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Summary
This paper is a survey of existing estimation techniques for stationary and ergodic
diffusion processes observed at discrete points in time. The reader is introduced to
the following techniques: (i) estimating functions with special emphasis on martin-
gale estimating functions and so-called simple estimating functions; (ii) analytical
and numerical approximations of the likelihood which can in principle be made ar-
bitrarily accurate; (iii) Bayesian analysis and MCMC methods; and (iv) indirect
inference and EMM which both introduce auxiliary (but wrong) models and correct
for the implied bias by simulation.

Key words: Bayesian analysis; diffusion processes; discrete-time observations; Efficient
method of moments (EMM); Estimating functions; Indirect inference; Likelihood approx-
imations.

This version: August 8, 2002



Parametric inference for diffusion processes 1

1 Introduction

Statistical inference for diffusion processes has been an active research area during the
last two or three decades. The work has developed from estimation of linear systems
from continuous-time observations (see Breton Le (1974) and the references therein) to
estimation of non-linear systems, parametric or non-parametric, from discrete-time obser-
vations. This paper is about parametric inference for (truly) discrete-time observations
exclusively; the models may be linear or non-linear.

Now, why is this an interesting and challenging topic at all? Well, diffusion models
have a large range of applications. They have been used for a long time to model phe-
nomena evolving randomly and continuously in time, e.g. in physics and biology. During
the last thirty years or so the models have also been applied intensively in mathematical
finance for describing stock prices, exchange rates, interest rates, etc. (although it is well-
known that such quantities do not really change continuously in time). At the same time
data are essentially always recorded at discrete points in time only (e.g. weekly, daily or
each minute), no matter the application.

In other words, only discrete-time observations of the continuous-time system is avail-
able, and this is exactly what makes the problem challenging. For a few models, esti-
mation is straightforward because the corresponding stochastic differential equation can
be solved explicitly. This is the case for (i) the geometric Brownian motion: dXt =
αXt dt + σXt dWt; (ii) the Ornstein-Uhlenbeck process: dXt = α(β −Xt) dt + σ dWt;
and (iii) the square-root/Cox-Ingersoll-Ross process dXt = α(β − Xt) dt + σ

√
Xt dWt,

which have log-normal, normal and non-central chi-square transition probabilities respec-
tively. However, “nature” (or “the market”) most often generates data not adequately
described by such simple models. For example, empirical studies clearly reveal that in-
crements of logarithmic stock prices are not independent and Gaussian as implied by the
geometric Brownian motion classically used for stock price modeling. Accordingly, more
complex models allowing for non-linear drift and diffusion functions are needed in order
to obtain reasonable agreement with data. (Of course there are other possible extensions
of the simple models, e.g. stochastic volatility models with unobserved coordinates, but
in this survey we stick to pure diffusion models.) This complicates the statistical analysis
considerably because the discrete-time transitions, implicitly defined by the model, are no
longer known analytically. Specifically, the likelihood function is usually not tractable. In
other words, one often has to use models for which likelihood analysis is not possible.

Consequently, there is a need for alternative methods. Research in that direction com-
menced in the mid eighties, with the paper by Dacunha-Castelle and Florens-Zmirou
(1986) on the loss of information due to discretization as an important reference, and
accelerated in the nineties. Important references from the mid of the decade are Bibby and
Sørensen (1995) on martingale estimating functions, Gourieroux et al. (1993) on indirect
inference, and Pedersen (1995b) on an approximate maximum likelihood method, among
others. Later work includes Bayesian analysis (Elerian et al., 2001; Roberts and Stramer,
2001) and further approximate likelihood methods (Aı̈t-Sahalia, 2002b; Poulsen, 1999).

In the following the reader is introduced to the following techniques: (i) estimating
functions with special emphasis on martingale estimating functions and so-called simple
estimating functions; (ii) three approximations of the likelihood which can in principle be
made arbitrarily accurate; (iii) Bayesian analysis and MCMC methods; and finally (iv) in-
direct inference and EMM which both introduce auxiliary (but wrong) models and correct
for the implied bias by simulation. Focus is on fundamental ideas and the reader is referred
to the literature for more rigorous treatments. In particular, we consider one-dimensional
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diffusions only in order to keep notation simple, although most methods apply in the multi-
dimensional case as well (at least in principle; see also comments along the way and in
Section 8). Neither do we account for technical assumptions, regularity conditions etc.

As was already pointed out we will be concerned with parametric models and discrete-
time observations. Specifically we will assume that the process is observed at equidistant
time-points i∆, i = 1, . . . , n. The asymptotic results that we quote, hold for ∆ fixed
and n tending to infinity. This asymptotic scheme is appropriate if, say, daily or weekly
observations are available in a sampling period of increasing length.

Another branch of research has been concerned with estimation in the situation where
data are collected up to some fixed point in time but more and more frequently (with the
above notation: ∆ → 0 and T = n∆ is fixed). In the limit, this of course amounts to
observation in continuous time. We do not discuss this set-up in this paper, but a few com-
ments are appropriate: Dohnal (1987) and Genon-Catalot and Jacod (1994), among others,
have studied parameter estimation via contrasts, local asymptotic (mixed) normality prop-
erties, and optimal random sampling times. Several authors have studied non-parametric
estimation for the sampling scheme as well: the estimators are based on kernel meth-
ods (Florens-Zmirou, 1993; Jacod, 2000) or wavelet methods (Genon-Catalot et al., 1992;
Hoffmann, 1999; Honoré, 1997); see also the references in those papers. Not much non-
parametric work has been done in the set-up considered in this paper, see however the
paper by Aı̈t-Sahalia (1996).

The paper is organized as follows. The model is defined in Section 2, and Section 3
contains preliminary comments on the estimation problem. In Section 4 we discuss es-
timating functions; in Section 5 approximations of the likelihood. Section 6 is about
Bayesian analysis, and Section 7 is about indirect inference and EMM. Finally, in Sec-
tion 8, we summarize and comment briefly on possible extensions.

