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Abstract

Nominal-to-real data transformations are routinely used in empirical
work. A common example is the transformation of nominal money
and prices to real money and the rate of inflation. This paper es-
tablishes the necessary and sufficient condition for a transformation
to reduce the order of integration of an I(2) vector process while re-
taining the cointegrating relations among the variables. A particular
direction in which the condition potentially fails is often treated by
assumption in applied work. In this case, the transformed process sat-
isfies a well-specified vector equilibrium model, yet I(1) inference and
interpretation based on the real transformed system is invalidated. An
easy-to-implement sequential test of the transformation based on I(1)
cointegration methods is suggested. It demonstrates good size and
power properties in a small-scale simulation experiment. An empirical
example illustrates the need to test the nominal-to-real transformation.
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1 Introduction

This paper examines certain data transformations commonly applied to

L' Nominal

nominal time series, so-called nominal-to-real transformations.
time series are often modelled statistically as being integrated of order two,
denoted 1(2).2 The transformation aims to reduce the order of integration
while preserving the cointegrating relations that exist among the variables,
including the so-called polynomially cointegrating relations. Finding empiri-
cal validity of a real transformation would be in accordance with a large body
of economic theory that predicts long-run price homogeneity. Moreover, it
offers the convenience of being able to apply the comparatively simple I(1)
tools in the real system as opposed to more elaborate 1(2) techniques needed
for analyzing the nominal system.

Studies that involve the long-run relationships between nominal I(2) time
series are prevalent in the literature. Examples include open economy pric-
ing relationships between domestic prices, unit labour costs, and import
prices, e.g. Banerjee and Russell (2001) and Banerjee, Cockerell and Rus-
sell (2001), the long- and medium-run relationships among commodity prices
and general price indices, Juselius (1999), and monetary relationships that
involve money stock measures and consumer prices (or alternative aggregate
price indices), e.g. Ericsson, Hendry and Prestwich (1998), Muscatelli and
Pirelli (2000), Juselius (2001), and Coenen and Vega (2001).

Money demand analysis is arguably the leading example of applications
of nominal-to-real transformations. According to most theories, the steady-
state demand for real money should be unit free and homogeneous of degree
zero in nominal variables, e.g. Doornik et al. (1998). In a standard speci-
fication, the empirical analysis is based on real money, m; — p;,> a measure
of the scale of transactions, and one or more measures of the opportunity
cost of holding money. For concreteness, consider the real income, y;, the
rate of inflation, Ap;, and the spread between the long-term interest rate
and the own yield of money, denoted R;. Those variables, including the rate
of inflation, are then treated empirically as first-order integrated processes.
By implication, nominal money, m;, and the price level, p;, are 1(2), sharing
a common stochastic trend and thus cointegrating to I(1).* In this case, the

!The transformation will be referred to as nominal-to-real and the case of a single I(2)
common trend will be considered in the introduction and the examples. The analytical
results of the paper encompass general forms of the transformation as well as general
values of the rank indices.

2Gee Haldrup (1998) for a recent survey of the econometric analysis of I(2) variables.

3Lowercase denotes log-transformed variables.

“This is the case denoted CI(2,1) in the terminology of Granger (1986). Stock and



nominal-to-real transformation relies on a single I(2) common trend being
loaded proportionately into money and prices. The auxiliary assumption is
that neither y; nor Ry is integrated of order two. In effect, the 1(2) compo-
nent of nominal income has been successfully removed in constructing the
real measure, y¢, whereas money and prices are assumed to embody identical
nominal components.

A nominal-to-real transformation is often based on theoretical beliefs
about the nature of long-run relationships. The main argument of the
present paper is that the validity of the transformation for any particular
set of measurements needs to be empirically tested. Clearly, measurement
issues in terms of money, prices, and the choice of a scale variable (income,
total final expenditure, or wealth) have been at the center of a large body
of studies of aggregate money demand relationships, see Ericsson (1998).
Empirical examples to further substantiate the claim that testing is needed
will be provided in the empirical section below.

The main contribution of the present paper is to characterize the cases
in which the transformation suggested by theory does not succeed in elim-
inating the I(2) component and the implications for the analysis of real
transformed variables. Kongsted (1998) pointed out that long-run price ho-
mogeneity should be satisfied not only by those cointegrating combinations
which reduce the order of integration to zero (possibly in conjunction with
first differences of the process), but also by a separate set of linear combina-
tions that cointegrate only from I(2) to I(1). The present paper shows that
although satisfying homogeneity in terms of the former set of cointegrating
combinations 4s sufficient to ensure the existence of a vector equilibrium
correction (VEC) model in terms of the real transformed variables, it is in
general not sufficient to ensure the elimination of the I(2) component. In
turn, the full condition for a valid nominal-to-real transformation requires
that all linear combinations of the variables integrated of an order less than
two should be expressed in real terms.

In applied work the validity of the transformation is very often treated by
assumption, or only part of the full condition is tested. Here, the sequential
testing approach as suggested in Kongsted (1998) to testing the full con-
dition is applied. Although it requires an analysis of the original nominal
system, it essentially relies on the repeated application of I(1) techniques.
The sequential approach leads to a consistent test of the nominal-to-real

Watson (1993) and Doornik, Hendry and Nielsen (1998) address the econometric issues
involved in analyzing I(2) monetary data and examine U.S. and U.K. data, respectively.
They also provide references to previous work.



transformation and is found to have reasonable size and power properties
in a simple model that underlies the simulation experiment. Moreover, if
the transformation is rejected, the test will provide information on exactly
where homogeneity is lacking and help predicting the likely consequences
for the analysis of the real transformed system.

