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Abstract
This paper studies the evolution of market shares of portfolio rules
in incomplete markets with short-lived assets. Prices are determined
endogenously. The performance of a portfolio rule in the process of
continuous reinvestment of wealth is determined by the market share
eventually conquered in competition with other portfolio rules. Using
random dynamical systems theory, we derive necessary and sufficient
conditions for the evolutionary stability of portfolio rules. In the case
of Markov (in particular i.i.d.) payoffs these local stability conditions
lead to a simple portfolio rule that is the unique evolutionary stable
strategy. This rule possesses an explicit representation. Moreover, it
is demonstrated that mean-variance optimization is not evolutionary
stable while the CAPM-rule always imitates the best portfolio rule
and survives.
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1 Introduction

We consider an incomplete asset market where a finite number of portfolio
rules manage capital by iteratively reinvesting in a fixed set of assets. As-
sets are short lived but identically “re-born” in every period. Their payoffs
depend on a stationary process in discrete time. Portfolio rules are non-
negative vectors of expenditure shares for assets which may depend on the
past observations. The set of portfolio rules we consider is not restricted to
those generated by expected utility maximization. It may as well include
investment rules favored by behavioral finance models. Consumption is ex-
ogenously determined. In every period in time the available market capital is
given by the total payoff of the assets. Portfolio rules compete for this market
capital—the endogenous price process provides a market selection mechanism
along which some strategies gain market capital while others lose. The par-
ticular case of Arrow securities and simple portfolio rules has been introduced
in the seminal paper of Blume and Easley (1992).

The framework studied here is well suited to analyze the performance
of large institutional investors like pension plans, insurance companies or
mutual funds. Those institutions are investing on asset markets that do
not provide complete insurance against all possible risks. This seems to
be the natural case. Savings and withdrawals are exogenously determined
because they are the pensions and the indemnities to be payed or they are the
liquidity demanded by the clients of the institutions. Institutional investors
do have a considerable impact on asset market prices, face relatively small
transaction costs, and their investment horizon is potentially infinite. Finally
it is not clear at all that institutional investors maximize some infinite horizon
expected utility function.

In this paper we derive a description of the market selection process from a
random dynamical systems perspective. In each period in time, the evolution
of the distribution of market capital (wealth shares) is determined by a map
that depends on the exogenous process determining the asset payoffs. An
equilibrium in this model is provided by a distribution of wealth shares across
portfolio rules that is invariant under the market selection process. It turns
out that (provided there are no redundant assets) every invariant distribution
of market shares is generated by a monomorphic population, i.e. all traders
with strictly positive wealth use the same portfolio rule. A criterion for
evolutionary stability as well as evolutionary instability is derived for such
monomorphic populations. Roughly speaking a portfolio rule is evolutionary
stable if it has the highest exponential growth rate in any population where
itself determines market prices. This implies that an evolutionary stable
investment strategy is robustness against the entry of new portfolio rules. In
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a sense an evolutionary stable population plays the “best response against
itself.”

The stability criterium for the robustness of invariant distributions with
respect to the entry of new portfolio rules singles out one portfolio rule,
say λ∗, that is the unique evolutionary stable strategy, i.e. it drives out any
mutations. Moreover, this investment strategy can successfully invade any
other invariant distribution. According to this rule one should divide wealth
proportionally to the expected relative payoffs of the assets. If asset payoffs
are determined by a Markov process this rule is given by an explicit formula
which is quite easy to apply in actual markets. In the i.i.d. case it even does
not require the knowledge of the actual probabilities driving the payoff pro-
cess. The sample mean of the payoffs is an unbiased estimator for the future
expected payoffs. The effect of this rule on asset prices is that it equalizes
the expected relative returns of all assets—in particular asset pricing is risk
neutral.

Global stability results for a particular version of the evolutionary fi-
nance model presented here are given in Evstigneev, Hens, and Schenk-Hoppé
(2002).

In the case of Arrow securities and i.i.d. payoffs the investment strategy
λ∗ becomes the Kelly rule (Kelly 1956). This portfolio rule maximizes the
expected logarithm of relative returns. Since with Arrow securities “prices do
not matter” (in the sense explained in Section 4), this rule coincides with the
well known rule “betting your beliefs” (Breiman 1961) according to which
income should be divided proportionally to the probability of the states.
Blume and Easley (1992) have obtained the result that the investor whose
beliefs are closest to the Kelly rule eventually gathers total market wealth.

In the incomplete market case, market prices matter in the evolution
of wealth shares. In particular an absolute fitness criterion for investment
strategies does not exist and the method used in Blume and Easley (1992)
cannot be applied. To overcome this difficulty we exploit the idea of evo-
lutionary stability which so far has not been used in any portfolio theory.
The assumption of short-lived assets retained here is not satisfactory with
regards to possible applications. It will have to be generalized in future re-
search. For the complete market case Blume and Easley (2000) and Sandroni
(2000) have recently investigated the case of long-lived assets in an economy
with rational investors who maximize expected discounted utility over an
infinite time-horizon. However, as Blume and Easley (2000) made perfectly
clear, this result is ultimately linked to Pareto-efficiency. Complete markets
are therefore essential in their approach.

We also apply the stability criterium obtained here to demonstrate that
mean-variance optimization can be invaded by any completely diversified
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portfolio rule while the CAPM-rule, which prescribes buying the market
portfolio, is able to always imitate the best portfolio rule and thus survives.

In passing it is worthwhile to mention the relation between the evolution-
ary portfolio theory literature and the classical finance approach to maximize
the expected growth rate of wealth for some exogenously given return pro-
cess. In a series of papers, Hakansson (1970), Thorp (1971), Algoet and
Cover (1988), and Karatzas and Shreve (1998), among others, have explored
this maximum growth perspective. Computing the maximum growth port-
folio is a non-trivial problem. Even if one restricts attention to i.i.d. returns,
when markets are incomplete, there is no explicit solution to this investment
problem in general. Numerical algorithms to compute the maximum growth
portfolio have been provided by Algoet and Cover (1988) and Cover (1984,
1991), but so far practical decisions are rarely based on these ideas. Our
result is interesting also in this respect because the simple portfolio rule that
we obtain shows that considering the equilibrium consequences of expected
growth rate maximization does not make matters more complicated but in-
deed much easier.

In the next section we present the economic model which has the mathe-
matical structure of a random dynamical system. Then we define the equilib-
rium concepts and the stability notions, Section 3. In Section 4 we discuss and
generalize Blume and Easley’s result to general diagonal markets. Section 5
presents our main results which will be proved using a series of propositions
that are also of independent interest. In Section 6 we analyze the evolution-
ary fitness of portfolio rules based on mean-variance optimization. We study
the issue of under-diversified portfolios, and discuss the implication of the
CAPM investment strategy. All proofs are relegated to the Appendix.

