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Abstract

This paper contributes to the understanding of stochastic economic
dynamics with S-shaped law of motion. Applying random dynamical
systems theory, we obtain a complete analysis of a stochastic OLG
growth model. In the long-run the economy converges either to a state
with no capital (poverty trap) or a sample path of a random fixed point
(business cycle). The threshold capital stock separating both regimes
is a random variable that depends on the future realization of the
shocks; this critical level cannot be identified using past observations.
Supply of outside capital therefore has an uncertain effect. Policy rec-
ommendations are given which cannot be obtained employing Markov
equilibria. A numerical illustration is provided.

Keywords: S-shaped stochastic law of motion, random dynamical sys-
tems, poverty traps, business cycles, production shocks
JEL-Classification: E32, C62, D91

1 Introduction

This paper presents a new approach to the study of stochastic economies
with an S-shaped law of motion. Applying random dynamical systems the-
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Stanford University. I am grateful to Jens-Ulrich Peter for collaboration on the subject in
an early stage. Financial support by the Ecoscientia Stiftung is gratefully acknowledged.
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ory (Arnold 1998), we obtain a comprehensive description of the stochastic
short- and long-run dynamics. The central tool in this analysis is the concept
of a random fixed point which provides a stochastic analogue of a determin-
istic fixed point. This notion of a stochastic equilibrium is an alternative
to the commonly used Markov equilibrium. The insights obtained by the
application of the random fixed point concept cannot be achieved using the
Markov equilibrium approach. This is due to the fact that a Markovian
equilibrium captures the statistical but not the dynamical properties of the
stochastic law of motion. Moreover, existence of Markov equilibria and an
exact description of their corresponding stable sets follows readily from our
results in the model considered here.

The main goal in this paper is twofold. On the one hand, it explains and
illustrates the conceptual and methodological issues of our approach to the
study of S-shaped stochastic economic laws. On the other hand, it provides
an example of the usefulness of the approach for policy recommendations.
We do not strive for generality here. Indeed we will assume specific utility
and production functions to make the analysis as transparent as possible.
In fact, the dynamics turns out to be considerably more complicated than
in economies with concave stochastic law such as the Solow growth model
(Schenk–Hoppé and Schmalfuss 2001). To this end, we consider a particular
model of an overlapping generations economy with production shocks. The
law of motion is an S-shaped function of the capital stock for any realization
of the shock. It is proved that only two scenarios can occur in the long-run.
The economy converges either to a state with no capital (poverty) or a
sample path of a random fixed point (business cycle).

The sets of initial capital stocks leading to one of the regimes are charac-
terized by being lower (poverty) resp. higher (business cycle) than a thresh-
old. The critical level of capital separating both regimes is also a random
fixed point (whose existence is also proved here). However, this random
fixed point is unstable and depends on the future realization of the shocks.
Its state in any period in time therefore cannot be determined using past
observations. As a consequence we obtain the result that the supply of
outside capital has an uncertain effect. Indeed, the probability of an inter-
vention through a lump-sum transfer of outside capital being successful is
determined by the distribution of the unstable random fixed point. It is
important to emphasize that this distribution is not a Markov equilibrium
(except in the deterministic case).

Our analysis demonstrates that a precise prediction of the effect of capital
supply is possible, whereas the Markov equilibrium approach provides only
limited information. A numerical illustration of this feature is provided.
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The study of related stochastic overlapping generations models from the
Markov equilibrium view is due to Wang (1993,1994). Deterministic models
with S-shaped law are studied for instance by Azariadis and Drazen (1990).
In their paper existence of a poverty trap (referred to as development trap)
and sustainability of higher levels of capital is due to an increasing returns-
to-scale technology and insufficient productivity for small capital stocks. We
assume a constant returns-to-scale technology. Each input earns a return
according to its marginal product. The poverty trap does not arise from
insufficient productivity but from a production function that induces a low
labor share of output (relative to the capital share). Since the overlapping
generation structure forces immediate consumption of all income from capi-
tal, only the young generation saves and provides tomorrow’s capital stock.
(Similar phenomena certainly exist in economies with a less extreme con-
sumption schedule.) It is obvious that government policy with respect to
capital control, which hurts consumers in the short-run, benefits society in
the long-run by escaping the poverty trap.

