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Abstract

We consider economies with incomplete markets, one good per state,
private ownership of initial endowments, a single firm, and no assets other
than shares in this firm. In this simple framework, arbitrarily small income
effects can render every market equilibrium resulting from some produc-
tion decision constrained inefficient. Thus, even if all utility functions are
approximately quasilinear, the stock market can be unable to achieve a
constrained efficient allocation given the agents’ characteristics. Moreover,
the phenomenon persists when the efficiency requirements are substantially
weakened.
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1 Introduction

We consider finance economies with production. More precisely, we consider
economies with incomplete markets, one good per state, private ownership of ini-
tial endowments, production, and two time periods. Due to the incompleteness
of markets, shareholders typically disagree about which production decision their
firm should take. Drèze (1974) presents a way of resolving the conflict among
shareholders by introducing an equilibrium concept that is based on Pareto com-
parisons with the aim of achieving constrained efficiency. We restrict ourselves
to economies with one good per state in order to rule out price effects, which are
a well-known cause of constrained inefficiency [cf. Geanakoplos et al. (1990)].

In this paper we show that, unless restrictive assumptions are made, the mar-
ket in these finance economies may not be able to achieve a constrained efficient
Drèze equilibrium or any other constrained efficient allocation. If quasilinearity
of all utility functions is assumed, a constrained efficient Drèze equilibrium exists.
However, arbitrarily small income effects are sufficient to render all Drèze equi-
libria constrained inefficient. To demonstrate this we consider economies with
only one firm.

The firm has constant returns to scale and makes zero profit. Its state depen-
dent output at t = 1 is sold on the asset market in exchange for the corresponding
input. When the firm proposes a production ray, consumers choose their optimal
investments and this determines their consumption in all states. The firm adjusts
its production level to the market clearing scale. The resulting allocation is called
a market equilibrium. The set of all allocations the market can achieve consists
of all market equilibria corresponding to some production decision of the firm.

A Drèze equilibrium is a market equilibrium with the following property:
The (new) shareholders of the firm meet at t = 0 after they have chosen their
shares optimally. If these shares are held fixed, there is no other production
plan such that the shareholders of the firm can achieve a Pareto improvement
by adopting that production plan and by making sidepayments at time t = 0 to
reach unanimity.1

Constrained efficiency means that a hypothetical planner cannot find a Pareto
improvement by simultaneously choosing the production plan, the shares, and
each individual’s consumption at t = 0. Note that a constrained efficient market
equilibrium is a Drèze equilibrium.

An example of an economy with a unique, but constrained inefficient Drèze
equilibrium is presented in Dierker, Dierker, and Grodal (2001). This example
is driven by the existence of a consumer whose preferences exhibit strong in-
come effects. If there are no income effects, that is to say, if all consumers have

1For an extensive treatment of Drèze equilibria in a setting with private ownership of initial
endowments, the reader is referred to Magill and Quinzii (1996), chapter 6.
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quasilinear utility functions, then at least one constrained efficient Drèze equilib-
rium exists, since the social surplus is well defined and is maximized at a Drèze
equilibrium.

We show that arbitrarily small perturbations of quasilinear utility functions
can destroy the constrained efficiency of all Drèze equilibria, even if all utility
functions remain additively separable. In our example, we start with a quasilinear
economy with three Drèze equilibria. Two of them are surplus maxima and the
third is a surplus minimum. Then we perturb the quasilinear utility functions of
the example by adding a small term to the utility at t = 0. The perturbation
does not affect the way in which future consumption streams are ranked, i.e.
utility at t = 1 is left unchanged. These small perturbations leave the set of
Drèze equilibria invariant. However, for arbitrarily small perturbations, all Drèze
equilibria, and hence all market equilibria, become constrained inefficient.

Since the planner, who can implement constrained efficient allocations, is
more powerful than the market, we reduce the planner’s power substantially and
explore whether the planner can still outperform the market. We introduce the
following very weak version of constrained efficiency, in which tomorrow’s con-
sumption can only be affected by the planner through the choice of the production
plan. After the planner has chosen a normalized production plan (where the input
is normalized to -1), consumers choose their optimal investments subject to their
budget constraints. The firm adjusts production to the market clearing scale.
The planner, who is no longer allowed to alter individual consumption at t = 1,
can only distribute the resources remaining at t = 0 after subtracting the input.
An allocation is called minimally constrained efficient, if the planner, who is sub-
ject to these constraints, cannot find a Pareto improvement. It turns out that
no market equilibrium in the perturbed quasilinear example is even minimally
constrained efficient.