2 The Model

Time is discrete and indexed by t. The possible states of nature are deter-
mined in each period in time by the realization of a stationary stochastic pro-
cess with values in some measurable space (S,S). Let (Ω,F ,P, θ) denote its
canonical realization as a metric dynamical system on the path space, i.e. Ω
is the sample path space with representative element ω = (..., ω−1, ω0, ω1, ...),
F = SZ is the corresponding σ-algebra, P is the associated probability mea-
sure, and θ is the shift map (defined by θω(·) = ω(1 + ·)). The family θt,
t ∈ Z, (where θt denotes the t-times iterate of θ) defines a measurable flow
on Ω, i.e. θt+u = θt ◦ θu for all u, t ∈ Z, θ0 = idΩ, and θ is measurable and
measurably invertible. Stationarity implies θP = θ−1P = P. ωt denotes the
state of nature at time t, and the sequence of observations up to the end of
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period t is referred to as ωt. F t = σ{ωu | u ≤ t} denotes the correspond-
ing information set. A sequence of random variables (ξt)t∈Z such that ξt is
measurable with respect to F t is called adapted to the filtration (F t)t∈Z. By
definition, an F t-measurable random variable can only depend on ωt.

There are finitely many investors i = 1, ..., I endowed with wealth wi
0 > 0

at time 0. Assets k = 1, ..., K with K ≥ 2, live for one period only but are
identically re-born in every period. Their payoffs Ak

t (ω) are assumed to be
adapted. We make the following assumption.

Assumption 1 For all t, (1) Ak
t (ω) ≥ 0 for all k and all ω; (2) for each k

there exists a set Ωk ∈ F with P(Ωk) > 0 such that Ak
t (ω) > 0 for all ω ∈ Ωk;

and (3)
∑K

k=1A
k
t (ω) > 0 for all ω.

This assumption ensures that all assets yield non-negative payoffs in all states
of nature, each asset has a strictly positive payoff for a set of states of non-
zero measure, and total payoff of all assets is strictly positive in every state.

In each period in time t every investor selects a portfolio ai
t = (ai

1,t, ..., a
i
K,t)

with values in RK
+ . ai

t : Ω → RK
+ is assumed to be adapted. Given the

portfolio ai
t at time t, the investor’s wealth in period t+ 1 is given by,

wi
t+1 =

K∑
k=1

Ak
t+1(ω) ai

k,t (1)

Letting ρk,t denote the price of asset k in period t, then—provided that the
agent’s wealth is positive—his budget shares are given by,

λi
k,t :=

ρk,t a
i
k,t

wi
t

We define the trading strategy of investor i as a sequence of budget shares
λi

t = (λi
1,t, ..., λ

i
K,t)t≥0. Since ai

t and ρk,t are adapted for all t so is each budget
share λi

t.
Assuming that every investor exhausts his budget in all periods in time,

i.e. the portfolio is chosen such that
∑K

k=1 ρk,t a
i
k,t = wi

t for all t ≥ 0,
every trading strategy λi

t takes values in the unit simplex ∆K := {x ∈
RK

+ |
∑K

k=1 xk = 1}.
The market-clearing prices are given by,

ρk,t =
1

Sk
t

I∑
i=1

λi
k,tw

i
t (2)

where Sk
t > 0, assumed to be adapted, is the total exogenous supply of asset

k at time t. There are no transaction costs. For the market selection process
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to be well defined, we need to guarantee that equilibrium prices ρt are always
positive. A sufficient condition for this is that some trading strategy with
positive initial wealth is completely mixed, i.e. it has only strictly positive
budget shares in every period in time and in every state of nature. We make
the following assumption.

Assumption 2 In every market there is some trading strategy λi
t with initial

wealth wi
0 > 0 that is completely mixed, i.e. λi

t(ω) ∈ int∆K for all ω ∈ Ω.

It is clear from Assumption 1 and equation (1) that any completely mixed
trading strategy with strictly positive wealth in a period of time maintains
strictly positive wealth in all future periods. This ensures that prices are
always well-defined.

Taking into account how equilibrium prices are determined, we obtain a
recursive formula for the total wealth of each consumer. Consumer i’s wealth
in period t+ 1 is given by,

wi
t+1 =

K∑
k=1

Ak
t+1(ω)Sk

t

λi
k,tw

i
t∑I

j=1 λ
j
k,tw

j
t

(3)

and the total market wealth in period t+1, Wt+1 :=
∑

iw
i
t+1, can be equated

as,

Wt+1 =
I∑

i=1

wi
t+1 =

K∑
k=1

Ak
t+1(ω)Sk

t (4)

Note that in the definition of next period wealth we have assumed that no
investor saves or withdraws any wealth. Our results carry over to the case of
identical saving rates.

The prices of the assets, normalized by the market wealth, are given by,

qk,t :=
ρk,t

Wt

=
1

Sk
t

I∑
i=1

λi
k,t

wi
t

Wt

(5)

i.e. the normalized price is a convex combination of the trading strategies for
asset k over the wealth shares wi

t/Wt of investors. qk,t is adapted.
From (3) and (4) we obtain a recursive formula for the evolution of the

wealth (or market) shares ri
t := wi

t/Wt,

ri
t+1 =

K∑
k=1

Ak
t+1(ω)Sk

t∑K
l=1A

l
t+1(ω)Sl

t

λi
k,t r

i
t∑I

j=1 λ
j
k,t r

j
t

(6)
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Finally we define the relative payoff of asset k as,

Rk
t+1(ω) :=

Ak
t+1(ω)Sk

t∑K
l=1A

l
t+1(ω)Sl

t

Assumption 3 (1) The relative payoff of each asset is a stationary random
variable, i.e. Rk

t (ω) = Rk(ωt) = Rk(θtω).
(2) All strategies are stationary, i.e. λi

t(ω) = λi(ωt) = λi(θtω).

For any given set of stationary adapted strategies (λi)i=1,...,I the evolution
of wealth shares (6) can be written as,

rt+1 = f(θt+1ω, rt) (7)

where

fi(θ
t+1ω, r) =

K∑
k=1

Rk(θt+1ω)
λi

k(θ
tω) ri∑I

j=1 λ
j
k(θ

tω) rj
(8)

We refer to equation (7) as the market selection process in the following.
The dynamical description of the market selection process employs the

framework of random dynamical systems (Arnold 1998). The market selec-
tion process (7) generates a random dynamical system in the following sense.
Let f(ω) := f(ω, ·) : ∆I → ∆I . Define ϕ(t, ω, r) = f(θtω) ◦ . . . ◦ f(θω)r
for all t ≥ 1, and ϕ(0, ω, r) = r. In words, ϕ(t, ω, r) is the vector of wealth
shares of all investors at time t when the initial distribution of market shares
is r and the sequence of realizations of states ω prevails.

The family of maps ϕ(t, ω, r) form a random dynamical system on the
unit simplex ∆I . That is, ϕ : N × Ω × ∆I → ∆I , (t, ω, r) 7→ ϕ(t, ω, r) is a
B(N)⊗F⊗B(∆I),B(∆I) measurable1 mapping such that ϕ(0, ω) = id∆I and
ϕ(s + t, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all s, t ∈ N and all ω ∈ Ω. We refer the
reader to the monograph by Arnold (1998) for any additional information.

It is important to emphasize that the random dynamical system generated
by (7) depends on the trading strategies pursued by the investors. That is,
for any set of strategies (λi) there is a unique random dynamical system
generated by (7).