It is of interest to note that our stability analysis of stochastic economies
avoids a linear approximation around some associated deterministic steady
state. This method is widely used in modern macroeconomics (Marimon
and Scott 1999, Taylor and Uhlig 1990) although it has to be applied with
caution because its validity has not yet been established rigorously.

The remainder of the paper is as follows. Section 2 introduces the model,
section 3 presents the mathematical framework and the main result, and
section 4 illustrates our findings by means of a numerical example.

2 The Model

Consider a Diamond (1965) overlapping generations economy with stochas-
tic aggregate production where the technology exhibits constant returns to
scale. A single homogeneous good, which can be either consumed or used as
capital input, is produced from capital and labor in any period. Production
is subject to random factors, modeled by an ergodic process.

Let kt denote the capital intensity at the beginning of period t. Then
f(kt, zt) is the output intensity which depends on the realization of the
ergodic stochastic process zt. We assume a standard neoclassical production
function f(k, z), i.e. continuously differentiable and strictly concave in k ≥ 0,
and f(0, z) = 0 for every possible realization of the exogenous variable zt.

Markets are perfectly competitive, capital and labor earn their marginal
products in all states of nature, i.e. the interest rate is given by rt = f ′(kt, zt)
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and the wage rate is wt = f(kt, zt)−ktf
′(kt, zt). (f ′(k, z) denotes the deriva-

tive of f with respect to the first argument, k.) The young individual in-
elastically supplies one unit of labor, earning labor income wt. This income
is divided between today’s consumption c1t = wt − st and savings st to fi-
nance tomorrow’s consumption when the individual is old (i.e. out of the
labor force). Savings st yield consumption c2t+1 = (1 − δ + rt+1) st in the
next period. The young consumer is uncertain about future interest rate
rt+1 ≥ 0. δ is the rate of depreciation. For ease of presentation we let
population growth be zero and normalize the total population to one.

The lifetime preferences of an individual born in period t are assumed
to be represented by separable expected logarithmic utility function as

log c1t +
∫

R+

log c2t+1 µ(drt+1) (1)

This specification of preferences avoids the consideration of the exis-
tence problem of a rational expectations equilibrium associated to the young
agent’s expectations on the future interest rate (captured by the probabil-
ity measure µ). Maximizing (1) over all feasible consumption-investment
decisions, one finds the agent’s optimal savings are given by

s(wt) = wt/2 (2)

That is, the saving decision is independent of the agent’s expectation. Thus
we have obtained a (trivial) rational expectations equilibrium.

In a closed economy the endowment of capital per capita at the beginning
of period t+1 is equal to the resources not consumed in the preceding period,
i.e. kt+1 = f(kt, zt) + (1 − δ)kt − c1t − c2t . The OLG structure implies that
kt+1 is given by the savings of periods t young agent. The evolution of the
capital intensity is governed by the stochastic law of motion

kt+1 =
[
f(kt, zt)− ktf

′(kt, zt)
]
/2 (3)

The ergodic process is assumed to take on two values zt ∈ {z, z}, 0 <
z ≤ z. The relative frequency of each state is pz ∈ (0, 1), pz = 1 − pz.
Beside simplifying the presentation, this assumption facilitates to achieve
an intuition for both, approach and results.

We restrict the further analysis to the production function

f(k, z) = z log(1 + k) (4)

The following result proves that the corresponding law of motion is S-shaped
for every realization of the shock. A precise definition of the S-shaped prop-
erty is given in the proof of Proposition 2.1, see Appendix.
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Proposition 2.1 For each possible realization of the technology shock zt,
the law of motion

kt+1 = h(kt, zt) =
zt

2

[
log(1 + kt)− kt

1 + kt

]
(5)

has the following properties.
(i) h(k, z) is an S-shaped function of k with h(0, z) = 0.
(ii) h(k, z) asymptotically grows slower than k at k = 0 and k = ∞.

