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Abstract

Professional experts offer advice with the objective of appearing well informed.

Their ability is evaluated on the basis of the advice given and of the realized state

of the world. This situation is modeled as a reputational cheap-talk game in which

the expert receives a signal of continuously varying intensity with ability-dependent

precision about a continuum of states. Despite allowing an arbitrarily rich message

space, at most two messages are sent in equilibrium. The expert can only credibly

transmit the direction but not the intensity of the information possessed. Equilib-

rium advice is then systematically less informative than under truthtelling.
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“Much has been written about the doubtful accuracy of economists’ predic-

tions. ... they are better at predicting the direction than the actual magnitude

of events. ... This is disappointing, but it does not mean that economics is not

a science.” (‘Economics’, Encyclopaedia Britannica Online).

1. Introduction

Professional advisers are often concerned with their reputation rather than with the deci-

sions made on the basis on their recommendations. Take for example business consultants’

concern for the perceived quality of their services, managers’ interest in promoting their ca-

reers, and politicians’ pursuit of re-election. Though empirical studies have confirmed the

importance of reputation in the financial industry, the theory of information transmission

by professional advisers is still in its infancy.1 This paper investigates from a theoretical

point of view how the implicit incentives in the labor market and political system affect

the information revealed by advisers concerned with their reputation.

We model strategic revelation of unverifiable information by a professional adviser

seeking to develop a reputation for being well informed.2 Advisers are assumed to have

different degrees of expertise, i.e., informativeness of their signal structure. In our model

the expert is assumed to receive a continuous signal of ability-dependent precision about

the state of the world. The expert then reports to an evaluator, in a setting where no proof

can be given to substantiate the recommendation. The state of the world is subsequently

revealed to the evaluator, who combines it with the recommendation to update the belief

regarding the expert’s ability. This belief is referred to as reputation and determines the

expert’s future prospects and payoff.

As noted by Welch (2000), if analysts have a continuous message space it is in principle

possible to invert each analyst’s (supposedly separable) strategy thereby uncovering their

private signals. If analysts release their reports sequentially and incorporate other analysts’

information in their recommendations, the most recently issued report should efficiently

aggregate the private information held by all analysts. For this reason, Welch studies

analysts with an exogenously coarse message space (consisting of recommendations like

“sell”, “hold”, and “buy”) in order to obtain herding along the lines of Banerjee (1992)

1See the following recent empirical papers: Lamont (2002) on macroeconomic forecasters, Ehrbeck and
Waldmann (1996) on three-month U.S. Treasury bills interest rate forecasters, Graham (1999), Hong,
Kubik and Solomon (1999), Welch (2000), and Zitzewitz (2001a) on security analysts, and Chevalier and
Ellison (1999) on mutual fund managers.

2See Sobel (1985), Benabou and Laroque (1992), and Morris (2001) for models of reputation building
about preferences rather than quality of information possessed.
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and Bikhchandani, Hirshleifer and Welch (1992). This paper shows that in reputational

cheap talk equilibrium the message space is endogenously coarse.

Contrary to naive intuition, experts wishing to be perceived as accurate will not truth-

fully reveal their private information. Suppose that the evaluator presumes a fully sep-

arating strategy whereby the expert’s signal can be inferred from the message reported.

We prove that the signal bringing the highest reputational payoff is only rarely the one

privately possessed by the expert. Generically the expert will wish to lie, claiming to pos-

sess the most advantageous signal. In the special case in which the signal alone conveys

no information about the expert’s ability, the expert has an incentive to bias the report

towards the prior belief. Intuitively, the expert wants to give the impression of having a

more informative signal than she does. Hence, truthtelling cannot be sustained in equilib-

rium. An expert who desires to impress a rational audience is unable to communicate all

the information possessed. As a result professional advice cannot be taken at face value.

Because part of the information possessed by experts cannot be credibly conveyed to the

receivers, there is a welfare loss to society.

The model features cheap talk: the expert (sender) cares about the receiver’s response

(i.e., the evaluation of ability), but does not bear a direct cost from the message sent.

Our finding that equilibrium communication by a professional adviser is necessarily coarse

is reminiscent of Crawford and Sobel’s (1982) result in the canonical model of partisan

advice.3 In our setting this result holds for “well behaved” information structures, as

explained in Section 3. When senders with different information rank differently the re-

ceiver’s evaluation of ability following the various messages sent, it is possible for some

information to be communicated in equilibrium. For this to be the case, it is necessary

that the evaluator receives ex post some additional information about the state.4

The endogenous coarseness of equilibrium communication is the starting point of our

analysis. In order to characterize the structure of equilibria, we focus on the natural

case of an expert who receives a signal of continuously varying intensity with ability-

dependent precision about a continuum of states. With this special signal structure the

most informative equilibrium is either binary or completely uninformative. In either case,

a reported message pools many signals, and is therefore less precise than the sender’s

3In the cheap-talk model of Crawford and Sobel (1982) a privately informed sender is interested in in-
fluencing the decision taken by a receiver. In contrast with the case of delegation considered by Holmström
(1977), in cheap talk the receiver cannot commit to take any decision other than the ex-post optimal one
given the information communicated by the sender. Crawford and Sobel find that some communication
is possible when the sender and the decision maker have sufficiently congruent preferences.

4While in Crawford and Sobel’s model the sender is always better informed than the receiver, in our
setting the evaluator observes an additional signal (the realization of the state) before taking the action
(evaluation of the sender).
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true signal. Roughly speaking, the sender can at best communicate the direction of her

information but cannot accurately convey its intensity. The report not only garbles the

information about the state of the world, but also about the expert’s true ability.

Bayarri and DeGroot (1988) and (1989) were the first to analyze an expert’s incentive

to manipulate the information reported in order to gain influence. They posited that the

weight given to an expert is proportional to an expert’s prior weight and the predictive

density that the expert had assigned to the outcome that turns out to be actually ob-

served.5 In their setting, experts who maximize their own weight by optimally choosing

the predictive distribution to report, typically do not want to honestly report their pos-

terior belief. Our model departs from the Bayesian statistics literature in two important

ways. Firstly, rather than assuming an ad hoc updating rule for the weights, we follow the

lead of Holmström (1982/1999) by positing optimal updating on the quality of the expert’s

information.6 The evaluator (or “market”) is essentially a statistician and makes optimal

use of all information available to form the posterior belief on the informativeness of the

expert’s signal. The second innovation with respect to the Bayesian statistics literature

is that we not only characterize the incentives to deviate from honest reporting in our

setting, but we also study the equilibrium of the game.

In their pioneering paper, Scharfstein and Stein (1990) analyzed the equilibrium of

a two-period version of a reputational cheap talk model with a different sender in each

period.7 For simplicity they considered a model in which signals, states, and ability types

are all binary. With two signals there is a perfectly informative equilibrium whenever an

informative equilibrium exists (Ottaviani and Sørensen (2000)), so there is no manifestation

of coarseness. While Scharfstein and Stein (1990) fixed the prior on the state such that

there exists an informative equilibrium in the first period, in our continuous version of the

static one-agent model we treat the prior on the state parametrically. In our more general

formulation of the static model we can find conditions for coarseness and other qualitative

properties of the equilibrium which could not be detected in their binary signal model.

The theory of reputational cheap talk can be applied to a number of social situations.

5This happens naturally if a linear opinion pool is used (e.g., see Genest and Zidek (1986)).
6Section III of Holmström (1982/1999) contains the first formulation of a reputational model where

more able managers have access to a more precise signal about an investment opportunity. Holmström
uses an example to illustrate that managers might refrain from investment in order to shield themselves
from the risk associated with learning about ability that would otherwise result. For a general analysis
of the moral hazard problem presented instead in the first part of Holmström’s paper see Dewatripont,
Jewitt and Tirole (1999).

7Departing from Holmström (1982/1999), they assumed that the state of the world is eventually realized
regardless of the report. We also assume that the sender’s report does not affect the state or what the
receiver can observe about it.
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Consider a politician who derives private benefits from being reappointed by an electorate

assessing her competence. If those politicians who are considered to be better informed

are more likely to be re-elected, they are subject to the same incentives as our professional

advisers.8 Likewise, the reputational objective is natural when modeling conversation

among people who share preferences about alternatives or who have a negligible effect on

the final decision to be taken.9 In a companion paper, Ottaviani and Sørensen (2001b)

apply the theory of reputational cheap talk to the problem of strategic forecasting and

compare its predictions to those of alternative theories.

The paper is organized as follows: Section 2 sets up the model. Section 3 addresses

whether the revelation of information can be truthful. Section 4 characterizes the optimal

deviation from truthtelling. Section 5 analyzes the reputational cheap talk equilibrium,

discusses some important implications for herding that can be obtained in dynamic ex-

tensions of the model, and derives some comparative statics predictions. Section 6 briefly

discusses the empirical predictions of this model. Section 7 performs some robustness

checks and contains extensions useful for applied and empirical research. In particular,

we allow the expert to also have private information about her own type, to be directly

concerned about the accuracy of the decision made, and to compete directly with other

experts. Section 8 concludes with a summary of the contributions of the paper. All proofs

are collected in the Appendix.

2. Model

An expert of ability (or talent) type t ∈ T ⊆ R privately receives an informative signal
s ∈ S on the state of the world x ∈ X with conditional probability density function (p.d.f.)

f(s|x, t). Assume x and t are statistically independent, with common non-degenerate prior
beliefs q (x) on state and p (t) on ability. In order to keep the expert’s private information

uni-dimensional, we assume until Section 7.3 that the sender does not know her own ability

type t. After observation of the non-provable signal, the expert (or sender) decides which

message m ∈M to send. The message space is arbitrarily rich. A strategy of the sender is

8See Biglaiser and Mezzetti (1997) for a characterization of the bias induced by re-election concerns
on the decisions made by politicians in a model in which ability adds instead to the value of the project
undertaken. Heidhues and Lagerlöf (2001) analyze political competition when the electorate rewards the
politician who is most likely to have committed to the right decision.

9Before making a decision, individuals exchange information by speaking to one another. For example,
committee members typically select the relevant alternatives via open discussion. Conversation often takes
place among people who are interested in developing their reputation of being well informed. After all,
those with better reputation are more likely to gain influence in future decisions. See Ottaviani and Sø
rensen (2001a) for a model of political debate among heterogenous experts motivated by their reputation
as good experts.
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Prior
beliefs
q(x), p(t)

Expert
observes
signal
s ∈ S

Expert
sends
message
m(s) ∈M

Evaluator
observes
state
x ∈ X

Evaluator
computes
reputation
p(t|m,x)

Figure 1: Time line for the model. The conditional density of the signal
is f(s|x, t). The expert’s payoff is

∫
T
v(t)p(t|m,x) dt.

a mapping from signals into messages. The conditional probability that m is sent following

signal s is denoted by µ(m|s).
The evaluator (or receiver) observes the message sent by the expert as well as the

eventual realization of the state x. The evaluator’s job is to compute the posterior repu-

tation of the sender p (t|m,x).10 It is useful to think of the evaluator as being rewarded
for predicting as accurately as possible the ability t of the expert based on the information

(m,x) available. In order to calculate the posterior reputation, the evaluator must form a

conjecture µ̂ on the strategy used by the sender. Given the conjecture, the evaluator com-

putes the chances f̂ (m|x, t) =
∫
S
µ̂(m|s)f(s|x, t) ds and f̂(m|x) =

∫
T
f̂(m|x, t)p(t) dt. The

posterior reputation is then calculated by Bayes’ rule, p (t|m,x) = p (t) f̂ (m|x, t) /f̂(m|x).
The timing of the model is summarized in Figure 1.