2 Model, assumptions and notation

In this section we present the model and the basic assumptions, and introduce notation that
will be used throughout the paper. We consider a one-dimensional, time-homogeneous
stochastic differential equation

dXt = b(Xt, θ) dt + σ(Xt, θ) dWt (1)

defined on a filtered probability space (Ω,F ,Ft, P r). Here, W is a one-dimensional
Brownian motion and θ is an unknown p-dimensional parameter from the parameter space
Θ ⊆ R

p. The true parameter value is denoted θ0. The functions b : R × Θ → R and
σ : R × Θ → (0,∞) are known and assumed to be suitably smooth.

The state space is denoted I = (l, r) for −∞ ≤ l < r ≤ +∞ (implicitly assuming
that it is open and the same for all θ). We shall assume that for any θ ∈ Θ and any
F0-measurable initial condition U with state space I , equation (1) has a unique strong
solution X with X0 = U . Assume furthermore that there exists an invariant distribution
µθ = µ(x, θ)dx such that the solution to (1) with X0 ∼ µθ is strictly stationary and
ergodic. It is well-known that sufficient conditions for this can be expressed in terms of
the so-called scale function and speed measure (see the textbooks by Karatzas and Shreve
(1991, Section 5.5) or Karlin and Taylor (1981, Section 15.6), for example), and that
µ(x, θ) is given by

µ(x, θ) =
(

M(θ)σ2(x, θ)s(x, θ)
)−1

(2)
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where log s(x, θ) = −2
∫ x
x0

b(y, θ)/σ2(y, θ) dy for some x0 ∈ I and M(θ) is a normaliz-
ing constant.

For all θ ∈ Θ the distribution of X with X0 ∼ µθ is denoted Pθ. Under Pθ all Xt ∼
µθ. Further, let for t ≥ 0 and x ∈ I , pθ(t, x, ·) denote the conditional density (transition
density) of Xt given X0 = x. Since X is time-homogeneous pθ(t, x, ·) is actually the
density of Xs+t conditional on Xs = x for all s ≥ 0. The transition probabilities are most
often analytically intractable whereas the invariant density is easy to find (at least up the
normalizing constant).

We are going to need some matrix notation: Vectors in R
p are considered as p × 1

matrices and AT is the transpose of A. For a function f = (f1, . . . , fq)
T : R × Θ → R

q

we let ḟ(x, θ) = ∂θf(x, θ) denote the q × p matrix of partial derivatives with respect to θ,
i.e. ḟjk = ∂fj/∂θk, assuming that the derivatives exist.

Finally, introduce the differential operator Aθ given by

Aθf(x, θ) = b(x, θ)f ′(x, θ) + 1
2σ2(x, θ)f ′′(x, θ) (3)

for twice continuously differentiable functions f : R × Θ → R. Here f ′ and f ′′ are the
first and second derivatives with respect to x. When restricted to a suitable subspace, Aθ

is the infinitesimal generator of X (see Rogers and Williams (1987), for example).

3 Preliminary comments on estimation

The objective of this paper is estimation of the parameter θ. First note that if X was
observed continuously from time zero to time T then parameters from the diffusion co-
efficient could — in principle, at least — be determined (rather than estimated) from the
quadratic variation process of X since

2n
∑

i=1

(

Xt∧k/2n − Xt∧(k−1)/2n

)2 →
∫ t

0
σ2(Xs, θ) ds

in Pθ0
-probability for any t ≥ 0. Thereafter, parameters from the drift could be estimated

by maximum likelihood: if the diffusion function is completely known, that is σ(x, θ) =
σ(x), then the likelihood function for the continuous observation X0≤t≤T is given by

Lc
T (θ) = exp

(
∫ T

0

b(Xs, θ)

σ2(Xs)
dXs −

1

2

∫ T

0

b2(Xs, θ)

σ2(Xs)
ds

)

. (4)

An informal argument for this formula is given below; for a proper proof see Lipster and
Shiryayev (1977, Chapter 7).

From now on we shall consider the situation where X is observed at discrete time-
points only. For convenience we consider equidistant points in time: ∆, 2∆, . . . , n∆ for
some ∆ > 0. Conditional on the initial value X0, the likelihood function is given as the
product

Ln(θ) =

n
∏

i=1

pθ(∆, X(i−1)∆, Xi∆)

because X is Markov. Ideally, θ should be estimated by the value maximizing Ln(θ),
but since the transition probabilities are not analytically known, neither is the likelihood
function.
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There are a couple of obvious, very simple alternatives which unfortunately are not
satisfactory. First, one could ignore the dependence structure and simply approximate
the conditional densities by the marginal density. Then all information due to the time
evolution of X is lost, and it is usually not possible to estimate the full parameter vector;
see Section 4.2 for further details.

As a second alternative, one could use the Euler scheme (or a higher-order scheme)
given by the approximation

Xi∆ ≈ X(i−1)∆ + b(X(i−1)∆, θ)∆ + σ(X(i−1)∆, θ)
√

∆εi (5)

where εi, i = 1, . . . , n are independent, identically N(0, 1)-distributed. This approxima-
tion is good for small values of ∆ but may be bad for larger values. The approximation is
two-fold: the moments are not the true conditional moments, and the true conditional dis-
tribution need not be Gaussian. The moment approximation introduces bias implying that
the corresponding estimator is inconsistent as n → ∞ for any fixed ∆ (Florens-Zmirou,
1989). The Gaussian approximation introduces no bias per se, but usually implies in-
efficiency: if the conditional mean and variance are replaced by the true ones, but the
Gaussian approximation is maintained, then the corresponding approximation to the score
function is a non-optimal martingale estimating function, see Section 4.1.

Note that the Euler approximation provides an informal explanation of formula (4): if
σ does not depend on θ, then the discrete-time likelihood function is, except for a constant,
via (5) approximated by

exp

(

n
∑

i=1

b(X(i−1)∆, θ)

σ2(X(i−1)∆)

(

Xi∆ − X(i−1)∆

)

− 1

2
∆

n
∑

i=1

b2(X(i−1)∆, θ)

σ2(X(i−1)∆)

)

(6)

which is the Riemann-Itô approximation of (4).