More precisely, h′(0, z) = limk→∞ h′(k, z) = 0.
(iii) Suppose z ≥ 9.25. Then h(k, z) > k for some k > 0.

ku(z) ku(z) ks(z) ks(z)

h(k, z) h(k, z)

ku(z) ku(z) ks(z) ks(z)

h−1(k, z)

h−1(k, z)

Figure 1: Sketch of an S-shaped law of motion h(k, z) (left) and its inverse
h−1(k, z) (right) for z = z and z = z. The graph of the identity map is
shown for reference. For constant z, h(k, z) (and thus h−1(k, z)) possesses
three fixed points 0 < ku(z) < ks(z). Zero and ks(z) are locally stable with
domains of attraction [0, ku(z)[ resp. ]ku(z),∞[. ku(z) is locally unstable.

This result enables us to give a complete description of the evolution
of the economy in the absence of production shocks, i.e. zt is a constant.
The deterministic dynamics is characterized by two stable fixed points and
one unstable fixed point, provided the condition in Proposition 2.1(iii) holds
(which ensures existence of sustainable strictly positive capital stocks). Since
k → h(k, z) is S-shaped and savings are not sufficient to sustain high levels
of capital stocks, cf. (ii), there are exactly two strictly positive fixed points
0 < ku(z) < ks(z). The first is unstable because h(k, z) crosses the identity
from below, i.e. for all capital stocks close to ku(z), h(k, z) < k for all
k < ku(z) and h(k, z) > k for all k > ku(z). This is immediate from the fact
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that small capital stocks cannot be sustained according to (ii). The fixed
point ks(z) is stable because h(k, z) crosses the identity from above, which
also follows from (ii). Further the state of no capital (k = 0) is a fixed point,
cf. (i). Zero is locally stable by (ii). The existence of another fixed point
would violate the S-shaped property of h(k, z).

The deterministic long-run behavior of any sample path is uniquely de-
termined by the position of its initial capital stock to the unstable fixed
point ku(z). This fixed point defines a threshold in the sense that a path of
capital stocks with initial value k0 converges toward zero if k0 is below ku(z)
and toward the strictly positive fixed point ks(z) if k0 is above ku(z). The
set of capital stocks [0, ku(z)[ defines a poverty trap. Any event such as de-
struction of capital or capital drain that reduces the capital stock below the
threshold ku(z) sends the economy in the poverty trap which, in the long-
run, leads to the state of no capital. Impoverishment of the economy is the
consequence. The positive content of this observation is that any supply of
outside capital which leads to a capital stock larger than ku(z) achieves the
prosperity state ks(z). A repayment of debt is possible without depletion of
capital if the capital stock after any payment exceeds ku(z), i.e. avoids the
poverty trap. A more detailed analysis is provided in the stochastic case.

The deterministic dynamics is the same as in Azariadis and Drazen
(1990). In their paper, however, the poverty trap is due to insufficient pro-
ductivity which prevents sustainability of small capital stocks. Increasing
returns to scale, an externality of the aggregate capital stock, ensures that
higher capital stocks (but not exceeding ks(z)) can be sustained.

In the present model the technology permits any capital stock below
ks(z) to be sustained, i.e. the constant returns-to-scale technology is suf-
ficiently productive to avoid poverty. Extraction of capital by the capital
owners for consumption and small labor-share in production for small capital
stocks leads to the existence of a poverty trap. No externality is present.