It is straightforward to see that there is no need to consider the evolution
of market shares on the level of individual investors. For example, suppose
two investors with strictly positive wealth follow the same portfolio rule, say
λ1 = λ2. Then the ratio of both investors’ wealth does not change over
time because, in every period in time, they hold portfolios that are identical

1B denotes the Borel σ-algebra, and B(∆I) := B(RI ∩∆I) is the trace σ-algebra.
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up to a multiple. The dynamics of the market selection process does not
change qualitatively if we identify investors with the same portfolio rule.
The economic justification is that these investors can set up a fund which is
owned according to the proportions of the initial contribution.

3 Evolutionary Stability

In this section we introduce the stability concepts needed to analyze the long
term behavior of the wealth shares under the market selection process.

Given a random dynamical system for a set of stationary and adapted
trading strategies (λi), one is particularly interested in those wealth shares
that evolve in a stationary fashion over time. Here we restrict ourselves to
deterministic distributions of market shares that are fixed under the market
selection process (7).2 To specify this notion, we recall the definition of a
deterministic fixed point in the framework of random dynamical systems.
Let a set of strategies (λi) be given, and denote by ϕ the associated random
dynamical system.

Definition 1 r̄ ∈ ∆I is called a (deterministic) fixed point of ϕ if, for all
ω ∈ Ω and all t,

r̄ = ϕ(t, ω, r̄). (9)

The distribution of market shares r̄ is said to be invariant under the market
selection process (7).

By the definition of ϕ(t, ω, r) the condition (9) is equivalent to r̄ =
ϕ(1, ω, r̄) for all ω, i.e. a deterministic state is fixed under the one-step map
if and only if it is fixed under all t-step maps. A technical remark is in order.
The assumption of stationarity discharges us from using the common “al-
most surely,” because any condition or result with this additional restriction
can be transferred into a “for all ω” statement by restricting the space Ω to
an invariant subset of full P-measure. This claim holds here because time is
discrete.

If ri = 0, then ϕi(t, ω, r) = 0 by (7). Therefore, in any set of trading
strategies each unit vector in ∆I (i.e. each vertex) is a fixed point. In words,
the state in which one investor possesses the entire market does not change
over time.

We are particularly interested in those invariant distributions of market
shares which are stable under the market selection process. Loosely speaking,

2See e.g. Schenk-Hoppé (2001) for an application of stochastic invariant distributions—
commonly referred to as random fixed points.
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stability means that small perturbations of the initial distribution of wealth
shares do not have a long-run effect. If an invariant distribution of wealth
shares is stable, every sample path starting in a neighborhood of this invariant
distribution at time zero is asymptotically identical to the sample path of the
invariant distribution of the wealth shares. We will need different notions of
stability; they are defined as follows.

Definition 2 An invariant distribution of market shares r̄ ∈ ∆I is called
stable, if limt→∞ ‖ϕ(t, ω, r) − r̄‖ = 0 for all r in a neighborhood of r̄ for all
ω. The neighborhood may depend on ω.

Given a locally stable invariant distribution of wealth shares r̄, then any
initial distribution of market shares in a small neighborhood of r̄ is asymptot-
ically identical to r̄ as time tends to infinity. It is crucial to allow dependence
of the neighborhood on ω in the above definition. In general there is no proper
deterministic neighborhood of a fixed point r̄ that is attracted to r̄, i.e. the
intersection of all (maximal) neighborhoods can only consist of r̄. This point
is illustrated in Schenk-Hoppé (2002, Section 4.2).

As discussed above, a distribution of market shares r is a distribution
over populations of investors pursuing the same strategy within each group.
Thus the market share ri denotes that fraction of the total market wealth
belonging to the players of strategy λi. Under this assumption it is clear that
all strategies λi are different from each other, i.e. λi 6= λi′ for all i, i′, i 6= i′.

The above definition refers to the stability of a distribution of wealth in
a population with given strategies. However, one would also like to have
a notion of stability in the case that new strategies occur on the market.
We first note that the structure of the market selection process (7) implies
the following extension property. Let (λi)i∈I , I = {1, ..., I}, be any set
of investment strategies. Suppose r̄ is an invariant distribution of wealth
shares for the corresponding random dynamical system on ∆I . Then for
any set (λj)j∈J , J = {1, ..., J} with J ≥ 0 (J = ∅, if J = 0), of strategies,
(r̄, 0, ..., 0) ∈ ∆I+J (J-times zero) is an invariant distribution of wealth shares
for the random dynamical system on ∆I+J associated to the set of strategies
((λi)i∈I , (λ

j)j∈J ).
In the following definition we assume that for a given set of strategies

(λi)i∈I , any set of strategies (λj)j∈J is distinct in the sense that with strictly
positive probability (1) λj 6= λi for all j ∈ J , i ∈ I and (2) λj 6= λj′

for all
j, j′ ∈ J , j 6= j′, i.e. a set of new and distinct strategies is added.

Definition 3 An invariant distribution of market shares r̄ ∈ ∆I (for given
trading strategies (λi)i∈I) is called evolutionary stable, if for all J ≥ 0 and
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all (λj)j∈J , (r̄, 0, ..., 0) ∈ ∆I+J is stable for the random dynamical system
with trading strategies ((λi)i∈I , (λ

j)j∈J ).
A trading strategy is called evolutionary stable, if the invariant distribu-

tion of market shares 1 ∈ ∆1 is evolutionary stable.

For each evolutionary stable distribution of market shares there exits an
entry barrier (a random variable here) below which an arbitrary number of
new portfolio rules do not drive out the incumbent players. Any pertur-
bation, if sufficiently small, does not change the long-run behavior of the
distribution of market shares. The market selection process asymptotically
leaves the mutants with no market share while the market is shared between
the incumbents as unchanged. Note that stability refers to the distribution
of market shares and not to the set of strategies. It may well be the case that
for a given set of strategies there are two different stable invariant distribu-
tions of wealth shares one of which being evolutionary stable and the other
not.

Finally, a corresponding local stability criterion is introduced.

Definition 4 An invariant distribution of market shares r̄ ∈ ∆I is called
locally evolutionary stable, if for all J ≥ 0 there exists a random variable
δ(ω) > 0 such that (r̄, 0, ..., 0) ∈ ∆I+J is locally stable for all sets of portfolio
rules ((λi)i∈I , (λ

j)j∈J ) with mini∈I maxj∈J ‖λi(ω)− λj(ω)‖ < δ(ω) for all ω.
A portfolio rule is called locally evolutionary stable, if the invariant dis-

tribution of market shares 1 ∈ ∆1 is locally evolutionary stable.

A locally evolutionary stable distribution of market shares is evolutionary
stable with respect to local mutations. That is, the strategies that can be
pursued by all mutants are limited to small deviations from existing strate-
gies.

4 Diagonal Payoff Markets

This section extends the selection results for simple strategies in a complete
market of Arrow securities and finitely many states given by Blume and
Easley (1992). We rephrase their model and results in the framework of
random dynamical systems theory—allowing for stationary portfolio rules
and an arbitrary ergodic payoff process with a general set of states. However
we retain the assumption that asset payoffs are diagonal.