4 Estimating functions

Estimating functions provide estimators in very general settings where an unknown p-
dimensional parameter θ is to be estimated from data X obs of size n. Basically, an es-
timating function Fn is simply a R

p-valued function which takes the data as well as the
unknown parameter as arguments. An estimator is obtained by solving Fn(Xobs, θ) = 0
for the unknown parameter θ.

The prime example of an estimating function is the score function, yielding the max-
imum likelihood estimator. When the score function is not available an alternative es-
timating function should of course be chosen with care. In order for the corresponding
estimator to behave (asymptotically) “nicely” it is crucial that the estimating function is
unbiased and is able to distinguish the true parameter value from other values of θ:

Eθ0
Fn(Xobs, θ) = 0 if and only if θ = θ0. (7)

The general theory for estimating functions is reviewed in the textbook by Heyde (1997)
(including various applications) and by Sørensen (1999a) (mostly asymptotic theory).

Now, let us turn to the case of discretely observed diffusions again. The score function

Sn(θ) = ∂θ log Ln(θ) =

n
∑

i=1

∂θ log pθ(∆, X(i−1)∆, Xi∆)
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is a sum of n terms where the i’th term depends on data through (X(i−1)∆, Xi∆) only. As
we are trying to mimic the behaviour of the score function, it is natural to look for esti-
mating functions with the same structure. Hence, we shall consider estimating functions
of the form

Fn(θ) =

n
∑

i=1

f(X(i−1)∆, Xi∆, θ) (8)

where we have omitted the dependence of data on Fn from the notation. Condition (7)
simplifies to: Eθ0

f(X0, X∆, θ) = 0 if and only if θ = θ0.
In the following we shall concentrate on two special types of estimating functions,

namely martingale estimating functions (Fn(θ) being a Pθ-martingale) and simple esti-
mating functions (each term in Fn depending on one observation only). For more com-
prehensive overviews, see Sørensen (1997) and Jacobsen (2001) and in particular Bibby
et al. (2002).

4.1 Martingale estimating functions

There are (at least) two good reasons for looking at estimating functions that are mar-
tingales: (i) the score function which we are basically trying to imitate is a martingale;
and (ii) we have all the machinery from martingale theory (e.g. limit theorems) at our
disposal. Moreover, martingale estimating functions are important as any asymptotically
well-behaved estimating function is asymptotically equivalent to a martingale estimating
function (Jacobsen, 2001).

Definition, asymptotic results and optimality

Consider the conditional moment condition

Eθ

(

h̃(X0, X∆, θ)|X0 = x
)

=

∫

I
h̃(x, y, θ)pθ(∆, x, y) dy = 0, x ∈ I, θ ∈ Θ (9)

for a function h̃ : I2 × Θ → R. If all coordinates of f from (8) satisfy this condition,
and (Gi) is the discrete-time filtration generated by the observations, then Fn(θ) is a Pθ-
martingale with respect to (Gi) since

Eθ

(

Fn(θ)|Gn−1

)

= Fn−1(θ) + Eθ

(

f(X(n−1)∆, Xn∆, θ)|X(n−1)∆

)

= Fn−1(θ).

Suppose that h1, . . . , hN : I2×Θ → R all satisfy (9) and let α1, . . . , αN : I×Θ → R
p

be arbitrary weight functions. Then each coordinate of f defined by

f(x, y, θ) =

N
∑

j=1

αj(x, θ)hj(x, y, θ) = α(x, θ)h(x, y, θ)

satisfies (9) as well. Here we have used the notation α for the R
p×N -valued function with

(k, j)’th element equal to the k’th element of αj and h for the function (h1, . . . , hN )T with
values in R

N×1. Note that the score function is obtained as a special case: for N = p,
h(x, y, θ) = (∂θ log pθ(∆, x, y))T and α(x, θ) equal to the p × p unit matrix.

Classical limit theory for stationary martingales (Billingsley, 1961) can be applied
for asymptotic results of Fn with f as above. Under differentiability and integrability
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conditions Ḟn(θ)/n → A(θ) in Pθ0
-probability for all θ and Fn(θ0)/

√
n → N(0, V0) in

distribution wrt. Pθ0
. Here,

A(θ) = Eθ0
ḟ(X0, X∆, θ) = Eθ0

α(X0, θ)ḣ(X0, X∆, θ)

V0 = Eθ0
f(X0, X∆, θ0)f(X0, X∆, θ0)

T = Eθ0
α(X0, θ0)τh(X0, θ0)α

T (X0, θ0),

where τh(x, θ) = Varθ(h(X0, X∆, θ)|X0 = x). Sørensen (1999a) proved the following
asymptotic result: If the convergence Ḟn(θ)/n → A(θ) is suitably uniform in θ and A0 =
A(θ0) is non-singular then a solution θ̃n to Fn(θ) = 0 exists with a probability tending

to 1, θ̃n → θ0 in probability, and
√

n(θ̃n − θ0) → N(0, A−1
0 V0 A−1

0
T
) in distribution

wrt. Pθ0
. Sørensen (2000, Section 2.3.1) discusses the non-singularity condition of A0

thoroughly and explains it in terms of reparametrizations.
For h1 . . . , hN given it is easy to find optimal weights α? in the sense that the corre-

sponding estimator has the smallest asymptotic variance, where V ≤ V ′ as usual means
that V ′ − V is positive semi-definite (Sørensen, 1997):

α?(x, θ) =
(

τh(x, θ)−1 Eθ

(

ḣ(X0, X∆, θ)|X0 = x
)

)T
.

Calculation of α? may, however, give rise to serious numerical problems; in practice an
approximation to α? is therefore often used instead (Bibby and Sørensen, 1995). This
does not infuence the consistency of the estimator, only the efficiency.

How to construct martingale estimating functions in practice

The question on how to choose h1, . . . , hN (and N ) is far more subtle (when the score
function is not known), and the optimal h1, . . . , hN within some class (typically) change
with ∆. Jacobsen (2000, 2001) investigates optimality as ∆ → 0, and it is clear that the
score for the invariant measure is optimal as ∆ → ∞. Not much work has been done for
fixed values of ∆ in between.