3 The Analysis

We employ random dynamical systems theory—a brief sketch of this frame-
work is provided below. The reader is referred to Arnold (1998) for ad-
ditional information, see also Schenk–Hoppé (2001). A random dynamical
system provides a mathematical description of dynamical systems that are
subject to random perturbations. It consists of two ingredients: a model
of the perturbation (here an ergodic dynamical system) and a model of the
system perturbed by noise (here an invertible smooth mapping on R+).
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Let (Ω,F ,P, θ) denote the ergodic dynamical system corresponding to
the exogenous shock, i.e. Ω = {z, z}Z the space of two-sided infinite se-
quences with values in {z, z}, F the Borel-σ-algebra, P the probability mea-
sure generated by the marginal distributions, and the map θ : Ω → Ω,
θ(ω(·)) ≡ ω(1 + ·) the left-shift on Ω. P is ergodic with respect to θ. De-
note by F t the sub-σ-algebra of F generated by all histories (..., ωt). The
stochastic component of the economy is given by a map z : Ω → {z, z}
that is F0-measurable. The state of the environment in period t is given by
z(θtω) which is measurable with respect to the history up to time t. The
assumption on the relative frequency of each state means that the empirical
measure satisfies limT→∞ 1/T

∑T
t=0 1z(z(θtω)) = pz (analogously for z).

Denote by ϕ(t, ω, k) the state of the economy at time t that is governed
by the stochastic law (3), i.e.

ϕ(t, ω, k) = h(·, z(θt−1ω)) ◦ . . . ◦ h(k, z(ω)) (6)

and ϕ(0, ω, k) = k.
The family of maps ϕ(t, ω, k) is called the random dynamical system

generated by (5). That is, ϕ : N × Ω × R+ → R+, (t, ω, k) �→ ϕ(t, ω, k) ≡
ϕ(t, ω)k is a measurable map such that ϕ(0, ω) = idR+ and ϕ(s + t, ω) =
ϕ(t, θsω)◦ϕ(s, ω) for all s, t ∈ N and for all ω ∈ Ω. These properties replace
the flow property of a deterministic dynamical system generated by a map.

The main tool in the study of the dynamics of the stochastic economy
is the concept of a random fixed point. The existence is proved here using a
random version of the Banach fixed point theorem Schmalfuss (1996,1998)
that has been applied to the stochastic Solow model in Schenk–Hoppé and
Schmalfuss (2001).

Definition 3.1 A random fixed point of the random dynamical system ϕ
generated by h is a random variable k� : Ω → R+ such that almost surely

k�(θω) = ϕ(1, ω, k�(ω)) ≡ h(k�(ω), z(ω)). (7)

A random fixed point k� is called stable if (for almost every ω) there
exists an open set N(ω) with k�(ω) ∈ N(ω) such that for all k ∈ N(ω),
limt→∞ |ϕ(t, ω, k) − k�(θtω)| = 0. The set of all initial values k that are
attracted by k� is called its domain of attraction.

A random fixed point k� is called unstable if |ϕ(t, ω, k) − k�(θtω)| �→ 0
as t → ∞ for all k in some neighborhood of k�(ω).

A random fixed point fulfills k�(θtω) = ϕ(t, ω, k�(ω)) for all t by (7), i.e.
k�(θtω) is a sample path whose state at time t only depends on the realization
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of the exogenous perturbation. Moreover, it is a stationary process because
the distribution of k�(θtω) is independent of time. If the shock is a constant,
(7) becomes the definition of a fixed point of a map.

In order to avoid the discussion of degenerate cases, we make a non-
degeneracy assumption on the exogenous stochastic component that ex-
cludes periodic (cyclic) perturbations. It is assumed that
(A) For all z, z′ ∈ {z, z}, 0 < P{z(θtω) = z′ | z(θt−1ω) = z} < 1.
This condition is fulfilled, e.g., if the stochastic perturbation is i.i.d. or, more
generally, a Markov process with strictly positive transition matrix.

Theorem 3.1 The dynamics of the economy governed by the S-shaped sto-
chastic law of motion (5) is as follows.

(i) Zero is an asymptotically stable fixed point. All capital stocks k <
ku(z) converge to the state of no capital.

