out by at most k further rounds of elimination of
weakly dominated strategies (Theorem 1). From this we obtain a strength-
ened version of Gretlein’s result (Corollary 1). Moreover, the result extends
to a class of games satisfying transference of decisionmaker indifference which
is less restrictive than strict preferences over outcomes.

We then consider applications and demonstrate how we may obtain a
unified approach to the above-mentioned result by Gretlein and recent work
by Ewerhart [2, 4] and by Marx and Swinkels [7].

Our first application is to two-player strictly competitive finite games of
perfect information. It is well known (Moulin [9], Gretlein [5, 6]) that these
games are dominance solvable in a finite number of steps, and that the out-
come is equal to the backward induction outcome. Recently, Ewerhart [2]
demonstrated that any chess-like game (a strictly competitive, finite game
of perfect information with three possible outcomes) can be solved by two
rounds of elimination of weakly dominated strategies. Moreover, he conjec-
tured that the following generalization is true: Any finite, strictly competitive
game of perfect information with at most n outcomes is dominance solvable
by n − 1 rounds of elimination of weakly dominated strategies. A proof of
this conjecture has now been provided by Ewerhart [4].1 The proof is com-
plicated by the fact that for an extensive game of perfect information, after
one round of elimination of all weakly dominated strategies in the strategic
form, the surviving strategies do not necessarily represent the strategic form
of any residual extensive game.2 In other words, the procedure eliminating
all weakly dominated strategies in every step does not correspond to any

1An earlier version of Ewerhart’s proof was reported in [3]. A proof has also been
reported in independent work by Shimoji [11].

2Battigalli [1] provides an example.
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procedure removing ‘dominated’ branches from the game tree. Another diffi-
culty is that ‘greedy’ elimination of all weakly dominated strategies in every
step does not necessarily remove the largest number of strategies from the
second round and onwards.

In this paper, we consider iterative elimination of all weakly subgame dom-
inated strategies, a procedure that intuitively can be viewed as the removal of
certain ‘dominated’ branches in every step. More precisely, after every step,
the remaining strategy set is, up to some redundant strategies, the strategy
set of a residual extensive form game where ‘weakly dominated subgames’
have been removed. We claim that any finite, strictly competitive game of
perfect information with at most n outcomes is dominance solvable by n− 1
rounds of elimination of weakly subgame dominated strategies (Theorem 2),
and give a short and elementary proof. By combining the results (Theorem
1 and 2), we also obtain the result by Ewerhart [4] (Corollary 2).

Our second application is to work by Marx and Swinkels [7].3 For the
class of finite normal form games satisfying the transference of decisionmaker
indifference condition, Marx and Swinkels show order independence: Regard-
less of the order in which weakly dominated strategies are removed, any two
full reductions are the same up to removal of redundant strategies and re-
naming of strategies. We round off by formulating this as a corollary of our
main result (Corollary 3).

2 Preliminaries

We consider a finite set of players I = {1, 2, ...,m}. A game in normal form
is written N(S, u), where Si = {si, s

′
i, ...} is a finite strategy set for player

i, S = S1 × ... × Sm, and ui : S → R the utility function for player i.
Let s = (s1, ..., sm) ∈ S and u(s) = (u1(s), ..., um(s)). We write S−i =
S1 × ...× Si−1 × Si+1...× Sm, s−i = (s1, ..., si−1, si+1, ..., sm).

Gretlein (1983) studied the class of games satisfying ui(s) = ui(s
′) ⇒

u(s) = u(s′) for all i ∈ I, s, s′ ∈ S, which he called strict preferences over
outcomes. Throughout this paper we relax this condition and assume that
ui(si, s−i) = ui(s

′
i, s−i) ⇒ u(si, s−i) = u(s′i, s−i), for all i ∈ I, si, s

′
i ∈ Si, s−i ∈

S−i. This condition has been referred to as transference of decisionmaker
indifference (TDI), see Marx and Swinkels [7] for a discussion.

