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Abstract

The effects of innovational outliers and additive outliers in cointegrated vector autoregres-

sions are examined and it is analyzed how outliers can be modelled with dummy variables.

Using a Monte Carlo simulation it is illustrated how misspecified dummies may distort in-

ference on the cointegration rank in finite samples. That questions the common practice

in applied cointegration analyses of including unrestricted dummy variables to account for

large residuals. Instead it is suggested to test the adequacy of a particular specification of

dummies prior to determining the cointegration rank. The points are illustrated on a UK

money demand data set.
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1 Introduction

Economic time series are frequently affected by special events, for instance policy interventions,

strikes or gross measurement errors. Such events often show up as large residuals, or outliers, in

econometric models and that raises two issues for an applied econometrician; first the inferential

consequences of outliers if they are not detected, and second how the irregularities can be mod-

elled with dummy variables. This paper addresses these issues for the case of the cointegrated

vector autoregression (VAR), which has been widely applied in many fields of empirical research.

The effects of non-modelled outliers in autoregressive models depend on their precise nature

and a distinction is often made between innovational outliers (IOs) and additive outliers (AOs),

see inter alia Fox (1972), Tsay (1986) or Muirhead (1986). An IO is produced by a shock to the

innovation term of a data generating process (DGP). The shock is then propagated through the

autoregressive structure of the model and the total effects on the levels of the variables depend

on the autoregressive parameters. An AO, on the other hand, is superimposed on the levels of

the data, i.e. independently of the autoregressive parameters.

In the case of a fixed number of outlying observations asymptotic inference in the cointe-

gration model is unchanged, in the sense that the asymptotic distributions are unaffected. The

distortionary effects could be important in finite samples, however, and in applied cointegration

analyses it is commonplace to include dummy variables to whiten residuals. Using simulations

Doornik, Hendry, and Nielsen (1998) find that ignored IOs have only minor consequences for

small sample inference on the cointegration rank of a VAR process, while Franses and Haldrup

(1994), Shin, Sarkar, and Lee (1996) and Vogelsang (1999) find that AOs may bias inference

towards the finding of stationarity or cointegration.

The second issue, how outliers in a cointegrated VAR can be modelled with dummy variables,

is less resolved. An IO is straightforward to model with an unrestricted dummy variable, whereas

an AO is more difficult because it imposes non-linear restrictions on the dynamics and requires

a more complicated estimation procedure. In applications of the cointegrated VAR it is common

practice to identify outlying observations from the estimated residuals and to model outliers with

unrestricted (innovational) dummies, see Hendry and Juselius (2001), Johansen (1996, chapter

5) and Juselius (2002, chapter 6). But to the best of our knowledge there is little justification

for this practice; and it is not obvious that outliers of a general form, and AOs in particular,

can be successfully modelled with unrestricted dummies.

In this paper we use a Monte Carlo simulation to analyze how IOs and AOs can be approx-

imated with dummy variables in small samples. We find that the usual innovational model is

misspecified if an outlier is additive, and in general it is very difficult to approximate AOs with

unrestricted dummies. As a result the usual practice may bias the estimated parameters in the

case of AOs and may distort inference on the cointegration rank. As an alternative we propose

a simple algorithm for estimating the cointegrated VAR with additive dummies, and we suggest

a testing procedure between the innovational model and the additive model in the detection of

outlying observations.

The plan for the rest of the paper is as follows. First, Section 2 introduces the cointegrated

VAR and two ways to include dummy variables. Section 3 briefly presents the estimation

2



algorithms and some hypotheses of interest. Section 4 then gives an empirical illustration of

the role of outliers and dummy variables based on UK money demand data, and the effects

of outliers and dummy variables are then analyzed in a Monte Carlo simulation in Section 5.

Finally, Section 6 concludes.

2 Models for Deterministic Components

We consider the p−dimensional cointegrated VAR

∆Yt = αβ′Yt−1 +
k−1∑
i=1

Γi∆Yt−i + µ0 + αβ′0t+ µt + εt, t = 1, 2, ..., T, (1)

where εt are i.i.d.Gaussian innovations, N (0,Ω). The parameters α and β are both of dimension

p × r such that the rank of Π = αβ′ is r ≤ p, and the remaining autoregressive parameters,

Γ1, ...,Γk−1, are each of dimension p× p.

We consider a deterministic specification given by an unrestricted constant, µ0, and a re-

stricted linear drift term, µ1t = αβ′0t. This model allows for a linear trend both in the sta-

tionary and non-stationary directions of the data and is often favored in empirical applications,

see Nielsen and Rahbek (2000) for a comparison with other specifications. Finally, (1) includes

an additional deterministic function, µt, which will contain indicator variables. To character-

ize impulses and balanced impulses respectively, we define for a particular observation T0 the

indicators

Dt (T0) = 1 {t = T0} and dt (T0) = ∆Dt (T0) ,

where 1 {·} is the indicator function equal to one if the expression in curly brackets is true. For
ease of notation we will sometimes drop the direct reference to T0 and denote the variables Dt

and dt. Throughout the paper we consider (1) with µt = 0 as the baseline specification and we

denote this model H∗ (r). In the subsections below we present two distinct ways to augment the

baseline model with indicator variables, and we characterize the resulting specifications both as

DGPs and estimation models. When (1) is a DGP we denote by outliers the effects on the data

of the indicator variables in µt �= 01. When (1) is an estimation model we use dummy variables

to denote the indicators included in µt to approximate irregularities in the data.

If the (p− r) × (p− r) matrix α′⊥Γβ⊥ is non-singular2 and the roots of the characteristic

polynomial

A (z) = (1− z) I − αβ′z −
k−1∑
i=1

Γi (1− z) zi, (2)

are located either outside the complex unit circle or at z = 1, the solution for Yt is given by the

Grangers Representation

Yt = C

t∑
i=1

(εi + µt) +C1(L) (εt + µt) + κ0 + κ1t+A, (3)

1Outliers are necessarily defined relative to a statistical model. The used notation implies that irregular

observations are outliers relative to the baseline model, µt = 0.
2For a p×r matrix α we denote by α⊥ the p×(p− r) dimensional orthogonal complement such that α′α⊥ = 0

and span (α : α⊥) = R
p. Further we define Γ = I −

∑k−1
i=1 Γi.