(ii) Suppose z ≥ 9.25 and

pz log h′(ks(z), z) + pz log h′(ks(z), z) < 0 (8)

Then there exists a unique stable random fixed point k�
s(ω) ∈ [ks(z),∞[. All

capital stocks k > ku(z) converge to the sample path t �→ k�
s(θ

tω).
(iii) Suppose in addition that (defining Ku = [ku(z), ku(z)])

pz min
k∈Ku

log h′(k, z) + pz min
k∈Ku

log h′(k, z) > 0 (9)

Then there exists an unstable random fixed point k�
u(ω) ∈ [ku(z), ku(z)].

Moreover, the domains of attraction of the stable random fixed point zero
and k�

s(ω) are given by [0, k�
u(ω)[ and [k�

u(ω),∞[, respectively.

This result on the dynamics of the stochastic economy (5) with an S-
shaped law of motion for any realization of the exogenous shock can be
interpreted as follows.

Zero is a poverty trap in the sense that the economy starting with a
(sufficiently) small capital stock experiences a decreasing sequence of capital
stocks which eventually leads to the no-capital state. This is local stability
of the fixed point zero.

For a sufficiently high initial stock of capital the economy converges
toward the sample path t → k�

s(θ
tω) of capital stocks which is determined

by the (locally stable) random fixed point k�
s(ω). In the short run, the

convergence phenomenon will dominate the behavior of the sample path of
capital. Its degree of observability will be the higher the more distinct initial
stock and k�

s(ω). In the long run, the behavior of k�
s(θ

tω) dominates. The
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sample path of capital will then experience permanent fluctuations which
are determined by the sequence of exogenous perturbations. Capital thus
exhibits business cycle dynamics caused by exogenous technology shocks.

If assumption (9) is satisfied, a very detailed statement on the critical
threshold of initial capital can be made. The first result is that only two
long-run phenomena are stable (and thus observable) in this economy. Either
poverty or business cycle dynamics is actually observed in the long run.
Moreover, the levels of initial capital stocks leading to the one or the other
long-run scenario are uniquely determined by a separating critical threshold
of initial capital. If the initial capital stock is above k�

u(ω), the path of
capital converges to the business cycle. An initial capital stock below k�

u(ω)
eventually leads to poverty.

The threshold k�
u(ω) depends on the sequence of shocks. But it is not

observable even with an infinite history of observations because its state at
any period in time depends on the future realizations of the shock. This
property follows from the existence proof. A close inspection of the proof
shows that k�

u(ω) can be constructed as the limit ϕ−1(t, ω, k) as t → ∞
(with k ∈ ]ku(z), ku(z)[). Thus k�

u(ω) “contains” all future information on
the shocks. While the actual critical level at time t, k�

u(θ
tω) cannot be

inferred from past data, the distribution of the threshold can be determined
from the structure of the economy. The distribution (or density) function
of the threshold k�

u(ω) provides valuable information on the probability of
success of an intervention. A detailed explanation follows.

Theorem 3.1(iii) ensures that k�
u(ω) ∈ Ku = [ku(z), ku(z)] (for all ω).

The density of the random variable ω → k�
u(ω) (which is identical in all

periods in time) has thus a support in Ku. The exact shape of density de-
pends on the statistical properties of the exogenous shock. However, three
important conclusions on the effect of a supply of outside capital can be
drawn from this observation. First, the effect of outside capital is uncer-
tain. It may or may not move the economy out of the poverty trap. An
intervention that raises the capital stock to k is successful with probability
equal to the event that k is higher than the unstable random fixed point
k�

u(ω). The probability of success is increasing in the post-intervention cap-
ital stock. Second, any transfer payment that keeps the capital stock below
ku(z) cannot be successful. With certainty, i.e. with probability one, the
economy does not escape the poverty trap. Third, any lump-sum payment
that raises total capital above ku(z) is a successful intervention in that it
with certainty eventually leads to the business cycle regime.

