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Abstract

We characterize the restrictions imposed by the minimal I(2)-to-I(1)
transformation that underlies much applied work, e.g. on money demand
relationships or open-economy pricing relationships. The relationship be-
tween the parameters of the original I(2) vector autoregression, including
the coefficients of polynomially cointegrating relationships, and the trans-
formed I(1) model is characterized. We discuss estimation of the trans-
formed model subject to restrictions as well as the more commonly used
approach of unrestricted reduced rank regression. Only a minor loss of
efficiency is incurred by ignoring the restrictions in the empirical exam-
ple and a simulation study. A properly transformed vector autoregression
thus provides a practical and effective means for inference on the parame-
ters of the I(2) model.
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1 Introduction

This paper is motivated by a rich empirical literature applying cointegration
analysis in examining the levels and the growth rates of macroeconomic vari-
ables and their relationships. Main examples are relationships that involve the
growth rates of nominal variables, e.g., the rate of inßation, wage growth, or the
money growth rate, and real or relative magnitudes of such variables, e.g. real
wages, real money, or the markup, see Coenen and Vega (2001), Crowder, Hoff-
man, and Rasche (1999), or Doornik, Hendry and Nielsen (1998) for examples.
Other studies consider so-called stock-ßow relationships, e.g. between income,
consumption, and wealth as in Hendry and von Ungern-Sternberg (1981), or
between sales, production, and inventories at the industry level as in Granger
and Lee (1989).
The time series of the rate of inßation�at least over the post-WWII period�

is often treated as being integrated of order one, denoted I(1),1 in the literature
on relationships between nominal variables. This carries an immediate implica-
tion that price levels are I(2) and has prompted a ßurry of statistical research
into models of I(2) variables, see Haldrup (1998) for a recent survey. Recent
research has also established that the study of stock-ßow relationships ought
to be conducted within an I(2) framework, see Engsted and Johansen (1999).
Still, with few exceptions the full-blown I(2) analysis tends to be avoided by the
applied literature. Instead most studies rely on transformations that partly dif-
ference the data vector. The widespread use of transformations in dealing with
I(2) variables seems related to the fact that inference in I(2) models is difficult
in the sense that few hypotheses allow the usual asymptotic χ2 inference. In
particular, this holds for hypotheses on the so-called polynomially cointegrating
relationships that relate levels and growth rates of the process.
The present paper offers a general and formal characterization of the partly

differencing approach. SpeciÞcally, we derive the properties of a transformed
vector process obtained by partly differencing an I(2) process. The transforma-
tion eliminates the I(2) trends while retaining possible cointegrating relation-
ships among the variables. A case is examined in which the original process
is generated by a vector autoregression (VAR). The transformation examined
is minimal in terms of the amount of a priori information on the parameters
required to achieve a valid reduction from I(2) to I(1). Throughout, the validity
of a priori parameter restrictions will be taken as given. Clearly, in empirical
applications their validity should be tested.2 A properly transformed process
will satisfy a VAR and inference on the full set of cointegrating parameters can
be achieved by standard I(1) methods.
The parameters of the transformed VAR are subject to certain restrictions.

1A process is integrated of order d, denoted I(d), if it becomes stationary only after Þrst-
differencing d times, see Johansen (1996) for the formal deÞnition.

2Kongsted (2002) examines the properties of X̃t under invalid a priori parameter restric-
tions. Tests of the validity of the transformation are derived by Kongsted (1998) based on the
two-step I(2) algorithm of Johansen (1995a) and by Johansen (2002) based on the maximum
likelihood estimator of vector autoregressions with I(2) restrictions.
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One set of restrictions is shown to Þt directly into the standard I(1) reduced
rank regression analysis, see Johansen (1996). Another set requires different and
more elaborate estimation techniques and is commonly ignored in applied work.
Moreover, we Þnd that standard methods for inference on the cointegration
rank employ an alternative hypothesis which is irrelevant under the assump-
tions maintained in transforming the data. The likely consequences of ignoring
these considerations in terms of the resulting efficiency loss are explored in an
empirical example and a small-scale simulation experiment. The main objective
lies in analyzing if the transformed model can provide a practical and efficient
means for inference on the parameters of the original I(2) model.
The paper is outlined as follows: Section 2 deÞnes the I(2) model assumed

to generate the original data and the class of transformations analyzed. The
structure of cointegrating relationships and common stochastic trends in the
transformed model is also derived in this section and the parameters of the I(2)
model are recovered. Section 3 collects the results on parameter restrictions im-
plied by the transformation and outline some estimation algorithms that impose
those restrictions. Section 4 provides an empirical illustration based on Baner-
jee, Cockerell and Russell (2001) and uses it to set up a small-scale simulation
experiment.
Some notation and deÞnitions are used throughout: For a p× r matrix α of