3



dt, Innovational Dt, Additive Dt, Innovational

Stationary directions, β′Yt

Non-stationary directions, β′⊥Yt

Figure 1: Examples of the effects (relative to the baseline of no outliers) of different types of

outliers in the stationary and non-stationary directions. Based on a 2-dimensional VAR(1) with

r = 1.

where C = β⊥ (α
′
⊥Γβ⊥)

−1
α′⊥ has reduced rank p−r, C1(L) is an infinite but convergent matrix

polynomial, κ0 and κ1 are functions of the parameters and A involves the initial values, see

Johansen (1996, theorem 4.2).

2.1 The Innovational Model, H∗
I (r)

The usual way to include dummy variables in cointegration analyses is to specify the determin-

istic function in (1) as µt = φDt, where Dt is a n−dimensional vector of dummy variables and
φ is a p× n matrix of unrestricted coefficients, see Johansen (1996, chapter 5) and Hendry and

Juselius (2001). It follows from (3) that the total effect in Yt is given by C
∑t

i=1 φDt+C1(L)φDt,

and unless α′⊥φ = 0 the levels will contain the cumulated effect of the variables in Dt. Since

β′C = 0, the cointegrating relations, β′Yt, annihilate both the common stochastic trends and

the cumulated effect of Dt, implying that the stationary and non-stationary directions are not

balanced in terms of the deterministic specification.

The interpretation of an innovational impulse outlier at time T0, i.e. the indicator variable

Dt = Dt (T0) included in a DGP, is a large shock that follows the same dynamic adjustment

as the usual innovations. In columns one and three of Figure 1 we have augmented a simple

2−dimensional DGP with k = 1 lag and a cointegration rank of r = 1 with a balanced impulse,

Dt = dt, and a non-balanced impulse, Dt = Dt. The effects in the stationary and non-stationary

directions, relative to the baseline of no outliers, are reported in the two rows.

In an estimation model an included innovational impulse dummy, Dt = Dt (T0), renders the

corresponding residual, εT0 , equal to zero and eliminates the contribution from that residual to

the likelihood function.

2.2 The Additive Model, H∗
A (r)

An alternative additive formulation can be written as the unobserved components model

Yt = Xt + θDt (4)

A (L)Xt − µ0 − αβ′0t = εt, (5)
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where Xt are unobserved variables that obey a cointegrated VAR and θ contains unrestricted

coefficients. In this case the effects on the levels of the observed data, Yt, are independent of the

autoregressive parameters of the model. The interpretation of an impulse AO, i.e. the indicator

variable Dt = Dt included in the DGP, could be an isolated measurement error, for instance a

typing mistake. It follows from (4) that θDt enters the Granger Representation additively and

in general, the stationary and non-stationary directions are balanced, cf. column two of Figure

1.

To characterize the properties of the additive specification as an estimation model it is useful

to solve (4) and (5) for the observed variables to obtain

∆Yt = α
(
β′ : β′0 : β

′
1

)



Yt−1

t

Dt−1


+

k−1∑
i=1

Γi∆Yt−i +
k−1∑
i=0

θi∆Dt−i + µ0 + εt, (6)

subject to the k sets of restrictions

β1 = −θ′0β (7)

θi = −Γiθ0, i = 1, ..., k − 1. (8)

Note, that the dummy variables are included with the full lag structure of the endogenous

variables, µt = A (L) θDt. The restrictions (7) and (8) ensures an instantaneous transition

to the effects of the dummies and the effects on Yt are qualitatively identical to the dummy

variable itself. If these restrictions are not imposed the transition is approximated by the k free

parameters (θ0, ..., θk−1), which is closely related to the model proposed by Johansen, Mosconi,

and Nielsen (2000) for broken levels and broken linear trends. While the approximation is often

appropriate in the case of a transition to a structural break it is very costly in terms of degrees

of freedom for the case of isolated outliers and there is a potential efficiency gain by imposing

the restrictions3.

It is worth noting that an additive impulse dummy, Dt (T0), eliminates the effects of the

observation, YT0 , from the likelihood function rather than the effects of the residual, εT0. This

is equivalent to the interpretation of a dummy variable in a static model, where an entire case is

cancelled; and it is closely related to the interpolation of missing values, see Gomez, Maravall,

and Peña (1999).

3 Estimation and Some Hypotheses of Interest

Maximum Likelihood estimation of the basic model, µt = 0, is based on reduced rank regression

(RRR), which reduces to solving the eigenvalue problem
∣∣λS11 − S10S

−1
00 S01

∣∣ = 0, where Sij =

T−1
∑T

t=1RitR
′
jt are sample moment matrices, and R0t and R1t are least squares residuals of

3Note, that the basic model H∗ (r) can be expressed as the unobserved component representation, Yt =

Xt+ θ̃0+ θ̃1t, where Xt follows a cointegrated VAR with no deterministic components. In this case the non-linear

restrictions (7) and (8) cancel due to coincidence between ∆t and the constant. The balance of the deterministic

components of this model implies that the tests for reduced rank are asymptotic similar with respect to the

coefficients to the linear trend, see Nielsen and Rahbek (2000).
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regressing ∆Yt and Y ∗
t−1 =

(
Y ′
t−1 : t

)′
respectively on the unrestricted variables Ut = (∆Y ′

t−1 :

... : ∆Y ′
t−k+1 : 1)

′, see Johansen (1996, chapter 6). That yields p + 1 ordered eigenvalues, 1 >

λ̂1 > λ̂2 > ... > λ̂p > λ̂p+1 = 0, and the estimate of the cointegrating relations, β̂
∗
= (β̂

′
: β̂

′

0)
′,

is given by the eigenvectors corresponding to the r largest eigenvalues.

Different values of r define a sequence of nested models, H∗(0) ⊂ ... ⊂ H∗(r) ⊂ ... ⊂ H∗(p),

and a Likelihood Ratio (LR) test for a cointegration rank smaller or equal r against a rank

smaller or equal p is given by the so-called Trace test statistic

Qr = −2 logQ (H∗ (r) | H∗ (p)) = −T
p∑

i=r+1

log
(
1− λ̂i

)
.

The asymptotic distribution of Qr depends on the deterministic specification and involves func-

tionals of Brownian motions. In the determination of the cointegration rank the usual strategy

is to reject a model, H∗ (r), only if all the more restricted models, H∗ (0) , ...,H∗ (r − 1), are

also rejected, starting from the most restricted model H∗ (0), see Johansen (1996, chapter 12).