The notion of minimal constrained efficiency cannot be weakened further,
since the planner should at least retain the possibility of changing the production
plan and redistributing total consumption at t = 0. We conclude that, even in
economies with one good per state, arbitrarily small income effects can make it
impossible to select a production plan that achieves a market equilibrium satis-
fying at least some weak version of constrained efficiency. The question of how
to choose a market equilibrium remains open and is briefly discussed at the end
of the paper.

The remainder of the paper is organized as follows. In Section 2 the quasilin-
ear and the perturbed quasilinear examples are given. In Section 3 the notion of
minimal constrained efficiency is presented and discussed. It is shown that min-
imally constrained efficient market equilibria need not exist. Section 4 contains
concluding remarks.
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2 Nonexistence of Constrained Efficient Equi-
libria when Income Effects are Small.

An example of a finance economy with a unique, but constrained inefficient
Drèze equilibrium is presented in Dierker, Dierker, and Grodal (2001). In the
example, one consumer has preferences exhibiting very strong income effects.

Clearly an example without any constrained efficient market equilibrium can-
not be constructed if all consumers have quasilinear preferences. In this case,
consumers’ surplus is well defined and can be used as a welfare measure. A
constrained efficient market equilibrium is obtained by maximizing consumers’
surplus.

It is natural to ask whether the existence of a constrained efficient market
equilibrium in the quasilinear setting is a robust phenomenon. In order to answer
this question we first analyze the efficiency properties of equilibria in a quasilinear
example. We use the following framework.

We consider two periods, t = 0, 1, and two possible states of nature at t = 1
denoted s = 1 and s = 2. The unique state at t = 0 is included as the state
s = 0. There is a single good in each state. There is just one firm. It transforms
input at t = 0 into state dependent outputs at t = 1. We assume that there are
no other assets. The firm has constant returns to scale and makes zero profits.
Its technology is given by a family of normalized production plans (−1, λ, 1−λ).
Denote the production set by

Y = {α(−1, λ, 1− λ) ∈ R3 | α ≥ 0, λ ∈ [0.1, 0.9]} .

The ray λ is assumed to stay in the interval [0.1, 0.9] to ensure that the group of
shareholders always coincides with the set of all consumers.

There are two types of consumers. Ideally, each type would be represented
in the economy by a continuum of mass 1. For convenience, we refer to each
continuum of identical consumers as a single consumer denoted i = 1, 2. The
consumers have initial endowments e1 = e2 = (2, 0, 0), consumption sets R3

+,
and utility functions U1, U2, respectively.

If the firm selects the normalized production plan (−1, λ, 1−λ) and consumer
i chooses the investment αi ≥ 0 in the firm, the resulting consumption bundle is
ei + αi(−1, λ, 1 − λ). The consumer selects αi so as to maximize utility in the
budget set

Bi(λ) = {ei + αi(−1, λ, 1− λ) ∈ R3
+ | αi ≥ 0} .

Let αi(λ) denote i’s optimal investment given the normalized production plan
(−1, λ, 1 − λ). Thus, agent i consumes xi(λ) = ei + αi(λ)(−1, λ, 1 − λ), holds
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shares equal to ϑi = αi(λ)/(α1(λ) + α2(λ)), and the firm produces y(λ) =
[α1(λ)+α2(λ)](−1, λ, 1−λ). For any λ ∈ [0.1, 0.9], the system (y(λ), x1(λ), x2(λ))
is called a market equilibrium with respect to λ. The market equilibria are the
only allocations that the market can achieve. In general, these allocations can-
not be Pareto compared and the shareholders face a social choice problem. In
order to resolve the problem, Drèze (1974) suggested letting shareholders use
sidepayments among themselves at t = 0 in order to reach unanimity.