Let (Sk)k=1,...,K be a measurable partition of S into sets with strictly
positive measure, i.e. pk := P(... × S × Sk × S × ...) > 0 for all k. Then
Rk(ω) ∈ {0, 1} and Rk(ω) = 1 if and only if ω0 ∈ Sk. A trading strategy of
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investor i is a stationary random variable λi : Ω → ∆K , λi
k(θ

tω) being her
wealth share invested in asset k at time t. By the diagonal payoff structure
we may unambiguously denote by λi

ωt+1
the wealth share invested in that

asset k with ωt+1 ∈ Sk, i.e. λi
ωt+1

=
∑

k R
k(ωt+1)λ

i
k(ω

t).
Due to the assumption of diagonal payoffs (7) simplifies to,

ri
t+1 =

λi
ωt+1

ri
t∑I

j=1 λ
j
ωt+1 r

j
t

The evolution of the ratio of the market shares of any two investors, say i
and j, using completely mixed trading strategies can then be written as,

ri
t+1

rj
t+1

=
λi

ωt+1

λj
ωt+1

ri
t

rj
t

because the normalized asset price,
∑I

j=1 λ
j
ωt+1

rj
t , cancels out for diagonal

securities.
Fix any initial market shares ri

0 > 0 and rj
0 > 0. Then the asymptotic

behavior of the ratio of the two market shares is given by,

lim
T→∞

1

T
ln
ri
T

rj
T

= lim
T→∞

1

T

T∑
t=1

ln
λi

ωt

λj
ωt

= E ln
λi

ω0

λj
ω0

The equality on the far right-hand side of the last equation holds by the
Birkhoff ergodic theorem. The expected value is finite if the strategies are
completely mixed. Consequently we obtain,

lim
T→∞

1

T
ln
ri
T

rj
T

> 0 if and only if E lnλi
ω0
> E lnλj

ω0
(10)

The equation on the left-hand side implies that for all small enough ε > 0,
ln ri

T (ω) ≥ Tε + ln rj
T (ω) for large T . Since ln ri

T (ω) ≤ 0 for all T and all ω,
ln rj

T (ω) → −∞ as T →∞. Thus, we find that ri
T (ω) → 1.

This result implies the following asymptotic behavior of the market selec-
tion process. Those investors who are closest to maximizing the expected log-
arithm of the wealth shares will eventually dominate the market—regardless
of the initial distribution of wealth shares in the population. Equation (10) is
an absolute fitness criterion in the sense that it assigns a value to any invest-
ment strategy which is independent of the population under consideration.
However, note that even in the case discussed here the surviving population
depends on the strategies present in the population.
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The best choice an investor can make in a period t, were strategies not
necessarily adapted, is to set λi

k = 1 (and λi
n = 0 for all n 6= k) if and only if

ωt+1 ∈ Sk. However this requires information from period t+ 1.
Among all adapted strategies the optimal portfolio rule is given by the

random variable λ(ω) = λ(ω0) ∈ ∆K that maximizes

E
[
ln
( K∑

k=1

Rk(θω)λk(ω)
)
| F0

]
= E[ln(λω1) | F0] (11)

where λω1 = λk(ω
0) if and only if ω1 ∈ Sk.

Two particular cases are considered in detail. Let the state of nature
follow an i.i.d. process, then the payoffs Rk(θω) are independent of the past
F0. Thus (11) becomes

∑K
k=1 pk lnλk(ω). Maximizing this expression over

all adapted strategies, one finds λ?
k = pk. The right-hand side of equation

(10) becomes
K∑

k=1

pk lnλi
k >

K∑
k=1

pk lnλj
k

When the number of states and assets is the same, i.e. K = S, Blume
and Easley (1992) case is obtained. Consequently—as in Blume and Easley
(1992)—we obtain that those investors who are closest to maximizing the
expected logarithm of the budget shares λk will eventually dominate the
market. The strategy maximizing the expected logarithm of the budget
shares λk is “betting your beliefs,” i.e. λk = pk for all k. Notice that it is
not important to have a correct assessment of the probability of the states
of nature but only of the event Sk in which the corresponding asset pays off.

Finally suppose, more generally, that the state of nature is determined by
a Markov process with time-homogenous transition probability P (ωt+1, ωt).
Then (11) becomes

K∑
k=1

P (Sk, ω0) lnλk(ω)

Thus λ?
k(ω) = P (Sk, ω0), i.e. the portfolio rule depends on the last observation

ω0. Stationarity gives λ?
k(θ

tω) = P (Sk, ωt). Any further information from
the history is not helpful in the Markov case. It is obvious that λ?

k(θ
tω) =

P (Sk, ωt) is the unique long-run outcome of the market-selection process in
competition with any other portfolio rules.
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5 The Main Results

We now turn to the study of the long-run outcome of the market selection
process in the general incomplete market case. In this section it is shown that
there exists a unique evolutionary stable strategy in any incomplete market.
This portfolio rule has an explicit representation in the Markov (in particular
i.i.d.) case. Moreover, we can show that any other investment strategy is
not even locally evolutionary stable.

As pointed out above, we restrict our analysis to invariant deterministic
distributions of wealth shares. It is first proved that these invariant distri-
butions correspond to monomorphic populations if there are no redundant
assets. We then derive necessary conditions for the (local) stability and in-
stability of such invariant wealth distributions in the general case in which
portfolio rules are adapted. The central mathematical tool is the multiplica-
tive ergodic (or Oseledets’s) theorem for random dynamical systems.

These conditions are used to single out one particular portfolio rule λ?

as being evolutionary stable if all investors use simple portfolio rules, i.e.
strategies that are independent of past observations. In the i.i.d. case we
prove that λ? is the only evolutionary stable portfolio rule in the set of all
adapted strategies. We further show that any other portfolio rule can be
driven out even by portfolio rules arbitrary close to it, i.e. it is not even
locally evolutionary stable.

With a general payoff matrix we can no longer benefit from the cancella-
tion of prices in the evolution of relative wealth shares (an essential property
that was used in Section 4) and there are some important conceptual differ-
ences to the case of diagonal securities. In contrast to that case there is no
longer an absolute fitness criterion for the survival of trading strategies. The
growth rate of any trading strategy now depends essentially on the popula-
tion in which it lives. Restricting attention to the question of local stability of
deterministic invariant distributions circumvents these problems and is still
sufficient to single out a unique evolutionary stable trading strategy. Before
presenting the main results of the paper, we derive two auxiliary results that
are also of independent interest.

We make the following assumption throughout the remainder of the pa-
per.

Assumption 4 There are no redundant assets in the sense that different
portfolios do not yield the same payoff almost surely, i.e. for any two portfo-
lios a1, a2 : Ω → ∆K with a1(ω) 6= a2(ω) on a set of strictly positive measure,∑

k R
k(θω)(a1

k(ω)− a2
k(ω)) 6= 0 on a set of strictly positive measure.

Let us address two specific cases. Suppose there are only finitely many
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states of nature s ∈ S and the payoff matrix (Rk(s))s
k has full rank. If

the state of nature is determined by an i.i.d. process, then Assumption 4 is
satisfied if each state s occurs with strictly positive probability, i.e. ps > 0
for all s ∈ S. If the state of nature follows a Markov process, Assumption 4
is satisfied in particular if all transition probabilities ps,u > 0, s, u ∈ S. In
the Markov case, Assumption 4 corresponds to the notion of the absence
of conditionally redundant assets, see Evstigneev, Hens, and Schenk-Hoppé
(2002).