The presence of innovational dummies does not complicate estimation. The dummies, Dt,

can be included in Ut and concentrated out prior to the RRR. The asymptotic distribution

of the Trace test statistic is not changed by a fixed number of outliers or a fixed number of

innovational dummies, see Doornik, Hendry, and Nielsen (1998).

It is also straightforward to modify the RRR procedure to estimate the additive model (6)

without the restrictions (7) and (8). The first differences, ∆Dt, ...,∆Dt−k+1, can be included in

Ut, and Y ∗
t can be augmented with the lagged levels, Dt−1. If Dt is an impulse or a balanced

impulse, the effect of the dummy per se is asymptotically negligible but the increased dimension

of the eigenvalue problem will change the asymptotic distribution of the Trace test. To be

specific, each included impulse dummy will add an independent χ2 (p− r) contribution to the

distribution of Qr, see Johansen, Mosconi, and Nielsen (2000) and Doornik, Hendry, and Nielsen

(1998).

When the restrictions (7) and (8) are imposed, no closed form solution for the estimator

exists. Maximum Likelihood estimates can be obtained by a standard numerical (e.g. gradient

based) procedure, but due to the number of parameters this method can be relatively slow. As

an alternative we suggest a simpler algorithm that switches between two conditional Maximum

Likelihood estimations for which closed form solutions exist. The idea is that conditional on

an estimate θ̂ of θ, the parameters in (5) can be found from a RRR of the corrected variables,

Xt = Yt − θ̂Dt. And given the parameters of the cointegrated VAR (5), the parameters to the

deterministic variable, θ, can be estimated by generalized least squares from the residuals and

the structure in (4). That suggests an iterative procedure, see the Appendix for details.

3.1 Tests Between IOs and AOs

For a given dummy variable, Dt = Dt (T0), both the innovational model, H
∗
I (r), and the additive

model, H∗
A (r), nest the basic model, i.e.

H∗ (r) ⊂ H∗
I (r) and H∗ (r) ⊂ H∗

A (r) , (9)
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while H∗
I (r) and H∗

A (r) are not mutually nested
4. Each of the hypotheses in (9) can be tested

using e.g. a LR test statistic of the form

τ j = −2 · logQ (H∗ (r)
∣∣H∗

j (r)
)
, j = I,A. (10)

Note, however, that if Dt contains dummy variables involving a fixed number of observations,

like dt (T0) and Dt (T0), then the Law of Large Numbers and the Central Limit Theorem do

not apply to the corresponding columns of φ̂ and θ̂, see e.g. Davidson (2001, p.147). As a

consequence, the estimates are not consistent, see also Doornik, Hendry, and Nielsen (1998),

and the asymptotic distribution of τ j (T0) is only χ2 under the (non-testable) assumption that

the particular residuals in question are Gaussian under the null of no outliers.

When the basic model, H∗ (r), can be rejected against both outlier models, H∗
I (r) and

H∗
A (r), a choice has to be made between the non-nested candidates. One possible test strategy

is to find a model that nests both alternatives, H∗
N (r) say, and test the non-nested models against

the nesting alternative. In many situations, however, H∗
N (r) is not a natural maintained model,

and an alternative is to apply a model selection approach. One strategy is to apply the Likelihood

Dominance Criterion of Pollak and Wales (1991), which states that since the two candidate

models, H∗
I (r) and H∗

A (r), contain the same number of parameters, then irrespectively the

significance level and the chosen nesting model, H∗
N (r), a reduction fromH∗

N (r) to the candidate

model with the lower likelihood would not be accepted unless the reduction to the outlier

model with the higher likelihood is also accepted. That implies that if both outlier models are

significant over the basic model, H∗ (r), and we do not allow for both an IO and an AO for

the same observation, the model with the higher likelihood could be selected. A similar line of

arguments could be constructed using conventional information criteria.

3.2 Outlier Detection

In the construction of the test (10) the location of a potential outlier is considered known. In

practical applications, however, this is typically not the case and an important issue is how to

identify also the location of outlying observations. Usually in applied cointegration analyses,

outliers are identified from a priori information and the size of the residuals. As an example,

Hendry and Juselius (2001) include unrestricted dummy variables for observations with absolute

values of the standardized residuals larger that 3.3.

To determine the location as well as the type of outliers, an automatic outlier detection

procedure can be used, see also Tsay (1986), Chen and Liu (1993) and Tsay, Peña, and Pankratz

(2000)5. This corresponds to performing the test (10) for all observations, τ j (T0) for T0 =

1, 2, ..., T , producing two series of test statistics, τ j (1) , ..., τ j (T ), j = I,A. It is natural to focus

4For the last observation, Dt = Dt (T ), the two models are equivalent.
5It should be noted that outliers are defined relative to the statistical model and the outlier detection should

in principle be performed conditional on the cointegration rank. If the correct rank is imposed on the model,

however, the memory structure should be very similar to the full rank case, and simulations (not reported) indicate

that outlier detection based on the full rank model is roughly as effective as outlier detection based on the true

reduced rank model. This facilitates a sequential procedure; First the outlying observations can be identified in

the stationary VAR, and then the cointegration rank can be determined conditional on the identified outliers.
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on the largest test statistic, i.e.

τmaxj = max
1≤T0≤T

{τ j (T0)} . (11)

Under the Gaussianity assumption the individual LR statistics, τ j (T0), are asymptotically

χ2 (p). An approximation of the critical values of the maximum test statistic, τmaxj , can be

based on the Bonferroni inequality. In particular we can use the multi comparison significance

level δmax = 1− (1− δ)1/T in each test to ensure an overall Type I error frequency below δ.

If multiple outliers are present, we follow inter alia Tsay (1986) and Tsay, Peña, and

Pankratz (2000) and include a dummy for the most significant outlier, and repeat the pro-

cedure conditional on previously identified outliers.