The sender’s preferences over posterior reputations are represented by the strictly in-

creasing von Neumann-Morgenstern utility function v(t).11 The sender aims at maximizing

Ev(t), where the expectation is taken with respect to the posterior reputation p(t|m,x).12

10Zitzewitz (2001b) proposes an alternative model in which the market evaluates the quality of the
information contained in the forecast with a simple econometric technique, rather than via Bayesian
updating.
11This is a psychological game in which the sender’s payoff depends on the belief of the receiver. In

line with Geanakoplos, Pearce and Stacchetti (1989), we assume that payoffs have an expected utility
formulation. From a formal point of view, our formulation of an expert’s preference for reputation is
also similar to Bernheim’s (1995) approach to measure people’s preference for esteem. In his setting,
esteem is equal to the expected value of a function over types evaluated using the posterior belief about
an individual’s type based on the information signaled in equilibrium. The function is non-monotonic
because individuals desire to be perceived as having preferences close to a certain target level. In our
setting the function is instead monotonic because the expert wishes to be perceived to have high ability.
12The payoff to the sender depends entirely on the receiver’s belief and may be intangible. The payoff

is tangible if it derives from the value of the services provided in a future second and last period by the
expert, as in Holmström (1982). Truthful revelation is an equilibrium in this second period.
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The reputational payoff of message m in state x is

W (m|x) ≡
∫
T

v(t)p(t|m,x) dt, (2.1)

so that the expected reputational payoff for a sender with signal s who sends message m

is

V (m|s) =
∫
X

W (m|x)q(x|s) dx, (2.2)

where the expert’s posterior belief on the state x conditional on receiving signal s is

given by Bayes’ rule as q (x|s) = f(s|x)q(x)/f (s), with f (s|x) =
∫
T
f(s|x, t)p (t) dt and

f (s) =
∫
X
f(s|x)q (x) dx.

Regardless of the privately observed signal, the expert wishes to induce the evaluator’s

most favorable beliefs. The preference ordering over reputation for expertise is therefore

common across types. As first noticed by Seidmann (1990) in cheap-talk games with

inter-type agreement, information can nevertheless be transmitted in equilibrium provided

that the receiver’s decision is based on some additional information. In our setting, the

evaluator observes the state, not known to the sender when the message is sent. Messages

sent correspond to lotteries over posterior reputations, which depend on the realization

of the state. Depending on the evaluator’s rule for calculating the posterior reputation,

different messages may induce lotteries that are differently appealing to different types of

experts.

3. Conditions for Truthtelling

By definition, truthful information transmission occurs whenM = S and the message sent

equals the signal received, so that µ (s|s) = 1. Assume for the moment that the receiver
naively believes that the sender is applying this truthful strategy, so that f̂ (m|x, t) =
f (m|x, t). Is truthtelling then the optimal strategy for the sender? Whenever the answer
is affirmative, truthtelling is a perfect Bayesian Nash equilibrium of the cheap-talk game.

We find below that truthtelling is an equilibrium in the standard model of the classical

statistician performing a symmetric location experiment. But we quickly note that this

finding is not robust in a Bayesian setting, as generic choices of the prior belief q (x) and

value function v (t) render equilibrium truthtelling impossible.

3.1. Symmetric Location Experiments

We first show that truthtelling results in a completely symmetric location experiment

with essentially no prior information. In order to have a proper uniform prior, the space

6



X should be compact — we will comment later on the important case where the prior

is the improper uniform on the real line. Further, it would be inconvenient to make our

symmetry assumptions below on a bounded subset of the real line. Assume then that

the spaces X and S are both the unit circle, corresponding to the circumference of the

unit ball in R2. A real number z indicates a point on the circle in the usual way, giving
the anti-clockwise distance along the circumference from (1, 0), the circle’s origin in the

plane.13 To build a location experiment, let there be given p.d.f.s g (s|t) over the unit
circle, indexed by t ∈ T ⊆ R, with these three properties:
(i) Symmetry : s is distributed on the circle symmetrically around 0, i.e. g (s|t) =

g (−s|t) for all s ∈ [0, π].
(ii) Unimodality : s is distributed unimodally around 0, i.e. g (s|t) is a decreasing

function of s ∈ [0, π].
(iii) Monotone Likelihood Ratio Property (MLRP): g (s|t) /g (s|t′) is strictly decreasing

in s ∈ [0, π] when t′ < t, so that an s closer to 0 is better news for t.
The location experiment then has conditional p.d.f. given by f (s|x, t) = g (s− x|t).

It is simple to see that f inherits the symmetry and unimodality properties (around x)

such that f (x+ s|x, t) = f (x− s|s, t) for all s ∈ [0, π] and f (x+ s|x, t) is decreasing in
s ∈ [0, π]. Clearly, f (s|x) = g (s− x) =

∫
T
g(s−x|t)p (t) dt inherits these same properties

for any prior p (t).

Proposition 1 (Truthtelling in Location Experiment). Consider a location experi-

ment f (s|x, t) = g (s− x|t) with g satisfying symmetry, unimodality and MLRP. If the
prior q (x) is the uniform distribution, there is a truthtelling equilibrium for arbitrary prior

reputation p (t) and increasing value function v (t).

This result crucially depends on the uniform prior on the state q (x).14 Truthfully

reporting m = s is then equivalent to reporting the mode of the symmetric posterior

distribution q (x|s). Since a signal s closer to the state x indicates a higher ability t by the
MLRP and the state is concentrated around s, it is advantageous for the sender to send

m = s when the receiver interprets m as s. Truthtelling would instead be incompatible

13For instance, the numbers −2π, 0, 2π all indicate the origin, while π/2 indicates the point (0, 1) of the
plane.
14Notice that Proposition 1 applies to more signal structures than those on the unit circle presented

there. Assume that ϕ is a one-to-one mapping of X = S into some other space X ′ = S′. Using ϕ we can
transform q (x) into a distribution on X ′, transform g(s|t) into a distribution on S′, and construct f as
before. Then we find a new value function V ′ (ϕ (m) |ϕ (s)) = V (m|s) and it is clear that the analysis
carries over. For instance, with ϕ we could cut the circle open and straighten it out to an interval. The
resulting family of signal distributions is no longer a proper location family, since it is wrapped at the
ends of the interval, but it has X,S ⊆ R.
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with equilibrium for any location experiment with a proper prior belief on the state. To see

this, consider the well-known normal location experiment with s|x ∼ N (x, 1/τ) used by

Ottaviani and Sørensen (2001b) to develop the theory of strategic behavior of professional

forecasters. Unless the prior on the state is the improper uniform distribution on the

real line, the report that guarantees the highest expected reputational payoff to the expert

against the receiver’s naive beliefs is not the best predictor of the state E [x|s]. For instance
with normal prior on the state x ∼ N (µ, 1/ν), under some additional assumptions it can
be shown that the best deviation is equal to E [x|s′ = E [x|s]], because a signal equal to
the posterior mean is the one most likely to be observed by a well-informed expert. Since

the posterior mean E [x|s] is between the signal and the prior mean, an expert who is
presumed honest by the market profitably deviates toward the prior mean.

To shed further light on Proposition 1, we now argue that truthtelling likewise results

when a signal indicates that a state is infinitely more likely than all the other ones. This

happens for instance when the state has an atomless distribution q(x) and the signal a

dichotomous distribution, whereby the expert receives perfect information (s = x) with

probability t, and otherwise receives an uninformative draw from an atomless distribution

h(s). Formally, let δx(s) be the Dirac delta function, and assume that X ⊆ S. The signal
is drawn from

f(s|x, t) = tδx(s) + (1− t)h(s). (3.1)

Receiving signal s, the posterior on the state has an atom at x = s and a continuous density

over all other x’s. Moreover, the evaluator that receives m = x concludes that the signal

was derived from the perfectly informative distribution rather than the uninformative one,

and that this is good news about the type. Conversely, m 6= x is bad news. Thus, truthful
reporting of the signal m(s) = s constitutes an equilibrium, since any other signal would

have probability zero to turn out to be correct. Formally:

Proposition 2 (Truthtelling in Dichotomous Experiment). Truthtelling is an equi-

librium in the dichotomous model with h(s) and q(x) atomless.

3.2. Generic Impossibility of Truthtelling

We now show that truthtelling can only result in degenerate situations, as also indepen-

dently observed by Campbell (1998) in a more special case. Assume that S,X are closed

subsets of R, and that S is convex (i.e., an interval). Assume that f(s|x, t) is bounded
and continuously differentiable in s, with f and fs jointly continuous in (x, t).

We say that local truthtelling is possible at the signal ŝ ∈ S if there exists an open inter-
val I ⊂ S containing ŝ, such that when the receiver anticipates truthtelling (f̂ (m|x, t) =

8



f (m|x, t) for all m ∈ I) then V (s|s) = maxm∈I V (m|s) for all s ∈ I. In words, there
is a whole interval around ŝ where truthtelling by the sender is an optimal response to

the receiver’s anticipation of this. Local truthtelling immediately implies the first order

condition

Vm (s|s) = 0 (3.2)

for all s ∈ I. The thrust of our argument is to show that this identity cannot hold on an
interval, unless if the model is degenerate.

A signal structure is defined to be locally uninformative about talent at ŝ ∈ S if there
exists an open interval I ⊂ S containing ŝ and functions K (t) and κ (s|x) such that
f (s|x, t) = K (t)κ (s|x) for all s ∈ I and almost all x ∈ X and almost all t ∈ T . This
states that the conditional p.d.f. is separable in the (partly) observable outcome (s, x) and

the unobservable talent t about which inference is made. The condition implies that the

evaluator cannot use the pair (s, x) to make any discriminatory inference on t. Namely,

for any two pairs (s, x) and (s′, x′) we find p (t|s, x) = p (t|s′, x′).15

Local truthtelling is possible at ŝ when there is local uninformativeness at ŝ, since the

posterior reputation is entirely independent of the message sent. This complete indifference

trivially results in truthtelling. The crux of the model is that the sender affects the posterior

reputation p (t|m,x) through the message m depending on the realization of the state x.

The assumption of global uninformativeness needed to obtain global truthtelling is then

unduly restrictive. Unless the signal is globally uninformative, there is scope for strategic

manipulation of the posterior belief.

Theorem 1 (No Truthtelling). Assume that S,X are closed subsets of R, and that S is
convex (i.e. an interval). Assume that f(s|x, t) is bounded and continuously differentiable
in s, with f and fs jointly continuous in (x, t). If the signal structure is not locally

uninformative about talent at ŝ ∈ S, local truthtelling at ŝ is impossible for an open and
dense set of prior beliefs q (x) and value functions v (t).

If the signal is not locally uninformative, different message and state pairs (m,x) imply

different posterior reputations. The sender is uncertain about the location of x, and

through perturbations in the prior q (x) we perturb the lotteries over reputations resulting

from the available messages. Perturbations in v (t) guarantee that this translates into a

relative differentiation of the expected reputational value.

15Here the posterior reputation was stated under the assumption of truthful reporting. But it is easily
verified that it holds for more general strategies. For any two messages m and m′ which are sent only for
signals in the interval I, and for any two states x and x′, we have p (t|m,x) = p (t|m′, x).