rank r, let α⊥ denote a basis of the p×(p−r) orthogonal complement and deÞne
ᾱ = α(α"α)−1. For β (p× r) and η (p− r × s), s < p− r, deÞne β1 = β̄⊥η and
β2 = β⊥η⊥. The matrices β, β1, and β2 are thus mutually orthogonal. Also
note the relationship I = V (B"V )−1B"+ b(v"b)−1v" where V = v⊥ is p× (r+s),
B = b⊥, and |v"b| "= 0, see Hansen and Johansen (1998).

2 A Minimal Transformation from I(2) to I(1)
This section derives the process obtained by a minimal transformation from
I(2) to I(1), relating its cointegration properties and common stochastic trend
structure to the original I(2) process. Because the precise I(2) conditions play
a major role in deriving the implied restrictions, the section will brießy set up
the VAR of the original data based on Johansen (1992) and Rahbek, Kongsted
and Jørgensen (1999). Then, a minimal I(2)-to-I(1) transformation is deÞned
and the transformed VAR is derived.

2.1 The Original I(2) Process

The starting point for the analysis is a p-dimensional I(2) vector time series,
Xt. The original process satisÞes the kth order vector autoregression written in
a parameterization suitable for I(2) processes,

∆2Xt = ΠXt−1 − Γ∆Xt−1 +
k−2!
i=1

Ψi∆
2Xt−i + µ0 + µ1t+ εt, (1)
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for t = 1, . . . , T . For the statistical analysis εt is assumed to be identically and
independently distributedN(0,Ω) terms and the initial observations, X−k+1, . . . ,X0,
are taken to be Þxed.
Assuming that the roots of the characteristic polynomial of (1) are either

at one or outside the unit circle and maintaining a further rank condition, see
Johansen (1992), the parameters of (1) should satisfy the following reduced rank
conditions for Xt to be an I(2) process,

Π = αβ" and α"⊥Γβ⊥ = ξη
". (2)

Here, α and β are p × r matrices of full rank, whereas ξ and η are (p − r) × r
and also of full rank.
The cointegration structure of Xt and the structure of its common stochastic

trends are determined by (2) as derived in Johansen (1996, section 4.3). There
are q = p−r−s common I(2) trends embodied in Xt, represented as α"2

""
εi

with α2 = α⊥ξ⊥. They are loaded into the Xt process by a matrix which is
proportional to β2 = β⊥η⊥. The common I(2) trends are eliminated by the full
set of r + s cointegrating vectors (β,β1) where β1 = β̄⊥η. Both sets of linear
combinations, β"Xt and β

"
1Xt are I(1) in general and include the Þrst-differenced

I(2) component, α"2
"
εi. The s linear combinations, β

"
1Xt, in addition includes

the genuine I(1) trend of the system, α"1
"
εi, where α1 = ᾱ⊥ξ, and do therefore

not cointegrate any further. The r linear combinations, β"Xt, on the contrary,
cointegrate to stationarity with ∆Xt, producing a second layer of cointegration
reßected in the r polynomially cointegrating relations,

St = β
"Xt − δβ"2∆Xt, (3)

which are I(0). This relationship includes the polynomially cointegrating para-
meter, δ = ᾱ"Γβ̄2, of dimensions r × q. Note that if r > q, there are fewer I(2)
trends than polynomially cointegrating relationships and r − q directly cointe-
grating relationships can be deÞned among the Xt variables as δ

"
⊥β

"Xt.
In terms of the deterministic terms in (1) a speciÞcation will be considered

that allows the process Xt to be linearly trending in all directions whereas, by
assumption, no quadratic trends can be present. This is the model of Rahbek et
al. (1999), which requires the parameters of the constant and linear drift terms
in (1) to be restricted as

α"⊥µ0 = −ξη"0 − α"⊥Γβ̄β"0 (4)

and
µ1 = αβ

"
0, (5)

where η"0 and β
"
0 are vectors of dimensions s and r. Transforming the process

Xt will in most cases also impose restrictions on the deterministic part.