4 Empirical Illustration

To illustrate the importance of outliers and dummy variables in cointegration analyses we con-

sider the quarterly UK money demand data Yt = (mt : yt : ∆pt : rt)
′, t = 1963 : 1, ..., 1989 : 2,

where mt denotes the log of real money M1, yt denotes the log of real final expenditures, ∆pt

denotes the change in the log of the deflator of yt, and rt denotes the difference between the

three month interest rate and a measure of the own interest rate of M1.6

The data have previously been analyzed in inter alia Hendry and Doornik (1994) and

Doornik, Hendry, and Nielsen (1998) using a VAR with k = 2 lags and we set up a simi-

lar model. Hendry and Mizon (1993) analyze the data for a shorter sample and include two

innovational dummy variables, Dt = (Doilt : Doutt)
′, where

Doilt = 1 {t = 1973 : 3}+ 1 {t = 1973 : 4}+ 1 {t = 1979 : 3}
Doutt = 1 {t = 1972 : 4}+ 1 {t = 1973 : 1}+ 1 {t = 1979 : 2}

and give a detailed account for their interpretation of the dummies7. Hendry and Doornik

(1994) and Doornik, Hendry, and Nielsen (1998) include the same dummies for the extended

sample.

The Trace statistics for determining the cointegration rank are reported in Table 1. Row (A)

is based on the specification with no dummies. The hypothesis of r = 0 can be easily rejected

whereas the test for r ≤ 1 is a borderline case with a p−value of 8%. Row (B) reports the

results based on a model including the original innovational dummies, Doilt and Doutt. This

specification clearly point towards r = 1. The dummy variables, Doilt and Doutt, identify 6

outliers in the data. The restriction that these can be modelled with two composite dummies is

not important for the rank determination, and row (C) reports results based on a model with

6 unrestricted dummies.

Irrespectively that the second cointegrating relation appears to be insignificant in their

preferred model, Doornik, Hendry, and Nielsen (1998) retain it and continue the analysis with

6All calculation have been performed using a set of procedures programmed in Ox 3.0, see Doornik (2001).
7Doutt accounts for expansionary economic policy measures attributed to the Heath-Barber boom and the

first effect of the Thatcher government. Doilt accounts for the effects of the two oil crises.
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Figure 2: Original data (–) and the estimated deterministic components of the original model of

Doornik, Hendry, and Nielsen (1998) (- -). Calculated for r=2.
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Hypotheses

Dummy specification r = 0 r ≤ 1 r ≤ 2 r ≤ 3

(A) No dummies. 119.38 40.89 12.12 4.48

[.00] [.08] [.80] [.67]

(B) Original dummies, Dt = (Doilt : Doutt)
′. 108.53 29.25 14.77 6.20

[.00] [.55] [.60] [.45]

(C) The 6 unrestricted dummies from (B). 106.19 32.48 14.13 5.07

[.00] [.37] [.65] [.59]

(D) Preferred specification. 129.37 47.67 14.05 5.56

3 additive and 2 innovational dummies, see Table 2. [.00] [.01] [.66] [.53]

Table 1: Trace test statistics, Qr, based on different dummy specifications. p−values based on

the Γ−approximation of Doornik (1998) in square brackets.

r = 2. To illustrate the role of the dummies in the original specification of Doornik, Hendry,

and Nielsen (1998), Figure 2 depicts the actual data together with the estimated deterministic

components. The latter reflects the total effects of the dummies, Doilt and Doutt, and the linear

drift term, and is generated from the initial values by setting all innovations equal to zero in the

estimated model. Furthermore the cointegrating linear combinations are given together with

the estimated deterministic components. The unrestricted impulse dummies produce marked

shifts in the levels of the data and the short run transitions are prolonged. The dummies

have no long run effects in the cointegrating relations, but the short run effects account for

a considerable proportion of the variation around the linear trend. We believe this kind of

illustration could be very useful in empirical applications, because it highlights the consequences

of a given deterministic specification.

As an alternative to the original model we apply the automatic outlier detection procedure,

and Table 2 reports the outliers detected in each iteration. In first iteration the observation

1973 : 2 is chosen to be an outlier. Hendry and Mizon (1993) identify 1973 as a year for

potential problems due to the Heath government attempts to ”go for growth” and the first

oil crisis. The particular observation is associated with a large positive residual in the real

money equation and a negative residual in the inflation equation, but the observation is not

modelled by the original dummies. Based on the likelihood values it is difficult to distinguish

a model with an innovational dummy and an additive dummy, but the innovational model is

marginally preferred. In second iteration, which is conditional on the dummy for 1973 : 2, an

AO in 1974 : 2 is detected, apparently in the inflation equation. Neither this one is picked up

by the original dummies. In third iteration an outlier in 1973 : 1 is detected. This is an outlier

mainly in total expenditures and is also identified in Doutt and interpreted as an expansionist

policy measure. The tests suggest to model the outlier as additive but the likelihood function

is not very informative on the outlier type. Number four is an IO for 1979 : 2 located in total

expenditures, and is also included in Doutt. In iteration five an AO is detected for 1971 : 1.

Hendry and Mizon (1993) mention the Competition and Credit Control Regulations in 1971 as

a special event but the particular observation is not modelled.

There are still 22 observations for which a dummy is significant according to the individual

critical value χ20.95 (4), but none of these are significant judged at the joint significance level δ
max.
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Iteration Detected outliers Test statistics Critical values Standardized residuals

Date Type τI τA χ2
0.95 (4) χ2

0.9995 (4) mt yt ∆pt rt

1 1973:2 IO 29.785 28.924 9.488 19.942 4.07 0.39 -3.95 -1.90

2 1974:2 AO 24.911 29.874 9.488 19.942 -0.04 1.22 3.28 -1.30

3 1973:1 AO 26.246 27.209 9.488 19.942 -0.51 3.98 -1.36 0.86

4 1979:2 IO 24.799 8.514 9.488 19.942 0.33 4.40 1.03 -0.10

5 1971:1 AO 18.858 22.167 9.488 19.942 2.83 -2.32 -0.02 -0.18

Table 2: Outlier detection. The critical value χ2
0.95 (4) is based on the distribution of individual test

statistics, while χ2
0.9995 (4) is based on the Bonferroni inequality and allows for the fact that in each

iteration we focus on the maximum test statistic.

For the 4 observations of the original dummies not selected in Table 2, 1972 : 4 is individually

and close to jointly significant with a test statistic for an IO of 16.3. The remaining three

are insignificant judged by the individual critical value with test statistics of 6.3 for an IO in

1973 : 3, a test statistic of 7.1 for an AO in 1973 : 4 and a test statistic of 2.9 for an AO in

1979 : 3.