9



The truthtelling condition (3.2) also suggests how to use explicit monetary incen-

tives to reinstate truthtelling. If the message sent were verifiable and explicit incentives

were allowed, truthtelling could be obtained by offering the reward schedule R (m) =∫ m
−∞ Vm (m̃|m̃) dm̃ to the expert. Correspondingly, the ex-ante cost of implementing

truthtelling would be
∫
S
R (s) f (s) ds. Notice that the cost could be lower if the reward

were allowed to depend also on the realization of the state. For the rest of this paper we

exclude the possibility of monetary incentives.

4. Optimal Deviation in Linear Model

For the remainder of this paper we posit that the distribution of the signal conditional on

the state x and ability t is linear in t ∈ [0, 1],

f(s|x, t) = tg(s|x) + (1− t)h(s), (4.1)

being a mixture between an informative and an uninformative experiment.16 Better experts

are more likely to receive a signal drawn from the informative g(s|x) rather than the
uninformative h(s). In fact, a more talented expert receives better information in the

sense of Blackwell. To see this, consider the garbling of s into s̃ whereby s̃ = s with

probability τ < 1, and otherwise s̃ is independently redrawn from h(s). Then

f̃(s̃|x, t) = τf(s̃|x, t) + (1− τ)h(s̃) = f(s̃|x, τt),

so that the garbled signal to an expert of ability t > 0 is distributed as the ungarbled

signal to an expert of ability τt < t.

The linearity of f(s|x, t) in t greatly simplifies considerations involving the expert’s pay-
off. A strategy of the sender is a mapping from signals to messages, with µ(m|s) denoting
the conditional chance that m is sent when s is the signal. When the receiver conjectures

the strategy µ̂, he can compute ĝ(m|x) =
∫
S
µ̂(m|s)g(s|x) ds and ĥ(m) =

∫
S
µ̂(m|s)h(s) ds.

Then f̂(m|x, t) = tĝ(m|x) + (1 − t)ĥ(m) and f̂(m|x) =
∫
T
f̂(m|x, t)p(t) dt. Bayesian up-

dating gives the posterior belief on ability p(t|m,x) = f̂(m|x, t)p(t)/f̂(m|x). Substitution
16This linear model is well suited to study problems in information economics. While the similarity

with Hart and Holmström’s (1987) linear distribution function condition is only superficial, the connec-
tion with Green and Stokey’s (1980) success-enhancing model is deep rooted. In the success-enhancing
model the experiment fails with positive probability, in which case the signal is uninformative about the
state. Similarly, in the linear model, the signal comes from an uninformative experiment with positive
probability. The main difference is that in the success-enhancing model the experimenter observes whether
the experiment failed or not, while in the linear model the experimenter only knows the probability that
the experiment is contaminated.
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in (2.2) gives

V (m|s) =

∫
X

∫
T

v(t)
tĝ(m|x) + (1− t)ĥ(m)

E[t]ĝ(m|x) + (1− E[t])ĥ(m)
p(t) dt q(x|s) dx

= E[v(t)] + (E[tv(t)]− E[t]E[v(t)])
∫
X

ĝ(m|x)− ĥ(m)
f̂(m|x)

q(x|s) dx,

which depends on p(t) only through Et. Notice that E[tv(t)]−E [t]E[v(t)] > 0 when v is
strictly increasing and t does not have a degenerate prior distribution. In the linear model

the expert’s behavior is therefore independent of properties of the value function v(t) other

than that it is strictly increasing. The reason is that in model (4.1), posterior reputations

p (t|x,m) are unambiguously ranked (in the first-order stochastic sense) depending on the
pair (x,m).

Lemma 1. It is without loss of generality to let the expert have payoff

V (m|s) =
∫
X

ĝ(m|x)− ĥ(m)
f̂(m|x)

q(x|s) dx, (4.2)

a positive affine transformation of the original (2.2).

With f̂(m|x, t) = tĝ(m|x) + (1 − t)ĥ(m), the higher ĝ(m|x) is relatively to ĥ(m), the
higher is the expert’s reputation, for this corresponds to higher weight on the t term and

lower weight on the 1 − t term. The result that W (m|x) =
(
ĝ(m|x)− ĥ(m)

)
/f̂(m|x)

clearly reflects this.

In the following we assume that S,X are subsets of R. Assume that both g(s|x)
and h(s) are twice continuously differentiable and that g satisfies the MLRP in (s, x).

A necessary and sufficient condition for a linear signal structure to satisfy the MLRP in

(s, x) for all t is gsxh > gxhs. This follows from the observation fsxf − fsfx = t2(gsxg −
gsgx) + t(1 − t)(gsxh − gxhs). This MLRP assumption, satisfied by model (5.1) below, is
maintained throughout the paper.

A particular signal realization s̃ is neutral about the state, if g(s̃|x) is constant in x.
An expert who receives a neutral signal has posterior beliefs q (x|s̃) = q (x): the signal is
not informative about x since f(s̃|x, t) is independent of x.
Let us now revisit the impossibility of truthtelling within the linear model. In response

to naive beliefs, the ideal signal an expert wishes to send is different from the one observed.

With a few restrictions on the model, we can predict that the direction of the deviation is

towards the neutral signal:17

17For a similar but independently derived result see Campbell’s (1998) Proposition 3.1.
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Proposition 3 (Best Deviation). Assume gsx > 0 and that signal s̃ is neutral. Assume

that any signal is uninformative about ability (p(t|s) = p(t) for all s). The best deviation
against naive beliefs is to report a signal s′ strictly in between the neutral signal s̃ and the

signal actually possessed s.

This result requires stronger assumptions on the signal structure than Theorem 1,

but is valid for all increasing value functions v. Its logic relies on the following three

observations. First, higher realizations of the state x are better news about ability when

signal s′ such that s′ > s̃ is understood to have been reported. Second, the sender with

s such that s > s′ believes more in higher realizations of x the sender with s′. Third,

the sender who reports truthfully is expecting the same value Ev regardless of the signal

actually observed. Therefore, the sender with s has a higher expected reputational payoff

from reporting s′ ∈ (s̃, s) compared to that of the sender with signal s′, itself equal to the
truthtelling value Ev.18

5. Equilibrium in Multiplicative Linear Model

In order to characterize the equilibrium we impose from now on further restrictions on the

signal distribution. We adopt the multiplicative linear model : the signal conditionally on

the state x ∈ X = [−1, 1] and ability type t ∈ T = [0, 1] is distributed according to the
density

f(s|x, t) = t1 + sx
2

+ (1− t) 1
2
=
1

2
(1 + stx), (5.1)

with s ∈ S = [−1, 1], as illustrated in Figure 2.
This signal structure satisfies the monotone likelihood ratio property (MLRP) in s, x

for any value of t > 0: The likelihood ratio f(s|x, t)/f(s|x′, t) is increasing in s for x > x′.
Clearly, also f(s|x) =

∫
T
f(s|x, t)p (t) dt = f(s|x,Et) satisfies the MLRP. Notice also that

this signal structure is boundedly informative about the state (the only exception to this

being for t = 1, when the most extreme signals s = ±1 rule out the most extreme states x =
18Although driven by different forces, this result is reminiscent of the “yes-men” effect analyzed by

Prendergast (1993). He considers an agent who has access to two private signals, one on the state of the
world and the other on the principal’s private signal on the state. In order to induce the agent to gather
and report information, the principal commits to a reward scheme based on the difference between the
agent’s report and the principal’s signal. This commitment results in the agent honestly reporting her
best estimate of the principal’s private signal. But since the agent’s report contains information from her
two sources, the principal can extract only imperfectly the agent’s direct signal about the state. While
in Prendergast’s model the agent does not sufficiently move away from the principal’s opinion, in our
model the agent does not move away from the neutral signal. In both models, information transmission is
therefore inefficient. (Ewerhart and Schmitz (2000) have shown that if instead the agent in Prendergast’s
model is also asked to report her private information, efficiency is restored).

12



∓1 respectively). This model satisfies two other important properties: First, signal s = 0
is neutral with respect to both state (q (x|s = 0) = q (x)) and ability (p (t|s = 0) = p (t)).
Second, when the prior on the state has zero mean Ex = 0, any signal is uninformative

about ability, i.e. p (t|s) = p (t).19

s
−1 0 1

1

0.25

0.75

Figure 2: Graphs of the conditional densities f (s|x, t) = (1 + stx) /2 for
fixed t = 1/2 and three values of x = −1, 0, 1. The downward sloping
line corresponds to the case with x = −1, the flat one to x = 0, and the
increasing one to x = 1. Intermediate values of x would give intermediate
lines. Each line (other than the one corresponding to x = 0) becomes
steeper as t increases.

Notice that the widely used symmetric binary model has the same generalized p.d.f.

(5.1), with S = X = {−1, 1} and T =
{
t, t
}
, where 0 ≤ t < t ≤ 1 (see e.g. Scharfstein

and Stein (1990)). It is useful to think of a signal satisfying (5.1) as being binary, but of

a continuously varying intensity level. The multiplicative linear model is then a natural

generalization of the binary-signal model to allow for a continuum of states, signals, and

ability types in a tractable way and might be useful in other problems in information eco-

nomics.20 By re-normalizing the support of S and X to the unit interval, it is immediately

seen that this is the Farlie-Gumbel-Morgenstern distribution with uniform marginals (cf.

Conway (1983)).

With this additional restriction we can derive strong characterization results. There

can be only partition equilibria with endogenously coarse communication (Section 5.1), the

only informative equilibria are binary and there is no informative equilibrium at all when

19This assumption was made by Scharfstein and Stein (1990) and is maintained in Campbell (1998).
In this case the sender does not learn anything about own ability by observing the signal, so that the
message sent cannot signal any such knowledge. This assumption amounts to a degenerate restriction on
the set of prior beliefs on the state.
20Special versions of this model have been extensively used in economics. See e.g. Lohmann’s (1994)

generalization of the binary model and Piccione and Tan’s (1996, page 504) example of a signal structure
with an uninformative signal.
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the prior belief on the state is sufficiently concentrated (Section 5.2). After presenting an

extended example with binary state (Section 5.3), we briefly discuss issues arising when

extending the model to allow for sequential advice by different experts (Section 5.4) and

derive some comparative statics results (Section 5.5).

5.1. Interval Equilibria

The multiplicative linear model (5.1) satisfies the conditions of Theorem 1 for generic

impossibility of truthtelling and Proposition 3 for the best deviation provided that Ex =

0. In the multiplicative linear model we have f̂(m|x, t) = (1 + E[s|m]tx) µ̂(m)/2, where
µ̂(m) =

∫
S
µ̂(m|s)ds, and E[s|m] =

∫
S
sµ̂(m|s) ds/µ̂(m), so that

W (m|x) = ĝ(m|x)− ĥ(m)
f̂(m|x)

=
E[s|m]x

1 + E[s|m]xEt. (5.2)

We can then derive the following stronger result:

Proposition 4 (Absolutely No Truthtelling). Local truthtelling at any s ∈ [−1, 1] is
impossible for all non-degenerate priors q (x) , p (t) and strictly increasing value functions

v (t).

Having ruled out perfectly separating equilibria, we now show that equilibria have a

partition structure whereby connected sets of signals are pooled. Notice that the following

sorting condition holds:

∂2W (m|x)
∂E[s|m]∂x =

1− E[s|m]xEt
(1 + E[s|m]xEt)2

> 0. (5.3)

Messages corresponding to signals with higher mean give higher payoff the higher the state

of the world.

Consider two possible messages, m and m′ where m′ is higher than m in the sense that

E[s|m′] > E[s|m]. Then (5.3) implies that the higher message yields a payoff increasing in
x. Since experts with higher signals believe in higher states, we can establish the following

monotonicity property:

Proposition 5 (Monotonicity). V (m′|s)− V (m|s) increases in s if E[s|m′] > E[s|m].