The outline of the paper is as follows: Section 2 establishes the neces-
sary and sufficient conditions for a valid transformation and examines the
properties of the real transformed process. A money demand example is
provided in order to fix ideas. Section 3 outlines the statistical analysis and
the asymptotic properties of the sequential testing approach. Section 4 pro-
vides a simulation experiment based on a simple trivariate data generating
process. Section 5 reviews some published applications based on compara-
tively long data sets and finds strong empirical evidence for the need to test
the nominal-to-real transformation. Section 6 offers some conclusions.

Some notation is needed throughout. For a p X r matrix , o, of rank r,
let vy denote a basis of the p X (p — r) orthogonal complement and define
a = ala’a)™!. For the matrix ¢ of dimensions (p — r) x s and rank s,
s <p—r,define a;y =& £ and ap = a £ . The matrices o, a1, and ag are
then mutually orthogonal. Likewise, for 8 (pxr)and n (p—rxs), s <p—r,
define 3, = 3.1 and By = B.n,. A tilde denotes a parameter or variable
related to a real transformed system.

2 The nominal-to-real transformation

This section analyzes the nominal-to-real transformation which is intended
to reduce the order of integration of an I(2) vector time series while preserv-
ing the full set of cointegrating relations amongst the variables. First, the
assumptions regarding the original process are given and the transformation
is defined. Then, the properties of the transformed process are characterized
under two sets of conditions. Finally, a simple example is provided in order
to fix ideas and to motivate the model used in the simulation experiment in
Section 4.

Assume that the vector process X, satisfies the p-dimensional vector

autoregression
A?X; =TIX; | — TAX; | + e (2.1)

The term ¢; is assumed to be identically and independently distributed
N(0,Q) for t = 1,2,...,7T, and the roots of the characteristic polynomial
associated with (2.1) are assumed to be either at 1 or outside the unit circle.



The initial observations, X_1, Xo, are taken to be fixed for the statistical
analysis.’
The following assumption on the original vector process, X¢, is main-

tained throughout.

Assumption 1: The parameters satisfy the reduced rank conditions
H=ap and o\ T8 =& (2.2)

with o and B of full column rank r < p and & and n of full column rank
s < p—r. A further rank condition applies by which

&' o/ (TBET + I —T)31n.|#0. (2.3)

Under the reduced rank conditions (2.2) X; has a vector equilibrium cor-
rection (VEC) representation. Johansen (1992a) shows that X; is integrated
of order two under Assumption 1. The cointegrating properties of X; are
related to the reduced rank conditions and can be characterized as follows:
The matrix B2 = B, defines the loadings of the 1(2) common trends into
X; and the linear combinations 35 X; remain 1(2). The r + s linear combina-
tions (3, 31)'X; with 81 = 317, both cointegrate from 1(2) to I(1), although
they differ in terms of further cointegration properties. Specifically, the pro-
cess 31X of dimension s remains I(1) and enters in (2.1) only through its
first difference. The r-dimensional process 3'X;, although in general also
I(1), enters the model in levels and cointegrates to stationarity with the
first differences in the so-called polynomially cointegrating relationships,

Sy =B/ Xy — 6B5AX,, 6§ =a'Tfs. (2.4)

For a special case in which r > p—r—s there will exist linear combinations
of variables as defined by ¢, 3'X; that cointegrate directly to stationarity.
(2.4) is the standard representation which is minimal in the sense that only
the I(1) part of AX; is included, see Johansen (1992a). A relationship such
as (2.4) which relates the variables and their first-difference as a cointegrat-
ing relationship is the focus of much applied work, e.g., concerning the role

5The case of two lags in terms of X; is considered for ease of notation and without loss
of generality for the results presented. Kongsted and Nielsen (2002) examine the analysis
of a real-transformed system for the general VAR(k). The transformation relates to the
stochastic part of the vector process. Although deterministic terms are ignored in this
section, any realistic implementation would have to account for deterministics as well.



of inflation in real money demand or the relationship between inflation and
the markup over production costs.

The following assumption defines the class of transformations considered
in this paper.

Assumption 2: The proposed transformation is

. Bx, \ [ 2
Xt = < VAKX, ) = ( U, ) (23)

where B ispX (r+s), b=B,, and v is p X (p—1r — s) satisfying |v'b| # 0.

The columns of B supposedly span the linear combinations that reduce
the order of integration from two to one (or to zero in special cases as
noted above). Often Z; = B’ X; consists of real-transformed variables. Cor-
respondingly, the matrix b = B reflects a presumption about the way in
which the components of X are affected by the I(2) common trend. The con-
dition on v ensures that a full set of first differences of the original variables,
A X4, is obtainable from the transformed process, including those needed for
polynomial cointegration according to (2.4). Note that Assumption 2 takes
the number of 1(2) components of the process, p —r — s, as given whereas r
and s need not be separately specified in order to construct X;.

Having defined the original process, X¢, and the nominal-to-real trans-
formation we turn to characterizing the properties of the real-transformed
process, X;. Tt is instructive first to examine the full condition under which
the nominal-to-real transformation is valid and then to contrast with a result
that holds under weaker conditions.

The necessary and sufficient condition for the proposed transformation
(2.5) to eliminate the common I(2) trends and retain the cointegrating com-
binations is stated in Proposition 1.

Proposition 1: The transformed vector process X, is I(1) with cointegrating
rank 7 = 7 if and only if

v'(6,B1) = 0. (2.6)
The set of cointegrating vectors of X, has the representation
F = (¢, ~a'TBpb(v'0) ) (2.7)

where ¢ is a (r+ s) X r matriz of full rank such that 3 = Bé¢.
Proof: See the Appendix.



Proposition 1 holds that all CI(2,1) cointegrating vectors should be or-
thogonal to the known matrix b. Equivalently, the I(2) loadings matrix, 2,
should equal b (up to a rotation) for a valid transformation. The standard
form (2.4) is obtained from (2.7) by the choice v = b = (5 which is valid
under the assumptions maintained by Proposition 1.