An immediate consequence of Theorem 3.1 is that the economic ag-
gregates output, consumption, and real wage also converge to the sample
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path of a stable random fixed point, if the capital stock does so. For in-
stance, in the business cycle regime the random fixed points for output and
real wage are given by y�

s(ω) ≡ f(k�
s(ω), z(ω)) = z(ω) log(1 + k�

s(ω)) and
w�

s(ω) ≡ z(ω)[log(1 + k�
s(ω))− k�

s(ω)/(1 + k�
s(ω))], respectively.

It is of interest to relate the random dynamical system analysis of the
stochastic economy to the Markov equilibrium approach. We start by detail-
ing the implications of Theorem 3.1 on the existence of Markov equilibria.

Suppose the production shock is independent and identically distributed.
Then the stable random fixed point k�

s(ω) gives rise to a stationary measure
(Markov equilibrium) by ρ = Ek�

s(ω), i.e. ρ(B) = P{k�
s(ω) ∈ B}. The transi-

tion probability is determined by (5) as P (k,B) = P{ω | h(k, ω) ∈ B}. The
probability measure ρ fulfills ρ(B) =

∫
R+

P (k,B) ρ(dk) since h(k�
s(ω), ω) =

k�
s(θω) and ω → k�

s(ω) depends only on past information, i.e. is measurable
with respect to the σ-algebra F0. Zero (more precisely the Dirac measure
at zero) is another Markov equilibrium.

Both Markov equilibria zero and ρ are stable in the sense that the em-
pirical measure of a sample path with initial capital stock in k < ku(z),
resp. k > ku(z) is identical to the respective Markov equilibrium. (Often
the property is referred to as ergodic.) This is an immediate consequence of
the convergence results (i) and (ii) in Theorem 3.1 and the ergodic theorem.
For instance, for all k > ku(z)

lim
T→∞

1
T

T∑
t=0

1B(ϕ(t, ω, k)) = lim
T→∞

1
T

T∑
t=0

1B(k�
s(θ

tω)) = ρ(B)

1B(k) ∈ {0, 1} is the indicator function with value 1 if and only if k ∈ B.
These two Markov equilibria can also be obtained by the standard stable

sets approach as applied for related models in Wang (1993,1994). However, it
is important to point out that using that method no more precise information
on the domains of attraction can be given. In particular this implies that
the study of the effect of supply of outside capital is limited to those events
which happen with certainty.

The unstable random fixed point k�
u(ω) does not define a Markov equilib-

rium because it is not measurable with respect to the past (but with respect
to the future, as explained above). This fact also follows from assertion (iii)
in Theorem 3.1. All capital stocks below, resp. above, k�

u(ω) converge toward
zero, resp. k�

s(θ
tω). Therefore the support of k�

u(ω) has non-empty intersec-
tion with the domains of attraction of zero and k�

s(ω). This contradicts the
assumption that the distribution of k�

u(ω) is a Markov equilibrium.
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4 Numerical Example

To illustrate the concept and the main result, a numerical simulation is
provided. We let z = 10, and z = 15. The exogenous stochastic process is
i.i.d. with equal probability on both states.

0
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14

0 10 20 30 40 50

Figure 2: Sample paths ϕ(t, ω, k) for different initial capital stocks k (the
sequence of shocks is the same for each sample paths).

One finds ku(z) ≈ 1.1380, ks(z) ≈ 4.2215, ku(z) ≈ 0.4346, and ks(z) ≈
12.6550. Validity of the contraction conditions (8) and (9) can be checked
numerically. Thus Theorem 3.1 applies in its full generality.

Figure 2 depicts a collection of sample paths of capital stocks. For this
particular sequence of shocks the state of the unstable random fixed point at
time zero is k∗u(ω) ≈ 0.56. The paths corresponding to initial values above
this critical threshold converge to the path t → k∗s(θtω) of the stable random
fixed point k∗s(ω) (business cycle regime). Paths with initial capital stock
lower than k∗u(ω) converge to zero (poverty trap).