We have already noted that every distribution of market shares in which
the players of only one portfolio rule possess the entire market wealth is
invariant under the market selection process (and is a deterministic fixed
point). Moreover, if there are no redundant assets there is also a converse to
this observation as the following result shows.

Proposition 1 Only one portfolio rule can have strictly positive wealth in
every population of strategies with a (deterministic) invariant distribution of
wealth shares.

In Proposition 1 all deterministic invariant distributions of wealth shares
are characterized. We next derive a sufficient condition for the stability of
such fixed points under Assumptions 1–4. The following result is central to
the proof of the main results.

Proposition 2 Let the state of nature be determined by an ergodic process.
Given any set of adapted portfolio rules (λi). The invariant distribution of
market shares r̄ = en being concentrated on the players of the completely
mixed n-th strategy is

(i) stable, if

E ln

(
K∑

k=1

Rk(θω)
λi

k(ω)

λn
k(ω)

)
< 0 for all i 6= n; (12)

(ii) unstable, if

E ln

(
K∑

k=1

Rk(θω)
λi

k(ω)

λn
k(ω)

)
> 0 for some i 6= n. (13)

The conditions in Proposition 2 have the following interpretation. In a
situation in which the prices of all assets are determined by the stationary
portfolio rule λn we can measure the exponential growth rate of other, com-
peting portfolio rules. If the invariant distribution of wealth shares r̄ = en
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is stable then the strategy λn, which completely determines the prices, has
a higher growth rate in a neighborhood of this distribution of market shares
than all other portfolio rules in the population. However, if there is at least
one strategy that has a higher growth rate for these prices, r̄ = en is unsta-
ble and the λn-player does not reobtain total market wealth after a slight
deviation from the possessing-everything situation. From the condition (13)
any monomorphic population playing λn(ω) can be successfully invaded by a
trader maximizing the expected logarithm given the prices λn(ω). In partic-
ular any incumbent who maximizes expected utility according to incorrect
beliefs p̃ will be driven out by the trader maximizing expected logarithmic
utility according to the correct beliefs p.

The quantities on the left-hand side of (12) resp. (13) are the Lyapunov
exponents of the linearization of the random dynamical system generated by
(7) (the market selection mechanism) at the vertex of the simplex ∆I , i.e.
the fixed point in which only one investor holds total market wealth. The
eigenspaces correspond to the vertices of the simplex.

Note that stability resp. instability of a status quo strategy λn is deter-
mined by pair-wise comparisons with all other strategies in the population.
This is due to the fact that the linearization at each vertex of the simplex ∆I

is a diagonal matrix. Evolutionary stability of a strategy λn thus means that
condition (i) in Proposition 2 is satisfied for all adaptive strategies λi 6= λn.
There is no need to check for stability of λn in any possible pool of strategies.

The main result of our paper is based on the observation that, allowing
for all possible mutations, only one particular strategy satisfies the necessary
condition for stability derived in Proposition 2.

Denote by

g(λi, λn) := E ln

(
K∑

k=1

Rk(θω)
λi

k(ω)

λn
k(ω)

)
(14)

the exponential growth rate appearing on the left-hand side of (12) and (13).
Suppose there is some portfolio rule λ? such that g(λ, λ?) < 0 for all

λ 6= λ?. Then we obtain

g(λ?, λ) = E ln

(
K∑

k=1

Rk(θω)
λ?

k(ω)

λk(ω)

)
≥ E ln

(
K∑

k=1

Rk(θω)
λk(ω)

λ?
k(ω)

)−1

> 0

by the Jensen inequality because, for every ω, Rk(θω) is a probability measure
on {1, ..., K}. Summarizing this result, we can state the following corollary.

Corollary 1 Suppose all investors employ completely mixed portfolio rules.
Then existence of a portfolio rule that is evolutionary stable implies that all
other portfolio rules cannot be evolutionary stable.
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The task is to show that there is an evolutionary stable portfolio rule and
to give an explicit formula for this rule.

Assume momentarily that the state of nature is determined by an i.i.d.
process. Then the relative payoff of asset k, Rk(θt+1ω) = Rk(ωt+1), is in-
dependent of the past realizations of the state of nature. The probability
measure on the sample path space Ω = SZ is given by the product measure
P = µZ, where µ is the distribution of the state in each period in time. In
this case,

g(λi, λn) =

∫
SN

∫
S

ln

(
K∑

k=1

Rk(s)
λi

k(ω
0)

λn
k(ω0)

)
µ(ds)µN(dω0) (15)

where ω0 = (..., ω−1, ω0) is the observed history at time zero.
If investors do not base their portfolio decision on any past observations

(for instance because they know that the state is determined by an i.i.d.
process), their portfolio rule is determined by a simple trading strategy, i.e. a
deterministic vector of budget shares (λ(ω) ≡ λ ∈ ∆K). Under this assump-
tion the above equation simplifies to

g(λi, λn) =

∫
S

ln

(
K∑

k=1

Rk(s)
λi

k

λn
k

)
µ(ds) (16)

If we want to check for evolutionary stability of a simple strategy λn in the set
of all simple strategies, we need to show that condition (i) in Proposition 2
holds for all λi ∈ ∆K with λi 6= λn, i.e. the term in (16) is strictly less than
zero. Note that for fixed λn ∈ int∆K (or for fixed λi ∈ int∆K) (16) defines
a map from ∆K to R. This observation is also true for both conditions in
Proposition 2 if the state process is ergodic and investors only employ simple
strategies.

The situation is more complicated if, for instance, the status quo strategy
λn depends on the observation ω0. Then the quantity (15) also depends on
the past—albeit the payoffs of all assets are independent of the past. The
stability condition in Proposition 2 depends on the past only through the
investor’s belief that past observations matter in choosing a portfolio.

If we want to check for evolutionary stability of a strategy λn in this
general case it suffices prove the following. For every possible past ω0 and
all deterministic vectors λi ∈ ∆K it holds∫

S

ln

(
K∑

k=1

Rk(s)
λi

k

λn
k(ω0)

)
µ(ds) ≤ 0
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and the inequality is strict on a set of strictly positive P-measure. Thus we
are back to check stability for simple strategies. And the above equation also
defines a map from ∆K to R.

To check for the absence of evolutionary stability of a strategy λn(ω0) it is
sufficient to show that for every possible past ω0 there exists a deterministic
vector λi ∈ ∆K such that∫

S

ln

(
K∑

k=1

Rk(s)
λi

k

λn
k(ω0)

)
µ(ds) ≥ 0

and the inequality is strict on a set of strictly positive P-measure. This
defines a map ω0 7→ λi. The above inequality implies that the (instability)
condition (ii) in Proposition 2 is fulfilled for λi(ω0). However, it is important
to point out that one has to make sure that the resulting map is measurable.
This is true without any further assumptions, for instance, if {s} ∈ S for all
s ∈ S. Then every past ω0 ∈ F0.