The main interest of the present paper lies in cases where some part of
(2.6) fails.® Then, the transformed process X; is I(2), however, its coin-
tegrating properties depend critically on which part of the condition has
failed. In particular, the cases '3 # 0 and ¥'3; # 0 can be shown to have
very different implications.

If the first part, ¥’ 3 = 0, is satisfied, then X; includes the levels terms nec-
essary to reproduce polynomial cointegration among the original variables.
In particular, &3 = 0 is sufficient to ensure that a VEC representation exists
in terms of X;. This is irrespective of /31 = 0 or not. The levels term of
the original VEC model, 3’ X;_1, can be obtained as ¢/ B'X; since 3 = B¢
for some ¢ of full rank if &3 = 0. The VEC representation of X, is

AXt = f[Xt—l + f1AXt_1 + &, (2.8)

where

¢ &AL > . (2.9)

l:[ _ (B,U)/(O“al) < 0 _5ib(qﬂb)—1

See the Appendix for the derivation of (2.8) and (2.9) and the definitions
of T'; and &. Of particular interest is how 7 = rank(f[) compares to r, the
rank of the levels coeflicient matrix of the original system. Proposition 2
states this relationship.

Proposition 2: If b'3 = 0 then r < ¥ = 7 + 1, where 7, = rank(V/31) <
min(s,p—r —s). If /B =0 and /31 # 0 then Xy is I(2) and r < F.

Proof: See the Appendiz.

Proposition 2 and the VEC representation for the case v/ = 0 in (2.8)
and (2.9) have important implications for the cointegrating properties of
the transformed system. First, the number of cointegrating relations, 7,
among the variables of the transformed vector, X;, will in general exceed
the number of polynomially cointegrating relations of the original system,
r. Equality only holds for the special case that also the second part of
(2.6) is satisfied, b3, = 0. Second, even if ¥ = 0 X; is in general 1(2)

6The transformed process is analyzed subject to (2.6) by Kongsted and Nielsen (2002).



and polynomially cointegrating. Linear combinations of Z; cointegrate from
1(2) to I(1) but in general need to be combined with Uy and AX; in order
to cointegrate to stationarity. Clearly, the I(1) component of AX; must
derive from AZ;. Third, from the representation (2.9) there are 7, linear
combinations of the U; process which emerge as trivial CI(2,1) cointegrating
vectors. The latter cointegrate to stationarity, in general in combination
with AZ;. Finally, by rotating the particular set of cointegrating vectors
suggested by the above decomposition of fI, it is seen that any cointegrating
vector of the transformed model will correctly reflect the proportions in
which the levels of the original set of variables, X, entered in (2.4), that is,
. The coefficient of Uy, on the other hand, is not fully determined by the
cointegrating properties alone in this extended set of cointegrating vectors.

Before moving on to tests of the nominal-to-real transformation a simple
money demand example is provided in order to illustrate the cases distin-
guished by Propositions 1 and 2.

Example:” Consider three nominal variables and their adopted measure-
ments for a particular economy under investigation: The money stock, my,
nominal income, yi*, and the price level, p;. Assume that X; = (me, %, pt)
satisfies (2.1) and that Assumption 1 is satisfied with » = s = 1. There is one
I(2) common trend in the nominal system. Two further assumptions made
throughout the example are that the price level, p;, is indeed integrated of
order two and that there exist real numbers p and x defining a generalized
velocity relationship in which m; — py® + KAp; cointegrate to stationarity.
If p =1, k=0 then standard (inverse) velocity cointegrates to stationary
directly.

Assume that theory maintains that the nominal variables my, y* and py
are equally affected a single nominal trend corresponding to the common
I(2) trend. Then, §; is proportional to b = (1,1,1)’. The real transformed
variables are X; = (me — pr, Yy — pe, Ape)’ which correspond to choices of B
and v that satisfy Assumption 2,

1 0 0
B = 0 1 , U= O
-1 -1 1

Case 0: In this baseline case the adopted measurements satisfy the theo-
retical presumption. The cointegration parameters can be chosen as (s =

"The focus here are the nominal variables. The empirical examples provided in Section
5 include additional variables.



(1,1,1), p=(1,-1,0), B1=(1,1,—2), and satisfy (2.6). Real money,
m¢ — pt, and real income, y;* — p¢, are integrated of order (at most) one.
The real magnitudes, in turn, cointegrate to stationarity with p = 1 in the
standard measure of inverse velocity, m; — yi* (possibly with inflation).

Case 1: Consider a case in which p; is the appropriate deflator in nominal
income whereas the adopted money stock measure requires disproportional
price adjustment. Real income, y;*—py, is I(1) whereas m; and p; cointegrate
with a parameter p # 1. Real money, m; — p;, and standard inverse velocity,
my — yy', are I(2) processes in this case. The cointegration parameters are
Ba = (p,1,1), B =(1,—p,0), B1 = (p,1,—(1+p?)). Both parts of condition
(2.6) are violated for p # 1. X; remains I1(2) and has no VEC representation
because the levels term my; — py;* cannot be obtained from X, when p#18

Case 2: Consider a case in which nominal income corresponds to the
adopted measure of money in the sense that the standard inverse veloc-
ity measure, my — yy*, cointegrates to I(1). Still, the price measure adopted,
Pt, is not proportional either in money or income. Real money as well as real
income remain I(2) processes and X; is 1(2). The cointegration parameters
for this case are 2 = (v,7,1), v # 1, 8 =(1,—-1,0), and 51 = (1,1, —2v)".
Accordingly, it holds that 4’3 = 0 whereas ¥/ 3; # 0. The real transformation
X; has a VEC representation with cointegrating rank 7 = 2.