Incentive compatibility implies that if two messages have E[s|m′] > E[s|m], all expert
types sending message m′ have higher signals than those sending m. This implies that

each message m sent in equilibrium corresponds to signals that belong to some interval

subset of S. By Proposition 1 we know that there cannot be truthful reporting in any

subinterval of S. Hence, the typical message interval has a non-empty interior, although

there may be occasional isolated one-point intervals:
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Proposition 6 (Partitions). All perfect Bayesian equilibria have interval messages.21

As is typical in cheap-talk games, a completely uninformative (pooling or babbling)

equilibrium always exists. If the evaluator expects all messages to be uninformative, the

senders have no choice but to pool on the relevant messages. Rather than discussing

equilibrium selection, we characterize the set of all perfect Bayesian equilibria.

5.2. Binary Equilibria

The partition structure of the equilibria in our professional model is similar to one found by

Crawford and Sobel in the partisan setting, but it is driven by different forces. Differently

from their setting, there is no natural notion of closeness between a professional adviser’s

objective and the receiver’s evaluation objective. We find in the multiplicative linear model

all equilibria are binary: only two messages are sent, one for s ≥ a and the other for s < a,
where a ∈ (−1, 1). The proof proceeds by contradiction. Suppose that more than two
messages were sent in equilibrium. By continuity, an expert with a signal at the border

between two adjacent messages must be indifferent between them. The contradiction

follows from the fact that the two indifference conditions at the extremes of an intermediate

message are incompatible.

Proposition 7 (Partition Size). In the multiplicative linear model all informative equi-

libria are binary.

This result is striking, but it is quite special to the multiplicative linear model (5.1).22

We now provide a simple example of an equilibrium with more than two messages in

a statistical model belonging to the linear class (4.1). Let X = {−1, 1}, S = [−1, 1],
g (s|x) = (1 + sx) /2, and h (s) = γ + δs2. Clearly, γ = 1/2− δ/3 in order for h (s) to be
a density. Furthermore, γ > δ for the MLRP to be satisfied, so that we need δ < 3/8.

Set for example γ = 5/12, δ = 1/4, Et = 1/2, and Pr (x = 1) = Pr (x = −1) = 1/2, and
look for a symmetric equilibrium with three messages. It is easy to check numerically that

the three messages {[−1,−a] , [−a, a] , [a, 1]} with a ≈ .80218 constitute an equilibrium.

21It is technically possible to construct non-interval equilibria where two messages m and m′ sent in
equilibrium have E[s|m] = E[s|m′]. In that case the two corresponding messages, m and m′ convey equal
information about x, t. Indeed, f(m|t, x) = f(m′|t, x) = (1 + E[s|m]tx)/2 for all t, x. Thus the two
messages might as well be pooled into one message, and we restrict attention to the interval equilibria.
22In the context of the normal learning model, Ottaviani and Sørensen (2001b) have shown that there is

always a binary equilibrium, but have not been able to prove that there are no equilibria with more than
two partitions. This is because the cumulative distribution of the normal distribution is not analytically
tractable. This problem is clearly overcome by the multiplicative linear model introduced in this paper.
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Notice that this model does not have the uninformativeness property, i.e. it is not possible

to have a prior on the state such that any signal is uninformative about ability.

Returning to our multiplicative linear model (5.1), we now characterize the binary

equilibria. Let m denote the message sent for s ∈ [−1, a] and m′ the message sent for

s ∈ (a, 1], with −1 < a < 1. The indifference condition V (m|a) = V (m′|a) is∫
X

x (1 + axEt)

[2 + (a− 1)xEt] [2 + (a+ 1)xEt]q(x) dx = 0. (5.4)

If and only if a ∈ (−1, 1) solves this equation, messages [−1, a] and (a, 1] constitute a
binary equilibrium.

We now identify a prominent instance in which a binary equilibrium exists. We ask,

when is there a symmetric equilibrium with a = 0? Inserting in (5.4) we find∫
X

x

(2− xEt) (2 + xEt)q(x) dx = 0.

As the function x/ [4− x2(Et)2] is anti-symmetric around x = 0, we conclude that the

symmetric equilibrium exists when the distribution of x is symmetric around 0.

Proposition 8 (Existence of Binary Equilibrium). When the prior on x is symmet-

ric around 0, there is a symmetric binary equilibrium with messages [−1, 0] and (0, 1].

The intuition is straightforward. The sender learns nothing about the state when

receiving the neutral signal s = 0, so that with the symmetric prior (and posterior) on the

state it looks equally attractive to send either the high or the low message.

Notice that at the ends of the interval, a = −1 and a = 1, the left-hand side of (5.4)
is equal to Ex/4. The integral varies continuously with a, showing that the number of

binary equilibria must be even. Thus, when informative equilibria exist, generically in

the prior on state, there are multiple such equilibria. To better understand this multi-

plicity, consider the equilibrium condition, V ((a, 1]|a) − V ([−1, a]|a) = 0. On the one

hand, V ((a, 1]|s) − V ([−1, a]|s) is increasing in s for any a, i.e. holding fixed the re-
ceiver’s beliefs the sender with higher signal likes better the high message (Proposition

5). On the other hand, V ((a, 1]|s)− V ([−1, a]|s) is decreasing in a for any s, i.e. holding
fixed the sender’s signal the higher message becomes less appealing when the receiver’s

beliefs move up. The balance between these two opposed effects determines whether

V ([a, 1]|a)− V ([−1, a]|a) is increasing or decreasing in a. Multiplicity of equilibria results
from the fact that V ([a, 1]|a)− V ([−1, a]|a) is equal to 0 for several values of a.
Finally, assume that the prior is highly concentrated near some x > 0. Any signal

s is of bounded informativeness about states of the world, so the posterior q(x|s) is still
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concentrated around x. Whenever the state turns out positive, it is favorable to the

expert’s reputation to report a message with E[s|m] > 0. If it were possible to send a

message with E[s|m] > 0, the expert would want to send this message, regardless of the
signal s actually received. This cannot hold in equilibrium, since E[s|m] = 0 when all

signals are pooled into one message:

Proposition 9 (No Informative Equilibrium). If the prior distribution on the state

is concentrated sufficiently close to any x 6= 0, there exists no informative equilibrium.

Intuitively, when the prior is concentrated enough there cannot be any informative

equilibrium, because all experts wish to bias their signal in one direction.23 Note that

this result does not hold for x = 0, since Proposition 8 guarantees the existence of an

informative equilibrium for any (symmetric) prior arbitrarily concentrated on 0. Yet, even

in that case the messages convey very little information about ability.

The most informative equilibrium is either binary or even completely uninformative.

Since reported messages pool many signals, they are far less precise than the sender’s true

signal. The sender can communicate at most the direction of her information but cannot

convey its intensity. There is pooling on the intensity dimension, since experts would

always want to pretend to have more precise information. Rationality of the evaluator

makes this incentive self defeating.

5.3. Binary State Example

We now offer a pictorial depiction of the equilibria in a simple example. Assume that the

prior distribution of x is concentrated on −1 and +1, with q being the prior probability
of state +1. Now (5.4) can be re-written as

q

1− q =
1− aEt
1 + aEt

2 + (a− 1)Et
2− (a− 1)Et

2 + (a+ 1)Et

2− (a+ 1)Et, (5.5)

a third-order polynomial equation in a. Denote the right hand side of (5.5) by ρ(a,Et),

plotted in Figure 3 for Et = 1/2. For q = 1/2 the equation has one solution in (−1, 1), so
that a = 0 is an equilibrium. The equation has two solutions in (−1, 1) when q ∈ (1− q̄, q̄)
with q̄ > 1/2, one solution when q is equal to 1 − q̄ and q̄, and no solution in (−1, 1)
whenever q > q̄ and q < 1 − q̄. As illustrated in the figure, for the special case Et = 1/2
we have q̄ = 1

2
+
(
4−
√
11

60

)√(
7− 2

√
11
)
= . 5069. It is easy to show that there can be no

solution to (5.5) for q < 1/3 or q > 2/3, no matter how good is the prior reputation Et.

No expert can speak credibly for these prior beliefs.

23As shown in Ottaviani and Sørensen (2001b), the result does not hold in the normal learning model,
in which signals are unboundedly informative about the state.
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ρ(a, 1/2)

a
−1 0 1

1

0.97

1.03

Figure 3: Graph of the right hand side of (5.5) when Et = 1/2.

5.4. Dynamic Extensions and Herding

Proposition 9 is an important building block in a model of herding. Experts who give

advice in sequence, learn about the state of the world by listening to each others’ recom-

mendations. As more experts speak informatively, by the law of large numbers the beliefs

of later experts become ever more concentrated on the true state x. According to Propo-

sition 9, if the belief becomes sufficiently concentrated in finite time, experts cannot be

informative any longer and learning stops. This is the logic of statistical herding (Baner-

jee (1992) and Bikhchandani, Hirshleifer and Welch (1992)) applied to this reputational

model.24 As shown by Smith and Sørensen (2000), with continuous signals the belief may

not reach the herding limit in finite time — still, learning grinds to a halt.

As an illustration of the working of the dynamic model, consider the case where two

experts (i = A and B) decide in sequence. Each manager i receives a signal si, inde-

pendent conditionally on the state x and distributed according to (5.1) with binary state

X = {−1, 1}. The initial prior on the state is qA = Pr (x = 1) = 1/2, so that the prior ex-
pectation on state is Ex = 0 and the prior expectation on abilities are EtA = EtB = 1/2.

It follows from the analysis of the one-period problem that in the (unique most-informative

equilibrium) the first agent A reports the high message mA = [0, 1] when observing

s ∈ [0, 1] and the low message mA = [−1, 0] when observing s ∈ [−1, 0]. With condi-
tional independent signals, the equilibrium for the second agent B depends exclusively on

the posterior belief on the state after observation of agent A’s behavior. For example, B’s

prior belief on the state upon observation of message [0, 1] sent by A is

qB = Pr
(
x = 1|mA = [0, 1]

)
=
Pr
(
mA = [0, 1]|x = 1

)
Pr (x = 1)

Pr (mA = [0, 1])
=
1

2
+
EtB

4
= .625.

24See Ottaviani and Sørensen (2000) on the connection between statistical with reputational herding
models.
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The equilibrium for the second agent is then determined by Figure 3. The second agent

herds since qB = .625 > q̄ = . 5069 for EtB = 1/2. When agent A sends a high message, so

does agent B. Similarly, when A sends the low message, B also sends a low message. We

can conclude that the fact that differential conditional correlation is necessary to obtain

herding is not a robust finding of the binary signal model, even when Scharfstein and

Stein’s (2000) strong definition is used: here “B always ignores his own information and

follows agent A” under conditional independence.25

5.5. Comparative Statics

We are now ready to address some natural comparative statics questions. Notice that a

signal is more informative about ability the larger is |x|. Similarly, a message — which

consists of a garbling of the signal — is more informative about ability the larger is |x|.
Since the equilibrium strategy may be asymmetric (when s is garbled into m) nothing can

be said a priori on how informative is m about t.

Do Better Reputed Experts Send More Informative Messages? By construction

of the model, ex ante better experts are Blackwell-more informed about x. We now show

by way of example that better experts’ messages need not be Blackwell-more informative

because of the equilibrium garbling of the signal. Take q = .505 in the binary-state illustra-

tion above and consider two experts, the first with Et = .49 and the second with Et = .5.