Let us finally discuss the Markovian case in which the state of nature is
determined by a Markov process with transition probability P . We find

g(λi, λn) =

∫
SN

∫
S

ln

(
K∑

k=1

Rk(s)
λi

k(ω
0)

λn
k(ω0)

)
P (ds, ω0) P0(dω0) (17)

where P0 is the distribution of the sample path ω0 ∈ SN.
If investors only employ Markovian strategies, i.e. λ(ω0) = λ(ω0) depends

only on the last state of nature, then (17) simplifies to

g(λi, λn) =

∫
S

∫
S

ln

(
K∑

k=1

Rk(s)
λi

k(u)

λn
k(u)

)
P (ds, u)µ(du) (18)

where µ is the stationary distribution of the state of nature in each period.
The (absence of) evolutionary stability of a strategy can be checked analo-
gously to the procedure explained for the i.i.d. case.

We have the following result.

Theorem 1 Let the state of nature be determined by an ergodic process.
Suppose investors only employ simple strategies, i.e. λ(ω) ≡ λ ∈ ∆K. Then
the simple strategy λ? defined by,

λ?
k = ERk(ω) (19)

for k = 1, ..., K is evolutionary stable, and no other strategy is locally evolu-
tionary stable.
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The portfolio rule λ? divides wealth according to the expected relative
payoffs of the assets. For a given asset market of the structure discussed in
this paper, the strategy is very simple to compute; it requires a minimum of
easily accessible information.

Let us consider the case in which the state of nature can only take finitely
many values s = 1, ..., S in detail. Under the assumption of stationarity
P{ω | ωt = s} ≡ ps with ps > 0 by assumption. Therefore, the portfolio
rule λ? in Theorem 1 becomes λ?

k =
∑S

s=1 psR
k(s). It is straightforward to

see that, in the case of diagonal securities, we reobtain the result by Blume
and Easley (1992, Section 3). In this case λ? corresponds to the Kelly rule
of “betting one’s beliefs.”

The assumption in Theorem 1 that all investors employ simple strategies
even though the state is determined by a general ergodic process can be
criticized. However, recall that even if the state is i.i.d. the past observations
can enter into the market selection mechanism (and thus in the condition for
local (in)stability) through investors’ beliefs. That is, if a trader adopts a
proper adapted portfolio rule then the past matters. Note that the stability
criteria in Proposition 2 require an integration over the entire history of the
process because the strategies may depend on the past observations.

We have the following general result in the i.i.d. case.

Theorem 2 Let the state of nature be determined by an i.i.d. process. Then
λ?

k = ERk, k = 1, ..., K, is the only evolutionary stable portfolio rule.
Moreover, if S is the power set of the set of states S, then we find that all

other completely mixed adapted strategies are not even locally evolutionary
stable.

The technical assumption that S is the power set of the set of states S
is fulfilled, for instance, if S is countable (or finite) and S is the Borel σ-
field. We need this condition to ensure measurability of a strategy that is
constructed in the proofs of the next two results to ensure that no portfolio
rule different to λ? can be locally evolutionary stable.

Theorem 3 generalizes this result to the Markovian case. The proof of
Theorem 3 is a straightforward extension of the proofs of Theorems 1 and 2
and is therefore omitted.

Theorem 3 Let the state of nature be determined by a Markov process (with
transition probability P ). Then the adaptive strategy λ? defined by,

λ?
k(ω0) = E(Rk(ω1) | ω0) =

∫
S

Rk(s)P (ds, ω0) (20)
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for k = 1, ..., K is the only evolutionary stable portfolio rule.
Moreover, if S is the power set of the set of states S, then we find that all

other completely mixed adapted strategies are not even locally evolutionary
stable.

The strategy λ? can be interpreted as a Nash equilibrium in the follow-
ing way. For simplicity we restrict the discussion to the i.i.d. case. Recall
the definition of the function g in (16). g(α, β) measures the asymptotic
exponential growth rate of a strategy α in a population in which all asset
prices are determined by strategy β. Using Proposition 2, the assertion of
Theorem 1 can be stated as:

For all α 6= λ?,

g(λ?, λ?) > g(α, λ?) and;

g(α, α) < g(β, α) for some β in every neighborhood of α.

That is to say λ? is the unique symmetric Nash equilibrium in a game with
payoff function g. Moreover, λ? is also a strict Nash equilibrium. Therefore
λ? is the unique evolutionary stable strategy in the sense of Maynard Smith
and Price (1973).

6 Mean-Variance Optimization

In this section we analyze the evolutionary fitness of portfolio rules based
on mean-variance optimization. For clarity of presentation we restrict the
analysis to simple strategies.

The mutual fund theorem states that given all investors build portfo-
lios according to the mean-variance-criterion, then every investor will hold
a combination of the riskless asset and the market portfolio in any capital
market equilibrium. Even though it is very questionable whether indeed all
investors use mean-variance-optimization, investing a big share of wealth in
the market portfolio is a very common behavior.

We extend our previous model by incorporating a strategy that enables
an investor to buy the market portfolio. This extension relates our model to
the classical CAPM3 results.

It is well known that in practice mean-variance portfolios are often under-
diversified, i.e. they typically put positive weight on very few assets only. To
cure this defect it is then usually suggested to modify the mean-variance port-
folio by devoting some positive but small share of the budget on every asset in

3See also Sciubba (1999) for an analysis of CAPM-trading rules in the original Blume
and Easley (1992) setup with diagonal securities.
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the portfolio, ensuring that the portfolio is completely mixed. We show in the
next section that this commonly used “quick fix” of the under-diversification
problem is indeed an improvement of the mean-variance portfolio.

6.1 The CAPM strategy

Consider an investor, say γ, who wants to buy a fraction of the market
portfolio which is the vector of total stock of the assets. In our model each
asset is supplied in one unit. Phrased in terms of budget shares, to buy the
market portfolio, an investor has to divide his wealth proportional to the
asset prices, i.e.,

λγ
k,t =

ρk,t∑K
l=1 ρl,t

≡ qk,t

where k = 1, ..., K. This trading strategy depends on the equilibrium prices
in the current period. An investor who buys the market portfolio has there-
fore to give a demand function to the auctioneer. This calls for an extension
of our previous analysis.

Suppose all other investors pursue simple trading strategies λi ∈ ∆K ,
i = 1, ..., I, i 6= γ. Then the market-clearing condition becomes,

qk,t =
∑
i6=γ

λi
k r

i
t + qk,t r

γ
t

and thus

qk,t =
1

1− rγ
t

∑
i6=γ

λi
k r

i
t

The evolution of the market wealth of the CAPM investor can be equated
as

rγ
t+1 =

K∑
k=1

Rk(θt+1ω)
λγ

k,t r
γ
t

qk,t

=
K∑

k=1

Rk(θt+1ω) rγ
t = rγ

t

Summarizing our findings we can state the following result.

Proposition 3 The market share of a CAPM investor is constant in any
population in which all other players pursue simple strategies. In particular,
a CAPM investor will never vanish nor dominate the market.

The intuition behind this result is given by the representation of the
normalized market-clearing price in the model with only simple strategies
(5). The normalized equilibrium price equals the relative market wealth
invested in that asset. If one player dominates the market in the long-run and
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asymptotically own the entire market wealth, the asset price will reflect the
trading strategy of this investor. The CAPM investor mimics this strategy
because he distributes his wealth according to the relative value of the assets.