A Drèze equilibrium is a market equilibrium in which the production plan of
the firm passes the following test: It is impossible for the shareholders to find
another production plan and sidepayments at t = 0 such that all shareholders are
better off, if they use their original investment levels and get the sidepayments.2

More precisely, consider a market equilibrium (y(λ̃), x1(λ̃), x2(λ̃)) with respect to
λ̃ and let I = {i | αi(λ̃) > 0}. The market equilibrium is a Drèze equilibrium if
it is impossible to find a normalized production plan (−1, λ, 1− λ) and a system
of sidepayments (τ i)i∈I at t = 0 with

∑

i∈I τ
i = 0 such that

U i(ei + τ i(1, 0, 0) + αi(λ̃)(−1, λ, 1− λ)) > U i(xi(λ̃))

for every i ∈ I. Note that the production plan (−1, λ, 1−λ) on the left hand side
of the above inequality is multiplied by the investment level αi(λ̃) that is optimal
at the normalized production plan (−1, λ̃, 1− λ̃).

We recall the definitions of feasibility constrained by market incompleteness
and constrained efficiency [cf. Magill and Quinzii (1996)]. For a vector x ∈ R3 we
write x = (x0, x1), where x0 ∈ R corresponds to t = 0 and x1 ∈ R2 corresponds to
t = 1. An allocation (y, x1, x2) is constrained feasible if it can be implemented by
a planner who simultaneously determines the production plan y = (y0, y1) ∈ Y ,
the shares ϑi of all consumers and who, moreover, freely redistributes the good x0

at t = 0. More precisely, the allocation ((y0, y1), (x1
0, x

1
1), (x

2
0, x

2
1)) ∈ Y ×R3

+×R3
+

is constrained feasible if x1
0 + x2

0 = e1
0 + e2

0 + y0 and there exist shares ϑi ≥ 0
such that xi

1 = ϑiy1 for all i and
∑

i ϑ
i = 1. Note that the set of constrained

feasible allocations only depends on the aggregate endowments at t = 0 and that
it is, in general, larger than the set of market equilibria. A constrained feasible
allocation is called constrained efficient if there does not exist a Pareto superior
constrained feasible allocation.

In searching for constrained efficient market equilibria we can restrict atten-
tion to the set of Drèze equilibria since a constrained efficient market equilibrium
is a Drèze equilibrium.

We now analyze the efficiency properties of Drèze equilibria in an example
in which all consumers have quasilinear preferences. Let the consumers have

2In the usual definition of a Drèze equilibrium, shares ϑi, and not the investment levels αi,
are taken as fixed when a production plan is evaluated. The two definitions are equivalent.

5



quasilinear utilities given by

U1(x0, x1, x2) = x0 + x0.6
1 ,

U2(x0, x1, x2) = x0 + x0.6
2 ,

respectively.

It turns out that the economy under consideration has three Drèze equilibria,
A,B and C, corresponding to λA = 0.1, λB = 1/2, and λC = 0.9, respectively.
In the definition of a Drèze equilibrium, shares are kept fixed when shareholders
evaluate alternative production plans. In order to gain insight into the conse-
quences of this assumption it is useful to investigate the interior equilibrium B.
To do this we first consider the indirect utility u1(2, λ) that consumer 1 with
endowment e1

0 = 2 at t = 0 obtains, if the firm chooses the ray λ and if con-
sumer 1 makes the optimal investment α1(λ) = 0.6(0.6λ)1.5. Since this utility
equals u1(2, λ) = 2 + 0.4(0.6λ)1.5, the function u1(2, ·) is convex. Similarly, the
utility level of consumer 2 at λ equals u2(2, λ) = u1(2, 1 − λ) and is convex
in λ. As a consequence, shareholders’ social surplus associated with the ray λ,
u1(2, λ) + u2(2, λ), is convex in λ. Due to the symmetry between u1(2, λ) and
u2(2, λ), the social surplus has a critical point at λB = 1/2 which must be a
global minimum [see Figure 1].

0.2 0.4 0.6 0.8

Figure 1: Surplus minimum at the Drèze equilibrium λB = 1/2

Observe that the situation changes drastically if the shareholders are deprived
of the possibility of adjusting their shares, or, equivalently, their investment levels,
when λB is tested against some alternative λ. Consider consumer 1 who wants
to choose the investment level α1(λ) in proportion to λ1.5. If α1 is now taken as
fixed at its value at λB = 1/2, then the utility reached at ray λ equals ũ1(2, λ) =
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c0 + c1λ0.6 with c1 > 0, whereas the indirect utility with share adjustment is a
function of the type u1(2, λ) = c′0 +c′1λ

1.5 with c′1 > 0. Thus, by disregarding how
consumer 1’s individual investment level α1(λ) varies with λ, the originally convex
function u1(2, ·) is turned into a concave function ũ1(2, ·). As a consequence,
ũ1(2, ·) + ũ2(2, ·) is a concave function and the critical point λ = 1/2 becomes a
maximum. For this reason, λB yields a Drèze equilibrium. Clearly, the utility
sum ũ1(2, ·)+ ũ2(2, ·) constructed by fixing the shares does not represent owners’
welfare at alternative production rays correctly.