In conclusion, if ¥'(3,51) # 0 then the real-transformed process, X,
remains 1(2). If &3 # 0 the transformation will not include the linear
combinations needed for the polynomially cointegrating relations. If ¥’3 = 0
a transformed VEC model exists but, in general, X; is still I(2) and the rank
of the levels coefficient matrix is greater than the number of polynomially
cointegrating relations, r, of the original system. Only for the special case
that also /37 = 0 will the transformation produce a real system which is
I(1) and provides a direct relationship between the two sets of cointegrating
relations.

3 A simple test of the transformation

Cointegration analysis in a real system (2.8) forms the starting point in most
empirical studies of money demand relationships, maintaining the assump-

8 A special although trivial case is p = 0 in which prices and nominal income are I(2)
whereas money is I(1).



tion that X is I(1). However, treating the validity of the transformation by
assumption runs a significant risk in terms of inference on the number and
structure of cointegrating relations. According to Proposition 2, the true
cointegrating rank of the real transformed time series is only weakly related
to r if ¥'B1 # 0 and inference should be based on I(2) methods. Moreover,
the existence of cointegrating vectors that pick out linear combinations of
variables in first-differences from Ui, e.g. the rate of inflation, could be the
indication of an invalid transformation rather than suggesting stationarity
of the latter variables.

Since the implications of the cases V'3 # 0 and O/ 31 # 0 are quite different
there is an interest in determining the source of a failure of the overall
condition (2.6). The two cases can be seen to have a natural sequential
ordering which fits into the commonly used two-step analysis of I(2) systems,
see Kongsted (1998). In effect, the validity of each part can be assessed based
on standard methods for analyzing I(1) variables.

Each cointegrating relation is subject to p — 7 — s linear restrictions by
(2.6). The first part, '3 = 0, is parameterized as 3 = By. The orthogonal
complement can then be constructed as

B1L = (BpL,b) = (B1,b). (3.10)

The second part of (2.6) is formulated as a restriction on the parameter n
of the second reduced rank condition in (2.2),

n=01 6= (B1,b) = ( B%ﬁl ) : (3.11)

A simple test of (2.6) based on the sequential use of reduced rank regres-
sion is derived in Kongsted (1998). The separate restrictions on § and 3; are
examined sequentially based on the so-called two-step estimation procedure,
see Johansen (1995), Paruolo (1996), and Rahbek et al. (1999) for details.
The first step is equivalent to the standard I(1) reduced rank regression
analysis of Xy, see Johansen (1996, Section 7.2.1). The model is estimated
unrestrictedly as well as subject to the restriction on 3. The likelihood ra-
tio test, denoted Qp1, is asymptotically distributed as x? with (p —r — s)r
degrees of freedom subject to b'3 = 0. This holds for the I(1) case and for
the I(2) case it follows from Johansen (1995), see also Rahbek et al. (1999,
Theorem 4.2).

The second step proceeds by estimating 7 unrestrictedly and imposing
b5 =0 as in (3.11). Both estimates are conditioned on the restricted esti-
mate of 3 and the corresponding estimate of a. Subject to b/(3, 51) = 0 the

10



likelihood ratio test of &'31 = 0, denoted Qy2, is asymptotically distributed
as x%((p — r — s)s). This follows by 1 being mixed Gaussian, see Rahbek et
al. (1999, Theorem 4.3).

An overall test of (2.6) can then be constructed by choosing the rejec-
tion region as the union of the individual rejection regions, i.e. the overall
hypothesis is rejected if any of the individual tests reject. The size of each in-
dividual test is chosen as v/2, by which the size of the overall test is between
v/2 and v. As the separate tests are consistent, the sequential procedure is
consistent against the alternative b/(3, 31) # 0.

4 Simulation experiment

This section conducts a small-scale simulation experiment. The aim is to
further illuminate the properties of the real transformed system in cases
where condition (2.6) fails. The experiment also illustrates the use of the
sequential testing procedure in detecting possible departures from the trans-
formation suggested by theory.

The data generation process (DGP) for the experiment is defined by the

equations
X=Xy = (p—1)Xo1
+(v(p— 1)+ kO)AX3 1 + 1t — €2t (4.12)
AXo = YAX31 42t (4.13)
A%Xs = ey (4.14)

(e1t,€2t,63t) ~ i.4.d.N(0,1)

with @ = 1+ ~v2(1 + p?) # 0. This design is decidedly simple, both in terms
of short-run dynamics and the lack of deterministic terms, as well as trans-
parent in the sense that the rank indices and the roots of the characteristic
polynomial are independent of the parameters varied in the experiment.
It encompasses the money demand example in Section 2 with Xy = my,
Xop =y, and X3; = py. In this interpretation, (4.12) is a generalized ve-
locity equation, (4.13) is the equation for nominal income and (4.14) is the
price equation.

The properties of X; = (X1, Xot, X3¢)' for general values of the parame-
ters p, v, and k are derived in the Appendix. It is shown that (4.12) - (4.14)
can be written in the form of (2.1) with » = 1 and s = 1. Assumption 1 is
satisfied and X; is I(2). The CI(2,1) cointegrating vectors are § = (1, —p,0)’
and 81 = (p,1, —y(1 + p*))’. The vector of 1(2) loadings is 32 = (pv,7,1)

11



and the polynomially cointegrating relationship is
St = X1t — pXot — k(pyAX 1 + 7AXo + AX3y)

in the standard representation (2.4).

Samples of size T+50 are generated for the simulations, { = —51, =50, ..., 0,
1,...,7, with X 51 = X_50 = 0. The influence of the initial values is ef-
fectively removed by discarding 50 pre-sample values. Each experiment is
conducted with 10.000 replications where ¢; is replaced by pseudo-random
independent drawings in Gauss.

The sample sizes considered are 1" = {50, 150,500}. 1" = 150 is within
the range available in most studies of quarterly macroeconomic data. The
results for 7" = 500 should bring out a close approximation to the asymptotic
properties of the tests considered. Although the focus of the experiment is
not a comparison of the small-sample performance of tests, it is useful also
to report results for 7' = 50. In view of the simplistic nature of the DGP, the
latter set of results should be taken as an indication of the kind of results
to be expected in applied work on data with a more complicated dynamic
structure.