From an evolutionary point of view it can be concluded that investing in
the market portfolio is a strategy with strong resistance against the market
selection mechanism. Hence even though buying the market portfolio may
not be in accordance with mean-variance optimization (because not every-
body uses it) it is a convenient rule which automatically imitates the most
successful trading strategy!

6.2 Diversification

We assume that the number of states of nature is finite, s = 1, ..., S.

Corollary 2 Suppose λ̂ is an under-diversified simple strategy, i.e. λ̂k = 0
for at least one k. Denote by λ̂ε

k := (1 − ε)λ̂k + ε/S, 0 < ε ≤ 1, the

corresponding ε-completed strategy. Then λ̂ε is robust against λ̂-mutants for
all sufficiently small ε > 0, i.e. the distribution of wealth shares that assigns
total wealth to the λ̂ε-player is stable in the population (λ̂ε, λ̂).

Even though using the “quick fix” to prevent under-diversification is bet-
ter than investing according to the under-diversified portfolio rule, it is clear
from the main result Theorem 1, that ε-completed under-diversified simple
strategies are not locally stable (if they do not coincide with λ?). However,
we next show that the situation for ε-completed portfolio rules λ̂ε is even
worse. Any completely mixed simple strategy drives out λ̂ε for all small
enough ε > 0.

Corollary 3 Given any completely mixed simple strategy λc and any under-
diversified simple strategy λ̂. Then λ̂ε, defined in Corollary 2, is not robust
against λc-mutants for all sufficiently small ε > 0, i.e. the distribution of
wealth shares that assigns total wealth to the λ̂ε-player is not stable in the
population (λ̂ε, λc).

Appendix

Proof of Proposition 1. We prove the statement by contraposition. Let
λi, i ∈ I, be a family of adapted trading strategies such that λi(ω) 6= λj(ω)
for some i, j ∈ I, i 6= j on a set Ω̄ of strictly positive P-measure. Let r ∈ ∆I

with rirj > 0. We will show that r cannot be invariant.
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Since λi(ω), λj(ω) ∈ int∆K for all ω, and rirj > 0, λi(ω) ri 6= λj(ω) rj for
all ω ∈ Ω̄ and there is no c > 0 such that λi(ω) ri = c λj(ω) rj. This further
implies that the portfolios ai := (λi

k r
i/
∑I

l=1 λ
j
k r

l)k 6= (λj
k r

j/
∑I

l=1 λ
j
k r

l)k =:
aj for all ω ∈ Ω̄ and their payoff-vectors are not multiples. Due to the non-
redundancy Assumption 4, either fi(ω, r) or fj(ω, r) in equation (7) is not
a constant, i.e. takes on different values with strictly positive probability.
Hence r is not invariant in the sense of Definition 1. �

Proof of Proposition 2. The proof is mainly an application of the mul-
tiplicative ergodic theorem for random dynamical systems on manifolds, see
Arnold (1998, Chapter 4).

The random dynamical system describing the evolution of wealth shares is
defined on the simplex ∆I , an I−1-dimensional manifold with boundary. We
therefore transform the system and consider a conjugate random dynamical
system on a subset of the Euclidean space.

Define the projection of the unit simplex,

DI−1 :=
{
y ∈ RI−1 | yi ≥ 0,

I−1∑
i=1

yi ≤ 1
}
⊂ RI−1

+ .

Further, for each n ∈ I define the map

hn : DI−1 → ∆I , hn(y1, ..., yI−1) :=
(
y1, ..., yn−1, 1−

I−1∑
i=1

yi, yn, ..., yI−1

)
.

with inverse
h−1

n (x1, ..., xI) := (x1, ..., xn−1, xn+1, ..., xI).

hn is a C∞-diffeomorphism. We obtain the conjugate random dynamical
system on DI−1,

ψn(t, ω) := h−1
n ◦ φ(t, ω) ◦ hn.

Due to the definition of the spaceDI−1, we can take directional derivatives
in the direction of all unit vectors at all points in the interior of DI−1 relative
to RI−1

+ . That is we can determine the Jacobian of the conjugate system at

all points in {y ∈ RI−1
+ |

∑I−1
i=1 yi < 1} (which is an invariant set for the

random dynamical system ψn).
Note that the origin of RI−1 corresponds to the nth vertex of the unit sim-

plex. The stability properties of these two fixed points are identical because
of the C∞-equivalence of both random dynamical systems.

For notational simplicity we assume without loss of generality that n = I.
Then the partial derivatives of ψI(1, ω, y) = h−1

I ◦ φ(1, ω) ◦ hI(y) are given
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by,

∂ψi
I(1, ω, y)

∂ym

= −
K∑

k=1

Rk(θω) (λm
k (ω)− λI

k(ω))λi
k(ω) yi

(
∑I−1

j=1 λ
j
k(ω) yj + λI

k(ω) (1−
∑I−1

j=1 yj))2

for all i 6= m, and by

∂ψi
I(1, ω, y)

∂ym

= −
K∑

k=1

Rk(θω) (λm
k (ω)− λI

k(ω))λm
k (ω) ym

(
∑I−1

j=1 λ
j
k(ω) yj + λI

k(ω) (1−
∑I−1

j=1 yj))2

+
K∑

k=1

Rk(θω)λm
k (ω)∑I−1

j=1 λ
j
k(ω) yj + λI

k(ω) (1−
∑I−1

j=1 yj)

for all i = m.
The stability properties of eI ∈ ∆I can be determined by evaluating the

Jacobian of ψI at the origin and applying the multiplicative ergodic theorem
of Oseledets. It will be shown that condition (12), resp. (13), ensures that
the top Lyapunov exponent of this linear system is strictly negative, resp.
positive. Results by Wanner (1995), see Arnold (1998, Theorem 7.5.6), ensure
that the dynamic behavior of the linearized system carries over (locally) to
the nonlinear stochastic system.

From the above expressions, we obtain the Jacobian of ψI at y = (0, ..., 0).
It is a diagonal matrix with entry,

Am,m(ω) :=
K∑

k=1

Rk(θω)
λm

k (ω)

λI
k(ω)

The multiplicative ergodic theorem, Arnold (1998, Theorem 4.2.6), implies
that the Lyapunov exponents of the fixed point y = 0 of ψI are given by
limT→∞

1
T

ln |
∏T

t=0Am,m(θtω)|, m = 1, ..., I − 1. The integrability condition
of the multiplicative ergodic theorem is satisfied if E ln |Am,m(ω)| < ∞ for
all m = 1, ..., I − 1. By the Birkhoff ergodic theorem, we find that this limit
is equal to

lim
T→∞

1

T

T∑
t=0

ln

∣∣∣∣∣
K∑

k=1

Rk(θt+1ω)
λm

k (θtω)

λI
k(θ

tω)

∣∣∣∣∣ = E ln

∣∣∣∣∣
K∑

k=1

Rk(θω)
λm

k (ω)

λI
k(ω)

∣∣∣∣∣ (21)

Thus the integrability condition of the multiplicative ergodic theorem is sat-
isfied if the right-hand side of (12) (which is identical to the right-hand side
of (13)) in Proposition 2 is well-defined, i.e. the expected value is finite.