To our best knowledge all martingale estimating functions used in the literature so far
are based on functions on the form

hj(x, y, θ) = gj(y, θ) − Eθ(gj(X∆, θ)|X0 = x)

for some (simple) functions gj : I × Θ → R in L1(µθ), j = 1, . . . , N . Obviously, hj

satisfies (9).
Most often polynomials in y have been used, namely gj(y, θ) = ykj for some (small)

integers kj (Bibby and Sørensen, 1995, 1996, 1997). Then θ only appears in the condi-
tional expectation. In some models low-order conditional moments are known analytically
although the transition probabilities are not. But even if this is not the case, the conditional
moments are relatively easy to calculate by simulation. Kessler and Paredes (2002) inves-
tigates the influence of simulations on the asymptotic properties of the estimator.

Alternatively, eigenfunctions have been used: Let gj(·, θ) : I → R, j = 1, . . . , N
be eigenfunctions for Aθ with eigenvalues λj(θ). Under mild conditions (Kessler and
Sørensen, 1999), Eθ(gj(X∆, θ)|X0 = x) = exp(−λj(θ)∆)gj(x, θ) so

hj(x, y, θ) = gj(y, θ) − e−λj(θ)∆gj(x, θ)

is of the above type. The estimating functions based on eigenfunctions have two advan-
tages: they are invariant to twice continuously differentiable transformations of data and
the optimal weights are easy to simulate (Sørensen, 1997). However, the applicability is
rather limited as the eigenfunctions are known only for a few models; see Kessler and
Sørensen (1999) for some non-trivial examples, though.
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4.2 Simple estimating functions

An estimating function is called simple if it has the form Fn(θ) =
∑n

i=1 f(Xi∆, θ) where
f : I × Θ → R

p takes only one state variable as argument (Kessler, 2000). The crucial
condition (7) simplifies to: Eθ0

f(X0, θ) = 0 if and only if θ = θ0. This condition involves
the marginal distribution only which has two important consequences: First, since the in-
variant distribution is known explicitly, it is easy to find functionals f analytically with
Eθ0

f(X0, θ0) = 0. Second, simple estimating functions completely ignore the depen-
dence structure of X and can only be used for estimation of (parameters in) the marginal
distribution. This is of course a very serious objection.

Kessler (2000) shows asymptotic results for the corresponding estimators and is also
concerned with optimality. This work was continued by Jacobsen (2001) who character-
izes the optimal simple estimating function, see also Conley et al. (1997, Appendix C.4).
In practice, however, it is usually not possible to use this characterization and f is chosen
somewhat ad hoc.

An obvious possibility is the score corresponding to the invariant distribution, f =

∂θ log µ. Another is moment generated functions fj(x, θ) = xkj − Eθ X
kj

0 , j = 1, . . . , p.
Also, functions could be generated by the infinitesimal generator Aθ defined by (3): let
hj : I × Θ → R, j = 1, . . . , p, be such that the martingale part of hj(X, θ) is a true
martingale wrt. Pθ. Then f = (Aθh1, . . . ,Aθhp)

T gives rise to an unbiased, simple
estimating function. This particular type of estimating function was first introduced by
Hansen and Scheinkman (1995) and later discussed by Kessler (2000).

Kessler (2000) suggests to use low-order polynomials for h1, . . . , hp, regardless of the
model. Sørensen (2001) studies the model-dependent choice (h1, . . . , hp) = ∂θ log µ and
recognizes that the corresponding estimating function based on fj = Aθ(∂θj

log µ), j =
1, . . . , p, may be interpreted as an approximation to minus twice the continuous-time score
function when σ does not depend on θ. Intuitively, one would thus expect it to work well
for small values of ∆, and it is indeed small ∆-optimal in the sense of Jacobsen (2001);
still if σ does not depend on θ. Note the crucial differences from the usual Riemann-Itô
approximation of the continuous-time score, that is, the logarithmic derivative wrt. θ of
(6): the above approximation is unbiased while the Riemann-Itô approximation is not.

Finally, note the following relation between the simple estimating function Fn(θ) =
∑n

i=1 f(Xi∆, θ) and a class of martingale estimating functions: Define

hf (x, y, θ) = Uθf(y, θ) −
(

Uθf(x, θ) − f(x, θ)
)

where Uθ is the potential operator, Uθf(x, θ) =
∑∞

k=0 Eθ(f(Xk∆, θ)|X0 = x). Then
hf satisfies condition (9), and Fn(θ) is asymptotically equivalent to the martingale esti-
mating function

∑n
i=1 hf (X(i−1)∆, Xi∆, θ) (Jacobsen, 2001). Recall that the martingale

estimating function may be improved by introducing weights α (unless of course the opti-
mal weight α?(·, θ) is constant). In this sense martingale estimating functions are always
better (or at least as good) as simple estimating functions. In practice it is not very helpful,
though, as the potential operator in general is not known! Also, the improvement may be
very small as was demonstrated in an example in Sørensen (2000, page 15)

4.3 Comments

Obviously, there are lots of unbiased estimating functions that are neither martingales nor
simple. For example,

f(x, y, θ) = h2(y, θ)Aθh1(x, θ) − h1(x, θ)Aθh2(y, θ)
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generates a class of estimating functions which are transition dependent and yet explicit
(Hansen and Scheinkman, 1995; Jacobsen, 2001).

Estimating functions of different kinds may of course be combined. For example, one
could firstly estimate parameters from the invariant distribution by solving a simple esti-
mating equation and secondly estimate parameters from the conditional distribution one
step ahead. See Bibby and Sørensen (2001) for a successful application. Also, note that
estimating functions work for multivariate diffusions as well; however, simple estimating
functions are less useful than in the univariate setting as they are most often not explicit.