Estimation is based on reduced rank regression as proposed by Johansen
(1988). Tests of the transformation are based on repeated application of
reduced rank regression according to the two-step I(2) procedure of Jo-
hansen (1995), see Kongsted (1998) for the derivation of a sequential test
of ¥'(8,41) = 0 in the two-step procedure. Determination of the cointe-
grating rank in the real transformed system uses the trace test of Johansen
(1988).7 Critical values for the test are obtained from MacKinnon, Haug,
and Michelis (1999).

The example in Section 2 specified a particular theoretical structure in
terms of B, b, and v. It also provided some motivation for each of the cases
considered in which either p or y is varied from a baseline case, p = 1, v = 1.
The parameter « equals —2 throughout. Table 1 summarizes the three cases
considered and Table 2 reports the results.

Case 0: p=1,7v=1

The common I(2) trend has proportional loadings in Xj¢, Xop, and Xs;.
Thus, (2.6) is satisfied and sp(b) = sp(f2). The theoretical transformation

9For convenience the implied restrictions on I’y are not imposed in the simulation
experiment. Kongsted and Nielsen (2002) establish that inference on the cointegrating
rank is very little affected by ignoring the restriction.
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eliminates the I(2) trend in this case according to Theorem 1. (4.12) provides
a polynomially cointegrating relationship in terms of the I(1) variables X1;—
Xo; and AXs3; with a coefficient of k0 = 3k = —6.10

The VEC representation in terms of X; has II = 545’ with rank 7 = 1
and T' = I. The characteristic polynomial has two unit roots (and no further
roots). The matrix dlf@ | has full rank (being equal to the identity in this
simple case). Table 1 reports a particular decomposition for = &B’. The
cointegrating linear combinations of the transformed process, B’ Xt, are seen
to reflect the polynomially cointegrating relationships among the original
set of variables.

The simulation results in Table 2 for Case 0, T'= 500 are in accordance
with the asymptotics outlined in Section 3. The rejection frequencies are
close to 0.05 both for the first-stage test on G, (Qp1, and for the sequential
test on 3 and (1. Rank determination in the transformed model based also
accords well with the asymptotics, see Johansen (1992b). It selects # = 0
with frequency 0,'! the true value, ¥ = 1, with a frequency close to 0.95,
and 7 > 2 with frequency close to 0.05. For smaller values of 1" the tests
tend to be oversized which is in accordance with the findings of numerous
other studies, e.g. Doornik et al. (1998).

Case 1: p#1,v=1

In this case the condition (2.6) is violated and the common I(2) trend loads
disproportionately as 32 = (p,1,1), see Table 1. The transformed process,
X; remains 1(2). Since ¥ # 0 there is no valid VEC representation for
X,.12

Simulation results are reported for five values of p and T' = {50, 150, 500}
in Table 2.3 The first-step test on (3 alone, @, and the sequential test
appear almost equally powerful in picking up deviations from the baseline
p = 1. The power of both tests is more than 0.8 when p deviates from the
baseline by 1 per cent or more for the central case, T' = 150.

0This is of the order of magnitude of inflation effects in inverse velocity found, e.g., by
Doornik et al. (1998) and Juselius and Toro (1999).

1 This holds throughout the simulations and is therefore not reported in Table 2.

12 Accordingly, no results are reported in Table 2 for the analysis of the real transformed
system.

130nly the first combination of p and T is reported for which the rejection frequency
equals 1.
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Case 2: p=1,v#1

In this case '3 = 0 is satisfied whereas /3, # 0. Again, the common
I(2) trend affects the variables disproportionately, see Table 1, and X, is
I(2) according to Proposition 1. Contrary to Case 1 a transformed VEC
representation exists in terms of X, with the coefficients

3 -1 1 —k8+1-—v 3
II= 0 0 v—1 and ' =1.
0 0 0

The levels coefficient matrix II has rank 7 = 2 iff # 1. It can be de-
composed into the product of p X 7 matrices B and &. Moreover, it can be
shown that & T, = 0 whereas |a4(T3&T + I —T)Bs| # 0. Case 2 has two
unit roots in the characteristic polynomial associated with the transformed
VEC model. Both are related to the I(2) common trend that remains in
this system.

The general structure of cointegration in the transformed model was de-
rived in Section 2. For the present DGP there are two cointegrating relation-
ships among the transformed variables which can be further characterized
as follows. First, it is evident from B as reported in Table 1 that com-
ponents of X; which enter the cointegrating relationships in levels through
Zy = (X1t — X3¢, Xor — X3¢)', will do so in the same proportions as they
entered the polynomially cointegrating relationship of the original system.
This holds for any linear combination of the cointegrating vectors. Second,
the coefficient of the first-differenced term, U; = AXjs,, is in general not
pinned down by the cointegrating properties of X;. Specifically, for the par-
ticular choice of basis for B and & reported in Table 1 the coefficient of A X3¢
differs from —x6. Moreover, it is possible to linearly combine the B—Vectors
to obtain a vector that excludes Uy altogether. Third, X is I(2) so X,
will in general not be cointegrating to stationarity. Rather, B/Xt and BQAX}
combine to form polynomially cointegrating relationships. The coefficient of
the latter for the basis reported for [3 in Table 1 can be shown to be

)

in the standard format (2.4). This is the coefficient of

5:5/%:(‘

N[O —

B AX, = (1,1,0)(A(X1t — Xst), A(Xor — X31), A% X3,).
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In the velocity example, a disproportional price deflator would leave real
money and real income I(2) and a linear combination of their first differences
would be cointegrating with the rate of inflation.