At the Drèze equilibria A and C, consumers’ social surplus is maximized.
Hence, A and C are constrained efficient.

Now we perturb the quasilinear example by altering the utility derived from
consumption at t = 0 without changing the utility obtained from consumption
at t = 1. In particular, the utility functions U i stay additively separable after
perturbation.

U1
a (x0, x1, x2) = x0 + ax2

0 + x0.6
1 and U2

a (x0, x1, x2) = x0 + ax2
0 + x0.6

2 , (1)

where 0 < a ≤ 0.1. It is easy to show that i’s utility function is quasiconcave in
the relevant range.

As in the unperturbed example, the production ray varies in the interval
[0.1, 0.9] and there are three Drèze equilibria corresponding to λA = 0.1, λB = 0.9,
and λC = 0.5, respectively. However, the boundary equilibria are no longer
constrained efficient for any a > 0.

Let, for example, a = 0.1 and consider the ray corresponding to λ = 0.9. In the
corresponding market equilibrium the consumers obtain the utility u1

0.1(2, 0.9) ≈
2.4969 and u2

0.1(2, 0.9) ≈ 2.4036, respectively. Now consider the sidepayment
τ 1(0.1) that is necessary to keep consumer 1 at the utility level u1

0.1(2, 0.9) if the
ray 0.9 is replaced by the ray λ = 0.1. Let x1(2 + τ 1, λ) be consumer 1’s optimal
consumption plan at ray λ after the sidepayment has increased consumer 1’s
endowment at t = 0 to 2 + τ 1. Then τ 1(0.1) is given by

U1
0.1(x

1(2 + τ 1(0.1), 0.1)) = u1
0.1(2, 0.9) .

Let τ 2(0.1) be defined in a similar way.

Calculation shows that τ 1(0.1) ≈ 0.0664 and τ 2(0.1) ≈ −0.0681. Thus
τ 1(0.1) + τ 2(0.1) ≈ −0.0017 < 0. Hence, the Drèze equilibrium correspond-
ing to λ = 0.9 is Pareto dominated by a constrained feasible allocation in which
the production ray is λ = 0.1. It follows from the Remark in Section 3 that the
same statement holds for every a > 0. Due to symmetry, the Drèze equilibrium
corresponding to the production ray λ = 0.1 is Pareto dominated by a constrained
feasible allocation corresponding to the production ray 0.9. We conclude that the
existence of a constrained efficient market equilibrium in the quasilinear case is
destroyed when arbitrarily small income effects are introduced.
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3 Minimal Constrained Efficiency

In the example a planner who can implement constrained efficient allocations
can Pareto dominate all market equilibria. In this section we investigate whether
the planner can be weakened such that at least one market equilibrium is Pareto
undominated.

The planner and the firm in the market economy can both determine the
available asset. However, the planner is more powerful than the market, since
the planner is not bound to respect individual budget constraints. We weaken the
planner by taking away the right to choose consumers’ investment levels. This
task is now performed by the market. That is to say, after the planner has chosen
the normalized production plan, consumers make their optimal investments sub-
ject to their budget constraints. This determines each individual’s consumption
at t = 1.

More precisely, we proceed as follows. After the planner has chosen the nor-
malized production plan (−1, λ, 1 − λ), the stock market opens and each con-
sumer i chooses the investment αi(λ) such that the resulting consumption bun-
dle (xi

0, x
i
1) = (xi

0(λ), xi
1(λ)) = ei + αi(λ)(−1, λ, 1− λ) maximizes the consumer’s

utility in the budget set. Then the stock market is closed and nobody, including
the planner, can change xi

1(λ). The only possibility still available to the planner
is to redistribute total consumption

∑

i x
i
0(λ) at t = 0.

A constrained feasible allocation is minimally constrained efficient if it is not
possible for a planner, who is restricted by the market as explained above, to
Pareto improve upon the allocation.