2.2 The Transformation

The transformed process is deÞned and analyzed under a speciÞc set of assump-
tions on the parameters of the original process, Xt. Those assumptions reßect
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a situation in which there are strong a priori expectations of some number of
common I(2) trends being shared in certain known proportions by a (sub)set of
variables in Xt.3

A common example would be that one nominal trend is reßected by sev-
eral I(2) variables in equal proportions, e.g. by the price level and the money
stock, or by several price measures, as in the empirical application below. The
transformed process then includes variables that reduce to I(1) either by linear
transformation, e.g. the real money stock and relative prices (along with any
real variables in Xt), or by Þrst-differencing as for instance the rate of inßation.
In general terms, the transformation starts from a known matrix b of dimen-

sion p× q. The transformed vector process, �Xt, is deÞned by

�Xt =

#
B"Xt

v"∆Xt

$
≡
#
Zt

Ut

$
(6)

where B = b⊥ is p× (r+s). The p×q matrix v that deÞnes the Þrst-differenced
term should satisfy |v"b| "= 0. Throughout b is assumed to satisfy orthogonality
in terms of the full set of cointegrating vectors,

b"(β,β1) = 0. (7)

2.3 The Structure of the Transformed Process

Under the condition (7) the process �Xt will be I(1) with cointegrating rank
r. This is shown by Kongsted (2002) who also examines the general case of a
potentially invalid transformation that does not achieve the reduction from I(2)
to I(1). The present paper examines the case that (7) is indeed satisÞed. Next,
we characterize the parameter restrictions implied by the fact that �Xt derives
from the I(2) process Xt by this particular transformation. Moreover, it will be
shown explicitly how to recover the parameters of the original I(2) model.
The matrix of loadings of the I(2) common trends, β2, is known (up to a

normalization) under the condition (7) and b is a valid basis for β2. Similarly,
the full set of cointegrating vectors can be given the representation

(β,β1) = B(ϕ, (B
"B)−1ϕ⊥) (8)

for some (r+s)× r matrix ϕ of full rank. The condition imposed on the matrix
v ensures that linear combinations of Þrst-differenced process that are needed
in order to recover the polynomially cointegrating relationships (3) are in fact
included in Ut.
The transformation requires b and thus the number of common I(2) trends

in the system, q = p − r − s, to be known. The number of polynomially
cointegrating relationships, r, and the number of genuine I(1) common trends
amongst the variables, s, are only restricted by their sum, r + s. This reßects
a view that often less a priori information is available on r and s. Note that

3The transformation is denoted a nominal-to-real transformation in Kongsted (2002) since
it typically involves going from a system of nominal variables to a real system.
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the transformation leaves unrestricted the relationship between B and each of
the sets of cointegrating vectors, β and β1. In that sense, (6) is the minimal
transformation that achieves the reduction from I(2) to I(1).
Next, the parameters of the transformed process �Xt will be derived. To this

end, the conditions Π = αβ" and µ1 = αβ"0 are imposed in (1) which is then
premultiplied by the non-singular matrix M = (B, v)" to obtain#
B"∆2Xt

v"∆2Xt

$
=

#
B"αβ"Xt−1

v"αβ"Xt−1

$
−

#
B"Γ∆Xt−1

v"Γ∆Xt−1

$
+

k−2!
i=1

#
B"Ψi∆

2Xt−i

v"Ψi∆2Xt−i

$
+

#
B"αβ"0t
v"αβ"0t

$
+

#
B"(µ0 + εt)
v"(µ0 + εt)

$
. (9)

Then the deÞnitions of Zt and Ut are applied and A = V (B"V )−1 and a =
b(v"b)−1 are deÞned. Substituting ∆Xt = A∆Zt + aUt in (9), and Þnally col-
lecting terms, a set of equations for �Xt is obtained,

∆ �Xt = �Π �Xt−1 +
k−1!
i=1

�Γi∆ �Xt−i + �µ1t+ �µ0 + �εt, (10)

where �εt = Mεt, �µ0 = Mµ0 and �µ1 = Mαβ"0. This is a VAR(k) for the
transformed variables in error correction format, the standard representation
for cointegration analysis of I(1) processes, see Johansen (1996). Comparing (9)
and (10) the parameters of the transformed VAR are given by:

�Π =

#
B"αϕ" −B"Γa
v"αϕ" −v"Γa

$
,

�Γ1 =

#
I +B"(Ψ1 − Γ)A B"Ψ1a
v"(Ψ1 − Γ)A v"Ψ1a

$
,

�Γi =

#
B"(Ψi −Ψi−1)A B"Ψia
v"(Ψi −Ψi−1)A v"Ψia

$
, i = 2, . . . , k − 2,

�Γk−1 =

# −B"Ψk−2A 0
−v"Ψk−2A 0

$
.