Assume that the informative equilibrium with a threshold nearest to 0 has been selected —

a similar example proves our point for the other informative equilibrium. When message

s ∈ [−1, a] is observed, the posterior belief is

q(x = 1|m = [−1, a]) = [2 + (a− 1)Et] q
[2 + (a− 1)Et] q + [2− (a− 1)Et] (1− q)

A similar expression defines q(x = 1|m = (a, 1]). The following is based on numerical

solution of equation (5.5). The expert with Et = .5 has an equilibrium with a = .329

yielding q(x = 1|m = [−1, a]) = .42101 and q(x = 1|m = (a, 1]) = .67058. The expert

with Et = .49 has an equilibrium with a = .357 resulting in q(x = 1|m = [−1, a]) = .42617
and q(x = 1|m = (a, 1]) = .67072. In a decision problem with two actions and indifference

at a belief in the interval (.67058, .67072), the expert with Et = .5 is of no value while the

expert with Et = .49 transmits valuable information.

25Note that this conclusion is valid regardless of whether Scharfstein and Stein’s (1990) non-
informativeness condition is satisfied or not. The non-informativeness condition is satisfied in this example,
but would fail for a slightly different prior on the state.
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Are Better Reputed Experts Credible for a Larger Set of Priors? Consider an

expert B with a prior reputation p(t) which is FSD-better than the prior reputation of

expert A. Is B non-herding for a wider set of priors on the state of the world? Above we

have seen that the issue of credibility depends on the prior reputation only through Et,

since it is a question of solving (5.4) with a ∈ (−1, 1). We cannot answer this question in
the general case, but the answer is affirmative for the binary-state of the world case. To

see this, note that for any a ∈ (0, 1), the right hand side of (5.5) is larger the larger is Et.

How Does the Equilibrium Change with the Prior Beliefs? Departing from the

symmetric case, we can analyze the direction of change for a away from 0 when we skew the

state distribution in the multiplicative linear model. A first-order stochastic dominance

(FSD) increase of x makes the original high message m′ more attractive than the low

message. In the new equilibrium the threshold of indifference between the two messages

must therefore change. If the threshold were to decrease, an even larger set of experts

would wish to send the high message m′, so that the indifference threshold would move

further down. This would make m′ even more attractive in an unstable process which

does not lead to a new equilibrium. In order to re-equilibrate the attractiveness of the two

messages, the threshold must instead move up:

Proposition 10 (Comparative Statics). Departing from a prior q(x) symmetric around

x = 0, a first-order stochastic dominance increase in q(x) results in a new binary equilib-

rium with a higher threshold of indifference.

6. Predictions

The equilibrium loss of information typically results in a welfare loss for the decision maker.

Likewise, future employers of the expert are interested in learning as much as possible the

expert’s true ability, and so they would prefer that the signal were not garbled. If the

value function v (t) is linear, the sender’s ex ante expected reputational value of sending

any message profile is equal to its prior value. Therefore, the expert is indifferent in ex-

ante terms between the different equilibria. In expectation, no one benefits from the fact

that information transmitted in equilibrium is less precise than the information possessed

by the expert.

For the application of this model to the predictions of professional experts, we need

to discuss how information is communicated. In equilibrium the receiver understands that

signals in a certain interval (s ∈ m) are pooled into the same message by the sender. But
the actual cheap-talk language is using arbitrary messages m which need not live in the
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same space as the signals. Given this arbitrariness, an empirical comparison of the experts’

literal statements with the outcome of the predicted variable x is difficult.

The advice given by the expert is typically used by a decision maker, whose decision can

only rely on the information about the payoff-relevant state x contained in the message.

The decision maker’s beliefs f(x|m) as well as the decision taken on the basis of such belief
are unambiguously determined in equilibrium. The natural language of forecasters dictates

them to communicate this belief (or its mean E[x|m]) or to recommend the corresponding
course of action. Alternatively, under delegation the action taken serves as the message.

Statements in such languages can be easily compared with the realized state.

The resulting belief f(x|m) is unbiased, being derived from Bayesian updating, but it

is less accurate than the forecaster’s private belief f(x|s). If many identical experts with
absolute reputational concerns are polled simultaneously, their forecasts should be very

similar, concentrated on at most two different positions. Moreover, if their forecasts were

replicated using their models of the economy, the empirically observed forecasts would

appear very inaccurate, since the replication gives the more informative f(x|s). The

empirical forecast errors would likewise appear excessively correlated.

A direct test of our theory would be based on the regression

x = α0 + α1m+ α2y + α3s+ ε, (6.1)

where x is the realized state,m the forecast, y any publicly known variable at forecast time,

s the private information of the expert, and ε the forecast error. Unbiasedness requires

that, when y and s are excluded, the remaining coefficients are restricted to α0 = 0 and

α1 = 1. Efficiency requires that all information available to the forecaster has no additional

predictive power in the regression, i.e. α2 = α3 = 0. Identifying m with the prediction on

the state E [x|m, y], our reputational cheap talk model predicts unbiasedness and efficiency
only with respect to public information α2 = 0. According to our coarseness result, the

message sent is not a sufficient statistic for the expert’s private information. Furthermore,

it is easy to show that the MLRP of s, x implies the MLRP of s, x conditional on any

realization m, when s is a Blackwell sufficient experiment for m (cf. Ottaviani and Prat

(2001)). Thus our model predicts that α3 > 0. Direct test of this prediction would require

access to the forecaster’s private information, but this is rarely available. Rather than

providing direct tests of reputational cheap talk, most of the existing empirical literature

provides indirect evidence based on extensions of the basic model. These extensions are

investigated in Section 7.26

26For further discussion of the predictions of the theory when applied to strategic forecasting we refer
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7. Extensions

In order to derive additional testable predictions, the model is extended to account for

some realistic features of advice. In Section 7.1 we show that communication is coarse also

when the expert has a partial direct concern for forecast accuracy. In Section 7.2 we show

that if instead the evaluator does not observe the state, an expert exclusively concerned

about reputation cannot communicate any information. Section 7.3 shows that when the

expert knows privately her own ability type, it is always possible to sustain a binary

informative equilibrium. In Section 7.4 we investigate whether competition resulting from

relative reputational concerns among advisors can improve communication.

7.1. Mixed Reputational and Statistical Objective

Forecasters are typically motivated at least in part by the accuracy of their forecasts.

Similarly, professionals care not only about their reputation but also about the return of

the decision made on the basis of their advice. The mixed objective model presented here

allows us to investigate whether the coarseness result is robust to the introduction of a

statistical component in the objective function.

In the mixed (M) model,

V M (m|s) = βV (m|s)− (1− β)
∫
X

(E[x|m]− x)2 q(x|s) dx, (7.1)

with weight β assigned to the reputational payoff (2.2) and weight 1− β to the expected
quadratic loss resulting from deviations of the action taken from the optimal action. The

statistical payoff has the same specification as in Gul and Lundholm (1995).

Clearly, for β = 0 the forecaster wishes to make the best statistical prediction, so that

truthtelling results. In this pure statistical model

∂

∂m
E
[
(E[x|m]− x)2 |s

]
= 2 (E[x|m]− E[x|s]) ∂E[x|m]

∂m
. (7.2)

Once m = s is substituted in (7.2), truthtelling is verified to be an equilibrium. When

instead there is positive weight on the reputational payoff β > 0, truthtelling cannot be

an equilibrium. This follows immediately from our results in Section 3, as the derivative

of (7.1) is β times the one found in the pure reputational model.

It is simple to verify that ∂2 (E[x|m]− x)2 /∂E[s|m]∂x < 0 in our multiplicative linear
model. This and (5.3) imply that the mixed model (7.1) satisfies the sorting condition.

to our companion paper Ottaviani and Sørensen (2001b). There we develop methods to compare the
predictions of the reputational cheap talk theory to those of the forecasting contest theory.
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The marginal payoff resulting from a message with higher mean increases in the level of

the realized state. We conclude that the partition structure of the equilibrium is robust

to the introduction of statistical payoff. We conjecture that the relative importance of the

statistical objective determines how fine an equilibrium partition can be.

7.2. Interim Model

In our baseline model we have assumed that the evaluator observes the state of the

world. This section considers the case where the evaluator only observes the message

sent by the expert, but does not have access to any additional information on the state

of the world. Still denoting the evaluator’s conjecture of the expert’s mixed strategy

by µ̂(m|s), we have f̂(m|t) =
∫
S
µ̂(m|s)f(s|t) ds = (1 + E[s|m]tEx) µ̂(m)/2, so that

p (t|m) = f̂(m|t)p(t)/f̂(m) = (1 + E[s|m]tEx) p(t)/(1 + E[s|m]EtEx). The interim (I)

pure reputational payoff from sending m is

V I(m) =

∫
T

v(t)p(t|m) dt = E [v (t)] + (E [tv (t)]− E [v (t)]Et) E[s|m]Ex
1 + E[s|m]EtEx. (7.3)

In this interim reputation model, the only equilibrium is pooling. The indifference

condition implies that different messages cannot reveal different information about t. In

the linear (as well as in the binary) model, no information about t implies no information

about x, so that:

Proposition 11 (Interim Reputation). In the interim reputation model where Ex 6= 0
there is no informative equilibrium, even allowing for mixed strategies.

Exactly like in the partisan model of Crawford and Sobel (1982), in the interim repu-

tation model the receiver’s evaluation action is based exclusively on the message reported

by the sender. Some sorting is necessary in signaling games for messages to be credible.

For any information at all to be possibly communicated in equilibrium, the evaluator must

receive some information about the state in addition to the message sent by the adviser.

This model also relates to Brandenburger and Polak’s (1996) analysis of investment

decisions by privately informed managers who are concerned with current share price.

The current share price in turn reflects the information inferred by the stock market

from the manager’s observable investment behavior. Our interim model can be seen as

a continuous-signal reputational-objective analogue of their model. In their binary-signal

model there is no pure-strategy informative equilibrium other than for a degenerate prior

on the state (their Proposition 1), but there is an informative mixed-strategy equilibrium

for a set of non-degenerate priors on the state (Proposition 2). Their mixed strategy
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equilibrium has the property that all messages are equally attractive to the sender. Yet,

their messages convey some information about the state of the world, something impossible

in our reputational context.

We can now revisit the model of Prendergast and Stole (1996), whose prediction of full

separation contrasts with ours. Their full revelation result depends on three crucial as-

sumptions: interim payoffs, mixed objective, and delegation. In their model, the manager

(expert) cares both about the reputation about ability and the payoff attained with the

decision taken by herself. They find that the equilibrium is fully separating and that the

decision taken is distorted because of the reputational motive. To illustrate this, consider

the mixed interim model with delegation (ID), where

V ID (m) = βV I(m)− (1− β) (m− E[x|s])2 .

Unlike in Section 7.1 evaluation occurs before x is realized. The manager assigns weight

β to the interim reputational payoff (7.3) which follows the inference made by the market

on the basis of the action taken. Weight 1− β is assigned to the quadratic loss due to the
deviation from the optimal action conditional on all the information available.

We look for a fully separating equilibrium, where the strictly increasing strategy m(s)

is differentiable. The necessary first order condition is the differential equation k =

(m(s)− E[x|s]) (1 + E [t]E [x] s)2m′(s), where k = βE [x] (E [tv (t)]−E [v (t)]E [t])/2(1−
β). It is easily verified that

m(s) = E[x|s] + βE [x] (E [tv (t)]− E [v (t)]E [t])
2 (1− β)E [t]

(
E [x2]− E [x]2

) (7.4)

solves the differential equation. Then, m′ (s) > 0 as assumed, and the second-order con-

dition holds. The term E[x|s] is the expert’s honest prediction of the state of the world,
and the difference between this and m(s) is a constant bias term. This bias is naturally

stronger the more the expert cares about his reputation, and the farther is E[x] from 0.