Finally, estimating functions may be used as building blocks for the generalized meth-
od of moments (GMM), the much favored estimation method in the econometric literature
(Hansen, 1982). Estimation via GMM is essentially performed by choosing an estimating
function Fn of dimension p′ > p and minimizing the quadratic form Fn(θ)T ΩFn(θ) for
some weight matrix Ω.

5 Approximate maximum likelihood estimation

Estimating functions can be thought of as relatively simple imitations of the score func-
tion. We now turn to three quite ambitious approximate maximum likelihood methods.
They all supply approximations, analytical or numerical, of pθ(∆, x, ·) for fixed x and θ.
Hence, they supply approximations of pθ(∆, X(i−1)∆, Xi∆), i = 1, . . . , n, and therefore
of Ln(θ). The approximate likelihood is finally maximized over θ ∈ Θ.

5.1 An analytical approximation

A naive, explicit approximation of the conditional distribution of X∆ given X0 = x is
provided by the Euler approximation (5). The Gaussian approximation may be poor even
if the conditional moments are replaced by accurate approximations (or perhaps even the
true moments). A sequence of explicit, non-Gaussian approximations of pθ(∆, x, ·) is
suggested by Aı̈t-Sahalia (2002b); see also Aı̈t-Sahalia (1999) and Aı̈t-Sahalia (2002a)
for an application and an extension to multivariate diffusions. For fixed x and θ the idea
is to (i) transform X to a process Z which, conditional on X0 = x, has Z0 = 0 and Z∆

“close” to standard normal; (ii) define a truncated Hermite series expansion of the density
of Z∆ around the standard normal density; and (iii) invert the Hermite approximation in
order to obtain an approximation of pθ(∆, x, ·).

For step (i) define Z = gx,θ(X) where

gx,θ(y) =
1√
∆

∫ y

x

1

σ(u, θ)
du.

Then Z solves dZt = bZ(Zt, θ) dt+1/
√

∆ dWt with drift function given by Itô’s formula
and Z0 = 0 (given X0 = x). Note that g′x,θ(y) = (∆σ2(y, θ))−1/2 > 0 for all y ∈ I so
that gx,θ is injective. The data are not actually transformed (this would also be impossible
since the transformation depends on θ); the transformation is just a device for the density
approximation as explained below.

For step (ii) note that N(0, 1) is a natural approximation of the conditional distribution
of Z∆ given Z0 = 0, as increments of Z over time intervals of length ∆ has approximately
unit variance. Let pZ

θ (∆, 0, ·) denote the true conditional density of Z∆ given Z0 = 0 and
let pZ,J

θ (∆, 0, ·) be the Hermite series expansion truncated after J terms of pZ
θ (∆, 0, ·)

around the standard normal density. That is, the first term is simply the N(0, 1)-density;
the remaining terms are corrections given in terms of the Hermite polynomials.
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For step (iii) note that the true densities pθ(∆, x, ·) and pZ
θ (∆, 0, ·) are related by

pθ(∆, x, y) =
1√

∆σ(x, θ)
pZ

θ

(

∆, 0, gx,θ(y)
)

, y ∈ I

and apply this formula to invert the approximation pZ,J
θ (∆, 0, ·) of pZ

θ (∆, 0, ·) into an
approximation pJ

θ (∆, x, ·) of pθ(∆, x, ·) in the natural way:

pJ
θ (∆, x, y) =

1√
∆σ(x, θ)

pZ,J
θ

(

∆, 0, gx,θ(y)
)

, y ∈ I.

Then pJ
θ (∆, x, y) converges to pθ(∆, x, y) as J → ∞, suitably uniformly in y and

θ. Furthermore, if J = J(n) tends to infinity fast enough as n → ∞ then the estimator

maximizing
∏n

i=1 p
J(n)
θ (∆, X(i−1)∆, Xi∆) is asymptotically equivalent to the maximum

likelihood estimator (Aı̈t-Sahalia, 2002b, Theorems 1 and 2).
Note that the coefficients of the Hermite series expansion cannot be computed ex-

plicitly but could be replaced by analytical approximations in terms of the infinitesimal
generator. Hence, the technique provides explicit, though very complex, approximations
to pθ(∆, x, ·). Aı̈t-Sahalia (2002b) performs very persuasive numerical experiments in-
dicating that the approximate maximum likelihood estimates are very close to the true
maximum likelihood estimates, even when only a few terms are included in the Hermite
series expansion.

5.2 Numerical solutions of the Kolmogorov forward equation

A classical result from stochastic calculus states that the transition densities under certain
regularity conditions are characterized as solutions to the Kolmogorov forward equations.
Lo (1988) uses a similar result and finds explicit expressions for the likelihood function for
a log-normal diffusion with jumps and a Brownian motion with zero as an absorbing state.
Poulsen (1999) seems to be the first one to construct numerical solutions for non-trivial
diffusion models.

For x and θ fixed the forward equation for pθ(·, x, ·) is a partial differential equation:
for (t, y) ∈ (0,∞) × I ,

∂

∂t
pθ(t, x, y) = − ∂

∂y

(

b(y, θ)pθ(t, x, y)
)

+
1

2

∂2

∂(y)2
(

σ2(y, θ)pθ(t, x, y)
)

,

with initial condition pθ(0, x, y) = δ(x−y) where δ is the Dirac delta function. In order to
calculate the likelihood Ln(θ) one has to solve n of the above forward equations, one for
each x = X(i−1)∆, i = 1, . . . , n. Note that the forward equation for X(i−1)∆ determines
pθ(t,X(i−1)∆, y) for all values of (t, y), but that we only need it at a single point, namely
at (∆, Xi∆).