The structure of the cointegrating relationships in the transformed model
can be analyzed by applying a result from Johansen (1992), that for the I(2)
process it holds that

Γ = Γβ̄β" + (αᾱ"Γβ̄1 + α1)β
"
1 + αᾱ

"Γβ̄2β
"
2. (11)

Post-multiplying by a = b(v"b)−1 will eliminate the Þrst two terms because b is
a valid basis for sp(β2). Thus, Γa = α�δ with �δ = δb"b(v"b)−1 where δ reßects
the rule adopted for normalizing β2 in the I(2) model. Substituting for Γa in
the above expression for �Π it is seen to be the product of p× r matrices

�β =

#
ϕ

−�δ"
$
and �α =Mα =

#
B"α
v"α

$
. (12)
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The full set of I(2) cointegrating parameters is seen to be recovered from
the cointegrating parameters of the transformed process, �β. SpeciÞcally, β =
Bϕ and β1 = B̄ϕ⊥. A particularly useful result concerns the parameter δ
of the polynomially cointegrating relationship (3) which can be recovered as
δ = �δv"b(b"b)−1. It enters the transformed model as a standard I(1) cointegrating
parameter for which there is a well-developed theory of inference, see Johansen
(1996).
It can also be noted that sp(�δ) equals sp(δ) which means that if r > q we can

deÞne �δ⊥ = δ⊥ and produce r−q linear combinations of �β with a zero coefficient
for Ut. These reßect the directly cointegrating relationships that may exist in the
I(2) model. In the general case, restrictions on elements of �δ can be imposed as
restrictions on �β.4 Note that a zero restriction on any linear combination of the
last p−r−s rows of �β implies that certain linear combination of the differenced
common I(2) trend does not enter the polynomially cointegrating relationship
of the I(2) model.
The matrix of equilibrium-correction loadings of the levels term in (1), α, is

recovered as
α =M−1�α

where M−1 = (V (B"V )−1, b(v"b)−1). Because �Xt is I(1) and satisÞes the VAR
(10) we can apply a result on weak exogeneity from Johansen (1992b): If �c"�α = 0
for some p × (p − m) matrix �c with m ≥ r, then the process �c" �Xt is weakly
exogenous for �β. The equivalent condition in terms of α is c"α = 0 with c =M "�c.
This shows that if β2 is known then imposing a condition on α�or, equivalently,
α⊥�is sufficient for efficient inference on the cointegrating parameters. This
simpliÞes matters considerably as compared to the unrestricted I(2) case for
which the general result of Paruolo and Rahbek (1999) holds that c"Xt is weakly
exogenous for the parameters (β,β1, δ) if the condition c

"(α,α1,Γβ̄) = 0 is
satisÞed.
Finally, in order to recover α1 and α2 it is useful to specify the common

trends structure of the transformed process. The p − r common I(1) trends
of the transformed process are given by �α"⊥

"
�εi with �α⊥ = (M−1)"α⊥ and

therefore
�α"⊥
!

�εi = α
"
⊥M

−1
!

Mεi = α
"
⊥
!

εi. (13)

As sp(α⊥) = sp(α1,α2) this shows that the common trends of the original
I(2) process are fully recovered by the transformed I(1) process. Both sets of
common trends now enter as I(1) stochastic trends. To separately identify α1

and α2 based on the transformed process we examine the matrix of loadings of
the common trends. It is proportional to the orthogonal complement, �β⊥, and
conveniently represented as

�β⊥ =
#
ϕ⊥ ϕ̄δ
0 v"b(b"b)−1

$
. (14)

4This includes identifying restrictions which can be imposed on δ̃ with the usual caveat
that the structure is in fact identifying according the conditions laid out by Johansen (1995b).
In particular, one should not be able to impose a full row of zeros in δ̃

"
. This is testable by

standard I(1) tools as a row restriction on β̃.
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Two observations on the common trends structure emerge directly from (14).
First, the fact that |v"b| "= 0 implies that Ut = v

"∆Xt in itself is non-cointegrating,
that is, any linear combination of the components the q-dimenstional process
Ut would remain I(1). Essentially, the full set of common I(2) trends of the
original process carry over in Þrst differences via Ut. Secondly, the particular
representation in (14) separates the last q columns related to the differenced
I(2) trend, α"2

"
εi, from the Þrst s columns related to the genuine I(1) trend,

α"1
"
εi. To see this, note that α"2

"
εi is the only common trend left in Ut due to

Þrst-differencing. Thus, α"1
"
εi produce zero loadings in Ut which can be used

as part of the identiÞcation scheme of a structural common trends model along
the lines of King, Stock, Plosser and Watson (1991), see also Warne (1993).
Economic theory may suggest alternative identifying assumptions but the dif-
ferent roles assigned to α"1εt and α"2εt due to their very different effects in the
I(2) model would seem suggestive for their economic interpretation as well.