Notice the similarity with the equilibrium characterized by Prendergast and Stole in their

normal learning model where the expert knows her own ability.

This fully revealing equilibrium would not survive in a cheap-talk framework where the

action taken by the receiver incorporates all the information revealed by the sender. The

ex-post optimal decision for the receiver would not be compatible with signal-to-signal

incentive compatibility. Interim payoffs with cheap talk are

V IC (m) = βV I (m)− (1− β) (E [x|m]− E[x|s])2 .
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We look for a fully separating equilibrium as above. Since the strategy is invertible (i.e.

fully separating), the prediction cannot be biased, E[x|m] = E[x|s]. Observe then that

∂

∂m
(1− β) (E[x|m]− E[x|s])2 = 2 (1− β) (E[x|m]− E[x|s]) ∂E[x|m]

∂m
= 0.

When the prediction is unbiased (or the action taken ex-post optimal), the first-order effect

on the statistical payoff from changing m is zero. On the other hand, given a truthtelling

strategy it is easy to see that ∂V I/∂m is non-zero. Thus the equilibrium cannot be fully

separating. Partially informative equilibria can be easily constructed.

To summarize, coarseness results in the pure reputational model and truthtelling in

the pure statistical model. The predictions with pure objectives are identical, regardless of

whether delegation or cheap talk is considered. With mixed objectives, cheap talk results

at best in a partially revealing equilibrium (bunching) both in the interim and the ex post

case. Full separation with distortion results instead in the mixed interim delegation model.

7.3. Known Own Ability

In our basic model, the expert receives a signal s which is more informative about ability

than the message m submitted in equilibrium. In non-trivial dynamic extensions, there

would therefore be asymmetric information on ability between the sender and the receivers,

as also argued by Avery and Chevalier (1999). In order to study the robustness of our

results to the addition of private information on own ability, we now investigate the case

in which the expert knows perfectly her own ability type, as first done by Trueman (1994).

By adapting Trueman’s analysis, Lemma 4 in Ottaviani and Sørensen (2001a) shows that

in a binary model there exists always an informative equilibrium, which often involves

some randomization by the least able of the two types.

When the expert privately knows not only the signal realization s but also her own

ability type t, there cannot be a fully revealing equilibrium whereby both s and t are

communicated truthfully. Otherwise, each expert would want to claim to have the highest

ability. In the dichotomous model (3.1), the posterior on x is

q(x|s, t) = f(s|x, t)
f(s|t) q(x) =

tq(s)

tq(s) + (1− t)h(s)δx(s) +
(1− t)h(s)

tq(s) + (1− t)h(s)q(x),

so that the proof of Proposition 2 can be adapted to show that there is an equilibrium

in which the signal is communicated truthfully, m(s, t) = s. More generally, truthful

reporting of the signal is incompatible with equilibrium as shown in Section 3 for the

unknown own ability case.
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Consider next the multiplicative linear model (5.1). An expert of ability t who receives

signal s has posterior on the state

q (x|s, t) = f (s|x, t)
f (s|t) q (x) =

1 + stx

1 + stEx
q(x). (7.5)

Denote the conjectured strategy of the sender by µ̂(m|s, t). Let f̂(m|x, t) =
∫
S
µ̂(m|s, t)f̂(s|x, t) ds.

Upon observation of message m and state x, the posterior reputation is p(t|m,x) =
f̂(m|x, t)p(t)/f̂(m|x). The expected reputational payoff of message m for a sender with

signal s and ability t is

V (m|s, t) ≡
∫
X

∫
T

v(t′)p(t′|m,x) dt′q (x|s, t) dx. (7.6)

Notice that we are assuming that value functions are not ability dependent. This is a

strong assumption, because an expert with private information on her own ability knows

better than the market how her reputation will be updated in later periods. In a full

dynamic model an expert’s prospects of future earnings would then depend on ability.

The problem is one of multi-dimensional signaling. Notice from (7.5) that all signal-

ability type combinations with st = k constant result in the same posterior belief on the

state

q (x|s, t = k/s) = 1 + kx

1 + kEx
q (x) . (7.7)

The rectangular hyperbola t = k/s represents such iso-posterior locus in the space S×T =
[−1, 1]× [0, 1]. See Figure 4 for a map of such iso-posterior curves. Truthful reporting of
iso-posterior curves is impossible, since the curve st = 1 implies that t = 1, and it would

yield the perfect posterior reputation.

s

t

−1 0 1

0.5

1

Figure 4: Iso-posterior curves with k = −1/2, k = −1/5, k = 1/5, and
k = 1/2.

We focus on equilibria where the threshold of indifference between a message and

another are iso-posterior curves. In a binary equilibrium message m is sent for −1/t ≤
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s ≤ k/t and message m′ is sent for k/t ≤ s ≤ 1/t. In contrast to the case when the expert
does not know her ability, there is an informative equilibrium for any prior belief on the

state.

Proposition 12 (Known Own Ability). When the expert knows her own ability, there

exists always a binary informative equilibrium.

Why is there necessarily an informative equilibrium when the expert knows her own

type? If some message were sent exclusively by the highest possible type, then it would

give the highest possible reputation, regardless of the realized state of the world. More

able experts are more confident in their prediction of the state of the world. As the prior

belief on the state becomes very skewed, only the strongest types have the self-confidence

required to send a message opposite to the prior. If a sufficiently small set of good types are

sending the message, they signal that they are good and thereby secure a good minimum

reputation, even when the state of the world turns out against them.27

7.4. Multiple Experts and Relative Reputational Concerns

“a decision was made at the outset of this study not to disclose the sources

of the forecasts evaluated (...) forecasters are rivals or competitors (...) Any

statement bearing on the relative quality of a forecaster’s product could be

used in this competition.” (page 1 in Zarnowitz (1967)).

Can competition between experts affect the amount of information credibly commu-

nicated? For instance, full information revelation results in equilibrium when consult-

ing simultaneously multiple perfectly informed experts in the partisan cheap-talk model

of Crawford and Sobel (1982), as shown by Krishna and Morgan (2000) and Battaglini

(2002). Consider instead multiple professional experts with conditionally independent sig-

nals. If they simultaneously report their messages and care only about their own (absolute)

reputation, the equilibrium is the same as in the single-expert model.28

In our reputational setting it is quite natural to allow for relative performance evalu-

ation. Often, the market rewards those with better reputation more if they are scarcer.

One could expect that in our setting more differentiation (and perhaps more information

revelation in our model with privately information experts) would result when a concern

27In a simple example (with v (t) = t and p (t) uniform on [0, 1]) it can be shown that there is only one
equilibrium within the binary class, in contrast with the typical multiplicity of binary equilibria found in
the case of unknown ability.
28See also Levy (2000) and Ottaviani and Sørensen (2001a) on issues arising when consulting sequentially

professional experts with absolute reputational concerns.
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for relative reputation is introduced. We now show that this is not the case when rep-

utational preferences have a von Neumann-Morgenstern representation and experts have

conditionally independent signals.

Consider this model where experts i = 1, ..., N report simultaneously. With relative

reputational concerns, the von Neumann-Morgenstern payoff ui(ti, t−i) to expert i depends

also on the ability of all other experts t−i ≡
(
t1, . . . , ti−1, ti+1, . . . , tN

)
. We maintain the

assumption that ui is increasing in ti, but it might well be decreasing in tj for j 6= i.

We make the natural assumption that the state of the world and the ability types of the

experts are independently distributed. As customary in information economics, we further

assume that the noisy signals of experts are independent conditionally on the state and

ability draws.29

The independence assumptions implies stochastic independence of posterior reputa-

tions of different experts updated after the reports and observation of the state of the

world. Moreover, only an expert’s own message (and the state of the world) influences

the updating of the reputation of that expert. According to the martingale property of

updated Bayesian beliefs, the expected posterior reputations of other experts equal the

prior reputations. Finally, the von Neumann-Morgenstern payoff is linear in those beliefs.

Thus we have the next general result:

Theorem 2 (Irrelevance of Relative Reputation). Assume that the experts have von

Neumann-Morgenstern payoffs, and that their signals are independent conditionally on

state and ability. In equilibrium of the relative reputation model, expert i behaves as in

the absolute reputation model with increasing value function

vi(ti) = Et−i [u
i(ti, t−i)]

Notice that this result does not rest on our functional assumptions about f(s|x, t) and
holds even if each expert privately knows her own ability. According to this theorem,

in order to generate new and interesting results a relative reputations model must either

assume that there is correlation of experts’ signals conditionally on the state and abil-

ity draw or give up the von Neumann-Morgenstern formulation. For an investigation of

relative reputational concerns in a binary model with conditionally correlated signals see

Effinger and Polborn (2001). Notice that the von Neumann-Morgenstern formulation is

29Notice that in this way we depart from the route taken by a large part of the reputational herding
literature that assumed better managers to have more correlated signals conditional on the state of the
world since Scharfstein and Stein (1990).
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rather restrictive in this setting. Naturally, the market might instead reward experts on

the basis of a comparison of some summary statistics of their updated reputation.30

In the linear model we can conclude that the equilibrium behavior of each expert

is unaffected by the introduction of relative reputation evaluation. This follows from

the special property of the linear model that the equilibrium is invariant to monotonic

transformations of the value function, as seen in equation (4.2).31

Proposition 13 (Equilibrium Equivalence with Relative Reputation). In the mul-

tiplicative linear model with conditional independence across experts, the equilibrium in

the relative reputation model is the same as in the absolute reputation model.

8. Conclusion

Increasing specialization of labor suggests that information should be collected by profes-

sional experts. This paper studies information transmission by a partially-informed expert

who wishes to be perceived as well informed. The evaluator cannot commit but to use

ex post all the available information to assess the expert’s ability and is not allowed to

design contingent monetary rewards. Compared to the partisan expert case, the analysis

is complicated by the necessary presence of simultaneous learning on state and ability. We

have managed to make the problem tractable by imposing more restrictive assumptions

as the analysis proceeded and focusing on special but natural cases.

Our first result is that truthtelling/full separation is generally not an equilibrium when

the signal and the state can be cross checked to update beliefs about the expert’s type.

In a putative fully revealing equilibrium, the signal and the realized state are informative

about the expert’s type, giving an incentive to the expert to mis-report the signal in order

to generate a better reputation. In contrast with the canonical model of partisan advice,

truthtelling in a professional setting is possible, but only under non generic conditions.

More precisely, we have shown that if there is some interval of signals that is truthfully re-

ported in equilibrium for an open and dense set of priors over the state and value functions,

then the signal structure must satisfy the very special property of local uninformativeness.

Second, in order to improve our understanding of a professional expert’s incentive to

manipulate the market beliefs we considered the optimal reporting strategy for the expert

if the evaluator wrongly believes that the expert is telling the truth. We have shown that

30For instance, the case in which the expert with highest expected ability receives all the rewards cannot
be modeled with von Neumann-Morgenstern payoffs.
31This proposition applies only to the case of initial symmetric information about the expert’s ability.

When the expert has private information about ability, the equilibrium depends instead on the value
function.
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in an important special case, the expert has an incentive to deviate toward the neutral

signal. Intuitively, a more conservative signal is more likely to be close to the realized

state and so results in a more favorable update on ability. When the market evaluates

performance in this naive way, excessive conformism results. This is clearly incompatible

with equilibrium behavior.