Turning to the simulation results, Table 2 shows that the deviations from
the baseline in Case 2 are well captured by the sequential test. The power
increases fairly rapidly in 1 — ~ albeit at a slower rate than for p-deviations
from the baseline. The different rates of convergence of 5 and f; that hold
in the I(2) model, see Johansen (1995), are thus reflected in the rejection
frequencies for finite samples.

Also reported in Table 2 are the rejection frequencies of the first-step
test on 3 alone, Qp1, at a nominal 5 per cent level. The condition &3 = 0
is satisfied in Case 2 and it appears that the empirical size remains close to
the nominal value and is not systematically affected by the value of v for
any given sample size.

The remaining columns in Table 2 regard rank determination by a trace
test within the transformed VEC model. Note that the true value of rank(II)
is two when ~ deviates from one. Apart from small variations due to Monte
Carlo uncertainty, the frequency of 7 = 1 being selected decreases as vy devi-
ates from one whereas the outcome 7 = 2 becomes more likely. Moreover, as
the system contains an I(2) trend for vy # 1 the I(1) asymptotic distribution
of the trace test no longer applies. Johansen (1995) shows that the distri-
bution shifts out and that the trace test rejects the true hypothesis that
7 < 2 with a size that exceeds the nominal level when based on I(1) critical
values. Indeed, in the simulations a large number of simulations lead to the
outcome 7 = 3.

5 Empirical Examples

The determinants of the long-run demand for money have been the subject
of a large number of studies using a variety of methods and measurements
of income, prices, and interest rates. The list includes early regression-
based studies such as Goldfeld (1973, 1976) and recent studies based on
cointegration methods, e.g. Baba, Hendry, and Starr (1992), Friedman and
Kuttner (1992), Stock and Watson (1993), Ericsson, Hendry, and Prestwich
(1998), and Muscatelli and Spinelli (2000).

This section examines the validity of the nominal-to-real transformation
for three annual data sets that cover comparatively long periods. The data
sets have been analyze in studies for the United States by Stock and Watson
(1993), for the United Kingdom by Ericsson et al. (1998), and for Italy by
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Muscatelli and Spinelli (2000). Table 3 outlines the main characteristics of
the data.

The basic vector of variables is Xi = (mu, pt, ye, Bt)’ where y; is real
income and R contains one or more measures of the own and alternative
rates of interest. The U.S. and U.K. data measure the price level as the de-
flator that corresponds to the real income definition. Muscatelli and Spinelli
(2000, p. 722), on the other hand, argue that a cost-of-living index is prefer-
able to the GDP deflator as the former “is likely to be a more important
determinant of transactions balances.” In addition, Muscatelli and Spinelli
examine the role of the rate of inflation in the long-run demand for real
money, i.e. a polynomially cointegrating relationship of the form (2.4).

Table 4 reports the sequential test of the nominal-to-real transformation
for the three data sets. The results are based on vector equilibrium correc-
tion models with four lags.'* This corresponds to the choice of three lags in
first differences in the real money equilibrium correction model estimated by
Muscatelli and Spinelli (2000, p. 730). A single cointegrating relationship
among the levels (r = 1) and one common I(2) trend (p —r — s = 1) have
been imposed throughout. Stock and Watson (1993) and Muscatelli and
Spinelli (2000) argue that m; and p; should be modelled as I(2) variables
whereas Ericsson et al. (1998) conclude in favour of the data being I(1).
Applying the rank test procedure of Rahbek et al. (1999) suggests that the
U.S. and U.K. data are I(2). The conclusion is found to depend on the inclu-
sion of war dummies in the case of Italy. Finally, the theoretical hypothesis
maintained in Table 4 is that m; and p; are I(2) with equal loadings whereas
the remaining variables are at most integrated of order one.

Table 4 contains two sets of results for each country. The columns la-
beled “Constant and trend” employ the deterministic specification suggested
by Rahbek et al. (1999).!> The nominal-to-real transformation cannot be
rejected at usual levels of significance for the U.S. or the U.K. The tests of
both parts of (2.6) have p-values of 0.2 or more. On the other hand, the
transformation is rejected in the Italian case. Although the validity of the
first part of (2.6), ¥’3 = 0, cannot be rejected, the second part, ¥'3; = 0,
must be firmly rejected.

The columns labeled “Constant” restrict the model to exclude any linear
trend component in the polynomially cointegrating combinations. Although,

1 This is sufficient to capture the autoregressive structure in the U.S. and U.K. data.
For Italy there is evidence of autocorrelated errors from tests at the level of the full system
although single-equation tests cannot reject the null of no serial correlation.

15The case of Ttaly also included war dummies as detailed in Muscatelli and Spinelli
(2000).
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formally, the exclusion of the trend is rejected for all three countries,'® this
is the specification adopted by the original studies. Conclusions concerning
the validity of the nominal-to-real transformation remain unaltered. The
evidence for price homogeneity of the levels cointegrating combination now
appears weaker for the U.K. and for Italy with p-values less than 0.1.

The results for the Italian case can be related to Muscatelli and Spinellis
findings. Using single-equation methods they confirmed long-run price ho-
mogeneity of the money demand relationship, essentially establishing that
b'3 = 0. Moreover, they found the estimates of the income effect and the
own and alternative rate effects to be in accordance with a priori beliefs.
On the contrary, in several different specifications the inflation coefficient
estimate turned out to be insignificant or signed contrary to a priori consid-
erations. These findings are in accordance with the predictions of Section
2 for the case that b/3 = 0 but ¥/3; # 0: The true cointegrating rank is
greater than one and the polynomially cointegrating relationship obtained
by imposing only one cointegrating vector will be some linear combination of
the “true” money demand relationship, possibly with a significant effect of
the rate of inflation, and another relationship combining the rate of inflation
with first-differences of the real transformed variables. The coefficients of
real money, real income, and the interest rate variables is correctly reflected
by the combined relationship whereas the coefficient of the rate of inflation
cannot in general be identified as an inflation effect in the demand for real
balances.