3 Restrictions and Estimation

The parameters of the transformed VAR in (10) are subject to certain restric-
tions that derive from the structure of the original process, Xt, and the trans-
formation itself. The restrictions can be categorized in two groups in practical
terms.
A Þrst group of restrictions relate to the reduced rank of the coefficient ma-

trix of the levels term, �Π. This leads to the parameterization �Π = �α�β
"
. More-

over, the coefficient of the linear trend can be seen to be restricted accordingly,
that is,

�µ1 = �αβ
"
0. (15)

The reduced rank of �Π and (15) are straightforward to implement in the reduced
rank regression algorithm for I(1) models with a restricted linear term, see
Johansen (1996).
A second group of parameter restrictions on the transformed VAR do not

fall naturally into the reduced rank regression framework. Evidently, there are
zero restrictions on the coefficients of ∆Ut−k+1, restricting the last q columns
of the last lag coefficient, �Γk−1. Moreover, if the I(2) process has restricted
deterministic terms, conditions such as (4) carry over to the transformed model.
SpeciÞcally, as (4) serves to exclude the possibility of quadratic trends in Xt,
the Þrst-differenced component in �Xt, Ut = v

"∆Xt, can have no linear trend.
The latter group of restrictions are commonly ignored in applied work. The

aim of the empirical example and the simulation experiment below is to assess
the importance of the resulting efficiency loss. Before turning to this part we
outline the estimation algorithms adopted.

3.1 Reduced Rank Regression

For completeness we Þrst outline the standard case of reduced rank regression.
This is based on a VAR(k) of the transformed variables, �Xt, with a restriction
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on the linear trend term similar to (5). Maximum likelihood estimation of this
model amounts to solving the eigenvalue problem%%λS11 − S10S

−1
00 S01

%% = 0,
where Sij = T−1

"T
t=1RitR

"
jt are sample moment matrices, and R0t and R1t

are least squares residuals of regressing∆ �Xt and ( �X "
t−1, t)

" respectively onWt =

(∆ �X "
t−1,∆ �X

"
t−2, . . . ,∆ �X

"
t−k+1, 1)

", see Johansen (1996, chapter 6). This yields
p + 1 ordered eigenvalues 1 > &λ1 > &λ2 > ... > &λp > &λp+1 = 0. The MLE of

(�β
"
,β0)

" is given by the eigenvectors corresponding to the r largest eigenvalues.
Furthermore the likelihood ratio test for a reduced rank of r compared to the
full rank alternative can be written as a function of the eigenvalues as the Trace
test statistic

Qr = −2 logQ
'
rank(�Π) ≤ r | rank(�Π) ≤ p

(
= −T

p!
i=r+1

log
'
1− &λi

(
. (16)

Note that by not imposing the restriction on Ut−k+1 one more initial observation
is necessary for the unrestricted model.

3.2 Restriction on the Lagged First-Differences

The redundancy of Ut−k+1 is implied by the hypothesis

H0 : )Γk−1 =
'
γp×(r+s), 0p×q

(
,

where γ contains the free parameters. To impose the restriction we modify the
reduced rank regression described above. In particular we modify the vector of
unrestricted variables to obtain

W ∗
t =

#
∆ �X"

t−1,∆ �X
"
t−2, . . . ,∆ �X

"
t−k+1

#
Ir+s

0q×(r+s)

$
, 1

$"
whereby Ut−k+1 is excluded. Note that each equation of the VAR still contains
the same set of variables and the effect can still be partialled out using least
squares.

3.3 Restriction on the Trend Term

In order to impose that a linear trend is absent in Ut we Þrst rewrite (10) as

∆)Yt = )α)β")Yt−1 +
k−1!
i=1

)Γi∆)Yt−i + )αψ +),t (17)

)Xt = )Yt + θt. (18)
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Non-zero means in all directions are allowed for by the constant term restricted
to the cointegrating relations in (17) and the linear trend is added in the factor
representation (18). The restriction is that the last q elements in θ are zero, i.e.

H1 : θ = Nϑ =

#
Ir+s

0q×(r+s)

$
ϑ =

#
ϑ
0q×1

$
where ϑ contains the free trend parameters.
Maximum likelihood estimation of the model under H1 can be performed by

applying the switching algorithm of Nielsen (2002). The idea is that conditional
on an estimate, &θ, of the parameters to the linear trend, θ, the parameters of (17)
can be estimated using a usual reduced rank regression of the corrected data)Yt = )Xt−&θt. With these estimates we can construct the estimated characteristic
polynomial, &A (L), and the estimated residual, &et = &A (L) )Xt−&)α&ψ, which under
the model can be written as

&et = &A (L)Nϑt+),t. (19)

Since t is a scalar variable we can rewrite (19) as

&et = &Htϑ+),t, (20)

where &Ht ≡ &A (L)Nt. The likelihood function conditional on &)α&ψ and the para-
meters in &A (L) is maximized over ϑ by a GLS estimation in (20), i.e.