Third, the recommendations provided in equilibrium by experts motivated by their

reputation as good forecasters are less accurate than the information they possess. The

exact amount of information that can be credibly conveyed depends on the nature of the

information possessed by the expert. By looking at the case in which the expert receives

a binary signal of varying intensity, we have shown that equilibria can be taken to have a

partition structure, the most informative equilibria are typically multiple and they involve

no more than two messages. When the prior is sufficiently concentrated on any state,

there is only a pooling equilibrium. These striking results could not be easily foreseen in

a two-signal model, but hold in this natural generalization.

Finally, we have extended the model in a number of ways to investigate how the

results generalize to more realistic environments. We have shown that (i) communication

is also coarse when the expert has a partial direct concern for forecast accuracy, (ii)

an expert exclusively concerned with reputation cannot communicate any information

if the evaluator does not observe the state, and (iii) it is always possible to sustain a

binary informative equilibrium when the expert privately knows her own ability type. We

have also shown that relative reputational concerns are irrelevant if the payoff has a von

Neumann-Morgenstern specification and the signals are conditionally independent.

We conclude that while the implicit incentives provided by the market discipline the

expert’s behavior, they also increase the scope for strategic manipulation in the revelation

of a given level of information. It is natural to ask how these problems can be overcome with

optimally designed explicit incentives. A starting point for investigating the interaction

between explicit and implicit incentives is provided by Holmström and Ricart i Costa

(1986) for the case in which ability adds instead to the value of the output produced. It

would also be interesting to extend our model to allow the expert to become more informed

by acquiring costly signals. The point of departure would be Osband’s (1989) study of

explicit incentives for truthtelling and information acquisition by forecasters in the absence

of reputational concerns.
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Appendix A: Proofs

Proof of Proposition 1 (Truthtelling in Location Experiment). Since the receiver

anticipates truthtelling, the posterior reputation is p (t|m,x) = p (t) f (m|x, t) /f (m|x) =
p (t) g (m− x|t) /g (m− x). By the location property p (t|m,x) depends only on the dif-
ference m−x, and by symmetry it depends only on |m−x|. By the MLRP, the smaller is
|m−x| the better news for t, i.e. p (t|m,x) is better in the first-order stochastic dominance
sense. For any increasing v we conclude that W (m|x) ≡

∫
T
v(t)p(t|m,x) dt depends only

on |m− x|, and is a decreasing function of |m− x| ∈ [0, π].
Since q (x) is the uniform distribution, the sender’s posterior belief on x is described

by the p.d.f. q(x|s) = f (s|x) /f (s). By symmetry and unimodality of f (s|x), this distri-
bution of x is symmetric and unimodal around s. Thus, q(x|s) depends only on |x − s|
and is decreasing in |x− s| ∈ [0, π].
We now show that these properties of W and q imply that m = s maximizes V (m|s) =∫

X
W (m|x)q(x|s) dx over m, so that truthtelling is optimal. By symmetry, it suffices to

consider m ∈ [s, s+ π] and prove that V (s|s) ≥ V (m|s). Note that half of the space X is

closer to s than to m, namely the values of x in the interval [(s+m− 2π) /2, (s+m) /2].
We have

V (s|s)− V (m|s) =

∫ (s+m)/2

(s+m−2π)/2
[W (s|x)−W (m|x)] q (x|s) dx

+

∫ (s+m+2π)/2

(s+m)/2

[W (s|x)−W (m|x)] q (x|s) dx

=

∫ (s+m)/2

(s+m−2π)/2
[W (s|x)−W (m|x)] q (x|s) dx

+

∫ (s+m)/2

(s+m−2π)/2
[W (s|s+m−x)−W (m|s+m−x)] q (s+m−x|s) dx

=

∫ (s+m)/2

(s+m−2π)/2
[W (s|x)−W (m|x)] [q (x|s)− q (x|m)] dx

where the first equality is by definition, the second uses the change of variable y = m+s−x
in the second integral, and the last follows from W and q depending on their arguments

only through their distance. Since [(s+m− 2π) /2, (s+m) /2] is the interval of x values
closer to s than m, we have W (s|x) ≥ W (m|x) and q(x|s) ≥ q (x|m). Then the integrand
is always non-negative and so the integral is non-negative, proving V (s|s)−V (m|s) ≥ 0.�

Proof of Proposition 2 (Truthtelling in Dichotomous Experiment). It is seen

immediately that f(s|x) = (Et)δx(s) + (1− Et)h(s) and f(s) = (Et)q(s) + (1− Et)h(s).
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Assuming truthtelling, the posterior reputation is

p(t|m,x) = f(m|x, t)
f(m|x) p(t) =

{
tp(t)
Et

if x = m
(1−t)p(t)
(1−Et) if x 6= m

The reputation obtained after the realization x = m dominates in the first-order stochastic

sense the reputation following x 6= m. The posterior on x is

q(x|s) = f(s|x)
f(s)

q(x) =
(Et)q(s)

(Et)q(s) + (1− Et)h(s)δx(s) +
(1− Et)h(s)

(Et)q(s) + (1− Et)h(s)q(x),

an average between an atom at x = s and the continuous prior q(x).

By sending m = s there is a positive probability that x = m and the reputation will

be favorably updated. If instead m 6= s there is probability zero that x = m, so that

the updating which results is necessarily unfavorable. The sender prefers the chance of a

favorable updating and so truthfully reports m = s. �

Proof of Theorem 1 (No Truthtelling). The set for which truthtelling holds in

an interval is defined by the collection of weak inequalities V (s|s) ≥ V (m|s) for all
m ∈ S, s ∈ I. By continuity of the integrals w.r.t. the prior belief q (.) and value function
v (.), this set is closed. The complement of this set is the set of q, v for which local

truthtelling is impossible and so it is open.

The set is also dense, since from any pair q, v it is possible to find another pair q′, v′

arbitrarily close to q, v such that the local truthtelling fails. This is shown analytically by

differentiating (3.2). We have

Vm(m|s) =
∫
X

Wm(m|x)q(x|s) dx =
∫
X

[∫
T

v(t)pm(t|m,x) dt
]
q(x|s) dx,

where

pm (t|m,x) = p (t)
fs (m|x, t) f (m|x)− f (m|x, t) fs (m|x)

[f (m|x)]2
.

so that

Vm(s|s) =
∫
X

∫
T

v(t)p (t)
fs (s|x, t) f (s|x)− f (s|x, t) fs (s|x)

f (s|x) f (s) dtq (x) dx.

The identity Vm (s|s) = 0 can be rewritten as

0 =

∫
X

∫
T

v(t)p (t)
fs (s|x, t) f (s|x)− f (s|x, t) fs (s|x)

f (s|x) dt q (x) dx.

If truthtelling holds for all s ∈ I under local perturbations in q, then for almost all
x ∈ X:
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0 =

∫
T

v(t)p (t)
fs (s|x, t) f (s|x)− f (s|x, t) fs (s|x)

f (s|x) dt.

If truthtelling is further robust against local perturbations in v, then for all s ∈ I and
almost all x ∈ X and almost all t ∈ T :

0 = p(t)
fs (s|x, t) f (s|x)− f (s|x, t) fs (s|x)

f (s|x)

This implies for all s ∈ I and almost all x ∈ X and almost all t ∈ T :

fs (s|x, t)
f (s|x, t) =

fs (s|x)
f (s|x) .

This condition states that the ratio fs (s|x, t) /f (s|x, t) does not depend on t. The ratio
fs (s|x, t) /f (s|x, t) is equal to d log (f (s|x, t)) /ds, so through integration it determines
log (f (s|x, t)) up to an additive constant. Thus we can conclude that there exist functions
K (t) and g (s|x) such that at all s ∈ I and almost all x ∈ X and almost all t ∈ T we have

f (s|x, t) = K (t) g (s|x) .

The signal is then locally uninformative, in violation of the assumption. �

Proof of Proposition 3 (Best Deviation). Observe that any sender who reports

truthfully has expected value Ev:

V (s|s) =
∫
T

v(t)

∫
X

p(t|s, x)q(x|s) dx dt =
∫
T

v(t)p(t|s) dt = Ev(t).

Now, fix s > s̃ without loss of generality. We argue that the sender with s can profitably

deviate to any signal s′ ∈ (s̃, s). Reporting s′ gives the expected reputational value

V (s′|s) =
∫
X

∫
T

v(t)p(t|s′, x) dt q(x|s) dx

to be compared with the truthtelling value V (s|s). We will argue that V (s′|s) > V (s|s) for
any s′ ∈ (s̃, s), as this proves the incentive to deviate from s to s′. Since V (s′|s′) = V (s|s),
we can equivalently show V (s′|s) > V (s′|s′).
Our comparison rests on two facts. First, since s > s′, q(x|s) first-order stochastically

dominates q(x|s′). Second, with the signal s′ > s̃, the higher is the state of the world, the
more favorable the updated reputation, so that

W (s′|x) =
∫
T

v(t)p(t|s′, x) dt
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is an increasing function of x. This follows from Milgrom’s (1981) Proposition 1 because:

x is good news for t when s′ > s̃,

p(t′|s′, x′)
p(t|s′, x′) =

f (s′|x′, t′)
f (s′|x′, t)

p(t′)

p(t)
>
f (s′|x, t′)
f (s′|x, t)

p(t′)

p(t)
=
p(t′|s′, x)
p(t|s′, x)

for t′ > t and x′ > x, as a consequence of Lemma 2 proved below; and v (t) is increasing.

Combining the two facts we reach the desired

V (s′|s) =
∫
X

∫
T

v(t)p(t|s′, x) dtq(x|s) dx >
∫
X

∫
T

v(t)p(t|s′, x) dtq(x|s′) dx = V (s′|s′).

Finally, we show that deviating to any s′ outside the interval (s̃, s) is not profitable.

First, for s′ ≥ s, the first fact is reversed, since s′ is better news than s for x. This in turn
reverses the final inequality, making the deviation unattractive. Second, consider s′ ≤ s̃.
The second fact above is reversed, as higher x is worse news about ability when s′ ≤ s̃.

We can conclude that the best deviation is to some s′ ∈ (s̃, s). �

In the previous proof we have used the following result:

Lemma 2. Consider the linear model with gsx > 0 and neutral signal s̃. Let t
′ > t and

x′ > x. Then
f (s|x′, t′)
f (s|x′, t) >

f (s|x, t′)
f (s|x, t) (A.1)

for all s > s̃.