Poulsen (1999) uses the so-called Crank-Nicholson finite difference method for each
of the n forward equations. For fixed θ he obtains a second order approximation of
log Ln(θ) in the sense that the numerical approximation log Lh

n(θ) satisfies

log Lh
n(θ) = log Ln(θ) + h2f θ

n(X0, X∆, . . . , Xn∆) + o(h2)gθ
n(X0, X∆, . . . , Xn∆)

for suitable functions f θ
n and gθ

n. The parameter h determines how fine-grained a (t, y)-
grid used in the numerical procedure is (and thus the accuracy of approximation). If
h = h(n) tends to zero faster than n−1/4 as n → ∞ then the estimator maximizing
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log Lh
n(θ) is asymptotically equivalent to the maximum likelihood estimator (Poulsen,

1999, Theorem 3).
Poulsen (1999) fits the Chan-Karolyi-Longstaff-Sanders (CKLS) model (Chan et al.,

1992) model to a dataset of 655 observations and is able to do so in quite reasonable time.
Although n partial differential equations must be solved the method seems to be much
faster than the simulation based method below. On the other hand the Crank-Nicholson
method is less accurate than, and comparable in computing-time to, the method of Section
5.1 (Jensen and Poulsen, 2002).

5.3 Approximation via simulation

Pedersen (1995b) defines a sequence of approximations to pθ(∆, x, ·) via a missing data
approach. The basic idea is to (i) split the time interval from 0 to ∆ into pieces short
enough that the Euler approximation holds reasonably well; (ii) consider the joint Euler
likelihood for the augmented data consisting of the observation X∆ and the values of X
at the endpoints of the subintervals; (iii) integrate the unobserved variable out of the joint
Euler density; and (iv) calculate the resulting expectation by simulation. The method has
been applied successfully to the CKLS model (Honoré, 1997).

To be precise, let x and θ be fixed, consider an integer N ≥ 0, and split the interval
[0,∆] into N + 1 subintervals of length ∆N = ∆/(N + 1). Use the notation X0,k for the
(unobserved) value of X at time k∆/(N + 1), k = 1, . . . , N . Then (with x0,0 = x and
x0,N+1 = y),

pθ(∆, x, y) =

∫

I
pθ

(

N∆N , x, x0,N

)

pθ

(

∆N , x0,N , y
)

dx0,N

= Eθ

(

pθ

(

∆N , X0,N , y
)∣

∣X0 = x
)

, y ∈ I (10)

where we have used the Chapman-Kolmogorov equations.
Now, for ∆N small (N large), pθ(∆N , x0,N , ·) is well approximated by the Gaussian

density with mean x0,N +b(x0,N , θ)∆N and variance σ2(x0,N , θ)∆N . Denote this density
by p̃N

θ (∆N , x0,N , ·). Following (10),

pN
θ (∆, x, y) = Eθ

(

p̃N
θ

(

∆N , X0,N , y
)
∣

∣X0 = x
)

is a natural approximation of pθ(∆, x, y), y ∈ I . Note that N = 0 corresponds to the
simple Euler approximation.

The approximate likelihood functions LN
n (θ) =

∏n
i=1 pN

θ (∆, X(i−1)∆, Xi∆) con-
verge in probability to Ln(θ) as N → ∞ (Pedersen, 1995b, Theorems 3 and 4). Fur-

thermore, there exists a sequence N(n) such that the estimator maximizing L
N(n)
n (θ) is

asymptotically equivalent (as n → ∞) to the maximum likelihood estimator (Pedersen,
1995a, Theorem 3).

In practice one would calculate pN
θ (∆, x, y) as the average of a large number of values

{p̃N
θ (∆N , Xr

0,N , y)}r where Xr
0,N is the last element of a simulated discrete-time path

X0, X
r
0,1, . . . , X

r
0,N started at x. Note that the paths are simulated conditional on X0 = x

only which implies that the simulated values X r
0,N at time N∆N may be far from the

observed value at time ∆. This is not very appealing as the continuity of X makes a large
jump over a small time interval unlikely to occur in practice. Also, it has the unfortunate
numerical implication that a very large number of simulations is needed in order to obtain
convergence of the average. Elerian et al. (2001, Section 3.1) suggest an importance
sampling technique conditioning on the observation at time ∆ as well (see Section 6).
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6 Bayesian analysis

Bayesian analysis of discretely observed diffusions has been discussed by Eraker (2001),
Elerian et al. (2001) and Roberts and Stramer (2001). The unknown model parameter is
treated as a missing data point, and Markov Chain Monte Carlo (MCMC) methods are
used for simulation of the posterior distribution of the parameter with density

f(θ|X0, X∆, . . . , Xn∆) ∝ f(X0, X∆, . . . , Xn∆|θ)f(θ). (11)

The Bayesian estimator of θ is simply the mean (say) of this posterior. Note that we use
f generically for densities. In particular, f(θ) denotes the prior density of the parameter
and f(X0, . . . , Xn∆|θ) denotes the likelihood function evaluated at θ.

The Bayesian approach deals with the intractability of f(X0, . . . , Xn∆|θ) in a way
very similar to that of Pedersen (1995b), namely by introducing auxiliary data and us-
ing the Euler approximation over small time intervals. However, the auxiliary data are
generated and used quite differently in the two approaches.

As in Section 5.3 each interval [(i − 1)∆, i∆] is split into N + 1 subintervals of
length ∆N = ∆/(N + 1). We use the notation Xi∆,k for the value of X at time i∆ +
k∆/(N + 1), i = 0, . . . , n − 1 and k = 0, . . . , N + 1. The value is observed for k = 0
and k = N + 1, and Xi∆,N+1 = X(i+1)∆,0. Further, let X̃i∆ be the collection of latent

variables Xi∆,1, . . . , Xi∆,N between i∆ and (i+1)∆, let X̃ = (X̃0, . . . , X̃(n−1)∆) be the
nN -vector of all auxiliary variables, and let X obs be short for the vector of observations
X0, X∆, . . . , Xn∆.

For N large enough the Euler approximation is quite good so the density of (X obs, X̃),
conditional on θ (and X0) is roughly

fN(Xobs, X̃|θ) =

n−1
∏

i=0

N+1
∏

k=1

φ
(

Xi∆,k, Xi∆,k−1 + b(Xi∆,k−1, θ)∆N , σ2(Xi∆,k−1, θ)∆N

)

(12)
where φ(·,m, v) is the density of N(m, v). The idea is now to generate a Markov chain
{X̃j , θj}j with invariant (and limiting) density equal to the approximate posterior density

fN (X̃, θ|Xobs) =
fN (Xobs, X̃ |θ)f(θ)

f(Xobs)
∝ fN(Xobs, X̃ |θ)f(θ). (13)

Then {θj}j has invariant density equal to the marginal of f N(X̃, θ|Xobs). This is in-
terpreted as an approximation of the posterior (11) of θ and the Bayes estimator of θ is
simply the average of the simulated values {θj}j after some burn-in time.