Definition . A constrained feasible allocation is called minimally constrained
efficient if there is no Pareto superior allocation (λ, (ci

0, x
i
1)i) satisfying

(i) xi
1 = ei

1 + αi(λ)(λ, 1 − λ), where αi(λ) is i’s optimal investment given the
ray λ,

(ii)
∑

i c
i
0 =

∑

i e
i
0 −

∑

i α
i(λ), and

(iii)
∑

i α
i(λ)(−1, λ, 1− λ) ∈ Y .

In contrast to the definition of constrained efficiency, the investments in con-
dition (i) depend on the distribution of initial endowments and the ray λ. The
condition says that, after the planner has chosen the production ray, individ-
ual consumption at t = 1 is determined by the market. Condition (ii) states
that the planner can redistribute the aggregate consumption

∑

i e
i
0−

∑

i α
i(λ) at
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t = 0. Condition (iii) says that the planner adjusts the level of production to the
consumers’ aggregate investment.

The concept is called minimal constrained efficiency for the following reason.
The planner must have the power to select the asset at t = 0. Hence, after we
have deprived the planner of the right to choose shares, we cannot take away the
only remaining tool, that is to say, the power to make compensations at t = 0.

Our method of defining minimal constrained efficiency can also, in principle,
be used if there are several goods in each state. In this case, even equilibria with
respect to fixed assets are typically constrained inefficient due to price effects.
Therefore, Grossman (1977) weakened the definition of constrained efficiency by
introducing a central planner with incomplete coordination. In Grossman’s con-
cept of a social Nash optimum, the planner cannot act simultaneously in different
states. Grossman shows that, in the model with fixed assets, an equilibrium is a
social Nash optimum. Apart from the ability to choose λ, our planner is weaker
than Grossman’s, since the shareholdings and the individual consumption in each
state s at t = 1 are determined by individual optimization on the asset and spot
markets and cannot be altered by our planner. Also, at s = 0 our planner can only
redistribute the resources that have not been used for production in accordance
with consumers’ investment decisions.

Numerical computation shows that the unique Drèze equilibrium in the ex-
ample in Dierker, Dierker, and Grodal (2001) is minimally constrained efficient,
but not constrained efficient. Therefore, one would like to know whether at least
one Drèze equilibrium in a finance economy is minimally constrained efficient.

In order to answer this question we again analyze the perturbed quasilinear
example from Section 2. We show that arbitrarily small income effects prevent the
originally constrained efficient Drèze equilibria from being minimally constrained
efficient.

Remark . For arbitrarily small a > 0, no market equilibrium associated with
some ray λ is minimally constrained efficient.

It has been claimed in Section 2 that constrained inefficiency of all Drèze
equilibria holds for any 0 < a ≤ 1. The claim follows from the Remark, since
a minimally constrained inefficient market equilibrium is also constrained ineffi-
cient.

Proof. Consider any ray λ and the corresponding market equilibrium allocation.
Clearly, the equilibrium corresponding to λ = 0.5 is not minimally constrained
efficient. Therefore, let λ 6= 0.5. We show that the production ray 1−λ, together
with a suitable reallocation of consumption at t = 0 is preferred to λ by both
types of consumers. Due to symmetry we can assume λ < 0.5.
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Agent i consumes xi(λ) ∈ Bi(λ) when the ray λ is chosen. If λ is replaced by
1− λ, agent i consumes xi(1− λ) and achieves the utility level U i

a(x
i(1− λ)) 6=

U i
a(x

i(λ)). Let τ i be the amount of good 0 required in addition to xi(1 − λ) in
order to let i achieve the original utility level U i

a(x
i(λ)). More precisely,

U1
a (x1(1− λ) + τ 1(1, 0, 0)) = U1

a (x1(λ)) (2)

and
U2

a (x2(1− λ) + τ 2(1, 0, 0)) = U2
a (x2(λ)) . (3)

Since λ < 0.5 < 1 − λ, we have τ 1 < 0 and τ 2 > 0. Moreover, by symmetry,
x1

0(λ) = x2
0(1− λ) and

U1
a (x1(λ)) = U2

a (x2(1− λ)) , U2
a (x2(λ)) = U1

a (x1(1− λ)) . (4)

We add (2) and (3), use symmetry and the utility specifications (1), and obtain

(τ 1 + τ 2) + a((τ 1)2 + (τ 2)2) + 2a(τ 1x1
0(1− λ) + τ 2x1

0(λ)) = 0 . (5)

Since calculation of consumer 1’s optimal shares yields that the demand for good
zero is strictly decreasing, we have x1

0(λ) > x1
0(1− λ) > 0.