&ϑ = * T!
i=1

' &H "
t
&Ω−1 &Ht

(+−1* T!
i=1

' &H "
t
&Ω−1&et

(+
, (21)

see Tsay, Peña and Pankratz (2000) and Saikkonen and Lütkepohl (2000) for a
similar GLS step used in a two step estimator. Here we follow Nielsen (2002)
and iterate between the two conditional steps until convergence.

4 Empirical Application and Simulations

This section provides an empirical assessment of likely efficiency losses associated
with the usual practice of applying standard I(1) methods to the unrestricted
VAR of �Xt, ignoring the fact that it was derived by transforming an I(2) process.
First, the empirical analysis of Banerjee, Cockerell, and Russell (2001), BCR
in the following, is reexamined in view of the above results. Secondly, a small
scale Monte Carlo experiment is set up to provide simulation evidence on the
issue. It uses the estimated BCR model as a realistic data generating process
(DGP).5

5The computations have been conducted in Ox 3.0, see Doornik (2001).
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4.1 Empirical Illustration

BCR used Australian data to analyze the relation between inßation and the
markup of prices on costs. The analysis included a set of three core variables:
The log of consumer prices, pt, the log of unit labor costs, ut, and the log of
import prices, mt.6 The data has 94 effective quarterly observations for the
period t = 1972 : 1− 1995 : 2. BCR analyzed a VAR(2) with the deterministic
speciÞcation of Paruolo (1996), applying the two-step estimator of Johansen
(1995a).
For the purpose of illustration we make a few modiÞcations to the speci-

Þcation. In particular, four conditioning variables are excluded so that Xt =
(pt, ut,mt)

", and the deterministic speciÞcation of Rahbek et al. (1999) is ap-
plied. Moreover, we apply the maximum likelihood (ML) estimator of the I(2)
model, see Johansen (1997), to ensure that differences between the I(2) model
and the transformed I(1) model do not reßect inefficiencies in the estimation of
the I(2) model.
BCR impose the rank indices r = 1 and s = 1, and linear homogeneity be-

tween the variables, i.e. b = (1, 1, 1)". The chosen rank indices are also consis-
tent with the simpliÞed speciÞcation.7 The six eigenvalues of the characteristic
polynomial of the restricted model have moduli given by

1.000; 1.000; 1.000; .540; .277; .060.

Two of the unit roots are associated with the common I(2) trend and one with
the genuine I(1) trend of the system. The largest unrestricted eigenvalue is far
from unit circle, reßecting a fast dynamic adjustment.
The estimates of the polynomially cointegration parameters are reported

in Table 1 in terms of β" and −�δ. The estimates in row (iii) are obtained
by applying the ML estimator to the simpliÞed model. The original estimates
from BCR are reported in rows (i) and (ii). The results are similar although the
import share of the present analysis is larger. The differences reßect the different
deterministic speciÞcations, the exclusion of conditioning variables, and the use
of the MLE rather than the two-step estimator.
A nominal-to-real transformation is performed by BCR using the matrices

B =

 1 1
−1 0
0 −1

 and v =

 1
0
0

 , (22)

which produces a transformed data set given by )Xt = (pt − ut, pt −mt,∆pt)
".

It includes the markup on unit labor costs, the inverse of the real import prices
and the rate of change in the consumer prices. The transformation satisÞes the
requirement that |v"b| "= 0.

6 In addition, four variables assumed to be stationary and weakly exogenous, were included.
7The test of homogeneity is one of the few tests that can be conducted by standard methods

in the I(2) model, see Kongsted (1998) and Johansen (2002). Using the ML estimator, homo-
geneity is accepted with a test statistic of 1.43 corresponding to a p−value of .49 according
to a χ2 (2) distribution.
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Applying this transformation to the simpliÞed version of the BCR model and
estimating the unrestricted I(1) model yields the estimates presented in row (iv).
The log-likelihood of the unrestricted model is only marginally higher than the
likelihood of the homogeneous I(2) model. The formal test statistic for the
test of 4 restrictions�three restricted lag coefficients and one restricted trend
coefficient�is around two, which is far from signiÞcant in a χ2 (4) distribution.
Row (v) reports the results of imposing zero restrictions on the last lag on

v"∆Xt, i.e.
H0 : )Γ1 =

0
γ3×2, 03×1

1
,

while row (vi) reports the results obtained by imposing the restriction that the
transformed variables v"∆Xt have no linear trend,

H1 : θ =
0
ϑ"1×2, 0

1"
.