In order to start off the Markov chain, θ0 is drawn according to the prior density f(θ),
and X̃0 is defined by linear interpolation, say, between the observed values of X . The j’th
iteration in the Markov chain is conducted in two steps: first, X̃j = (X̃j

0 , . . . , X̃j
(n−1)∆)

is updated from f(X̃|Xobs, θj−1), and second, θj is updated from f(θ|Xobs, X̃j).
For the first step, note that the Markov property of X implies that the conditional

distribution of X̃i∆ given (Xobs, θ) depends on (Xi∆, X(i+1)∆, θ) only, so the vectors

X̃j
i∆, i = 0, . . . , n − 1 may be drawn one at a time. We focus on how to draw X̃0 =

(X0,1, . . . , X0,N ) conditional on (X0, X∆, θj−1); the target density being proportional to

N+1
∏

k=1

φ
(

X0,k, X0,k−1 + b(X0,k−1, θ
j−1)∆N , σ2(X0,k−1, θ

j−1)∆N

)

,
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cf. (12). Note the crucial difference from the simulation approach in Section 5.3 where
X̃i∆ was simulated conditional on Xi∆ only: here X̃i∆ is simulated conditional on both
Xi∆ and X(i+1)∆. It is (usually) not possible to find the normalizing constant so direct
sampling from the density is not feasible. However, the Metropolis-Hastings algorithm
may be applied; for example with suitable Gaussian proposals. Eraker (2001) suggests to
sample only one element of X̃0 at a time whereas Elerian et al. (2001) suggests to sample
block-wise, with random block size. Roberts and Stramer (2001) take a slightly different
approach as they sample transformations of the missing data in order to improve the rate
of convergence of the Markov chain (of course, all the usual problems with convergence of
the chain should be investigated). Moreover, they sample all missing data points between
two consecutive observations at once, using Brownian bridge arguments.

For the second step it is sometimes possible to find the posterior of θ explicitly from
(13) in which case θ is updated by direct sampling from the density. Otherwise the
Metropolis-Hastings algorithm is imposed again.

The method is relatively easily extended to the multi-dimensional case. Also, it ap-
plies to models that are only partially observed (e.g. stochastic volatility models) in which
case the values of the unobserved coordinates are simulated like X̃ above (Eraker, 2001).
Eraker (2001) analyses US interest rate data and simulated data, using the CKLS model
dXt = α(β − Xt) dt + σXγ

t dWt as well as a stochastic volatility model. Elerian et al.
(2001) and Roberts and Stramer (2001) apply the method on simulated data as well as
interest rate data using the CIR model (the CKLS model with γ = 1/2) and various other
models.

7 Estimation based on auxiliary models

We now discuss indirect inference (Gourieroux et al., 1993) and the so-called efficient
method of moments, or EMM for short (Gallant and Tauchen, 1996). The methods are
essentially applicable whenever simulation from the model is possible and there exists a
suitable auxiliary model (hence also for multivariate diffusions). Therefore the methods
have gained popularity among econometricians.

The idea is most easily described in a relatively general set-up: let (Y1, . . . , Yn) be
data from a (complicated) time series model Qθ, indexed by the parameter of interest θ.
Estimation is performed in two steps: First, the model Qθ is approximated by a simpler
one Q̃ρ — the auxiliary model, indexed by ρ — and the auxiliary parameter ρ is estimated.
Second, the two parameters ρ and θ are linked in order to obtain an estimate of θ. This is
done via a GMM procedure, and the first step may simply be viewed as a way of finding
moment functionals for the GMM procedure.

Let us be more specific. Assume that (Y1, . . . , Yn) has density q̃n wrt. Q̃ρ and let ρ̂n

be the maximum likelihood estimator of ρ, that is,

ρ̂n = argmaxρ log q̃n(Y1, . . . , Yn, ρ),

with first-order condition

∂
∂ρ log q̃n(Y1, . . . , Yn, ρ̂n) = 0. (14)

Loosely speaking, θ̂n is now defined such that simulated data drawn from Qθ̂n
resembles

data drawn from Q̃ρ̂n
.
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For θ ∈ Θ let Y θ
1 , . . . , Y θ

R be a long trajectory simulated from Qθ and let ρ̂R(θ) be the
maximum likelihood estimator of ρ based on the simulated data. The indirect inference
estimator of θ is the value minimizing the quadratic form

[

ρ̂n − ρ̂R(θ)
]T

Ω
[

ρ̂n − ρ̂R(θ)
]

where Ω is some positive semidefinite matrix of size dim(ρ) × dim(ρ). In EMM compu-
tation of ρ̂R(θ) is avoided as

[

∂
∂ρ log q̃R(Y θ

1 , . . . , Y θ
n , ρ̂n)

]

Ω̃
[

∂
∂ρ log q̃R(Y θ

1 , . . . , Y θ
R, ρ̂n)

]T

with Ω̃ like Ω above is minimized, cf. 14.
Both estimators of θ are consistent and asymptotically normal, and they are asymptot-

ically equivalent (if Ω and Ω̃ are chosen appropriately). If θ and ρ have same dimension,
then the two estimators coincide and simply solve ρ̂R(θ̂n) = ρ̂n. However, as the auxil-
iary model should be both easy to handle statistically and flexible enough to resemble the
original model, it is often necessary to use one with higher dimension than the original
model.