Assume that τ 1+τ 2 ≥ 0 and, hence, τ 2 ≥ |τ 1|. Then τ 2x1
0(λ)) > |τ 1x1

0(1−λ)|.
Therefore, the left hand side of (5) must be strictly positive for every a > 0,
which is a contradiction. We conclude that τ 1 + τ 2 < 0. Hence, the equilibrium
corresponding to λ is not minimally constrained efficient.

0.2 0.4 0.6 0.8

Figure 2: Intersecting total “saving” functions

Figure 2 illustrates the case a = 0.1. Take the equilibrium at 0.1 and con-
sider the sidepayment τ 1(λ) necessary to keep consumer 1 at the utility level
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U1
a (x1(0.1)) if the ray 0.1 is replaced by the ray λ. That is to say, τ 1(λ) is given

by
U1

a (x1(λ) + τ 1(λ)(1, 0, 0)) = U1
a (x1(0.1)) .

Let τ 2(λ) be defined in a similar way. Thus, τ 1(λ) + τ 2(λ) specifies the total
amount of compensation required to maintain the utility levels achieved at 0.1.
The relationship to Figure 1 becomes clearer if the compensation is replaced by
−(τ 1(λ) + τ 2(λ)), which is the amount of good 0 that can be saved at λ while
keeping consumer i on the utility level U i

a(x
i(0.1)). This total “saving” function

becomes positive at λ = 0.9, which indicates that the equilibrium with respect
to λ = 0.1 is not minimally constrained efficient. A similar saving function can
be defined if the other boundary λ = 0.9 is taken as reference point. If a goes to
0, both curves in Figure 2 approach the social surplus curve depicted in Figure 1
(up to a constant).

The nonexistence of constrained efficient and minimally constrained market
equilibria is caused by the following facts. First, the example is built upon a
nonconvexity. In the unperturbed, quasilinear example, the nonconvexity can be
described as follows. The amount of good 0 initially available in the economy
just suffices to maintain the utility profile (u1(2, 0.1), u2(2, 0.1)) reached at the
boundary point λ = 0.1, if the other boundary point λ = 0.9 is chosen. However,
if the firm implements any ray λ strictly between 0.1 and 0.9, this amount is
insufficient. Second, as soon as the perturbation parameter a becomes positive,
the graphs of the two saving functions intersect each other. To maintain the
profile (u1

a(2, 0.1), u2
a(2, 0.1)) at λ = 0.9, one can dispense with a positive amount

of good 0. A similar statement holds, if the two boundary points are interchanged
[cf. Figure 2]. These two features cannot be ruled out in general. Therefore, one
cannot expect the market to be able to achieve minimally constrained efficient
outcomes.3

The allocations attainable by the market depend on the initial allocation of
endowments. To obtain a situation in which a constrained efficient market equi-
librium exists in the perturbed example, a lump sum redistribution of initial en-
dowments is required. Markets do not perform such redistributions and thus, are
less powerful than even the very weak planner discussed in the context of minimal
constrained efficiency. The importance of the initially determined distribution of
wealth in nonconvex environments was first pointed out by Guesnerie (1975) in
the framework of complete markets and nonconvex production sets. Guesnerie
showed that all marginal cost pricing equilibria can be inefficient, even though
Pareto efficiency requires prices to equal marginal costs.

3It has been emphasized in the literature on compensation criteria à la Hicks and Kaldor
that intersecting utility possibility frontiers often entail inconsistent policy recommendations
[see, e.g., Gravel (2001)].
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4 Concluding Remarks

We have seen that shareholders’ social surplus can reach its minimum at a Drèze
equilibrium if all shareholders have quasilinear utilities. This is due to the fact
that the definition of a Drèze equilibrium only takes welfare changes of first order
into account. Thus, no distinction is made between an interior maximum and
any other critical point.

In the quasilinear case, a constrained efficient Drèze equilibrium exists. There-
fore, it is tempting to refine the Drèze equilibria in order to rule out constrained
inefficient allocations. However, our example shows that this endeavor can fail to
provide any solution as soon as one deviates from the quasilinear setting: Arbi-
trarily small income effects render all market equilibria constrained inefficient.