Figure 3 depicts the density of both stable and unstable random fixed
point. The density of the critical value k�

u(ω) that separates poverty trap
and business cycle regime is approximated using 300.000 runs. Each run
consists of an approximation of k�

u(ω) for one sample path of the shock
using the fact that initial capital stocks below (above) k�

u(ω) converge to
zero (k�

s(θ
tω) ≥ ks(z)). It is important to repeat that the density of k�

u(ω)
does not correspond to a Markov equilibrium. The success probability of
a lump-sum transfer can be read off from Figure 3 (left). For instance, if
the capital stock is 0.645 then the chances to avoid the poverty trap is 50%.
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Figure 3: Densities of the threshold k�
u(ω) (left) and the stable random fixed

point k�
s(ω) (right).

Increasing the capital stock to 0.845 raises this probability to 90%.
The density of the stable random fixed point k�

s(ω) that determines fluc-
tuations in the business cycle regime is calculated on the basis of 107 itera-
tions. The roughness of the density is due to the two-state shock which also
causes strong changes in the capital stock in Figure 2.

Appendix

Proof of Proposition 2.1. To prove (i) recall that a function g (assumed
to be twice continuously differentiable) is called S-shaped if (i) g is strictly
increasing (i.e. g′(k) > 0), (ii) g is convex up to a certain argument (inflection
point) and then concave (i.e. g′′(k) > 0 for all k < k̃ and g′′(k) < 0 for all
k > k̃).

The derivative of h(k, z) with respect to the capital stock is given by
h′(k, z) = (z/2) k/(1 + k)2, and the second derivative is given by h′′(k, z) =
(z/2) (1− k)/(1+ k)3. It is obvious from these expressions that k → h(k, z)
is S-shaped. h(0, z) = 0 is trivially true.

Property (ii) is also immediate from the expression for h′(k, z). And (iii)
follows from checking numerically that h(2.1625, z) > 2.1625 if z ≥ 9.25.
Since h(k, z) ≥ h(k, z), the proof is complete. �

Proof of Theorem 3.1. If z = z the evolution of the economy follows the
deterministic law discussed before. Thus assertions (i)–(iii) are proved. Let
z > z in the following.
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(i): Zero is a deterministic fixed point. Stability of zero follows from
the fact that (1) locally convergence to zero is exponentially fast (even with
arbitrarily large rate since the derivative h′(0, z) ≡ 0), and (2) the capital
stock kt is strictly monotonically decreasing for all k0 < ku(z) under the
map h(k, z) and, therefore, under h(k, z) ≤ h(k, z) as well.

The proofs of (ii) and (iii) rely on the method laid out in Schenk–Hoppé
and Schmalfuss (2001), Theorem 4.2. There a stochastic Banach fixed point
theorem is used to prove existence of a stable random fixed point. While
(ii) is straightforward, (iii) requires a novel idea to make use of the same
procedure to prove existence of an unstable random fixed point.

Note that the assumption z ≥ 9.25 together with Proposition 2.1(iii)
ensures that h(k, z) and h(k, z) each have two strictly positive fixed points
(one unstable and one stable) with 0 < ku(z) < ku(z) < ks(z) < ks(z).

In order to prove (ii) we have to show that (1) Ks := [ks(z),∞[ is
forward-invariant, (2) h is uniformly contracting on Ks, and (3) the sample
path of every initial capital stock k0 > ku(z) enters Ks in finitely many
steps.

Forward invariance (i.e. h(Ks, z) ⊂ Ks for z = z, z) follows from h(k, z) ≥
ks(z) for all k ≥ ks(z) and z = z, z. Uniform contraction means that
E supk∈Ks

log h′(k, z) < 0. Since h(k, z) is concave for k ∈ Ks (otherwise
ks(z) would not be a stable fixed point of the S-shaped map h(k, z)), lin-
earity in z ensures that h(k, z) also concave on Ks. Thus, for k ∈ Ks, both
h′(k, z) and h′(k, z) take on its maximum at k = ks(z). The contraction
therefore is equivalent to E log h′(ks(z), z) < 0, but this is assumption (8).
These two properties, forward invariance and uniform contraction, ensure
existence of a stable random fixed point in Ks.