Finally, row (vii) reports the results of imposing both restrictions on the model.
The fully restricted I(1) model for the transformed data is simply a reparame-
trization of the homogeneous I(2) model and the results in rows (iii) and (vii)
are seen to be identical. The partly restricted models show that in the present
case the importance of the trend restriction, H1, is negligible whereas the lag
restriction, H0, is somewhat more important. This could simply be a result of
the fact that H0 impose three restrictions on the model whereas H1 impose only
one. In total, the results indicate that inference on β" and �δ

"
can be effectively

performed in an unrestricted I(1) analysis of the transformed data set.
Subject to the limitation that |v"b| "= 0, the choice of v only matters for

the interpretation of the model. This is illustrated in the lower part of Table
1, which reports estimation results for an alternative choice of v. The average
inßation rate, v = 1

3 (1, 1, 1)
", now represents the Þrst difference of the I(2)

trend. If the full set of restrictions is imposed as in row (xi), the results are
indeed identical to row (iii) and (vii) and a different choice of v amounts to a
reparametrization. However, in unrestricted or partly restricted models some
differences in the results may appear. The effects of including a redundant lag
of v"∆Xt depend on the sample correlation between that particular variable
and the other terms in the model, and therefore also on the speciÞc choice of v.
Similarly, the effects of the redundant linear trend allowed for in v"∆Xt depend
on the particular sample values.8

4.2 Simulations

The loss of efficiency from ignoring the derived nature of the transformed process
will now be characterized along two dimensions: Cointegration rank determi-
nation and estimation of the polynomially cointegrating parameters. A small

8A grid search over possible vectors v = (1, v2, v3)", where v2 and v3 take values be-
tween −100 and 100, resulted in log-likelihood values between 1195.13 and 1196.24 for the
unrestricted RRR estimator, the extremes being obtained for the vectors (1, 0.2,−0.4)" and
(1,−1,−0.2)" respectively.
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scale Monte Carlo simulation is set up for this. It employs the homogeneous
I(2) model reported in row (iii) of Table 1 as its DGP.9

Samples of T + 100 observations, t = −101,−100, ..., 0, 1, 2, ..., T , are gen-
erated by replacing εt with pseudo-random independent N

'
0, &Ω( drawings.

Sample sizes of T = {50, 75, 100, 200, 400} effective observations are considered,
100 presample observations are discarded to eliminate the importance of the
initial values Y−101, Y−100 = 0, and 10.000 Monte Carlo replications are used
for each case.
The determination of cointegration rank based on the transformed process

is the starting point in most applications. Kongsted (2002) showed that subject
to (7), the rank index r will indeed be correctly identiÞed as rank(�Π). However,
simply applying the trace test (16) would employ rank(�Π) ≤ p as the alternative
hypothesis when, under the set of assumptions maintained in transforming the
process, in fact it holds that rank(�Π) ≤ p − q. A potential efficiency loss is
evident already from the fact that applying the standard trace test could well
result in an estimated cointegration rank in the infeasible interval p−q < r ≤ p.
Alternatively, one could take rank(�Π) ≤ p− q as the alternative hypothesis

and consider a modiÞed trace statistic,

�Qr = −2 logQ
'
rank(�Π) ≤ r | rank(�Π) ≤ p− q

(
= −T

p−q!
i=r+1

log
'
1− &λi

(
.

(23)
For the special case of testing rank(�Π) ≤ p − q − 1 against rank(�Π) ≤ p − q
this is the so-called λmax statistic and the asymptotic distribution is tabulated
e.g. in MacKinnon, Haug and Michelis (1999) and Doornik (1998). For more
general cases the asymptotic distribution is not readily available but can be
easily simulated.10

The BCR-based DGP that underlies the simulation experiment has p = 3
and q = 1. The modiÞed trace statistic �Qr employs rank(�Π) ≤ 2 as the alterna-
tive hypothesis. The relevant asymptotic distribution is the λmax distribution
with two degrees of freedom. Figure 1 compares the empirical rejection frequen-
cies of two tests of the (true) null that rank(�Π) ≤ 1, Q1 and �Q1, at different
sample sizes. The tests can hardly be distinguished. The rejection frequencies
of Q0 and �Q0 for the (false) null that rank(�Π) = 0 are also depicted in Figure
1. For small and moderate sample sizes there is an efficiency gain since the
power of �Q0 is marginally higher. Still, the differences are minor and, overall,