Moreover, even if the efficiency requirements are substantially reduced, they
can remain unfulfilled at every market equilibrium in a finance economy. In our
example the stock market cannot even achieve a minimally constrained efficient
outcome if the quasilinear setting is abandoned. Hence, the existence of a con-
strained efficient equilibrium in the quasilinear economy should be viewed as an
artifact lacking any robustness.

Clearly, there are economies in which the problem does not arise. For exam-
ple, Drèze equilibria are constrained efficient, if there is only one firm and if every
consumer’s indirect utility function is quasiconcave. This function describes the
maximum amount of utility the consumer can derive from a production decision
at different levels of wealth at t = 0. The indirect utility functions underlying
Figure 1 are not quasiconcave. This is due to the fact that the specification of
the direct utility functions U i makes optimal shareholdings sufficiently sensitive
to changes in the production ray.4 Since the indirect utility depends on how the
optimal number of shares, that an individual holds, varies with the asset span and
individual wealth at t = 0, it is, unless attention is restricted to particularly sim-
ple examples, quite difficult to state economically meaningful conditions ensuring
the quasiconcavity of indirect utility functions. We do not think that imposing
restrictions on consumers’ characteristics presents a promising approach to over-
come the problem of nonexistence of constrained efficient market equilibria.

Majority voting presents another way to overcome the social choice problems
faced by shareholders. For properties of corporate control by majority voting,
see DeMarzo (1993) and Geraats and Haller (1998). Apart from problems such
as equilibrium existence, agenda control, non sincere voting etc., the following
point deserves attention. Since the voting outcome depends on power, it need
not reflect welfare appropriately. The point is easily understood in the context of

4If the power 0.6 in the definition of U i is replaced by a number below 0.5, quasiconcavity
of the indirect utility function ui results.
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the quasilinear example in Section 2. To break ties, a third quasilinear consumer
with arbitrarily small weight is introduced, whose utility increases if the ray λ
approaches 1/2. This additional consumer becomes the median voter. Due to
symmetry, majority voting leads to λ = 1/2 if every shareholder has one vote.
Moreover, it is not difficult to modify the example such that voting according to
the one share-one vote rule yields the same outcome. The median voter, although
of arbitrarily small weight, has overwhelming power. The median voter’s optimal
choice, though, is the welfare minimum. Thus, majority voting should be seen as
a modeling device that is better suited for positive than for normative purposes.

Instead of examining whether a proposed production plan can be unanimously
improved upon after sidepayments are made, one can compare the gains, ex-
pressed in units of good 0, that are obtained from any production plan in com-
parison to a given reference point. In the perturbed quasilinear example the point
of zero production, that is to say, the allocation (e1, e2) of initial endowments,
can be used for reference. Consumer i’s surplus Si(λ) is given by the amount of
good 0 consumer i needs in excess of ei to obtain the same utility level as if the
firm chose the ray λ. The total surplus associated with some market equilibrium
can then be maximized. In the perturbed quasilinear example the maximum is
taken at both boundary points λ = 0.1 and λ = 0.9. Thus, the same outcome as
in the quasilinear case is obtained.

A major advantage of this approach lies in the fact that it relies on the max-
imization of continuous functions rather than maximization of incomplete, in-
transitive, and nonconvex relations. The surplus maximum is characterized as
follows: It presents the minimum amount of good 0 needed in the absence of the
firm in order to be able to compensate all consumers such that they can attain
every utility profile that is induced by some production decision. Clearly, this
type of surplus maximization, which is motivated by the lack of constrained effi-
cient market equilibria, does not aim at achieving constrained efficiency and its
theoretical foundation remains controversial.

The surplus function described above can be viewed as a particular social
welfare function. To overcome the problem of the nonexistence of constrained (or
even minimally constrained) efficient market equilibria, one might also resort to
any other social welfare function. However, it is a priori unclear which welfare
function is particularly well suited for this purpose.5

A less radical procedure suggesting itself in the perturbed quasilinear example
is the choice of the boundary equilibria λ = 0.1 or λ = 0.9 on the basis that they
are “less inefficient” than, say, λ = 0.5. To define the degree of inefficiency,
interpersonal utility comparisons are not required.

5In another context involving lotteries, Dhillon and Mertens (1999) argue in favor of relative
utilitarianism.
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The last three approaches provide welfare oriented ways that may be used to
overcome the problem laid out in this paper. In each case a particular function
is optimized. These approaches require a large amount of information and are
far more complex than the usual profit maximization in General Equilibrium
Theory with complete markets. They would change the character of the theory
considerably.
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