Zero is a stable fixed point of ψI if the term in (21) is strictly negative for
all m = 1, ..., I−1. If (21) is strictly positive for some m, then zero is locally
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unstable. Due to the diagonal structure of the Jacobian, the eigenspaces
correspond to the linear spaces spanned by the unit vectors (restricted to the
positive orthant RI−1

+ ).
The stability of the original system on ∆I at the fixed point eI ∈ ∆I is

determined by the Lyapunov exponents (21). The corresponding eigenspaces
are given by the vertices. All summands in (21) are positive and we thus
have obtained conditions (12) and (13) of the proposition. �

Proof of Theorem 1. Obviously, λ? is a completely mixed strategy, i.e.∑K
k=1 λ

?
k = 1 and λ?

k > 0 for all k. Next we define the auxiliary function,

gβ(α) := E ln

(
K∑

k=1

Rk(ω)
αk

βk

)
(22)

in accordance with Proposition 2. For each fixed strategy β ∈ int∆K ⊂ RK,
gβ : int∆K → R. gβ(α) is the Lyapunov exponent of the distribution of
wealth that assigns total wealth to the ‘status quo’ population that plays
strategy β in a market in which α is the only the alternative strategy.

By Proposition 2 the first assertion of the theorem follows if we can show
that gλ?(α) < 0 for all α ∈ int∆K with α 6= λ?.

We prove that gβ(α) is strictly concave for all β ∈ int∆K and that gλ?(α)
takes on its maximum value at α = λ?.

To ensure strict concavity it suffices to show that α 7→ gβ(α) is strictly
concave on the space RK

++, because restriction of the domain to the linear sub-

space int∆K preserves strict concavity. The function ln
∑K

k=1(R
k(ω)αk/βk)

is concave for all ω and—due to the no-redundancy Assumption 4—strictly
concave on a set of positive measure. Therefore gβ(α) is strictly concave for
each fixed β ∈ int∆K.

We can now employ that λ? is the unique maximum of gλ?(α) on int∆K

if all directional derivatives at this point are zero.
The partial derivative of gβ(α) with respect to the i-th component αi is

given by
∂gβ(α)

∂αi

= E
Ri(ω)/βi∑K
k=1R

k(ω)αk

βk

Observe that interchanging integration and differentiation is allowed because
ln(
∑K

k=1R
k(ω)αk/βk) is integrable for each fixed α (follows from ERk(ω) ≤

1 <∞ for all k) and E(Ri(ω)/
∑K

k=1R
k(ω)) ≤ 1 <∞ (this follows from the

fact that Rk(ω) ≥ 0 for all k and all ω by assumption). The last equation
implies

∂gλ?(λ?)

∂αi

= E
Ri(ω)

λ?
i

= E
Ri(ω)

ERi
≡ 1
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for all i = 1, ..., K, since
∑K

k=1R
k(ω) ≡ 1 for all ω.

The directional derivative of gλ? in the direction (dα1, ..., dαK) with the
restriction

∑K
k=1 dαk = 0 (which is a vector in the simplex) is equated as

K∑
i=1

∂gλ?(λ?)

∂αi

dαi = 0.

Corollary 1 ensures that any portfolio rule different to λ? is not evolutionary
stable.

Let us next prove that any strategy β 6= λ? with β ∈ int∆K is not locally
evolutionary stable. Since—due to the i.i.d. assumption—the dependence of
the strategy β on the past ω−1 does not affect the expected value in Propo-
sition 2, cf. equation (16), we can restrict our analysis to simple strategies β.
A strategy β 6= λ? is not locally evolutionary stable, if for any neighborhood
of β there exists an α such that gβ(α) > 0. It suffices to show that the
directional derivative of gβ at β is strictly positive in one direction.

Since β 6= λ? and both are points in the simplex there exists i 6= j with
βi > λ?

i and βj < λ?
j . Note that we have assumed a minimum of two assets.

The directional derivative of gβ at β in the direction dα given by dαi =
−1/2, dαj = 1/2, and zero otherwise, is given by,

K∑
k=1

∂gβ(β)

∂αk

dαk =
K∑

k=1

ERk

βk

dαk =
1

2

(
λ?

j

βj

− λ?
i

βi

)
> 0.

�

Proof of Theorem 2. This result follows mainly from an application of
the proof of Theorem 1. For any adapted strategy λi(ω) = λi(ω0) with
λi(ω) 6= λ? on a set Ω̄ of strictly positive P-measure we have the following.
Fix any ω−1 ∈ SN. Then gλ?(λi(ω0)) ≤ 0 for all ω and the inequality is strict
for all ω ∈ Ω̄, cf. proof of Theorem 1. This implies that condition (i) in
Proposition 2 holds. Therefore λ? is evolutionary stable.

To prove that no other adapted strategy can be evolutionary stable, fix
any adapted strategy λi(ω) = λi(ω0) with λi(ω) 6= λ? on a set Ω̄ with P(Ω̄) >
0. For every fixed ω0 ∈ SN, we employ the procedure that has been applied
in proof of Theorem 1 to find a strategy such that for a strategy, say λj,
gλi(ω0)(λ

j) ≥ 0 where the inequality is strict for all ω ∈ Ω̄.
If S is the power set of S, then F is the power set of SZ. Therefore the

strategy λj(ω) := λj(ω0) is measurable. By construction it is also adapted
and in any prescribed neighborhood of λi. We have defined λj in the way
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that condition (ii) in Proposition 2 holds for the pair of strategies λi, λn = λj.
As a result the adapted strategy λi is not evolutionary stable. �

Proof of Corollary 2. According to Proposition 2(i) it suffices to show
that

E ln

( K∑
k:λ̂k>0

Rk(ω)
λ̂k

(1− ε)λ̂k + ε/S

)
< 0

for all small ε > 0. The left-hand side of this equation is strictly increased by
omitting ε/S in the denominator. We thus obtain the sufficient condition,

E ln

( ∑
k:λ̂k>0

Rk(ω)

)
≤ ln(1− ε) (23)

Since there is at least one k such that λ̂k = 0, we find that
∑

k:λ̂k>0R
k(ω) < 1

on a set of positive measure (the term is bounded by 1 for all ω), the left-
hand side of (23) E ln

(∑
k:λ̂k>0R

k(ω)
)
< 0. Therefore (23) is satisfied for all

small enough ε. �

Proof of Corollary 3. Again we employ Proposition 2. The local instability
result says that the assertion of the Corollary is true, if

E ln

(
K∑

k=1

Rk(ω)
λc

k

(1− ε)λ̂k + ε/S

)
> 0 (24)

for all small ε > 0.
Noting that

K∑
k=1

Rk(ω)λc
k

(1− ε)λ̂k + ε/S
=
∑

k:λ̂k>0

Rk(ω)λc
k

(1− ε)λ̂k + ε/S
+
∑

k:λ̂k=0

Rk(ω)
S λc

k

ε

λc
k > 0 for all k, and Rk(ω) > 0 on a set of positive measure for all k with

λ̂k = 0, we find that the left-hand side of (24) tends to infinity as ε→ 0. �
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