3In this paper we restrict attention to finite pure strategy spaces.
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A strategy si ∈ Si is weakly dominated by s′i ∈ Si on S−i (or S) if
ui(s

′
i, s−i) ≥ ui(si, s−i) for all s−i ∈ S−i with at least one strict inequality.

Without the latter requirement we say that s′i is at least as good as si.
Define F k(S) = F k

1 (S) × ... × F k
m(S) recursively where F k

i (S) is the set
of strategies in F k−1

i (S) that are not weakly dominated w.r.t. F k−1
−i (S),

F 0(S) ≡ F . Let Lk(S) = Lk
1(S)× ...×Lk

m(S) denote a set of strategies where
for every i some strategies in Lk−1

i (S) which are weakly dominated w.r.t.
Lk−1
−i (S) have been removed, L0(S) ≡ S. Let LkS = Lk(S) and LS = L1(S).

A game N(S, u) is dominance solvable in k steps if the outcomes in F k(S)
are constant.

We say that strategies si and s′i are equivalent w.r.t. S−i if ui(si, s−i) =
ui(s

′
i, s−i) for all s−i ∈ S−i. If si and s′i are equivalent then si is redundant

to s′i and vice versa.

Let N and Ñ be normal form games with m players and respective strat-
egy sets S and S̃ and utility functions ui and ũi, i = 1, ...,m. Then Ñ is
a reduction of N if there exist surjective maps fi : Si → S̃i, i = 1, ...,m,
such that ũi(f1(s1), ..., fm(sm)) = ui(s) for all i and s. We say that N and
N are equivalent games, written N ∼ N , if they have a common reduction.4

In words, two games are equivalent if they are identical up to removal of
redundant strategies and renaming.

We collect some useful technical results below.

Lemma A
1. If si ∈ Lk

i (S) and si /∈ Lk+1
i (S) then there is s′i ∈ Lk+1

i (S) such that
s′i weakly dominates si on Lk

−i(S).
2. Let si ∈ Si and k > 0. Then there is s′i ∈ Lk

i (S) such that ui(s
′
i, s−i) ≥

ui(si, s−i) for all s−i ∈ Lk
−i(S).

3. The relation ∼ is an equivalence relation on the set of finite nor-
mal form games, and when N(S, u) ∼ N(S, u) then N(F k(S), u|F k(S)) ∼
N(F k(S), u|F k(S)), k > 0.

Proof: For A.1, see Gretlein [6]. For A.2, Ewerhart [3] or [4] provides a proof
for the elimination procedure F in the two-player case, but the proof applies
to any elimination procedure L in the m-player case by a change of notation.
For A.3, see Ewerhart [3] for a proof in the two-player case for k = 1 that
easily generalizes to the m-player case and for any k. �

4This terminology is used by Ewerhart [3].
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Note that if two strategies si and s′i are not equivalent w.r.t. S, and if S̃
is a reduction of S with surjective maps fi, then fi(si) 6= fi(s

′
i). Thus, for

each player i there are at least as many strategies in S̃ as there are classes
of equivalent strategies in S. We say that a reduction S̃ of S is minimal
if for each player i the number of strategies in S̃ is equal to the number of
equivalence classes of strategies for player i in Si. It can be shown that for
any game a minimal reduction exists, and for any two equivalent games there
is a common reduction which is minimal for both games.

Following Gretlein, if Ri ⊆ Ti for all i we say that R is in T . Further,
we write RαT if i) R is in T, and ii) for all i and all ti ∈ Ti there is ri ∈ Ri

such that ri is at least as good as ti on T. Moreover, RβT if i) R is in T, and
ii) for all i and all ti ∈ Ti there is ri ∈ Ri such that ri is equivalent to ti on
T. We define Rk and T k recursively: Rk+1 = FRk ∩ FT k, T k+1 = Rk ∩ FT k

with R0 ≡ R and T 0 ≡ T .
Below we highlight some useful results developed by Gretlein within the

proofs of his Lemma 4 and Theorem 1. Gretlein consider games with strict
preferences over outcomes, but his results are valid for games satisfying TDI.5

Lemma B
1. If RβT then F kRβF kT for all k.
2. If RαT then RkαT k for all k.
3. Rk+1βFRk and T k+1βFT k for all k.