Our preferred model, based on the formal outlier detection, includes 3 additive dummies

and 2 innovational dummies and thereby 20 parameters to dummy variables. The rank deter-

mination based on the preferred specification is presented in row (D) of Table 1 and suggests

a cointegration rank of r = 2. This is in line with the priors of Doornik, Hendry, and Nielsen

(1998) based on economic theory.

This empirical example illustrates that inference on the cointegration rank is sensitive to the

specification of dummy variables, and care should be taken in the design of the empirical model.

Furthermore, it illustrates how a formal outlier detection, combined with a priori knowledge on

the timing of special events in the data, can be a useful tool.

5 Monte Carlo Simulation

In this section we set up a Monte Carlo simulation to analyze how outliers can be modelled

with dummy variables in small samples. In particular, it is of interest to assess if the common

strategy of including unrestricted dummies is robust also to the presence of additive outliers.

As the baseline DGP in the simulations we use the preferred model estimated in Section 4,

where all dummy variables are excluded. This is a 4−dimensional VAR(2) with a cointegration
rank of r = 2.8 We augment the basic DGP with n = 1, 2, 4, 6 impulse indicator variables,

Dt = (Dt (T1) : Dt (T2) : ... : Dt (Tn))
′, where Ti = i · T · (n + 1)−1, to produce IOs or AOs

located equidistantly in the time series. Each outlier is imposed randomly on one of the four

variables, and has a magnitude of 5 times the residual standard deviation of the particular

equation.

Since the set-up involves a fixed number of outliers, the asymptotic effects are negligible,

and we focus on the small sample properties of different estimation strategies9. From the DGP

8The simulation has also been carried out for other DGPs. While the absolute levels of size and power vary

the conclusions on outliers and dummy variables remain unchanged.
9An alternative set-up, where outliers are assumed to occur with a fixed probability and the (expected) number
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we generate samples for t = −101, ..., 0, 1, ..., T and discard 100 observations to minimize the

importance of the initial values (taken from the actual data). For each case the same pseudoran-

dom Gaussian innovations are used. The Monte Carlo results are based on 10000 replications

and the asymptotic standard deviation of an estimator of the true rejection probability, γ, is

given by σγ =
[
γ · (1− γ) · 10000−1]1/2 and for example σ.05 � .002.

5.1 Modelling Known Outlying Observations

To illustrate the ability of different specifications to approximate outlying observations we first

assume that the locations of outliers are known. We estimate the model (1) with µt = µ1t +

µ2t + ...+ µnt, where µit is given by the 6 following configurations of dummy variables:

M0 : µit = 0

M1 : µit = θi0dit

M2 : µit = θi0Dit

M3 : µit = αθi0Dit−1 + θi1dit + θi2dit−1

M4 : µit = θi0Dit + θi1Dit−1 + θi2Dit−2

M5 : µit = A (L) θi0Dit.

Based on each configuration we calculate the Trace tests for rank determination and compare

with the appropriate critical values calculated from a Γ−approximation based of the mean and
variance of the asymptotic distribution estimated in a response surface regression by Doornik

(1998). Furthermore, we analyze the precision of the estimated long-run parameters by imposing

the correct rank, r = 2, and compare the estimated cointegration space, β̂, with the space

spanned by the columns of β in the DGP. The comparison is based on the metric of Larsson

and Villani (2001)10. For the case r = 2 this measure, Λ(β̂, β), is bounded between Λ = 0 if

β̂ ⊂ sp (β) and Λ =
√
2 if β̂ ⊂ sp (β⊥). The distance can be interpreted as a simple measure of

the efficiency of different estimators.

The simulation results for sample lengths T = 75 and T = 200 observations are reported in

Table 3 and Table 4 respectively. Panel (A) and (B) of the tables report rejection frequencies

of the Trace tests. The test Q0 = −2 logQ (r = 0 | r ≤ 4) of no cointegration is (almost) always

rejected and is not reported. Panel (A) reports the rejection frequencies of the test statistic

Q1 = −2 logQ (r ≤ 1 | r ≤ 4) based on a nominal size of 5%. This illustrates the power of

the test of a too restricted model, r ≤ 1, against the unrestricted VAR when r = 2 in the

DGP. Panel (B) reports the rejection frequencies of Q2 = −2 logQ (r ≤ 2 | r ≤ 4), which is the

empirical size of the tests of the (true) cointegration rank r = 2. Finally, panel (C) reports the

average distance Λ(β̂, β) given the correct rank, r = 2.

of outliers increases with the sample length, is used in Franses and Haldrup (1994). In this case the asymptotic

distributions will typically involve nuisance parameters, see also Shin, Sarkar, and Lee (1996) for a comparison

of the two approaches.
10To compare the subspaces span (A) and span (B), we first find an orthonormal basis for each subspace, a and

b say, and decompose b = aγ
1
+ a⊥γ2, where γ1 = (a′a)

−1
a′b = a′b and γ

1
= (a′⊥a⊥)

−1
a′⊥b⊥ = a′⊥b. We now

note that α
⊥
is the as far as we can get from a and the distance is simply measured by the size of the coefficient

γ
2
evaluated by the matrix norm, i.e. Λ = Trace (γ′

2
γ
2
)
1/2

. The measure can also be written as a function of the

angles between all pairs of columns in a and b, see Larsson and Villani (2001).
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In the text we will concentrate on the results for the small sample, T = 75, and make

reference to the medium sample, T = 200, only in case of differences in results.

Estimation model M0. The first column of the tables report results for the basic model,

M0 : µit = 0, which ignores potential outliers. First row in each panel illustrates the benchmark

case where the DGP contains no outliers. In the small sample, T = 75, the Trace test is

somewhat oversized with a rejection frequency of r ≤ 2 against r ≤ 4 of approximately 11%.

The power of the test for r ≤ 1 against r ≤ 4 is reasonably high at around 80%. For T = 200

the actual size is down to 7% and the power is 100%. The size and power properties are specific

to the chosen DGP and constitute the benchmark for alternative specifications.

The following rows illustrate the effects of non-modelled outliers in the data. It appears

that IOs moves the actual distributions to the left, marginally decreasing the size and power.