9This is chosen as a simple yet realistic DGP. Due to the fast dynamic adjustment in
the model, it is well-behaved and shows reasonable size and power properties even in fairly
small samples. Still, the emphasis is on the comparison between unrestricted and restricted
estimators rather than their performance in absolute terms.
10We obtained the asymptotic distributions employed in the simulations below by simula-

tions with 100.000 replications, using a response surface for the mean and the variance based
on 26 different values of T between 50 and 5.000. The critical values are then calculated from
a Gamma approximation to the asymptotic distribution, see Doornik (1998). The 95 per cent
quantiles thus obtained for the case of p = 3 and q = 1 are: Q̃1: 19.25 ; Q1: 25.74 ; Q̃0: 37.47;
Q0: 42.77.
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the loss of efficiency from using the standard trace test seems very limited. We
will therefore make use of the standard test in the following.
The second issue concerns efficiency in estimating the polynomially cointe-

grating parameters from the transformed model by unrestricted reduced rank
regression. In each Monte Carlo replication we applied the estimators outlined
in Section 3 to the simulated data. To evaluate the properties of the estimators
the average angle between the estimated )β and the true vector of the DGP,)β = (0.795, 0.205, 7.887)", is reported together with the rejection frequency of
the LR test for the (true) restrictions on the last lag and the trend coefficient.
Furthermore, we report the actual size and power at a nominal 5 per cent level of
the standard trace test for rank determination based on the different estimators.
Table 2 reports the estimation results for a transformation given by B and

v as deÞned in (22). In the unrestricted RRR estimation, reported in Panel A,
the average angle between the true and the estimated )β is 6 degrees for T = 50
and converging to zero relatively fast. The results for the rank determination
reßect fast dynamic adjustment in the DGP. With T = 100 observations the
power of the Trace test for the hypothesis r = 0 is 95 per cent and the size is
close to 5 per cent for all sample lengths.11

Imposing the lag restriction, H0, improves the average precision of the es-
timates in small samples, cf. the results reported of Panel B in Table 2. For
50 observations the restriction improves the average angle from 6 to 4.7 de-
grees. For 100 observations the difference is down to .1 degrees and for T = 200
the results are almost identical. In the restricted model the distribution of the
Trace test is apparently moved a little to the right, implying a higher power and
higher size of the test. The LR test for the lag restriction, H0, which is χ2 (3)
distributed, is somewhat oversized in small samples with a rejection frequency
of 10 to 15 per cent against the nominal size of 5 per cent.
Imposing the restriction, H1, that the variable v"∆Xt has no linear trend,

yields little or no improvement. The results reported in Panel C are almost
identical to the results of the unrestricted RRR estimation. Due to a faster rate
of convergence of the trend coefficient it matters very little if the restriction is
imposed or not. Similarly, the results in Panel D of imposing the full set of
restrictions are almost identical to the results obtained under the lag restriction
alone reßecting the minor importance of the trend restriction.

5 Conclusions
This paper has derived the restrictions that apply to a transformed vector au-
toregression obtained by a minimal I(2)-to-I(1) transformation. The relationship
between the parameters of the I(2) vector autoregression and the transformed
model is characterized, including the coefficients of polynomially cointegrating
relationships.

11Note that a small negative approximation error in terms of the 95 per cent quantile seems
to be implied by the Gamma approximation used here.
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In applied work it is common to use unrestricted reduced rank regression
and to apply standard tools for inference on the cointegrating rank in the trans-
formed model. We Þnd that there is only a small gain from excluding the al-
ternative hypotheses which are irrelevant under the assumptions maintained in
transforming the data. Moreover, unrestricted reduced rank regression is shown
to yield only a minor loss of efficiency compared to imposing the restrictions in
the simulation experiment. Most efficiency is gained by imposing the absence
of redundant lags in the differenced I(2) process, which is a fairly simple restric-
tion in terms of the restricted estimation procedure. Imposing the restriction
on the trend coefficients, which requires a more involved iterative estimation
algorithm, leads to little or no efficiency gain. It appears fairly safe to ignore
this restriction in applied work.
In conclusion, a properly transformed vector autoregression provides a prac-

tical and effective means for inference on the parameters of the I(2) model.
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Figure 1: Rejection frequencies for tests of the true null of r = 1 and the false
null of r = 0 using the conventional trace test statistic, Qr, and the modiÞed
statistic, )Qr.
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