6 Conclusions

The paper has presented a formal characterization of cases in which the
nominal-to-real transformation is invalid. The main result in Proposition 2
shows that I(1) inference and interpretation of the real transformed system
need not be valid even though the system is transformed according to the-
oretical considerations that are satisfied by the polynomially cointegrating
relations.

Specifically, the transformation may fail in terms of the remaining CI(2,1)
cointegrating combinations that enter the VEC model in terms of first-
differences only. If the transformed process is then erroneously assumed
to be I(1), the system could be interpreted as being associated with direct

8 The likelihood ratio tests of excluding the trend for the U.S., UK. and Italian cases
are 5.05, 21.56, and 6.56, respectively, with limiting x?(1) distributions, see Rahbek et al.
(1999, Corollary 4.1).
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cointegration among the real magnitudes and apparently stationary first dif-
ferences of the nominal variables. As shown in Section 2, in fact the trans-
formed process in this case is 1(2) and embodies polynomial cointegration
among the real transformed variables.

The sequential test is suggested as a simple and consistent test based
on standard I(1) methods. It enables a test of each part of (2.6) as well
as a joint test. There are alternative 1(2) methods which allow a joint test
of the hypothesis ¥'(3, 51) = 0. Most notably the I(2) maximum likelihood
approach of Johansen (1997) which relies on a different parameterization of
the model and a different estimation algorithm.

7 Appendix

Proof of Proposition 1:

The following results will be helpful for the proof: First, if |v'b| # 0 then
|B'V| # 0 where V = v, and rank(B,v) = p so that [ = av’ + ¢B’ holds
with @ = b(v'b)™! and ¢ = V(B'V)~!, see Hansen and Johansen (1998).
Secondly, under (2.6) it holds that sp(B) = sp(3,31) so that B = (3,31)A
for a non-singular matrix A. If '3 = 0 then 3 = B¢ for some (r + s) X r
matrix ¢ of full column rank.

Necessity of condition (2.6): X; includes linear combinations of the levels
of X; in terms of Z; = B’ X;. Using the relationship I = 838" + 18] + P24
we get

Zy = B'(B0 + p1B] + B205) Xz (7.15)

If either part of (2.6) fails then the 1(2) component, 35Xy, will carry over to
the transformed process which shows necessity of (2.6).

Sufficiency of condition (2.6): It is illuminating to show sufficiency in
three steps: First, we establish that X, is integrated at most of order one.
Secondly, we show that X, satisfies a reduced rank VEC representation.
Finally, a result from Johansen (1996) can be applied to show that X, is
indeed I(1) with cointegrating rank 7 = r.

i) To establish that Xt is integrated at most of order one: Uy = v/AX; is
integrated at most of order one by the fact that it obtains by first-differencing
of linear combinations of an 1(2) process, Z; = B’ X; is a non-singular trans-
formation of an I(1) process, B’ Xy = A'(3, /1) X¢.
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ii) To show that X, satisfies a reduced rank VEC representation: Insert
IT = af in (2.1) to obtain the VEC representation,

A’X, =af' X, 1 —TAX; 1 +ey.

Multiply by (B,v)" and use the relation AX; = ¢AZ; + aU; to obtain
AZy \ [ Blaf'Xi1 \ [ BT(cAZi—1+aU;i_1) . B'g
AU, |\ Yaf X1 VT (eAZ 1+ aU;1) vy |

The levels term 3’ X; 1 is a linear combination of Z; 1 = B'X; 1 as /3 = 0.
Collect terms in levels and first differences of the transformed process,

AZy \ B'a¢ —B'Ta Zi_1 " I—B'Te 0 AZi 4 " Ble;
AUy |\ Ya¢d —v'Ta Ui_1 —v'Te 0 AU v'er |
(7.16)

which is now a VEC model for the transformed process,
AX, =T1X, 1 +D1AX 1+ &
with & = (B, v)’e; and
P ( I =BT 0>'
—v'Te 0
In order to derive the structure of II it is useful to apply the relation I' =

36" + (ad@'TF + a1)B] + ad'T B3, which is a consequence of Assumption
1, see Paruolo and Rahbek (1999). The term I'a can be rewritten as

La = [[36'b+ (a@'T'B1 + a1) b+ ad'T'Ba85b] (v'b) L. (7.17)

The first and second terms vanish by (2.6) which leaves I'a = @ T B 35b(v'b) L.
Inserting in (7.16) we get the following expression for II,

= (B,v) a(¢/, ~a'T B2 85b(v'b) 1),
where a and ¢ have full column rank  and therefore rank(IT) = r. Defining
& = (B,v) o we get the decomposition II = &3’ where 3 is given by (2.7).
iii) From Corollary 4.3 of Johansen (1996) it follows that when X; is
integrated of order at most one and IT has reduced rank r < D, X, is indeed
I(1) with cointegrating rank r.
This completes the proof of Proposition 1.
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Proof of Proposition 2:
Proposition 2 assumes that o3 = 0 so the above derivation of (7.16)
applies. Since b1 is not restricted it is useful to rewrite (7.17) as

Ta = [T33'0+ a@' T3, 3 b+ a18,b](v'b) L. (7.18)
Now only the first term in parentheses vanishes and
I = (B,v)(ag/,—adTB. B b(v'b) " — a131b(v'd) )

I =ITA , fn—1
= ot (5 R

This is the product of three matrices: (B, v) is p x p of full rank whereas the
second and third have dimensions p x (r + s) and (r + s) X p, respectively.
Thus, rank(IT) < r + s < p. Since ¢ has full column rank it holds that
rank(Il) > r. Denoting rank(/51) by 7y then r < 7 = r+r, < r+min(s, p—
r—S).