Panel (C) illustrates that the average precision of the estimated parameters increases with the

number of IOs. This reflects that IOs provide events of large variations, and because IOs follow

the same autoregressive adjustment as the small chocks, IOs can be helpful in revealing the

autoregressive structure. The overall conclusion is that IOs do not seriously distort inference in

the cointegration model, see Doornik, Hendry, and Nielsen (1998) for a similar result.

The effects of ignored AOs are more severe. The size distortion increases markedly with the

number of outliers, confirming the findings in Franses and Haldrup (1994). Furthermore, the

average precision in panel (C) illustrates that AOs are pure noise in the autoregressive model

and they can potentially distort statistical inference.

An important question is now if the outliers can be successfully modelled with dummy

variables. And below we consider a number of different specifications.

Estimation model M1. In the second column outliers are modelled by balanced impulse

dummies, M1 : µit = θi0dit. These dummies are too ‘small’ in the sense that they can at

most create impulses in the non-stationary directions, i.e. column 1 of Figure 1, whereas the

DGP replicates column 3 and 2 respectively. The specification is not unusual, however, and

Juselius (2002, chapter 6) argues that AOs (e.g. typing mistakes) can be described by this kind

of balanced innovational dummies. See also Hendry and Juselius (2001).

In the case of impulse IOs in the data the test based onM1 is clearly under-sized, and the

power is rapidly decreasing. In the case of AOs the size is only marginally distorted but power

is much lower than for the baseline specification. In both cases the combination of power and

size implies that the proportion of cases where the correct rank, r = 2, is selected using the

normal test sequence is markedly lower forM1 than for the basic modelM0.

The same picture appears for the average precision of the estimates of β. Both for IOs and

AOs the results are clearly inferior to ignoring the outliers.

Estimation model M2. In the third column we consider unrestricted impulse dummies,

M2 : µit = θi0Dit. This is probably the most common modelling strategy to control for outliers.

In the case of IOs the estimation model M2 is identical to the DGP and we obtain good

results. The size distortion is decreased compared to the basic model M0, and the test of the

13



Outliers Known location Outlier detection

in DGP M0 M1 M2 M3 M4 M4b M5 M6 M7 M8

(A) Power, Q1 = −2 logQ (r ≤ 1 | r ≤ 4)

0 80.5 ... ... ... ... ... ... 80.9 80.8 81.3

1 IO 79.8 71.0 82.2 87.7 79.9 82.2 80.1 82.8 82.0 83.1

2 IO 78.7 59.4 84.2 92.7 80.7 84.9 79.6 85.0 84.0 85.3

4 IO 77.5 40.2 88.6 97.7 82.0 88.4 79.1 87.7 86.2 89.6

6 IO 75.7 26.5 92.4 99.4 84.2 92.2 78.0 90.6 87.6 92.8

1 AO 80.3 76.0 88.2 79.5 81.5 82.8 80.3 87.6 82.2 81.7

2 AO 80.8 71.9 82.7 79.6 82.0 84.5 79.8 91.9 83.7 82.3

4 AO 83.3 63.5 97.3 82.5 83.5 87.1 79.5 95.8 87.1 84.5

6 AO 85.8 56.8 99.0 87.5 85.3 89.7 79.0 97.4 90.2 86.7

(B) Size, Q2 = −2 logQ (r ≤ 2 | r ≤ 4)

0 10.9 ... ... ... ... ... ... 11.3 10.8 11.6

1 IO 9.6 7.0 9.6 25.0 10.7 11.0 9.7 10.6 10.8 10.8

2 IO 8.8 4.2 9.1 38.7 10.9 11.5 8.9 10.3 10.7 10.6

4 IO 7.9 1.8 7.5 62.3 11.7 12.1 7.9 9.3 10.5 9.6

6 IO 7.2 .7 6.9 79.5 12.5 13.9 7.3 9.4 10.0 9.6

1 AO 12.0 10.3 19.7 12.1 12.5 13.3 10.7 19.6 13.1 12.1

2 AO 13.3 9.7 28.9 13.8 14.8 16.7 10.7 28.1 15.7 13.4

4 AO 17.1 8.5 46.5 19.0 17.9 21.5 10.4 41.4 20.0 16.3

6 AO 20.3 8.5 60.2 28.5 21.4 25.9 10.8 51.0 24.4 19.9

(C) Average distance, given r = 2

0 .2001 ... ... ... ... ... ... .2007 .2007 .2018

1 IO .2014 .2102 .1876 .2091 .1961 .1925 .1964 .1909 .1948 .1912

2 IO .1997 .2148 .1736 .2146 .1892 .1829 .1926 .1798 .1881 .1792

4 IO .1900 .2155 .1571 .2246 .1812 .1717 .1820 .1684 .1790 .1639

6 IO .1825 .2139 .1448 .2379 .1778 .1650 .1755 .1600 .1734 .1537

1 AO .2118 .2139 .2258 .2099 .2080 .2103 .2012 .2255 .2109 .2047

2 AO .2216 .2274 .2466 .2181 .2162 .2204 .2020 .2451 .2225 .2079

4 AO .2346 .2501 .2753 .2365 .2322 .2380 .2046 .2688 .2391 .2165

6 AO .2475 .2729 .2971 .2595 .2521 .2578 .2083 .2876 .2571 .2285

Table 3: Simulation results, T=75. Results for the size and power are the rejection frequencies at a

nominal 5% level of the Trace test for the cointegration rank. Note that the tests are not performed

sequentially. Bold indicates that the estimation model and the DGP coincide. Results are based on

10000 replications.
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Outliers Known location Outlier detection

in DGP M0 M1 M2 M3 M4 M4b M5 M6 M7 M8

(A) Power, Q1 = −2 logQ (r ≤ 1 | r ≤ 4)

0 100.0 ... ... ... ... ... ... 100.0 100.0 100.0

1 IO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

2 IO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

4 IO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 IO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 AO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

2 AO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

4 AO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 AO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(B) Size, Q2 = −2 logQ (r ≤ 2 | r ≤ 4)