Of course, the quality of the estimator depends on the auxiliary model. So how should
we choose it? For the diffusion models considered in this paper the discrete-time Euler
scheme

Xi∆ = X(i−1)∆ + b(X(i−1)∆, ρ)∆ + σ(X(i−1)∆, ρ)
√

∆Ui

with U1, . . . , Un independent and identically N(0, 1)-distributed, is a natural suggestion
(Gourieroux et al., 1993). The second step in the estimation procedure corrects for the
discrepancy between the true conditional distributions and those suggested by the Euler
scheme. In a small simulation study for the Ornstein-Uhlenbeck process (solving dXt =
θXt dt + σdWt) the indirect inference estimator was highly inefficient (compared to the
maximum likelihood estimator). In the EMM literature it is generally suggested to use
auxiliary densities based on expansions of a non-parametric density (Gallant and Long,
1997). Under certain (strong) conditions EMM performed with these auxiliary models is
claimed to be as efficient as maximum likelihood.

The suggested auxiliary models are, however, fairly incomprehensible, and also com-
putationally burdensome. We believe that the approximate maximum likelihood methods
from Section 5 are as fast and efficient — and far more comprehensible — and that they
should therefore be preferred.

8 Conclusion

In this paper we have reviewed various estimation techniques for univariate diffusion pro-
cesses. We finish by summarizing important points and finally by commenting on possible
extensions of the techniques.

8.1 Concluding remarks

Maximum likelihood estimation is typically not possible for diffusion processes that have
been observed at discrete time-points only. In this paper we have reviewed a number of
alternatives.

From a classical point of view, the most appealing methods are those based on ap-
proximations of the true likelihood which in principle can be made arbitrarily accurate.
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We reviewed three types: Two of them rely on numerical techniques, one on numeri-
cal solutions to partial differential equations and one on simulations. Even with today’s
efficient computers both methods are quite computationally demanding. The last approx-
imation provides analytical, yet very accurate, approximations to the likelihood function.
The expressions are quite complicated, though, even for low-order approximations, and
simpler procedures are often valuable.

Estimation via estimating functions is generally faster. So-called simple estimating
functions are available in explicit form but provide only estimators for parameters from
the marginal distribution. Still, they may be useful for preliminary analysis, for example
in combination with martingale estimating functions. The latter are analytically available
for a few models but must in general be calculated by simulated. This basically amounts to
simulating conditional expectations, which is faster than calculating conditional densities
as required by the numerical likelihood approximations mentioned above.

The Bayesian approach is to consider the parameter as random and make simulations
from its (posterior) distribution. This is quite hard and requires simulation, conditional
on the observations, of the diffusion process at a number of time-points in between those
where it was observed. The simulation strategy may prove useful for non-Bayesian anal-
ysis as well.

Indirect inference and EMM remove bias due to the discrete-time auxiliary model by
simulation methods. The quality of the estimators is bound to depend on the auxiliary
model which is chosen somewhat arbitrarily, and we believe that more direct approaches
are preferable.

Summarizing, a recommendable approach may be to carry out preliminary analysis,
for example find good starting values for later numerical optimizations, by way of esti-
mating functions (which is not too hard) and use an approximate likelihood approach for
a more sophisticated study. For the latter, the explicit approximation from Section 5.1 is
often to be preferred.

8.2 Outlook

As already mentioned most of the methods in principle apply to multivariate diffusions as
well. With a few exceptions this has yet to be demonstrated in practice, though, as there
has been very few applications in that direction. Moreover, the computational burden will
be even more substantial than for univariate processes. In other words, the properties of
the methods still have to be explored in multivariate settings.

There has recently been some focus on so-called stochastic volatility models, that is,
two-dimensional diffusions where one of the coordinate processes is completely unob-
served. This of course complicates the analysis even further; see Sørensen (2000, Section
3.4) for a survey of estimation techniques. Estimating functions have been developed
(Sørensen, 1999b) and the Bayesian approach as well as indirect inference and EMM
have been applied (Andersen and Lund, 1997; Eraker, 2001; Gourieroux et al., 1993). It
is not yet clear if the approximate likelihood methods from Section 5 can be extended
to cover such models, but there are other suggestions on approximate likelihood analy-
sis (Sørensen, 2003). Still, inference for stochastic volatility models, is far from fully
explored.

Also, more research on non-parametric estimation would be interesting. For the sam-
pling scheme considered in this paper (with ∆ fixed), we are only aware of the paper by
Aı̈t-Sahalia (1996) in this area; see also the comments in the introduction regarding other
sampling schemes.
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Finally, recall that the fundamental problem is the combination of a continuous-time
model and discrete-time sampling. Of course the diffusion structure has been used in-
tensively for some approaches, but the ideas may also prove useful for other types of
continuous-time models with discrete-time observations. And certainly the work has
widened the spectrum of models for which proper statistical analysis is possible.
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Peter Honoré (1997). Maximum likelihood estimation of non-linear continuous-time term-
structure models. Working paper 1997-7, Department of Finance, Aarhus School of
Business.

Martin Jacobsen (2000). Optimality and small ∆-optimality of martingale estimating
functions. Preprint 2000-5, Department of Theoretical Statistics, University of Copen-
hagen. To appear in Bernoulli.



Parametric inference for diffusion processes 17

Martin Jacobsen (2001). Discretely observed diffusions: classes of estimating functions
and small ∆-optimality. Scand. J. Statist., 28:123–149.

Jean Jacod (2000). Non-parametric kernel estimation of the coefficient of a diffusion.
Scand. J. Statist., 27:83–96.

Bjarke Jensen and Rolf Poulsen (2002). Transition densities of diffusion processes: nu-
merical comparison of approximation techniques. J. Derivatives, 9:18–32.

Ioannis Karatzas and Steven E. Shreve (1991). Brownian Motion and Stochastic Calculus.
Springer-Verlag, New York, 2nd edition.

Samuel Karlin and Howard M. Taylor (1981). A Second Course in Stochastic Processes.
Academic Press, New York.

Mathieu Kessler (2000). Simple and explicit estimating functions for a discretely observed
diffusion process. Scand. J. Statist., 27:65–82.

Mathieu Kessler and Silvestre Paredes (2002). Computational aspects related to martin-
gale estimating functions for a discretely observed diffusion. Technical report, Depar-
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