Proof: Gretlein obtains B.1, B.2, and B.3 in [6] p. 112, at line 3, 15, and 16
respectively. �

For later reference, we define a two-player, strictly competitive extensive-
form game G of perfect information and its strategic form. Following Ewer-
hart [2], we write

G = (X, x0, α, ι, ω),

where X is a finite set of nodes, x0 ∈ X is the initial node, α : X\{x0} → X is
the anterior node function, Z = X\α(X) denotes the set of terminal nodes,
ι : X\Z → {1, 2} denotes the player function, and ωi : Z → R denotes
the outcome function. G is strictly competitive if ωi(z) < ωi(z

′) ⇒ ωj(z) >
ωj(z

′), i 6= j.

5In fact, Greitlein uses only the TDI property implied by strict preferences over out-
comes in his proofs.
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Node x precedes node x′ if there is a non-negative integer H and a
sequence {x0, ..., xH} such that x = x0, x

′ = xH and α(xh) = xh−1 for
h = 1, ..., H. X(x) = {x′ | x precedes x′}. The initial node x0 precedes
any x ∈ X. Define a subgame rooted in the node x1 by

G(x1) = (X(x1), x1, α1, ι|X(x1)\Z1 , ω|Z1),

where α1 = α|X(x1)\Z and Z1 = X(x1)\α1(X(x1)). Assume w.l.o.g. that if
x ∈ X\x0 and ι(x) = i then ι(α(x)) 6= i.

For any non-terminal node x ∈ X\Z, Ax = {x′ | α(x′) = x} is the set of
actions available at node x. An action profile is a tuple s = (ax)x∈X\Z where
ax ∈ Ax. Any action profile s uniquely determines a path p(s) = (x0, ..., xH)
where x0 = x0 and xH = z(s) is a terminal node, and abusing notation we
write ω(s) = ω(z(s)).

The strategic form N(G) of G is the normal form game with strategy
set Si =

∏
x∈X\Z,ι(x)=i Ax and utility function ui(s) = ωi(z(s)), i = 1, 2. A

strategy si ∈ Si then specifies a move at every node for which the player has
the move.

The value v(x) = (v1(x), v2(x)) of x ∈ X is the backward induction
outcome of G(x).6

3 Iterated weak dominance

In the following, consider a normal form game N(S, u). If R is in S, R induces
a game N(R, u|R) and we occasionally refer to R as a game. For R and T
in S, we write R ∼ T if N(R, u|R) ∼ N(T, u|T ).

We proceed with the following five lemmas.

Lemma 1 Let R and T be in S.

1. If RβT then R ∼ T .

2. If R in T and R ∼ T then RβT .

3. If RβTβP then RβP .

6For extensive games with strict preferences over outcomes, any subgame perfect equi-
librium outcome yields the backward induction outcome (cf. e.g. Osborne and Rubinstein
[10], Chapter 6).
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4. If RαTβP then RαP .

Proof: 1.1: We show that R is a reduction of T . Let fi : Ti → Ri be such that
fi(si) is equivalent to si w.r.t. T and such that fi(si) = si if si ∈ Ri. Thus fi :
Ti → Ri is surjective. By TDI u(f1(s1), s2, ..., sm) = u(s) for all s ∈ T . Gen-
erally for some h ∈ {2, ...,m} by TDI if u(f1(s1), ..., fh−1(sh−1), sh, ..., sm) =
u(s) for all s, then u(f1(s1), ..., fh(sh), sh+1, ..., sm) = u(s) for all s. Thus by
induction on h we have u(f1(s1), ..., fm(sm)) = u(s) for all s. Since R is a
reduction if itself, R and T have a common reduction, i.e. R ∼ T .