0 7.0 ... ... ... ... ... ... 7.0 7.3 7.3

1 IO 7.1 6.2 6.9 23.9 7.3 7.2 6.9 7.2 7.2 7.2

2 IO 6.5 5.0 6.6 40.2 7.2 7.3 6.3 7.0 6.8 6.9

4 IO 6.4 3.6 5.8 65.9 7.1 6.9 5.9 6.9 6.3 6.2

6 IO 6.5 2.8 6.0 81.0 7.5 7.7 6.1 7.3 6.9 6.7

1 AO 7.6 7.3 10.6 7.6 7.6 7.7 7.0 7.7 10.4 7.3

2 AO 8.3 7.6 14.4 7.8 8.1 8.7 7.0 8.3 13.3 7.4

4 AO 9.8 8.0 22.8 9.2 9.1 10.1 6.9 10.0 20.5 7.5

6 AO 11.2 8.4 31.7 11.0 10.4 12.1 6.9 11.8 27.6 7.7

(C) Average distance, given r = 2

0 .0571 ... ... ... ... ... ... .0571 .0571 .0572

1 IO .0573 .0575 .0559 .0566 .0563 .0561 .0567 .0563 .0562 .0561

2 IO .0574 .0578 .0550 .0565 .0559 .0554 .0566 .0558 .0554 .0553

4 IO .0565 .0573 .0527 .0554 .0542 .0534 .0552 .0542 .0536 .0532

6 IO .0551 .0563 .0510 .0555 .0533 .0520 .0536 .0531 .0522 .0517

1 AO .0580 .0580 .0586 .0576 .0576 .0577 .0572 .0577 .0586 .0573

2 AO .0586 .0586 .0599 .0582 .0581 .0583 .0572 .0585 .0599 .0574

4 AO .0598 .0600 .0623 .0591 .0591 .0596 .0573 .0597 .0621 .0576

6 AO .0607 .0611 .0650 .0601 .0600 .0608 .0574 .0613 .0646 .0578

Table 4: Simulation results, T=200. See notes for Table 3.
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too restricted model, r ≤ 1, is very powerful. This picture is confirmed by the results on the

average distance between β and β̂.

In the case of AOs the estimation model with an unrestricted dummy is not well suited. To

remove the isolated outlying observations the estimation model introduces a shift in the levels

of the non-stationary directions. The tests are highly over-sized, with a rejection frequency of

60% for 6 AOs, and the average precision is extremely low. With T = 200 the size is only down

to around 30%. This clearly illustrates that it is not recommendable in practice just to insert

innovational impulse dummies for observations with large residuals.

Estimation modelM3. One possibility for modelling the additive outliers is the specification

(6), where the non-linear restrictions (7) and (8) are not imposed;M3 : µit = αθi0Dit−1+θi1dit+

θi2dit−1.11 This model can still be estimated by standard RRR.

When the DGP contains IOs results are poor and for an increasing number of outliers, the

size approaches 100%. This reflects an additional contributions to the Trace test statistic from

imposing the reduced rank restrictions also on the dummy terms when they are unrestricted

in the DGP, see also Doornik, Hendry, and Nielsen (1998). Note that the distortion does not

disappear for T →∞, see also the results for T = 200.

When AOs are present,M3 is the correct model apart from the restrictions (7) and (8) not

imposed, but the model is costly in terms of degrees of freedom. In longer samples or with a

limited number of outliers the size and power are reasonable and there is a small gain compared

to the basic model M0. But in small samples and with several outliers the loss in degrees of

freedom is prohibitive12.

Estimation model M4. In column five we introduce a general model where the dummies

are included with the full lag structure of the autoregressive model and unrestricted coefficients;

M4 : µit = θi0Dit + θi1Dit−1 + θi2Dit−2. A similar model is applied in Vogelsang (1999) for

univariate Dickey-Fuller unit root tests. This model is interesting because it is (in principle)

robust to both IOs and AOs and can be estimated using RRR. The model is, however, potentially

costly in terms of degrees of freedom and this inefficiency is important in small samples. In the

case of IOs the properties are marginally better than for the basic specification,M0, but is clearly

inferior to the correct innovational specification, M2. For the case of AOs the specification is

comparable to ignoring the outliers in small samples and implies a small gain in larger samples13.

A simple refinement ofM4 is to estimate the general model and then to delete insignificant

dummies to save degrees of freedom. This is applied in modelM4b in columns six. More specif-

ically we delete a dummy if all four t−test statistics (for the hypotheses of dummy coefficients

11For this model we base the critical values on the mean and variance for the basic model augmented with the

moments of n independent χ2 (p− r) distributions, cf. Section 3.
12An interesting feature of this model is that the same test statistics are obtained independent of the magnitude

of the AOs. The important thing is not the magnitude of the actual outliers, but the presence of the dummies in

the estimation model.
13Again we can note, that the same test statistics would have been obtained irrespectively the magnitude of

the AOs, because all contributions to the likelihood function involving the outlying observations are set to zero

by the included unrestricted dummy variables.

16



equal zero) are lower than the conventional 1.96. For the case of IOs M4b is closer to the true

specification, M2, in terms of the average distance. For the case of AOs the results are the

opposite, because the additional zero restrictions imposed inM4b do not bring the model closer

to the correct additive specification.

The broader conclusion of the results from model M1 −M4 seems to be that it is not

really possible in small samples to approximate AOs with simple combinations of unrestricted

dummies.

Estimation modelM5. In columns seven, we finally consider the exact additive specification;

M5 : µit = A (L) θi0Dit, estimated with the switching algorithm.

In the presence of IOs results are comparable to ignoring the outlier. This illustrates that

IOs can not be approximated by additive dummies.

In the case of AOs the estimation model is identical to the DGP. Because the outlying

observations are completely removed from the likelihood function, the size and the power are

by and large similar to the benchmark case with no outliers - and they are independent of the

magnitude of the outliers. There is no potential gain from additive outliers, but using the correct

model it is possible to conduct inference conditional on additive outlying observations.

5.2 Feasible Strategies

In the specifications M0 −M5 we assumed that the locations of outliers were known. In this

subsection we extend the analysis to strategies for modelling outliers, which are feasible in

empirical applications. This introduces the additional cost of detecting the locations of outliers.

First, we consider for comparison a stylized version of the usual practice in applied coin-

tegration analyses; i.e. the use of unrestricted impulse dummies for observations with large

residuals. In particular, we define an outlier as an observation with an absolute value of the

standardized residual larger than 3.39.14 For these observations we insert an unrestricted (inno-

vational) dummy, Dt (Ti). The results are reported under M6 in column eight and are not far

from the results ofM2. The additional cost of searching for the location of outliers thus seems

to be small, but the strategy is disastrous if the outliers are additive.