To prove that the domain of attraction contains all capital stocks k >
ku(z), it suffices to observe that sample paths on [ku(z), ks(z)] are strictly
monotonically increasing. Since z < z, there is a (deterministic) set K̃ :=
[k̃, ks(z)] with k̃ < ks(z) such that h(k, z) > ks(z) for all k ∈ K̃. Pick any
initial capital stock k in this set, then after a finite number of steps (and for
any sample path of the shock) kt ∈ K̃. Non-degeneracy of the shock and the
monotonicity property on [ku(z), ks(z)] ensure that the sample path enters
Ks in a finite number of steps.

The key to prove (iii) is to analyze the random dynamical system ψ
generated by the inverse maps h−1(k, z). The inverse of h is well-defined
thanks to strict monotonicity. The random dynamical systems ψ and ϕ
are related by ψ(t, ω, k) = ϕ−1(t, ω, k). The proof proceeds in three steps.
First, it is shown that Ku := [ku(z), ku(z)] is forward-invariant for h−1(k, z).
Second, uniform contraction of h−1(k, z) on this set is ensured. This yields
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existence of a random fixed point k�
u(ω) ∈ Ku. The fixed point is stable for

h−1(k, z) with domain of attraction (0, ks(z)). Third, it is proved that under
the original random dynamical system all initial states k > k�

u(ω) converge
to k�

s(ω) and all states k < k�
u(ω) converge to zero.

It is simple to see that h−1(k, z) is increasing in k and decreasing in z,
cf. Figure 1. These properties imply, ku(z) = h−1(ku(z), z) ≤ h−1(k, z) ≤
h−1(k, z) ≤ h−1(ku(z), z) = ku(z). Thus, Ku := [ku(z), ku(z)] is forward-
invariant, i.e. h−1(Ku, z) ⊂ Ku for z = z, z.

To show that h−1(k, z) is uniformly contracting on Ku one needs to
ensure

E sup
k∈Ku

log ∂kh
−1(k, z) < 0 (10)

Using that ∂kh
−1(k, z) = 1/h′(x, z) with x = h−1(k, z), one obtains the se-

quence of estimates supk∈Ku
log ∂kh

−1(k, z) = supx∈h−1(Ku,z) log(1/h′(x, z))
≤ supk∈Ku

log(1/h′(k, z)) = − infk∈Ku log h
′(k, z) (recalling h−1(Ku, z) ⊂

Ku.) Note that the capital stock for which this infimum is taken on typi-
cally depends on the shock.

This estimate leads to a sufficient condition for (10). One has that

E inf
k∈Ku

log h′(k, z) > 0 (11)

implies uniform convergence of h−1 on Ku. But (11) is equivalent to as-
sumption (9). Summarizing our findings, we can state that there exists a
unique stable random fixed point k�

u(ω) in Ku for the random dynamical
system ψ. Clearly, k�

u(ω) is a random fixed point for the random dynam-
ical system ϕ. Considerations analogous to (ii) show that k�

u(ω) attracts
(under ψ) all initial capital stocks in (0, ks(z)). In particular every capital
stock k ∈ (0, ku(z)) is attracted to the sample path of k�

u(ω). This implies
the convergence property k�

u(ω) − ψ(t, θ−tω, k) → 0 (and the difference is
always non-negative). Therefore, every k ∈ [ku(z), k�

u(ω)) eventually be-
comes less than ku(z) under ϕ(t, ω) as t tends to infinity. In the long run
ϕ(t, ω, k) ∈ (0, ku(z)) which is in the domain of attraction of the stable fixed
point zero. Thus [ku(z), k�

u(ω)) is found to be in the domain of attraction of
zero. Similarly one finds that (k�

u(ω), ks(z)] is in the domain of attraction
of the stable random fixed point k∗s(ω). �
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