1.2: Let R be in T . We show that [not RβT ] ⇒ [not R ∼ T ]. If [not
RβT ] then there is i and ti ∈ Ti such that there is no ri ∈ Ri where ti and ri

are equivalent w.r.t. T . Now, suppose there is a minimal common reduction
S̃. Then the number of strategies in S̃i is equal to the number of equivalence
classes in Ri w.r.t. R. If two strategies in Ri are not equivalent w.r.t. R
then they are not equivalent w.r.t. T . Thus the number of equivalence
classes in the restriction Ri of Ti w.r.t. T is as least as large as the number
of equivalence classes in Ri w.r.t. R. Then since ti is not equivalent to any
strategy in Ri w.r.t. T there must be at least one extra equivalence class in
Ti w.r.t. T , contradiction that S̃ is a minimal common reduction.

1.3: Since R is in T and T is in P, R is in P . Moreover, since R ∼ T and
T ∼ P then by Lemma A.3 R ∼ P implying by 1.2 that RβP .

1.4: Clearly R is in P. By TβP for any pi ∈ Pi there is ti ∈ Ti equivalent
to pi on P−i. Moreover, by RαT, there is ri ∈ Ri at least as good as ti on
T−i. Now, assume that ri is not at least as good as pi on P−i\T−i. Let
p−i ∈ P−i\T−i be such that ui(ri, p−i) < ui(ti, p−i) = ui(pi, p−i). Moreover,
for all j 6= i let tj ∈ Tj be a strategy equivalent to pj w.r.t. P , t−i =
(t1, ..., ti−1, ti+1, ..., tm) ∈ T−i. Then ui(ri, t−i) = ui(ri, p−i) < ui(ti, p−i) =
ui(ti, t−i), a contradiction. �

Lemma 2 Let RαT . Then RkβF kR and T kβF kT for all k.

Proof: We prove the first claim by induction on k. The claim is trivial for
k = 0. Assume that RkβF kR for some k ≥ 0. Then by Lemma B.1 we have
that FRkβF k+1R. By Lemma B.3 Rk+1βFRkβF k+1R. Thus by Lemma 1.3
we have Rk+1βF k+1R.

The proof of the second claim is similar. �

Lemma 3 Let RαT. Then F kR ∼ RkαF kT.
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Proof: If RαT then by Lemma B.2 RkαT k and by Lemma 2 T kβF kT thus
by Lemma 1.4 we have RkαF kT . Hence, by Lemma 2 and Lemma 1.1,
F kR ∼ RkαF kT . �

Lemma 4 Let A ∼ B and let A be obtained from A by one round of elimina-
tion of some weakly dominated strategies. Then if C ∼ A there is C obtained
from C by one round of elimination of some weakly dominated strategies such
that C ∼ B.

Proof: By Lemma A.3 if A ∼ C and A ∼ B then B ∼ C. Thus it is
sufficient to show that if A ∼ C and A is obtained from A by one round of
elimination of some weakly dominated strategies then there is C obtained
from C by one round of elimination of some weakly dominated strategies
such that A ∼ C.

For this, let N(S̃, ũ) be a minimal common reduction of A and C (note

that S̃ is equivalent to A and C). Moreover, assume that either all or no
strategies within an equivalence class are removed when obtaining A from A.
We can assume this w.l.o.g. since if some but not all strategies are removed
within an equivalence class, then we consider another set of strategies Â ⊇ A
obtained by leaving all strategies within an equivalence class w.r.t. A if at
least one member survives in A. Then C is equivalent to Â if and only if C
is equivalent to A and we can replace A, with Â.

Let f = (f1, ..., fm) and g = (g1, ..., gm) be surjective maps from A and C

respectively to S̃ that gives a common reduction. Let Si = fi(Ai) ⊆ S̃i be

the strategies in S̃i which are the image of the strategies that survive in Ai.
Let S = S1×· · ·×Sm. Then A is equivalent to S, since S is a reduction of A
via surjective maps fi|Ai, i = 1, ...,m and since ũi(f1(s1), ..., fm(sm)) = ui(s)
for all i and s ∈ A then ũi|S1(f1|A1(s1), ..., fm|Am(sm)) = u|Ai(s) for all
i and s ∈ A. Now, let Ci ≡ g−1

i (Si) for all i. Then C ∼ S and thus
C ∼ A. Moreover, since the strategies in Ai\Ai are weakly dominated w.r.t.