Next we consider a parallel to M4b in the case of unknown location. Again we define

outliers as absolute residuals larger than 3.39 and insert unrestricted dummies with the full

lag structure, Dt = (Dt (Ti) : Dt−1 (Ti) : Dt−2 (Ti))
′. From this model we delete insignificant

dummies based on standard t−tests. The results are reported underM7. Again the search per

se is not problematic, but the unrestricted dummies are still misspecified in the case of AOs

and the overall gain compared to ignoring the outliers is questionable in small samples, cf. also

panel (C).

Finally, we consider under M8 in column ten the results from applying the formal outlier

detection from Section 3.2.15 In the case of IO the size is relatively constant around 10% and

14The critical value corresponds to a multi-comparison significance level δmax for a nominal 5% and T = 75

observations in a standard normal distribution.
15To minimize the computational burden we only calculate the test for an outliers at a given point in time if

the numerical value of the standardized residual is larger than 2.
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the power for the test of r ≤ 1 is high. The results are not far from the correct model M2, cf.

also the average distance in panel (C). In case of AOs the size is increasing with the number

of outliers. This reflects that in small samples AOs are sometimes mistaken for IOs and that

introduces a distortion similar to one driving the results the for M2. In larger samples, e.g.

T = 200, this effect is small. In terms of the average distance the results are between the optimal

result ofM5 and the basic modelM0. For T = 200 the results are very close to the results of

the correct models both in case of IOs and AOs.

6 Summary and Concluding Remarks

In this paper we have considered the role of outliers and dummy variables in the cointegrated

VAR. First, it was illustrated that inference can be distorted by additive outliers while inno-

vational outliers are less harmful and can actually be helpful in revealing the autoregressive

structure. Second, it was shown that inference based on a misspecified specification of dummy

variables can be seriously misleading. And third, it was very difficult to approximate additive

outliers with innovational dummies. In larger samples it is possible to use a general specification

which nests both alternatives. But in small samples, none of the tried specifications was able

to successfully approximate both IOs and AOs.

Taken together, these results seriously question the usual practice in applied cointegration

analyses of including unrestricted dummy variables to whiten residuals — without concern for the

adequacy of the implied innovational model. That led us to suggest an estimator for the additive

model and to test for the location and types of outliers prior to inference in the cointegration

model. The simulation results based on this procedure are clearly superior to the alternative

feasible strategies.

An additional interesting result of the simulations was that it is clearly preferable to ignore

possible outliers than to model them using a misspecified configuration of dummies. That

suggests that the basic model with no dummies could always be a benchmark specification in

empirical applications.
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Appendix: A Switching Algorithm for the Additive Model

The log likelihood function of the additive model (6) subject to the non-linear restrictions (7)

and (8) is (apart from a constant) given by

logL (α,β,Γ1, ...,Γk−1, β0, µ0,Ω, θ)

= −
T

2
log |Ω| −

1

2

T∑
t=1

[(
A (L) (Yt − θDt)− αβ′0t− µ0

)′
Ω−1

(
A (L) (Yt − θDt)− αβ′0t− µ0

)]
,

and that can be maximized by switching between two conditional maximum likelihood esti-

mations. Consider iteration j. First, conditional on the estimate θ̂j−1 of θ from the previous

iteration, the maximum likelihood estimates ϕ̂j of ϕ = (α, β,Γ1, ...,Γk−1, β0, µ0,Ω) can be found

from RRR of the cointegrated VAR for the corrected data Xt = Yt− θ̂j−1Dt. This enables us to

construct the estimated polynomial Â (L). Secondly, we find the maximum likelihood estimates

θ̂j of θ conditional on ϕ̂j from the estimated residuals, êt = Â (L)Yt − α̂β̂
′

0t− µ̂0, which under

the model (4) and (5) are given by

êt = Â (L) θDt + εt.

For each dummy, Dit, i = 1, 2, ..., n, we can define Ĥit ≡ Â (L)Dit and use the matrix Ĥt =

(Ĥ1t : Ĥ2t : ... : Ĥnt) to rewrite the equation for the estimated residuals as

êt = Ĥtvec (θ) + εt,

where vec (θ) stacks the columns of θ. The varying part of the conditional log likelihood function

is now given by

logL
(
θ
∣∣∣α̂, β̂, Γ̂1, ..., Γ̂k−1, β̂0, µ̂0, Ω̂

)
= −

1

2

T∑
t=1

[(
êt − Ĥtvec (θ)

)′
Ω̂−1

(
êt − Ĥtvec (θ)

)]
,

which is maximized over θ by the GLS type estimator

vec
(
θ̂j

)
=

(
T∑
i=1

(
Ĥ ′

tΩ̂
−1Ĥt

))−1( T∑
i=1

(
Ĥ ′

tΩ̂
−1êt

))
, (12)

see also Tsay, Peña, and Pankratz (2000) and Saikkonen and Lütkepohl (2000) for an application

of a similar two step strategy. The ML estimates are obtained by iterating between the two

steps until convergence.

For the case of dummy variables involving few observations the switching algorithm nor-

mally converges very fast and we can use θ̂0 = 0 as a starting value. In more complicated

situations an initial estimate of θ ignoring the non-linear restrictions (7) and (8) can be used.

A comparison between the switching algorithm and the direct maximization indicates that the

switching algorithm is normally faster and more reliable16 and the closed form solution to the

maximization in each step makes the procedure easy to implement.

16The switching algorithm has been compared with direct maximization using the BFGS algorithm (with

numerical derivatives) in Ox 3.0, see Doornik (2001). More information on the comparison is available from the

author on request.
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It is straightforward to impose restrictions on θ in the GLS step (12). Since θ enters vector-

ized, restrictions of the form

vec (θ) =Mκ

can be considered allowing cross-equation restrictions. Here M is a pn× f dimensional design

matrix, and κ contains the f free parameters. Often it is of interest to test if additive outliers are

present in a subset of the variables only, implying zero restrictions on θ. Another hypothesis of

interest could be if the outliers cancel in the stationary relations, corresponding toM = In⊗β⊥,

with β replaced by the estimate β̂j in each iteration. Without complications, restrictions can

also be imposed on the RRR part of the algorithm.
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