If Y3 =0 and ¥/$1 # 0 then r, = rank(d/81) > 0 and therefore r < 7.
The expression (7.15) shows that X; is 1(2).

This completes the proof of Proposition 2.

The Simulation Model:
The model (4.12) - (4.14) can be rewritten as (2.1) with

-1
0
0

0 1 0 —(py—+kb)
0], I'=1 01 —y
0 0 0 0

=

o O

The following properties hold for general values of the parameters. The
characteristic polynomial associated with (2.1), |[I(1 —2)? — Mz +Tz(1 - 2)|,
has three unit roots and no further roots. The levels coefficient matrix II has
reduced rank r» = 1. It can be decomposed as II = o’ with o = (—1,0,0)’
and 8 = (1, —p,0)’. The orthogonal complements can be chosen as

(1) 0 P P
ar=| 5z 0|, BL= 1 gl
0 1 —y(1+p% 1

The second matrix in (2.2),

. 0
arn=(77 o).
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has reduced rank s = 1. It may be decomposed as o/ '3 = &y with { =
((IT;ZTZ’ 0)', n = (6(1+p?),0). The orthogonal complements can be chosen

as £, = (0,1) and n; = (0,1)". It follows that o = a, £ = (0 0)’,
Qg = aLfL = (07 0, 1>/7

1
? 1+P2 )

) p Py
Br=p061n= 1 , and Bo=(Bin = | v
—y(1+ p?) 1

The standard representation (2.4) of the polynomially cointegrating param-
eter is
6= @/Fﬁg = K.

Assumption 1 is satisfied since the roots of the characteristic polynomial
remain outside the unit circle or at one, rank(Il) = r < p, rank(a/, T3, ) =
s<p-—r,and

jab(TBE'T + T —T)Ba| = 1 # 0.
Note that the rank conditions do not depend on the parameters for this
particular DGP.
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Table 1: Three special cases of the simulation model.

Case 0 Case 1 Case 2

p=1ly=1 p#Lly=1 p=1y#1

5

Nominal system, X;

o) ) e

11 -2 p 1 —(1+p%)) (11 -27)
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¢ No VEC representation in terms of )N(t for this case.
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Table 2: Simulation results. v = .05. 10.000 replications.

Rejection Frequency

Rank Determination

) v T Qn Seq. Test F=1 =2 =23
Case 0 1 1 50 0.080 0.088 0.920 0.070 0.010
150  0.054 0.059 0.941 0.053 0.005

500 0.054 0.050 0.948  0.047 0.005

Case1l 0999 1 50 0.140 0.134 a a a
150 0.688 0.646 a a a

500 1.000 0.999 @ a a

0.998 1 50 0.282 0.255 @ a a
150  0.901 0.888 @ a a

500 1.000 1.000 a a a

0995 1 50 0.633 0.599 a a a
150  0.994 0.992 @ a a

0.990 1 50 0.867 0.847 a a @
150  1.000 1.000 @ a a

0980 1 50 0.967 0.961 a a @
Case2 1 0999 50 0.081 0.088 0.922 0.070 0.009
150  0.055 0.061 0.940 0.053 0.006

500 0.051 0.059 0.943 0.052 0.005

1 0998 50 0.086 0.093 0.923 0.068 0.009
150  0.061 0.069 0.941 0.053 0.006

500 0.053 0.100 0.927 0.064 0.009

1 099 50 0.077 0.094 0.918 0.072  0.009
150  0.062 0.098 0.929 0.063 0.008

500 0.053 0.335 0.788 0.183 0.028

1 099 50 0.077 0.113 0.913 0.074 0.012
150  0.055 0.212 0.869 0.111 0.019

500 0.052 0.675 0.465 0.479 0.055

1 098 50 0.080 0.203 0.878 0.104 0.018
150  0.057 0.489 0.664 0.294 0.042

500 0.053 0.939 0.096 0.827 0.077

1 0950 50 0.084 0.531 0.655 0.289 0.056
150  0.059 0.887 0.198 0.721 0.081

500 0.060 1.000 0.000 0.918 0.082

1 0900 50 0.086 0.803 0.384 0.520 0.096
150  0.061 0.991 0.017 0.880 0.095

500 0.053 1.000 0.000 0.923 0.077

Note: @Qp1 is the Johansen (1995) likelihood ratio test of b'3 = 0. Seq. Test is the
sequential test of (3, 31) = 0, see Kongsted (1998). Rank Determination uses the
procedure described by Johansen (1992b) based on the trace test of Johansen (1988).

¢ No VEC representation Q% terms of )N(t for this case.



Table 3: Main characteristics of the data.

Variable definitions

Country  Sample My Pt Yt R, Source
U.s. 1900 M1 Deflator of net ~ Net national Commercial Stock and
-1989 national product product paper rate  Watson (1993)
U.K. 1871 Broad Deflator of net ~ Net national  Short-term  Ericsson
-1993 money national income income interest rate et al. (1998)
Italy 1861 M2 Cost-of-living Real GDP Long-term  Muscatelli and
-1996 index government  Spinelli (2000)
bond yield

Deposit rate

Note: The Stock and Watson (1993) data set was obtained from Mark Watsons

homepage. David Hendry kindly supplied the data used in Ericsson et al. (1998). The

appendix to Muscatelli and Spinelli (2000) lists their data.

Table 4: Tests of the nominal-to-real transformation.

Constant and trend Constant
Country wvy,v2  Qpi(v1) Qp2(v2) Qp1(v1) Qp2(v2)
U.S. 1,2 1.68 [.20] 2.93 [.23] 1.67 [.20] 1.34 [.51]
U.K. 1,2 12 [.73] 2.80 [.25] 3.10 [.08] 1.61 [.45]
Ttaly 1,3 A4 [71] 36.12 [.00] 3.52 [.06] 34.55 [.00]

Note: Values in brackets are p-values.
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