A, the strategies in S̃i\Si are weakly dominated w.r.t. S̃ for all i. Hence the
strategies in Ci\Ci are weakly dominated w.r.t. C for all i. �

Lemma 5 Let A
i
be obtained from Ai by one round of elimination of some

weakly dominated strategies, and let Ai−1 ∼ A
i
, i = 1, ..., k. Then there is

T ∼ A0 where T is obtained from Ak in at most k rounds of elimination of
some weakly dominated strategies.
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Proof: By induction on k. For k = 1, the claim holds with T = A
1
. Assume

that the claim holds for some k > 0. Now, let A
i

be obtained from Ai by

one round of elimination of some weakly dominated strategies, Ai−1 ∼ A
i
,

i = 1, ..., k + 1. By the induction hypothesis, there is T ∼ A1 where T is
obtained from Ak+1 by at most k rounds of elimination of weakly dominated
strategies. Then by Lemma 4 there is T obtained from T by one round
of elimination of weakly dominated strategies such that T ∼ A0, and since
T is obtained from Ak+1 in at most k + 1 rounds of elimination of weakly
dominated strategies the claim holds for k + 1. �

Theorem 1 For any k and Lk(S) there is T ∼ F k(S), where T is obtained
from Lk(S) by at most k rounds of elimination of weakly dominated strategies.

Proof: Fix k. Then FLh−1(S)αLh(S), for all h = 1, ..., k. By Lemma 3
then F k−h+1Lh−1(S) ∼ A[h] where A[h] is obtained from F k−hLh(S) by one
round of elimination of some weakly dominated strategies. Hence by Lemma
5 there is T ∼ F k(S) where T is obtained from Lk(S) by at most k rounds
of elimination of weakly dominated strategies. �

Gretlein [6] shows (in his Theorem 2) that limk→∞ u(F k(S)) ⊆ limk→∞ u(Lk(S)).
By Theorem 1 above, we obtain the following strengthened version.

Corollary 1 u(F k(S)) ⊆ u(Lk(S)) for all k > 0.

4 Application I: Strictly competitive games

of perfect information

We now consider two-player, strictly competitive games of perfect informa-
tion. Let x ∈ X\x0, and let player i be the player called to move at α(x).
G(x) is a weakly dominated subgame if

vi(α(x)) ≥ max
z∈Z∩X(x)

ωi(z) and vi(α(x)) > vi(x).

Thus, a proper subgame is weakly dominated if the highest possible out-
come within the subgame is not higher than, and the value of the subgame
is lower than, the value of the subgame arising from the anterior node (for
the player called to move at the anterior node leading to the subgame). We
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then say that a strategy si ∈ Si is weakly subgame dominated on Sj if there
exists sj ∈ Sj, such that p(si, sj) reaches a weakly dominated subgame. Let
Ek(S) = Ek

1 (S)× Ek
2 (S) be the set of strategies not subgame dominated on

Ek−1(S) = Ek−1
1 (S)×Ek−1

2 (S), E0(S) ≡ S. G is subgame dominance solvable
in k steps if the outcomes in Ek(S) are constant.

Weak subgame dominance is stronger than weak dominance since a weakly
subgame dominated strategy si is weakly dominated, for example by a strat-
egy s′i which consists of a maxmin strategy at subgames beginning at nodes
leading to dominated subgames and equal to si elsewhere. On the other
hand, a weakly dominated strategy does not necessarily lead the outcome
path to a weakly dominated subgame.

With the definitions in place, we may then find an upper bound for the
number of steps necessary to solve a game of perfect information, removing
all dominated subgames at each step.

Theorem 2 Let G be a finite, strictly competitive game of perfect informa-
tion with at most n outcomes. Then N(G) is subgame dominance solvable in
n− 1 steps.

We proceed with the following two lemmas.

Lemma 6 Let G be a finite, strictly competitive game of perfect information
with strategy set S. Let x ∈ X and consider the subgame G(x). Assume that
vi(x) = maxz∈Z∩X(x) ωi(z) for a player i. Let s ∈ S be a strategy leading the
path through x and ωi(s) < vi(x). Then si is a weakly subgame dominated
strategy.