Proof. Substituting f(s|x, t) = tg(s|x) + (1− t)h(s), (A.1) is equivalent to

t′g(s|x′) + (1− t′)h(s)
tg(s|x′) + (1− t)h(s) >

t′g(s|x) + (1− t′)h(s)
tg(s|x) + (1− t)h(s)

or

(t′ − t) [g(s|x′)− g(s|x)] > 0, (A.2)

for t′ > t, x′ > x, and s > s̃. Notice that gx (s̃|x) = 0 for all x and gsx > 0 imply that

gx (s|x) > 0 for s > s̃, so that (A.2) holds. �

Proof of Proposition 4 (Absolutely No Truthtelling). When the strategy is truth-

telling, E[s|m] = m. Using (5.2), the first order condition for truthtelling 0 = Vm (s|s) =∫
X
Ws (s|x) f(s|x)q(x) dx reduces to∫

X

x

(1 + sxEt)
q(x) dx = 0.
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Assume that this equation were to hold at two signals, s′ > s. Subtracting the two

equations yields the contradiction

0 =

∫
X

(s′ − s)x2
(1 + sxEt)(1 + s′xEt)

q(x) dx > 0,

where the strict inequality follows from the integrand being positive for all x. �

Proof of Proposition 5 (Monotonicity). Notice that f(s|x) satisfies the MLRP and
W (m′|x)−W (m|x) is increasing in x. It then follows immediately from Proposition 1 of

Milgrom (1981) that

V (m′|s)− V (m|s) =
∫
X

[W (m′|x)−W (m|x)]q(x|s) dx

increases in s. �

Proof of Proposition 7 (Partition Size). Suppose that three or more distinct mes-

sages were sent in equilibrium. Proposition 1 shows that there must be at least two

message intervals with a non-empty interior, except if the equilibrium has message inter-

vals [−1,−1], (−1, 1), [1, 1]. In this very case, there is probability one of observing message
(−1, 1), so this is equivalent to a one-message equilibrium. For the remainder of the proof
we can assume that three signal intervals [a, b], [b, c], [c, d] define equilibrium messages,

with a < b ≤ c < d.
By incentive compatibility and payoff continuity, an individual with signal s = b must

be indifferent between the [a, b] and [b, c] messages, i.e. V ([a, b]|b) = V ([b, c]|b). Using
(4.2), in the multiplicative linear model this condition can be rewritten as∫

X

µ̂ ([a, b]) µ̂ ([b, c])xf(b|x)
f̂([a, b]|x)f̂([b, c]|x)

q (x) dx = 0. (A.3)

Indifference between messages [b, c] and [c, d] at signal c gives an analogous condition,

which subtracted from (A.3) gives∫
X

[
µ̂ ([a, b]) f(b|x)
f̂([a, b]|x)

− µ̂ ([c, d]) f(c|x)
f̂([c, d]|x)

]
µ̂ ([b, c])x

f̂([b, c]|x)
q(x) dx = 0. (A.4)

The integrand factor µ̂ ([b, c])x/f̂([b, c]|x) vanishes at x = 0, the neutral state of the

world where signals are non-informative about type. When x is positive, the term is

positive, and vice versa when x is negative.
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The other integrand factor in (A.4), µ̂ ([a, b]) f(b|x)/f̂([a, b]|x)−µ̂ ([c, d]) f(c|x)/f̂([c, d]|x)
also vanishes at x = 0 since all signals are equally likely. The MLRP integrates to prove

that it is better news about x to observe signal b than to observe that the signal was in the

range [a, b]. This MLRP means that f(b|x)/f̂([a, b]|x) is increasing in x. Likewise, signal
c is worse news for x than the interval [c, d], and f(c|x)/f̂([c, d]|x) is decreasing in x.
Since both factors in the integrand have the same sign as x, the integrand and therefore

the integral in (A.4) is positive, providing a contradiction. �

Proof of Proposition 9 (No Informative Equilibrium). Define

ϕ (a,Et, x) =
x (1 + axEt)

[2 + (a− 1)xEt] [2 + (a+ 1)xEt] (A.5)

as the integrand of (5.4). Consider an arbitrary x̃ ∈ (0, 1]. Then for all a ∈ (−1, 1),
Et ∈ [0, 1], we have ϕ (a,Et, x̃) ≥ x̃/8 > 0 since 2 (1 + ax̃Et) ≥ 2 + (a− 1) x̃Et > 0, and
4 ≥ 2 + (a+ 1)x̃Et > 0. By continuity, for x close enough to x̃, ϕ(a,Et, x) is positive and
bounded away from zero. When the prior on the state is sufficiently concentrated on x̃,

there is no solution to the indifference equation (5.4), since the left-hand side is positive

for any a. An analogous argument applies to negative states. �

Proof of Proposition 10 (Comparative Statics). First, the left-hand side of (5.4)

decreases with a near a = 0 since its derivative in a evaluated at a = 0 is∫
X

−x4(Et)3 − 2x3(Et)2

[4− x2(Et)2]2
q(x) dx.

Evaluated at the original symmetric distribution of x, this integral is negative, since l(x) =

x3/ (4− x2(Et)2)2 has the antisymmetry property l(−x) = −l(x).
Second, integrand ϕ (a,Et, x) of (5.4) defined in (A.5) is increasing in x near a = 0,

since its derivative with respect to x computed at a = 0 is (4 + x2(Et)2) / (4− x2(Et)2) >
0. By Milgrom’s (1981) Proposition 1, a FSD increase in the distribution of x will raise the

LHS of (5.4). By the implicit function theorem, locally there will still be an equilibrium,

and the equilibrating threshold a must increase with this FSD upward shift. When the

prior state-belief is changed in favor of higher states of the world, some experts change

from sending the high message m′ to sending the low message m. Furthermore, since the

derivative of the LHS in a is negative, and since Ex changes to become positive, there

must appear a second binary equilibrium with a threshold closer to 1. �
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Proof of Proposition 11 (Interim Reputation). Any two messages m and m′ sent

with positive probability in equilibrium must give the same payoff, as otherwise the message

with lowest payoff would not be sent. The condition V (m) = V (m′) is equivalent to

E[s|m]Ex = E[s|m′]Ex, and since Ex 6= 0 the messages satisfy E[s|m] = E[s|m′]. Now all

messages sent in equilibrium have the same average signal, and this common average must

be zero, since 0 is the overall average signal. Then no message conveys any information

about t or x. �

Proof of Proposition 12 (Known Own Ability). We establish this result through

two Lemmas.

Lemma 3. There exists a k ∈ (−1, 1) such that V (m|s, t = k/s) = V (m′|s, t = k/s) when
m is sent by st ≤ k types and m′ is sent by the others.

Proof. First, we argue that for k sufficiently close to 1, the sender with st = k prefers

message m′ over m. As k tends to one, the set m′ of (s, t) satisfying st ≥ k shrinks towards
the corner (s, t) = (1, 1). So, µ̂(m′) tends to zero, while µ̂(m) tends to one. Since m tends

towards an uninformative message, we have W (m|x) tending to Ev(t) for all x. For any
ε > 0 there exists a k∗ ∈ (0, 1) such that V (m|s, t) < Ev(t) + ε for all k > k∗. Since v is
increasing and the prior distribution of t is not degenerate, there exists some t∗ ∈ (0, 1)
with v(t∗) > Ev(t). When k > t∗, message m′ is sent only by types who know t > t∗,

so that V (m′|s, t) > v(t∗). Let ε = (v(t∗)− Ev(t)) /2 and choose the k∗ defined above.
When k > max 〈t∗, k∗〉 then V (m|s, t) < Ev(t) + ε < v(t∗) < V (m′|s, t). This is true for
all pairs (s, t), and in particular for all those with st = k.

By analogy, when k is sufficiently close to −1, the sender with st = k prefers messagem
over m′. When k changes, we continuously change V (m|s, t = k/s) and V (m′|s, t = k/s).
We know that V (m|s, t = k/s) − V (m′|s, t = k/s) is positive for k near −1 and negative
for k near +1. There must be an intermediate equilibrating k. �

For incentive compatibility, the next argument (similar to Proposition 5) proves that

for fixed definitions of messages, V (m|s, t) − V (m′|s, t) is monotonic across iso-posterior
curves (we have already observed that it is constant on iso-posterior curves).

Lemma 4. If the receiver believes that m is sent by the st ≤ k types and that m′ is sent

by the others, then V (m′|s, t = l/s)− V (m|s, t = l/s) is increasing in l.
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Proof. We first prove that P (t|m,x) increases in x when k ≥ 0, but an analogous

argument works for k < 0. From

f̂(m|x, t) =
∫ k/t

−1
f(s|x, t) ds =

∫ k/t

−1

1 + stx

2
ds =

I1(t) + I2(t)tx

2
,

where

I1(t) =

∫ k/t

−1
ds =

{
2 if 0 ≤ t ≤ k
1 + k

t
if k ≤ t ≤ 1,

(A.6)

and

I2(t) =

∫ k/t

−1
s ds =

{
0 if 0 ≤ t ≤ k
1
2
(k

2

t2
− 1) if k ≤ t ≤ 1,

(A.7)

we have

f̂(m|x) =
∫ 1

0

f̂(m|x, t)p(t) dt = E [I1(t)] + E [I2(t)t]x

2
.

Then

p(t|m,x) = I1(t) + I2(t)tx

E [I1(t)] + E [I2(t)t]x
p(t)

and

P (t|m,x) = E [I1(t) | t′ ≤ t] + E [I2(t)t | t′ ≤ t]x
E [I1(t)] + E [I2(t)t]x

P (t). (A.8)

(A.7) implies that I2 is non-positive and decreasing in t, so that 0 ≥ E [I2(t)t | t′ ≤ t] ≥
E [I2(t)t]. Similarly, I1(t) is positive and decreasing in t so that E [I1(t) | t′ ≤ t] ≥
E [I1(t)] ≥ 0. Then (A.8) shows that P (t|m,x) is increasing in x. It follows that

W (m|x) =
∫
T

v(t)p(t|m′, x) dt

is decreasing in x, as v(t) is increasing in t. Finally, notice from (7.7) that an increase in

l yields a first-order stochastic dominance increase in q(x|s, t = l/s), so that in turn this
decreases in l:

V (m|s, t = l/s) =
∫
X

W (m|x)q(x|s, t = l/s) dx.

Similar calculations for message m′ show that P (t|m′, x) is decreasing in x. Arguing

as above, V (m′|s, t = l/s) is then increasing in l. We conclude that V (m′|s, t = l/s) −
V (m|s, t = l/s) is increasing in l. �
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Proof of Theorem 2 (Irrelevance of Relative Reputation). The reputational value

of message mi for expert i with signal realization si is

V i(mi|si) =
∫
X

W i
(
mi|x

)
q(x|si) dx (A.9)

where

W i
(
mi|x

)
=

∫
M−i

∫
T i

∫
T−i
ui(ti, t−i)p(t−i|m,x) dt−ip(ti|m,x) dtif̂

(
m−i|x

)
dm−i.

By the assumption of independence of the ability of different experts, posterior reputations

are again stochastically independent. In particular, the posterior reputation of an expert is

stochastically independent of the message reported by another expert, p(t−i|mi,m−i, x) =

p(t−i|m−i, x) and p(ti|mi,m−i, x) = p(ti|mi, x), so that

W i
(
mi|x

)
=

∫
T i

∫
M−i

∫
T−i
ui(ti, t−i)p(t−i|m−i, x) dt−if̂

(
m−i|x

)
dm−ip(ti|mi, x) dti

=

∫
T i
vi
(
ti, x

)
p(ti|mi, x) dti,

where

vi
(
ti, x

)
=

∫
T−i
ui(ti, t−i)

∫
M−i

p(t−i|m−i, x)f̂
(
m−i|x

)
dm−i dt−i.

The law of iterated expectations gives∫
M−i

p(t−i|m−i, x)f̂
(
m−i|x

)
dm−i = p(t−i|x) = p(t−i),

where we also used and the independence of t−i and x. It follows that

vi
(
ti, x

)
=

∫
T−i
ui(ti, t−i)p(t−i) dt−i.

and thus vi (ti, x) = vi (ti) does not depend on x. Furthermore, since ui is increasing in

ti for any t−i, we find that vi(ti) is an increasing function of ti. We are thus back to

the original problem with absolute reputational concerns, with the individual objective

function vi(ti) = Et−iu
i(ti, t−i).

When expert i knows her own type, equation (A.9) becomes

V i(mi|si, ti) =
∫
X

W i
(
mi|x

)
q(x|si, ti) dx

and the rest of the proof goes through as before. �
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