Proof: Let p(s) = (x0, ..., xH) be the path determined by s. Let h =
max {h | vi(xh) = vi(x), 0 ≤ h ≤ H}. As vi(xh) > vi(xh+1), player i is called
to move at node xh. Moreover, vi(xh) ≥ maxz∈Z∩X(xh+1) ωi(z). Thus G(xh+1)
is a weakly dominated subgame and si is a weakly subgame dominated strat-
egy. �

Lemma 7 Let G be a finite, strictly competitive game of perfect information
with strategy set S. Assume that vi(G) < maxz∈Z ωi(z) for a player i, and let
s ∈ S be a strategy where ωi(s) = maxz∈Z ωi(z). Then s is eliminated after
two rounds of elimination of weakly subgame dominated strategies.

10



Proof: Let p(s) = (x0, ..., xH), and h = max {h | vi(xh) 6= ωi(si, sj), 0 ≤ h ≤ H}.
As vi(xh) < vi(xh+1), player j is called to move at xh. In the subgame
G(xh+1), player i has a strategy that ensures the highest possible outcome
within this subgame, that is vi(xh+1) = maxz∈Z∩X(xh+1) ωi(z). From Lemma
6, after one round of elimination of weakly subgame dominated strategies
all remaining strategy pairs reaching the subgame G(xh+1) yield outcome
maxz∈Z∩X(xh+1) ωi(z) to player i. If s ∈ E1(S) then, since vj(xh) >

maxz(s′)∈Z∩X(xh+1),s′∈E1(S) ωj(z(s′)), sj is a weakly subgame dominated strat-

egy on E1(S). �

Note that if a strategy is weakly subgame dominated w.r.t. a particular
subgame, then all other strategies leading the path to the same dominated
subgame for some strategy of the opponent are also subgame dominated.
Therefore, if a strategy points to a weakly dominated subgame at some node
then is must either be a weakly subgame dominated strategy or the node
is not reached by any possible strategy of the opponent and is therefore
equivalent to another strategy that does not point to the weakly dominated
subgame. Thus, up to the removal of redundant strategies, the strategies
surviving elimination of weakly subgame dominated strategies are the strat-
egy set of a residual extensive game where all weakly dominated subgames
have been removed. We may now complete the proof of Theorem 2.

Proof of Theorem 2: Apply Lemma 7 min{v1(x
0)−1, n−v1(x

0)} times, first on
G and then sequentially on the residual games where all weakly dominated
subgames have been removed. Then apply Lemma 6 once (with x = x0)
if necessary and we obtain by Lemma A.3 that G is subgame dominance
solvable in at most n− 1 steps. �

Combining Theorem 1 and 2 we also obtain the result by Ewerhart [4].

Corollary 2 Any strictly competitive, finite game of perfect information
with n outcomes can be solved by n− 1 rounds of elimination of weakly dom-
inated strategies.

5 Application II: Order independence

As another application, we may observe that a corollary of Theorem 1 is
the main result on order independence by Marx and Swinkels [7, 8] for pure
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strategies. For a procedure L, a reduction Lk(S) is full if there are no weakly
dominated strategies in Lk(S). For a game satisfying TDI, Marx and Swinkels
demonstrate that the result of iterative removal by weak dominance does not
depend on order (cf. [7], Corollary 1, p. 230).

By Theorem 1, if Lk(S) is a full reduction, then it must be equivalent
to a full reduction obtained by removing all weakly dominated strategies in
every round. Thus, we have:

Corollary 3 Let Lk(S) and L
h
(S) be full reductions, k, h > 0. Then Lk(S) ∼

L
h
(S).

Proof: If Lk(S) is a full reduction then by Theorem 1 it is equivalent to F k(S)

and F k(S) is a full reduction. Similarly, if L
h
(S) is a full reduction then it

is equivalent to F h(S) and F h(S) is a full reduction. Since F k(S) = F h(S)

and since ∼ is transitive we have Lk(S) ∼ L
h
(S). �
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